TWI225102B - Reaction-inert material with high hardness for thermally stressed members - Google Patents

Reaction-inert material with high hardness for thermally stressed members Download PDF

Info

Publication number
TWI225102B
TWI225102B TW091124162A TW91124162A TWI225102B TW I225102 B TWI225102 B TW I225102B TW 091124162 A TW091124162 A TW 091124162A TW 91124162 A TW91124162 A TW 91124162A TW I225102 B TWI225102 B TW I225102B
Authority
TW
Taiwan
Prior art keywords
alloy
content
patent application
hardness
deformation
Prior art date
Application number
TW091124162A
Other languages
Chinese (zh)
Inventor
Gottfried Mayerbock
Johann Sammer
Gabriele Saller
Original Assignee
Bohler Edelstahl Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohler Edelstahl Gmbh & Co Kg filed Critical Bohler Edelstahl Gmbh & Co Kg
Application granted granted Critical
Publication of TWI225102B publication Critical patent/TWI225102B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Abstract

This invention relates to a material for thermally stressed members and tools, a process to produce this material and application of this material. This invention comprises a material with high reaction-inertness, particularly of high resistance to oxidation and high hardness at a temperature up to 750 DEG C, composed of a composition substantial by weight as follows: carbon (C) 0.01 to 0.25; silicon (Si) 0.35 to 2.5; magnesium (Mn) 0.4 to 4.3; chromium (Cr) 16.0 to 28.0; nickel (Ni) 15.0 to 36.0; nitrogen (N) 0.01 to 0.29, with the constraint, that the nickel content of the alloy equal to a value, or if necessary greater than the value by at most 4.8% by weight, which value is obtained from the chromium content plus 1.5 times of silicon content minus 0.12 times of manganese content minus 18 times of nitrogen content minus 30 times of carbon content minus the number 6: Ni >= Cr+1.5Si-0.12Mn-18*N-30*C-6. The remaining contents are iron (Fe) and accompanying elements and impurities, the material having hardness, formed by cold deformation, of at least 23-HB.

Description

1225102 玖、發明說明 【發明所屬之技術領域】 本發明關於一種具有高反應惰性(特別是高抗氧化性)及 高硬度的材料,它係用於可受熱負荷的構件與工具。 依德國工業標準DIN50900, 一種金屬材料與其周圍環 繞反應,造成材料之可測出之變化,則定義爲「腐蝕」 (Korrosion,英:corrosion)。在此,腐蝕可在該構件有或無 機械負荷之下發生,且依各種不同種類的化學侵蝕以及在 不同溫度發生。 最常見的是物體表面在有一種導離子的相存在時間於 電化學腐蝕造成之侵蝕,或者由於化學腐蝕以及在高溫時 的熱腐蝕造成之侵蝕。而在高溫時在熔融的介質(例如液 態玻璃)中,與它接觸的金屬部分的表面也會發生變化, 造成腐蝕式侵蝕。 在現代技術中,構件與工具部分大多同時受到多種不 同的應力與負荷,其中特別是熱負荷與機械負荷,而且還 會交替地或遞增地作用,如此會有多重的密集的腐蝕條件 存在,這些腐蝕條件還會由於該部分的接近表面的區域變 形而加強。 耐腐蝕與耐熱的鋼與合金必須爲了要有在600°C以上溫 度的耐熱負荷性,故須有一種立方體面心的原子格子構造 或沃斯田鐵式組織構造。這點在合金工程上係表示:這種 材料有較高鎳-及/或鈷的含量,或者從提高在高溫時的強度 及硬度觀點,設計成以鎳爲基礎或以鈷爲基礎的合金形式 7 1225102 ,但其中基於腐蝕化學的理由,鉻含量須至少大於13%重 量。 雖然具有高鎳濃度的材料都有高機械強度或高材料硬 度,使得構件及工具部件在高溫時的使用性質改善,但基 於經濟理由,人們希望將鎳含量減到36%重量以下,且爲 了提高抗腐蝕性,將合金的鉻成分增加到超過16%重量。 固然鎳含量少於36%重量的沃斯田式以鐵爲基礎的材 料由於鉻含量高(還可配合其他防止腐蝕的元素)在高溫時( 例如在600°C )以及在所要求的最小限度的期間都能抵抗應 腐蝕性侵蝕,但該材料硬度低,強度同樣也低,且潛變表 現(Dauerstandsverhalten,英:creep behavior)很有限。儘管 有這些缺點,然而,例如依DIN材料號碼1.2780、1.2782 及1.2786的合金,基於經濟性及製造理由,仍用於製造作 玻璃加工處理用的工具。 對此本發明提出對策,其目的在提供一種硬度大於 230HB的上述種類的材料,它即使在600°C以上的溫度時, 仍有高度的抗潛變抵抗力(Kriechwiderstand,英:creep resistan ce)及較佳的潛變表現以及相同的抗腐蝕性。 此外,本發明另一目的在提供一種方法,以使經濟地 製造構件與工具用的材料,這些構件與工具具有較佳的使 用性質,且具有高硬度及高耐腐蝕性。 最後一點,本發明另一目的在於使用一種以鐵爲基礎 的合金做熱工作工具用的材料,該工具可在550°C以上的工 作溫度使用。 8 1225102 前述的目的,在前述種類的材料的解決之道,係使該 材料由一種以下之重量百分比之組成的合金構成: 碳(C) 0.01- -0.25 矽(Si) 0.35〜2.5 猛(Μη) 0.4〜 4.3 鉻(Cr) 16.0- -28.0 鎳(Ni) 15.0〜36.0 氮(N) 0.01- -0.29 其條件爲:合金的鎳含量等於某一値或至多大於該値4.8% 重量,該値係爲鉻含量加1.5倍矽含量減0.12倍錳含量減 18倍氮含量減30倍碳含量減6 :1225102 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a material with high reaction inertia (especially high oxidation resistance) and high hardness, which is used for components and tools that can be subjected to heat loads. According to German industrial standard DIN50900, a metal material reacts with its surroundings to cause a measurable change in the material, which is defined as "corrosion" (Korrosion, English: corrosion). Here, corrosion can occur with or without mechanical load on the component, and can occur with various types of chemical attack and at different temperatures. The most common is the erosion of the surface of an object by an ion-conducting phase during electrochemical corrosion, or by chemical corrosion and thermal corrosion at high temperatures. At high temperatures, in molten media (such as liquid glass), the surface of the metal part in contact with it will also change, causing corrosive erosion. In modern technology, most of the components and tools are subjected to a variety of different stresses and loads at the same time, especially thermal and mechanical loads, and they will alternately or incrementally act, so there will be multiple dense corrosion conditions, these The corrosive conditions are also strengthened by deformation of the area near the surface of the part. Corrosion-resistant and heat-resistant steels and alloys must have a cubic face-centered atomic lattice structure or a Vostian iron structure in order to have heat-resistant load resistance at temperatures above 600 ° C. This point is expressed in alloy engineering: this material has a higher nickel- and / or cobalt content, or is designed to be a nickel-based or cobalt-based alloy form from the viewpoint of increasing strength and hardness at high temperatures 7 1225102, but for reasons of corrosion chemistry, the chromium content must be at least 13% by weight. Although materials with high nickel concentration have high mechanical strength or high material hardness, which improves the use properties of components and tool parts at high temperatures, for economic reasons, people want to reduce the nickel content to less than 36% by weight, and to improve Corrosion resistance, increasing the chromium content of the alloy to over 16% by weight. Although Vostian-type iron-based materials with a nickel content of less than 36% by weight, due to the high chromium content (also with other elements that prevent corrosion) at high temperatures (for example at 600 ° C) and at the required minimum During the period of time, it can resist corrosive erosion, but the material has low hardness, low strength, and limited creep behavior (Dauerstandsverhalten, English: creep behavior). Despite these disadvantages, alloys such as DIN material numbers 1.2780, 1.2782, and 1.2786 are still used for glass processing tools for economic and manufacturing reasons. The present invention proposes a countermeasure for this, and its purpose is to provide a material of the above-mentioned kind with a hardness greater than 230HB, which has a high resistance to creep resistance even at a temperature of 600 ° C or higher (Kriechwiderstand, English: creep resistan ce) And better creep performance and the same corrosion resistance. In addition, another object of the present invention is to provide a method for economically manufacturing materials for members and tools, which members and tools have better use properties and have high hardness and high corrosion resistance. Finally, another object of the present invention is to use an iron-based alloy as a material for hot work tools that can be used at working temperatures above 550 ° C. 8 1225102 The aforementioned purpose, in the solution of the aforementioned types of materials, is to make the material consist of an alloy consisting of the following weight percentages: carbon (C) 0.01- -0.25 silicon (Si) 0.35 ~ 2.5 manganese (Μη) ) 0.4 ~ 4.3 Chromium (Cr) 16.0- -28.0 Nickel (Ni) 15.0 ~ 36.0 Nitrogen (N) 0.01- -0.29 The condition is that the nickel content of the alloy is equal to a certain 値 or at most greater than the 値 4.8% by weight, the 値Based on chromium content plus 1.5 times silicon content minus 0.12 times manganese content minus 18 times nitrogen content minus 30 times carbon content minus 6:

Ni^ Cr+ (1.5><Si)- (0.12χΜη)- (18χΝ)- (3〇χ〇- 6 其餘成份爲鐵(Fe)以及伴隨之元素與雜質,該材料利用冷變 形造成的硬度至少230HB。 利用本發明達到的優點特別在於所選用的腐蝕化學抵 抗力與在這種化學組成用冷變形能達到的材料性質的組合 的增效作用(Synergie,英:synergy)。在冷滾壓時或在該立 方體面心式沃斯田鐵的再結晶溫度以下變形時,由於結晶 格子中偏位作用受阻擋,故材料強化。與此相關的硬度的 升高以及本發明材料的強度的升高的優點即使在超過600°C 的使用溫度時仍保持不變,這點對行家而言是出乎意料者 ,而且他們所預料的在受感應力的結晶格子中的生空洞的 過程,例如受熱活化的橫向滑動以及原子偏移的再組合的 情事,在一般的期間中都不會觀察到。換言之,和業界的 9 1225102 觀念相左,依本發明組成的材料之藉冷鍛變形而提高的耐 強度即使該構件在高的便用溫度也能保持,因爲鋼的高抗 潛變抵抗力改善了其長期不變性質。在膨脹式的熱負荷的 場合(例如用於製造應用玻璃的模具的場合)在工作表面 會有很強的溫度波動,因此材料有局部的體積變化,茲發 現,由於本發明使材料硬度及耐熱強度提高,故材料(例 如玻璃模具)的局部或表面附近的變形作用係在其彈性範 圍之內發生,因此可防止材料疲勞產生之裂痕情事(這種情 形如在塑性變形範圍,即使小小的塑性形狀變化也會發生 ,且會使模具報銷)。 爲了確保該材料有較佳的性質的輪廓曲線分佈,有一 點很重要,即:該材料即使在冷變形中也保持在穩定的沃 期田鐵區域,且沒有具變形麻田散體的區域,這點依本發 明達成之道,係利用在界限範圍內所予的鎳與鉻濃度,以 及將鎳溫度範圍依鉻、矽、錳、氮、與碳而有限地預設而 達成。如鎳含量較高,則如圖示,長期不變性質變差。反 之,當鎳濃度低時,材料的沃斯田鐵穩定性與耐熱強度急 遽減少。對於元素碳與氮而言,情形也大致相同,其中特 別是氮可提高材料的長期不變性質。 如本該一種或數種合金的材料的重量%組成如下,則本 發明的構件與工具的使用性質可改善: C = 0.02〜0.20,且宜 0.04〜0.15 Si=0.50〜2.48,且宜 1.22〜2.36 Μη=0·62〜4.05,且宜 1.00〜3.95 10 1225102Ni ^ Cr + (1.5 > < Si)-(0.12χΜη)-(18χΝ)-(3〇χ〇- 6 The remaining components are iron (Fe) and accompanying elements and impurities. The material uses the hardness caused by cold deformation At least 230 HB. The advantages achieved by the present invention are in particular the synergistic effect of the selected combination of corrosion chemical resistance and the material properties that can be achieved by cold deformation in this chemical composition (Synergie, English: synergy). In cold rolling At the time of deformation or below the recrystallization temperature of the cubic face-centered Vostian iron, the material is strengthened due to the blocking effect in the crystal lattice. The increase in hardness and the strength of the material of the present invention The high advantage remains unchanged even at operating temperatures in excess of 600 ° C. This is unexpected for connoisseurs, and they anticipate the process of cavitation in the induced crystal lattice, such as The thermally activated lateral slip and the recombination of atomic shifts are not observed during ordinary periods. In other words, contrary to the industry's 9 1225102 concept, the material composed according to the present invention is deformed by cold forging. The increased resistance is maintained even at high service temperatures, because the high creep resistance of steel improves its long-term invariance. In the case of intumescent heat loads (such as those used in the manufacture of glass molds) Occasion) There will be strong temperature fluctuations on the working surface, so the material has a local volume change. It is found that, because the present invention improves the hardness and heat resistance of the material, the local or near surface deformation of the material (such as a glass mold) It occurs within its elastic range, so it can prevent cracks caused by material fatigue (such as in the plastic deformation range, even small plastic shape changes will occur, and the mold will be reimbursed). In order to ensure the material It is important to have a profile curve profile with better properties, that is, the material stays in the stable fertile field area even during cold deformation, and there is no area with deformed Asada bulk, which is achieved according to the present invention The method is to use the nickel and chromium concentrations given in the limits, and to change the nickel temperature range to chromium, silicon, manganese, and nitrogen. Achieved with carbon and limited presets. If the nickel content is high, as shown in the figure, the long-term invariant properties are deteriorated. On the contrary, when the nickel concentration is low, the material's Vastfield iron stability and heat resistance strength decrease sharply. Elemental carbon and nitrogen are also about the same, especially nitrogen can improve the long-term invariant properties of the material. If the weight% composition of the material of the one or more alloys is as follows, the use of components and tools of the present invention Properties can be improved: C = 0.02 ~ 0.20, and preferably 0.04 ~ 0.15 Si = 0.50 ~ 2.48, and preferably 1.22 ~ 2.36 Μη = 0 · 62 ~ 4.05, and preferably 1.00 ~ 3.95 10 1225102

Cr=20.1 〜27.6,且宜 23.9〜26.5 Ni=16.1 〜27.3,且宜 17.9〜25.45 Ν=0·014〜0.23,且宜 0.018〜〇·2〇 在此可確認,如習知者,該鈷在本發明的合金中,從〇 52% 重量的含量起,可以改善該材料的耐熱強度。 · 雖然元素鉬、釩、鎢、鈦與鈮可提高在高溫時材料的 · 抗潛變性,而銅及鋁係傳統硬化作用元素,但依本發明的 材料中這些摻到鋼中的元素具有最大令人滿意的濃度,因 爲如所發現者,其含量較高,則使耐腐蝕性(特別是當間歇 _ 地與麵團似的玻璃接觸時)變低,且由於使模表面變粗糙, 使玻璃透明度變差。其原因仍未充分明瞭,但這些受體原 · 子Na+、Κ+、Ca+2、Β+3、ΑΓ3、與Si+4算是麻煩的路易士酸 . ,其中在每次玻璃成形後,該模就受到一次熱腐蝕負荷。 雜質可依其性質而定,使材料性質變差,因此本發明 ^ 的合金中,伴隨元素及/或雜質元素濃度値重量%如下: 鉬(Mo)小於1.0 0 釩(V) 高可達0.5 鎢(W) 高可達0.5 銅(Cu)高可達0.5 鈷(Co)高可達6.5 鈦(Ti)高可達0.5 - 鋁(A1)高可達1.5 鈮(Nb)高可達0.05 氧(〇)最大0.05 11 1225102 磷(P) 最大0.03 硫(S) 最大0.03 本發明的標的還在一種製造具有高反應惰性(特別是高 抗氧化性)及高硬度的構件與工具用的材料的方法,其在高 達75°C的溫度的熱負荷時有高抗氧化性及高硬度,依該方 法係由一種重量百分比大致如下的組成形成一前產物: 碳(C) 0.01 〜0.25 矽(Si) 0.35 〜2.5 猛(Μη) 0.4〜4.3 鉻(Cr) 16.0 〜28.0 鎳(Ni) 15.0〜36.0 氮(N) 0.01 〜0.29 其條件爲:合金的鎳含量等於某一値或至多比該値大4.8重 量,該値係爲鉻含量加1.5倍矽含量減0.12倍減18倍氮減 30倍碳含量減6 :Cr = 20.1 to 27.6, and preferably 23.9 to 26.5, Ni = 16.1 to 27.3, and preferably 17.9 to 25.45, N = 0.014 to 0.23, and preferably 0.018 to 0.22. As can be confirmed here, the cobalt In the alloy of the present invention, the heat resistance strength of the material can be improved from a content of 052% by weight. Although the elements molybdenum, vanadium, tungsten, titanium, and niobium can improve the material's resistance to latent degeneration at high temperatures, and copper and aluminum are traditional hardening elements, these materials in the material according to the invention have the largest Satisfactory concentration because, as found, its higher content lowers the corrosion resistance (especially when it comes in contact with the dough-like glass intermittently) and because the mold surface is roughened, the glass Poor transparency. The reason is not fully understood, but these acceptors Na +, κ +, Ca + 2, B + 3, ΑΓ3, and Si + 4 are regarded as troublesome Lewis acids. Among them, after each glass forming, the The mold is subjected to a thermal corrosion load. Impurities can be determined according to their properties, which can degrade the material properties. Therefore, in the alloy of the present invention, the concentration of the accompanying elements and / or impurity elements 値% by weight is as follows: Molybdenum (Mo) is less than 1.0 0 Vanadium (V) is up to 0.5 Tungsten (W) up to 0.5 Copper (Cu) up to 0.5 Cobalt (Co) up to 6.5 Titanium (Ti) up to 0.5-Aluminum (A1) up to 1.5 Niobium (Nb) up to 0.05 Oxygen (〇) Maximum 0.05 11 1225102 Phosphorus (P) Maximum 0.03 Sulfur (S) Maximum 0.03 The subject of the present invention is also a material for manufacturing components and tools with high reaction inertia (especially high oxidation resistance) and high hardness. Method, which has high oxidation resistance and high hardness under heat load up to 75 ° C. According to this method, a former product is formed from a composition with a weight percentage roughly as follows: carbon (C) 0.01 to 0.25 silicon (Si ) 0.35 to 2.5 M (Mn) 0.4 to 4.3 Chromium (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 The condition is that the nickel content of the alloy is equal to or greater than that 4.8 weight, this actinide is chromium content plus 1.5 times silicon content minus 0.12 times minus 18 times nitrogen minus 30 times carbon content minus 6:

Ni- Cr+ 1.5><Si- 0.12><Mn — 18xN — 3〇xC— 6 其餘爲鐵以及伴隨元素與雜質, 然後將該前產物藉冷變形進一步加工處理成硬度大於 230HB的材料。 將本發明的合金作冷鍛變形,可使材料的彈性限度提 高到一種應力位準,即使在構件或工具的工作面附近由於 交替的熱負荷造成體積改變時也不會達到此應力位準。對 應於此,在顆粒界限範圍也不會有任何區域在溫度交替時 呈塑性變形,如此可避免由於材料疲勞而形成裂痕。如此 12 1225102 也可避免由於化學腐蝕或熱腐蝕造成顆粒界限侵蝕,因此 ,舉例而言,在玻璃模具的場合,即使在高負荷在製造大 量件數的場合,在長期下來仍可維持加工面與表面的高品 質,相反地,傳統的玻璃模具在短短使用期間後,在組織 的顆粒界限顯出有材料脫移情事,其距離在數//m範圍, 如此,形成的玻璃呈現在光波範圍的不平坦性,如此會產 生反射干涉及乳白玻璃效應。 如果依本發明的方法,藉著冷變形而形成一種硬度大 於250HB(特別是300HB或更局)的材料,則耐腐蝕及耐熱 強度還可進一步提高且可有效防止材料疲勞形成裂痕。 如果將具本發明組成的前產物利用熱變形而形成,使 它受到溶液退火處理(L5sungsgliihbehandlung 英:solution annealing treatment 或 solutionizing treatment)從該變形溫度 冷却(如有必要可作密集冷却,例如施以壓縮空氣或浸入 一冷媒中以作密集冷却)並作冷變形,則可製成組織特別 均勻的材料,具有較佳的防腐蝕性。 特別是對於以相對稱方式成形的工具,例如瓶子模具 及類似物,如果材料的冷變形係在整個周圍沿徑向垂直於 前產物的縱軸作冷變形,則甚有利。 C=0.02〜0.20,且宜 0.04〜0.15 SU0.50〜2.48,且宜 1.22〜2.36 Μη=0·62〜4.05,且宜 1.00〜3.95 Cr=20.1 〜27.6,且宜 23.9〜26.5 Ni=16.1 〜27.3,且宜 17.9〜25.45 13 1225102 Ν=0·014〜0.23,且宜 0.018〜0.20 最後,本發明的另一標的係在一種以鐵爲基礎的合金 的應用,其合金元素的重量百分比爲: 碳(C) 高可達0.25 矽(Si) 高可達2.5 錳(Μη)高可達4.3 鉻(Cr) 16.0〜28.0 鎳(Ni) 15.0〜36.0 氮(N) 0.01 〜0.29 其條件爲該合金的氮含量等於某一値或至多比該値大4.8重 量,該値係爲鉻加1.5倍矽減0.12倍錳減18倍氮減30倍 碳減6 :Ni- Cr + 1.5 > < Si- 0.12 > < Mn — 18xN — 30xC— 6 The rest is iron and accompanying elements and impurities, and then the former product is further processed by cold deformation to a material with a hardness greater than 230HB . The cold forging deformation of the alloy of the present invention can increase the elastic limit of the material to a stress level, which will not be reached even when the volume changes near the working surface of the component or the tool due to the alternating thermal load. Corresponding to this, there will not be any area in the particle boundary range that is plastically deformed when the temperature is alternated, so that the formation of cracks due to material fatigue can be avoided. In this way, 12 1225102 can also avoid the particle boundary erosion caused by chemical corrosion or thermal corrosion. Therefore, for example, in the case of glass molds, even in the case of high loads and a large number of pieces, the processing surface and the surface can be maintained for a long time. The surface is of high quality. On the contrary, after a short period of use, traditional glass molds show material removal at the grain boundary of the tissue, and the distance is in the range of several meters, so that the formed glass appears in the light wave range. The unevenness, which will cause reflections, involves the opalescent glass effect. If according to the method of the present invention, a material having a hardness greater than 250HB (especially 300HB or more) is formed through cold deformation, the corrosion resistance and heat resistance strength can be further improved and the material can be effectively prevented from forming cracks due to fatigue. If the pre-product having the composition of the present invention is formed by thermal deformation, it is subjected to a solution annealing treatment (L5sungsgliihbehandlung English: solution annealing treatment or solutionizing treatment) and cooled from the deformation temperature (if necessary, intensive cooling, such as compression) Air or immersed in a refrigerant for intensive cooling) and cold deformation can be made into a material with a particularly uniform structure, which has better corrosion resistance. Especially for tools that are formed in a symmetrical manner, such as bottle molds and the like, it is advantageous if the cold deformation of the material is cold deformed along the entire radial direction perpendicular to the longitudinal axis of the former product. C = 0.02 ~ 0.20, and preferably 0.04 ~ 0.15 SU0.50 ~ 2.48, and preferably 1.22 ~ 2.36 Μη = 0 · 62 ~ 4.05, and preferably 1.00 ~ 3.95 Cr = 20.1 ~ 27.6, and preferably 23.9 ~ 26.5 Ni = 16.1 ~ 27.3, and preferably 17.9 ~ 25.45 13 1225102 N = 0.014 ~ 0.23, and preferably 0.018 ~ 0.20 Finally, another object of the present invention is the application of an iron-based alloy, and the weight percentage of its alloying elements is: Carbon (C) up to 0.25 Silicon (Si) up to 2.5 Manganese (Mn) up to 4.3 Chromium (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 The condition is this alloy The nitrogen content is equal to a certain rhenium or at most 4.8 weights larger than the rhenium, which is chromium plus 1.5 times silicon and 0.12 times manganese and 18 times nitrogen and 30 times carbon and 6:

Ni- Cr+(1.5><Si) — (0·12><Μη) — (18χΝ) — (3〇χ〇 — 6 其餘爲鐵(Fe)及伴隨元素與雜質,藉著將其所形成之前產物 冷變形到至少230HB(且宜大於250HB)的材料硬度,使該合 金固化,當做熱工作工具用的材料,其工作溫度高於555°C ,且宜高於602°C,特別是高可達750°C。 就產品之品質以及經濟製造的觀點,特別有利的做法 ,係使用上述以鐵爲基礎的合金當作玻璃工業的工具(模具) 材料,特別是作機器壓製玻璃用之模具材料。 茲利用比較的試驗結果詳細說明本發明。 [圖式] 圖式中 第1圖係本發明之材料在604°C之強度與冷變形度的關 14 1225102 係。 第2圖係在600°C受長時間溫度應力後在室溫時的硬度 走勢。 【實施方式】 第1圖中顯示在604°C試驗溫度時本發明的材料的強度 與冷變形量的關係,樣品材料在l〇l〇°C的溫度锻壓,並由 變形熱溫強冷却並在1060°C作溶液處理,在材料各部分分 別作變形度21%、35%、47%及55%的冷變形,然後由此做 拉伸試驗(Zugproben英:tensile test)。在604°C的溫度求出 強度,亦即0.2%拉伸限度及拉伸度,其中該樣品保持在此 溫度20分。要做對照比較,係將標準材料在1〇6〇°c作溶液 退火處理(ISsungsgliihen),其中,由此所製的樣品同樣在6 0 4°C作試驗,第1圖的柱狀圖的顯示出對變形度關係的 材料強度的明顯升高,其中(在圖中未示者)在高變形度時早 在冷變形度大於6%(特別是大於12%)時強度已升高了。 第2圖中顯不在600°C的溫度時本發明材料的長期不變 性(Dauerstandfestigkeit,英:creep limit 或 1〇ng time creep strength),係在樣品冷狀態作硬度測試而求出,與依mN材 料Ν〇·1,2083與材料ν〇·1,4028的材料比較。 本發明的材料係以一種如下組成(重量: c=0 08, Si = 1.7,Μη=1·15,Ρ=〇·〇ι,S=0.002,Cr=24.8,Νι=19·8, Ν=〇·〇2,Μ〇=0·26,V=0.09,W=〇.li,Cu=(U2,c〇=〇 4, Τι=0·01,Α1=0·02,Nb=0.0(H,〇=〇·0029 作熔融鑄造成一試 驗磚塊,並將它作熱變形成樣品材料。在樣品材料上在 15 1060 °C作溶液處理,然後在水中淬火(Abschnecken,英: quench),然後將標號H5的樣品不作變形地,將標號H525 的樣品則作35%的冷變形,一齊在600°C受長時的退火。對 照組的比較材料N〇.1,2083及N〇.1,4028則用1020°C在油中 硬化,在630°C回火。並同樣作長時退火。在45、90、140 及180小時後,將樣品材料從爐拿出,放冷,並測試材料 硬度,然後將樣品作回使用(Riickeinsetzen英:back use)作 測試材料硬度,(作溫度交替的負荷),比較材料H5顯示出 硬度有預期的性質,反之,作了 35%冷變形的本發明材料 H525顯示出提高的硬度315H13及高的長期不變性質,在 600°C時,即使在交替的熱負荷的場合,也不會發現有材料 硬度減少及材料的潛變,而在麻田散鐵式的標準鋼則發現 樣品隨著退火時間而有明顯的硬度下降情形。Ni- Cr + (1.5 > < Si) — (0 · 12 > < Μη) — (18χΝ) — (3〇χ〇—6 The rest is iron (Fe) and accompanying elements and impurities. Before forming, the product is cold deformed to a material hardness of at least 230HB (and preferably greater than 250HB) to solidify the alloy. As a material for hot work tools, its working temperature is higher than 555 ° C and preferably higher than 602 ° C, especially It can reach 750 ° C. From the viewpoint of product quality and economical manufacturing, it is particularly advantageous to use the above-mentioned iron-based alloy as a tool (mold) material for the glass industry, especially for machine pressed glass. Mold material. The present invention will be described in detail using comparative test results. [Schematic] The first diagram in the diagram is the relationship between the strength and cold deformation of the material of the invention at 604 ° C 14 1225102. The second diagram is in The hardness trend at room temperature after being subjected to a long-term temperature stress at 600 ° C. [Embodiment] Figure 1 shows the relationship between the strength of the material of the present invention and the amount of cold deformation at a test temperature of 604 ° C. The sample material is at l Forging at a temperature of 〇l0 ° C, and it is cooled by the deformation heat and Solution treatment at 060 ° C, cold deformation of 21%, 35%, 47%, and 55% of deformation of each part of the material, and then tensile test (Zugproben): Tensile test at 604 ° C Calculate the strength at the temperature, that is, the 0.2% elongation limit and elongation, where the sample is kept at this temperature for 20 minutes. For comparison, the standard material is annealed at 1060 ° C (ISsungsgliihen) Among them, the samples thus prepared were also tested at 60 ° C. The histogram in Figure 1 shows a significant increase in the strength of the material with respect to the degree of deformation, of which (not shown in the figure) At high deformation, the strength has increased as early as the cold deformation is greater than 6% (especially greater than 12%). Figure 2 shows the long-term invariance of the material at 600 ° C (Dauerstandfestigkeit, English). : Creep limit or 10ng time creep strength), which is determined by hardness test in the cold state of the sample, and compared with the material according to mN material No. 1,2083 and material ν〇.1, 4028. Materials of the present invention Based on the following composition (weight: c = 0 08, Si = 1.7, Mη = 1 · 15, P = 〇 · 〇ι , S = 0.002, Cr = 24.8, Nom = 19 · 8, N = 〇 · 〇2, Mo = 0.26, V = 0.09, W = 〇.li, Cu = (U2, c0 = 〇4, Tm = 0.01, A1 = 0.02, Nb = 0.0 (H, 〇 = 0.0029) was melt cast into a test brick, and it was heat transformed to form a sample material. The sample material was treated at 15 1060 ° C, and then quenched in water (Abschnecken, English: quench), and then the sample labeled H5 was not deformed, and the sample labeled H525 was subjected to 35% cold deformation, all together 600 ° C subjected to long-term annealing. The comparative materials of the control group No. 1,2083 and No. 1,4028 were hardened in oil at 1020 ° C and tempered at 630 ° C. And also do long-time annealing. After 45, 90, 140, and 180 hours, remove the sample material from the furnace, let it cool, and test the hardness of the material, and then use the sample as a test material (Riickeinsetzen): Load), the comparative material H5 shows the expected properties of hardness. Conversely, the material H525, which has been subjected to 35% cold deformation, shows increased hardness 315H13 and high long-term invariant properties. At 600 ° C, even in alternating In the case of thermal load, the decrease in material hardness and the creep of the material will not be found. In the standard steel of the loose steel type of Asada, it is found that the hardness of the sample decreases significantly with the annealing time.

Claims (1)

1225102 Si:0.50〜2.48, Μη=0·62〜4.05, Cr=20.1 〜27.6, Ni=16.1 〜27·3, Ν=0.014〜0.23。 5. 如申請專利範圍第1項或第2項之材料,其中 對於一種或數種伴隨元素及/或雜質,其濃度値(重量%) 如下: 鉬(Mo)小於1.0 釩(V) 高可達0.5 鎢(W) 高可達0.5 銅(Cu)高可達0.5 鈷(Co)高可達6.5 鈦(Τι)高可達0.5 鋁(Α1)高可達1.5 鈮(Nb)高可達0.05 氧(〇)最大0.05 磷(P) 最大0.03 硫(S) 最大0.03 6. —種製造構件及工具用的反應惰性材料的方法’該材 料具有高反應惰性,特別是在高達750°C的溫度時的高抗氧 化性及高硬度,由一種以下之重量百分比之組成的合金構 成: 碳(C) 0.01 〜0.25 矽(Si) 0.35- -2.5 猛(Μη) 0.4〜 4.3 鉻(Cr) 16.0^ -28.0 鎳(Ni) 15.0- -36.0 氮(N) 0.01 〜0.29 1225102 其條件爲:合金的鎳含量等於某一特定値或至多大於該値 4.8重量,該値係爲鉻含量加1.5倍矽含量減0.12倍錳含量 減18倍氮含量減30倍碳含量減6 : Ni^ Cr+ (1.5xSi)- (0.12χΜη)- (18xN)- (3〇χ〇- 6 其餘成份爲鐵(Fe)以及伴隨之元素與雜質, 然後將該前產物藉冷變形進一步加工處理成硬度大於 230HB的材料。 7·如申請專利範圍第6項之方法,其中: 將該前產物利用熱變形而形成,將它作固溶退火處理 或由該變形溫度冷却,如有必要可作密集冷却,及作冷變 8. 如申請專利範圍第6項之方法,其中·· 該冷變形在整個周圍沿徑向垂直於前產物的縱軸進行 〇 9. 如申請專利範圍第6項之方法,其中: 該合金的鎳含量至多比該特定値高4.8%重量。 10. 如申請專利範圍第6項之方法,其中: 該合金由以有下重量百分比含量的一種或數種合金元 素構成: 19 c = 0.02 〜 0.20 Si = :0.50- ^2.48 Μη: -0.62 -4.05 Cr = 20.1, -27.6 Ni 二 :16.1 〜27.3 N = 0.014〜0.23。 1225102 11.如申請專利範圍第1項之方法,其中: 利用冷變形而形成一種硬度大於250HB的材。 12· —種以鐵爲基礎的合金,其合金元素的電量百分比 爲: 碳(C) 高可達0.25 矽(Si) 高可達2.5 錳(Μη)高可達4.3 鉻(Cr) 16.0〜28.0 鎳(Ni) 15.0〜36.0 氮(N) 0.01 〜0.29 其條件爲該合金的錬含量等於某一'値或至多比該値大了 4 · 8 %重量,該値係爲鉻加1 · 5倍砂減0 · 12倍鍾減18倍氮減 30倍碳減6 : Ni - Cr+1.5><Si- 0·12><Μη- 18χΝ- 3〇xC- 6 其餘爲鐵(Fe)及伴隨元素與雜質,藉著將其所形成之前 產物冷變形到至少230HB的材料硬度,使該合金固化,當 做熱工作工具用的材料,其工作溫度高於555°C。 13.如申請專利範圍第12項之合金,其係用於玻璃工 20 1225102 業的工具材料,特別是作機器壓製玻璃的模具。 14. 如申請專利範圍第2項之材料,其中: 其硬度2 300HB。 15. 如申請專利範圍第12項之合金,其中: 該前產物冷變形到大於250HB。 16. 如申請專利範圍第12項之合金,其中: 其係當作熱工作工具的材料,其工作溫度高於602°C。 17. 如申請專利範圍第16項之合金,其中: 其係當作熱工作工具的材料,其工作溫度高於750°C。 拾壹、圖式 如次頁1225102 Si: 0.50 ~ 2.48, Μη = 0.62 ~ 4.05, Cr = 20.1 ~ 27.6, Ni = 16.1 ~ 27 · 3, Ν = 0.014 ~ 0.23. 5. For the materials in the first or second scope of the patent application, for one or several accompanying elements and / or impurities, the concentration of rhenium (wt%) is as follows: Molybdenum (Mo) is less than 1.0 Vanadium (V) Highly acceptable Up to 0.5 tungsten (W) up to 0.5 copper (Cu) up to 0.5 cobalt (Co) up to 6.5 titanium (Ti) up to 0.5 aluminum (Α1) up to 1.5 niobium (Nb) up to 0.05 Oxygen (〇) max. 0.05 phosphorous (P) max. 0.03 sulfur (S) max. 0.03 6. —Method for manufacturing reactive inert materials for components and tools' This material has high reactive inertness, especially at temperatures up to 750 ° C The high oxidation resistance and high hardness at the time are composed of an alloy composed of the following weight percentages: carbon (C) 0.01 to 0.25 silicon (Si) 0.35- to 2.5 (Mn) 0.4 to 4.3 chromium (Cr) 16.0 ^ -28.0 Nickel (Ni) 15.0- -36.0 Nitrogen (N) 0.01 to 0.29 1225102 The condition is that the nickel content of the alloy is equal to a specific rhenium or at most greater than the 4.8 weight of the rhenium, which is the chromium content plus 1.5 times the silicon content Reduce 0.12 times manganese content, reduce 18 times nitrogen content, reduce 30 times carbon content, reduce 6: Ni ^ Cr + (1.5xSi)-(0.12 × Μη)-(18xN)-(3〇χ〇 -6 The remaining ingredients are iron (Fe) and the accompanying elements and impurities, and then the former product is further processed into materials with a hardness greater than 230HB by cold deformation. 7. If the method according to item 6 of the patent application, wherein: The former product is formed by thermal deformation, and it is subjected to solution annealing treatment or cooling at the deformation temperature, if necessary, intensive cooling, and cold transformation. 8. If the method of the scope of patent application No. 6 is applied, where ... Cold deformation is carried out in the entire periphery along a radial direction perpendicular to the longitudinal axis of the pre-product. 9. As in the method of claim 6 of the patent application, wherein: the nickel content of the alloy is at most 4.8% by weight higher than the specific hafnium. 10. As applied The method of item 6 of the patent, wherein: the alloy is composed of one or more alloying elements with the following weight percentage content: 19 c = 0.02 to 0.20 Si =: 0.50- ^ 2.48 Μη: -0.62 -4.05 Cr = 20.1 -27.6 Ni II: 16.1 to 27.3 N = 0.014 to 0.23. 1225102 11. The method according to item 1 of the scope of patent application, in which: cold deformation is used to form a material with a hardness greater than 250HB. 12 · —a kind of iron The basic alloy, the percentage of electrical energy of its alloying elements is: carbon (C) up to 0.25 silicon (Si) up to 2.5 manganese (Μη) up to 4.3 chromium (Cr) 16.0 to 28.0 nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 The condition is that the alloy's plutonium content is equal to a certain plutonium or at most 4 · 8% by weight of the plutonium, which is chromium plus 1 · 5 times sand minus 0 · 12 times bell 18 times less nitrogen and 30 times less carbon 6: Ni-Cr + 1.5 > < Si- 0 · 12 > < Μη- 18χΝ- 30 × C- 6 The rest is iron (Fe) and accompanying elements and impurities. The cold-deformation of the product before its formation to a hardness of at least 230 HB makes the alloy solidify. As a material for hot work tools, its working temperature is higher than 555 ° C. 13. The alloy according to item 12 of the scope of patent application, which is a tool material used in the glass industry 20 1225102 industry, especially as a mold for pressing glass by machines. 14. If the material of the scope of patent application No. 2 is, its hardness is 2 300HB. 15. The alloy as claimed in item 12 of the patent application, wherein: the pre-product is cold deformed to greater than 250HB. 16. As for the alloy of item 12 in the scope of patent application, where: It is a material used as a hot work tool, and its working temperature is higher than 602 ° C. 17. As for the alloy of the 16th in the scope of patent application, where: It is a material used as a hot work tool, and its working temperature is higher than 750 ° C. Pick up, schema, as the next page 21twenty one
TW091124162A 2002-01-23 2002-10-21 Reaction-inert material with high hardness for thermally stressed members TWI225102B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0010702A AT410550B (en) 2002-01-23 2002-01-23 Material used as a tool material in the glass industry, especially as a molding material for machine pressed glass consists of an alloy containing carbon, silicon, chromium, nickel and nitrogen

Publications (1)

Publication Number Publication Date
TWI225102B true TWI225102B (en) 2004-12-11

Family

ID=3624219

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091124162A TWI225102B (en) 2002-01-23 2002-10-21 Reaction-inert material with high hardness for thermally stressed members

Country Status (13)

Country Link
US (1) US20030136482A1 (en)
EP (1) EP1420077B1 (en)
KR (1) KR100540851B1 (en)
CN (1) CN1434146A (en)
AT (1) AT410550B (en)
BR (1) BR0300116A (en)
CA (1) CA2416950C (en)
DE (1) DE50208351D1 (en)
DK (1) DK1420077T3 (en)
ES (1) ES2273992T3 (en)
HK (1) HK1067668A1 (en)
RU (1) RU2246553C2 (en)
TW (1) TWI225102B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605072B1 (en) * 2003-03-20 2012-09-12 Sumitomo Metal Industries, Ltd. Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel
US20090053100A1 (en) * 2005-12-07 2009-02-26 Pankiw Roman I Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same
ES2545488T3 (en) * 2008-02-27 2015-09-11 Nippon Steel & Sumitomo Metal Corporation Metallic material resistant to carbon cementation
UA100460C2 (en) * 2008-11-19 2012-12-25 Сандвік Інтеллекчуал Проперті Аб Nickel based alloy capable for forming ALUMINA
EP2224031B1 (en) 2009-02-17 2013-04-03 MEC Holding GmbH Wear resistant alloy
EP2287351A1 (en) 2009-07-22 2011-02-23 Arcelormittal Investigación y Desarrollo SL Heat-resistant austenitic steel having high resistance to stress relaxation cracking
CN101921967A (en) * 2010-08-12 2010-12-22 江苏新华合金电器有限公司 Novel austenitic heat-resistance stainless steel
CN102650023A (en) * 2011-02-23 2012-08-29 宝山钢铁股份有限公司 Cu-Fe-Ni-Cr austenite alloy for oil bushing
US9347121B2 (en) * 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
JP2020509237A (en) * 2017-03-03 2020-03-26 ボーグワーナー インコーポレーテッド Nickel and chromium based iron alloys with enhanced high temperature oxidation resistance
PL3590643T3 (en) * 2018-07-02 2021-07-05 Höganäs Ab (Publ) Wear-resistant iron-based alloy compositions comprising nickel
CN110724873A (en) * 2018-07-17 2020-01-24 宝钢特钢有限公司 High-wear-resistance die forging die steel and manufacturing method thereof
RU2703318C1 (en) * 2019-04-15 2019-10-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Radiation-resistant austenitic steel for the wwpr in-vessel partition

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746209A (en) * 1949-08-20 1956-05-22 Libbey Owens Ford Glass Co Equipment for bending glass sheets
US3385739A (en) * 1965-04-13 1968-05-28 Eaton Yale & Towne Alloy steel articles and the method of making
AT305000B (en) * 1970-06-29 1973-02-12 Mannesmann Ag Tool
US3833358A (en) * 1970-07-22 1974-09-03 Pompey Acieries Refractory iron-base alloy resisting to high temperatures
DE2641555A1 (en) * 1976-09-15 1978-03-16 Schevtschenko METHOD OF CONTINUOUS TUBE ROLLING AND CONTINUOUS TUBE ROLLING MILL
US4341555A (en) * 1980-03-31 1982-07-27 Armco Inc. High strength austenitic stainless steel exhibiting freedom from embrittlement
US4329173A (en) * 1980-03-31 1982-05-11 Carondelet Foundry Company Alloy resistant to corrosion
EP0087482B1 (en) * 1982-02-26 1986-06-25 Kubota Ltd. Heat-resisting alloy for rolls
US4489040A (en) * 1982-04-02 1984-12-18 Cabot Corporation Corrosion resistant nickel-iron alloy
US4560408A (en) * 1983-06-10 1985-12-24 Santrade Limited Method of using chromium-nickel-manganese-iron alloy with austenitic structure in sulphurous environment at high temperature
DE3407307A1 (en) * 1984-02-24 1985-08-29 Mannesmann AG, 4000 Düsseldorf USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS
JPS64255A (en) * 1987-03-12 1989-01-05 Nippon Steel Corp High-hardness nonmagnetic stainless steel for electrical equipment parts
US4795610A (en) * 1987-04-23 1989-01-03 Carondelet Foundry Company Corrosion resistant alloy
US4981647A (en) * 1988-02-10 1991-01-01 Haynes International, Inc. Nitrogen strengthened FE-NI-CR alloy
US4861547A (en) * 1988-04-11 1989-08-29 Carondelet Foundry Company Iron-chromium-nickel heat resistant alloys
US5098652A (en) * 1989-06-13 1992-03-24 Kabushiki Kaisha Toshiba Precision parts of non-magnetic stainless steels
JP2756549B2 (en) * 1989-07-22 1998-05-25 日新製鋼株式会社 Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
US5016460A (en) * 1989-12-22 1991-05-21 Inco Alloys International, Inc. Durable method for producing finned tubing
US5223214A (en) * 1992-07-09 1993-06-29 Carondelet Foundry Company Heat treating furnace alloys
JPH09279309A (en) * 1996-04-12 1997-10-28 Daido Steel Co Ltd Iron-chrome-nickel heat resistant alloy
JP2001011583A (en) * 1999-07-02 2001-01-16 Hmy Ltd Heat resistant alloy
AT408889B (en) * 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL
SE0004336L (en) * 2000-11-24 2002-05-25 Sandvik Ab Cylinder pipes for industrial chemical installations

Also Published As

Publication number Publication date
EP1420077B1 (en) 2006-10-04
HK1067668A1 (en) 2005-04-15
KR20030064304A (en) 2003-07-31
DE50208351D1 (en) 2006-11-16
ES2273992T3 (en) 2007-05-16
CA2416950C (en) 2007-08-28
CN1434146A (en) 2003-08-06
KR100540851B1 (en) 2006-01-10
US20030136482A1 (en) 2003-07-24
RU2246553C2 (en) 2005-02-20
CA2416950A1 (en) 2003-07-23
DK1420077T3 (en) 2007-02-05
EP1420077A1 (en) 2004-05-19
RU2003101774A (en) 2005-01-10
BR0300116A (en) 2003-09-09
ATA1072002A (en) 2002-10-15
AT410550B (en) 2003-05-26

Similar Documents

Publication Publication Date Title
CN104278175B (en) The Ni base superalloys for capableing of warm and hot forging of having excellent high-temperature strength
JP5462281B2 (en) Stainless austenitic low Ni steel alloy
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
CN101381842B (en) High chromium content ferrite stainless steel and manufacturing method thereof
TWI225102B (en) Reaction-inert material with high hardness for thermally stressed members
TWI460293B (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
CN102234744A (en) Ultra-pure alloy and method for manufacturing turbine rotor forging by using same
CN110468341A (en) A kind of 1400MPa grades of delayed fracture resistance high-strength bolt and manufacturing method
EP1091006A1 (en) Strain-induced type martensitic steel having high hardness and high fatigue strength
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
CN105839027A (en) Nickel-based corrosion-resistant alloy and manufacturing method thereof
JP2002327246A (en) Hot work tool steel superior in erosion resistance and high temperature strength, and member made thereof for high temperature use
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JPS5948929B2 (en) Manufacturing method for steel materials with high strength and excellent resistance to hydrogen-induced cracking
JPH07216482A (en) Alloy for exhaust valve
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JPH11117020A (en) Production of heat resistant parts
JPS5925941A (en) Cylinder and screw member for injection molding machine and extruder for plastic material and its production
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JP2001158943A (en) Heat resistant bolt
JP3875605B2 (en) High strength steel with excellent cold workability and delayed fracture resistance
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance
CN108048750A (en) A kind of corrosion-resistant tensile type steel alloy and its production technology
WO2006057470A1 (en) Steel wire for cold forging

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees