EP3591081A1 - Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer - Google Patents

Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer Download PDF

Info

Publication number
EP3591081A1
EP3591081A1 EP18182024.2A EP18182024A EP3591081A1 EP 3591081 A1 EP3591081 A1 EP 3591081A1 EP 18182024 A EP18182024 A EP 18182024A EP 3591081 A1 EP3591081 A1 EP 3591081A1
Authority
EP
European Patent Office
Prior art keywords
steel
steel component
temperature
component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18182024.2A
Other languages
German (de)
French (fr)
Other versions
EP3591081B1 (en
Inventor
Frank van Soest
Hans-Günter Dr. Krull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Original Assignee
Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG filed Critical Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Priority to EP18182024.2A priority Critical patent/EP3591081B1/en
Priority to PT181820242T priority patent/PT3591081T/en
Priority to ES18182024T priority patent/ES2878652T3/en
Priority to PL18182024T priority patent/PL3591081T3/en
Publication of EP3591081A1 publication Critical patent/EP3591081A1/en
Application granted granted Critical
Publication of EP3591081B1 publication Critical patent/EP3591081B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively

Definitions

  • the invention relates to the use of a steel for producing a steel component, which is a gear, a shaft, an axis or a tool holder and which has a thermochemically hardened surface layer, and to such a steel component which has an edge layer produced by a thermochemical diffusion treatment has.
  • the steel components considered here are typically components which, in practice, come into metallic contact with other components in a rolling or rolling motion and are therefore exposed to high mechanical loads in the area of their contact surface.
  • Typical examples of such components are gears, shafts or axes. Comparable loads can occur with tool holders, For example, cutting tools and the like, come in the area of the contact surfaces between the holder and the respective tool.
  • case hardening steels are typically used today for gear manufacturing, for example the steels with the 16MnCr5 / 16MnCrS5 (material numbers 1.7131 / 1.7139) and 18CrNiMo7-6 (material number 1.6587).
  • Tool holders such as holders for cutting elements produced by powder metallurgy, are often produced from relatively expensive tool steels, such as steels with the material numbers 1.2311, 1.2312, 1.2738, 1.2343 or 1.2343.
  • Common processes that can be used to provide gearwheels and components that are subjected to comparable loads with a hardened surface layer include case hardening (see leaflet 452), in which the surface layer of the steel component is first subjected to carburizing or carbonitriding treatment to increase the carbon content and then the component undergoes hardening in order to achieve maximum hardness in the hardened surface layer, and nitriding or nitrocarburizing (see leaflet 477), in which the increase in hardness of the surface layer is achieved essentially by nitrogen diffused in, with an additional increase in hardness by can be achieved in combination with the carbon diffused in nitrogen.
  • the object of the invention was to name a steel, the use of which is an optimal combination of properties, particularly in those hardened by a thermochemical diffusion treatment Steel components results that are in rolling or rolling contact with another component in use.
  • An outer layer hardened steel component should also be mentioned, which has an optimal combination of hardness in its outer layer and toughness in its core area supporting the outer layer with regard to its fatigue strength.
  • the invention proposes the steel to be used according to claim 1.
  • the steel to be used according to the invention opens up a robust and cost-effective production route for the production of steel components to be hardened by a thermochemical diffusion treatment, such as gear wheels, axles, shafts or tools with special application conditions.
  • a thermochemical diffusion treatment such as gear wheels, axles, shafts or tools with special application conditions.
  • the invention is based on the knowledge that a modification of a steel which forms a bainitic structure is basically the result of the publication EP 3 168 312 A1 a European patent application is already known for the forging production of components, is also particularly suitable as a material for the production of steel components with a thermochemically hardened surface layer. It has surprisingly been found that the alloy concept, which is intended for forging applications, has considerable advantages in thermochemical surface hardening due to the high tempering resistance of the bainitic structure of the steel proposed for use, particularly with regard to the toughness of the steel component in its core area.
  • the steel known per se from the publication of the aforementioned European patent application, as in the EP 3 168 312 A1 explained in detail, has a wide bainite window in the time-temperature diagram ("ZTU diagram"), ie reliably forms a bainitic structure dominated by bainite to at least 80% by volume over a large range of cooling rates.
  • ZTU diagram time-temperature diagram
  • the known alloy specification ensures these properties of the steel even if the steel is not cooled from the forging heat as originally intended, but is subjected to a thermochemical diffusion treatment. This also applies if the respective steel component is subjected to hardening after the diffusion treatment, as is customary in case hardening.
  • Steel components produced from steel used according to the invention are distinguished by a particularly homogeneous structure with a low variance in hardness. This optimally uniform distribution of the structural properties is also included Different dimensions of the steel components to be produced from steel to be used according to the invention and in the cooling conditions which vary over a wide range and which are caused by these dimensional differences.
  • the homogeneous structural state that arises when the steel is used according to the invention also causes low internal stresses in the component. Accordingly, the steel components produced from the steel used in accordance with the invention tend to warp only slightly in the course of the thermochemical surface layer hardening and to the development of cracks or other stress-related damage.
  • a steel is therefore used to produce a steel component, which is a gear wheel, a shaft, an axis or a tool holder, with a thermochemically hardened surface layer, which consists of (in% by weight) 0.1-0.
  • the steel to be used according to the invention is alloyed and can be processed in such a way that the steel component that is made from it has a structure consisting of at least 80% by volume of bainite in its core area.
  • the production-related unavoidable impurities of the steel to be used according to the invention include all elements which are present in quantities which are ineffective in alloying technology with regard to the properties of interest here and on account of the the selected route for producing the steel powder or the respectively selected starting material (scrap) get into the steel.
  • the inevitable impurities also include P contents of up to 0.0035% by weight.
  • a steel component produced from steel to be used according to the invention is thus characterized in that it has a structure consisting of at least 80% by volume of bainite.
  • the remaining structure of a total of at most 20 vol .-% of the total structure is occupied by residual austenite, ferrite, pearlite and / or martensite.
  • the contents of non-bainitic structural components of a steel component consisting of steel to be used according to the invention are minimized to such an extent that there is a completely bainitic structure in the technical sense.
  • the alloy concept on which the steel to be used according to the invention is based avoids expensive alloy constituents, such as are usually required today in the case and tool steels used for the production of steel components in question, in order to set the required hardness.
  • the addition of 0.01% by weight can increase the strength by approx. 70 MPa in each case.
  • This effect occurs in particular from a content of at least 0.09% by weight of C, in particular at least 0.12% by weight of C.
  • the steel has good stretch and toughness properties despite its maximized strength.
  • the comparatively low C content in a steel to be used according to the invention also contributes to the acceleration of the bainite conversion, so that the formation of undesired structural components is avoided.
  • An optimized effect of the presence of C in the steel to be used according to the invention can be achieved by setting the C content to 0.12-0.25% by weight.
  • Si Silicon
  • the Si content of a steel to be used according to the invention is therefore limited to 0.80% by weight in order to allow the bainite conversion to take place as early as possible. At the same time, Si contents up to this upper limit contribute to increasing the strength through solid solution strengthening.
  • the Si content is therefore preferably at least 0.2% by weight, in particular more than 0.45% by weight, such as at least 0.46% by weight .-%, set.
  • Manganese is present in the steel to be used according to the invention in a content of 0.20-2.00% by weight in order to adjust the tensile strength and yield strength by means of mixed crystal formation.
  • a minimum content of 0.20% by weight of Mn is required in order to increase the strength. If this effect is to be achieved particularly reliably, a Mn content of at least 0.4% by weight can be provided. However, too high Mn contents would delay the bainite conversion and thus lead to a predominantly martensitic conversion.
  • the Mn content is therefore limited to at most 2.00% by weight, in particular at most 1.5% by weight.
  • the presence of Mn can be negatively influenced Avoid particularly safely by limiting the Mn content of the steel to be used according to the invention to a maximum of 1.2% by weight.
  • Optional chromium (“Cr”) contents of up to 4.00% by weight contribute to the hardenability and corrosion resistance of the steel to be used according to the invention by the formation of special carbides and chromium nitrides in one of the nitriding treatments carried out according to the invention.
  • Cr chromium
  • at least 0.5% by weight or at least 0.8% by weight of Cr can be provided.
  • the optimal effect of the presence of Cr is obtained with a Cr content of at least 1.00% by weight.
  • Cr contents above 4.00% by weight would favor undesirable martensite formation in the structure of the steel to be used according to the invention.
  • the Cr content can be limited to up to 3% by weight or up to 2.5% by weight.
  • Molybdenum (“Mo”) is present in the steel to be used according to the invention in contents of 0.5-1.8% by weight in order to delay the transformation of the structure into ferrite or pearlite and to enlarge the window for the bainite transformation. This effect occurs in particular if there is at least 0.6% by weight in the steel. At levels of more than 1.8% by weight, based on the use of the steel to be used according to the invention, which is the focus here, there is no longer an economically justifiable further increase in the positive effect of Mo. By limiting the Mo content to 1.8% by weight, the formation of a molybdenum-rich carbide phase which would have a negative effect on the toughness properties is reliably ruled out. Optimal effects of Mo in the steel to be used according to the invention can be expected if the Mo content is at least 0.7% by weight. Mo contents of at most 1.5% by weight or at most 1.0% by weight have proven to be particularly effective.
  • N in the contents of 0.004-0.020% by weight provided according to the invention enables the formation of nitrides and carbonitrides to increase the strength and increase the resistance to fine grains, without causing embrittlement.
  • Al forms with N aluminum nitride, which contributes to fine grain stability.
  • the sulfur (“S”) content in the steel to be used according to the invention can be up to 0.4% by weight, in particular at most 0.1% by weight, in order to support the machinability of the steel.
  • S content can be provided. If the S content is above 0.4% by weight, there is a risk of developing red brittleness.
  • Optimal effects of the presence of S in the steel to be used according to the invention can be achieved at contents of 0.003-0.1% by weight.
  • B in contents of up to 0.0025% by weight, in particular at least 0.0001% by weight or at least 0.0005% by weight, in the steel to be used according to the invention delays the formation of ferrite or pearlite and ensures it thus the formation of the desired bainitic structure in the steel to be used according to the invention.
  • B contents above 0.0025% by weight would entail the risk of embrittlement.
  • the optionally available microalloying elements Nb, Ti and V form carbonitrides and can thus make a significant contribution to optimizing the fine grain stability and strength of the steel to be used according to the invention.
  • the alloy-technical fine adjustment with regard to the mechanical properties and the texture of a steel used according to the invention is carried out according to the alloy concept used according to the invention by means of a combined micro-alloy from the elements Boron (“B”) in optional contents of up to 0.0025% by weight, in particular in contents of 0.0001 - 0.0025% by weight B or 0.0005 - 0.0025% by weight B, Nitrogen ("N") in contents of 0.004 - 0.020% by weight, in particular at least 0.006% by weight N or up to 0.0150% by weight N, aluminum (“AI”) in contents of 0.004 - 0.020% by weight .-% and niobium (“Nb”) in optional contents of up to 0.020% by weight, in particular up to 0.015% by weight and in particular at least 0.003% by weight or at least 0.005% by weight of Nb, titanium (“ Ti ”) in optional contents of up to 0.02% by weight or up to 0.015% by weight, in particular at least 0.001% by weight or at least
  • the Al content may be reduced to at least 0.005% by weight, the Ti content to at least 0.001% by weight and the V content to at least 0 , 02% by weight or the Nb content to at least 0.003% by weight.
  • the microalloying elements V, Ti, Nb on the one hand and Al on the other hand can each be present in combination with one or more elements from the group "Al, V, Ti, Nb" or alone in amounts above the minimum contents mentioned.
  • the contents of% Al,% Nb,% Ti,% V and% N of Al, Nb, Ti, V and N are in the steel to be used according to the invention via the condition % al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3 . 5 linked with one another in such a way that the nitrogen contained in the steel to be used according to the invention is completely bound via the respectively present contents of Al and the optionally additionally added contents of Nb, Ti and V, and boron can thus delay the conversion.
  • the setting of N according to the invention also enables the optionally present boron to act as a dissolved element in the matrix of the steel and to suppress the formation of ferrite and / or pearlite.
  • Ni contents of up to 0.5% by weight improve the toughness of the steel to be used according to the invention. If this effect is to be used, it occurs from a Ni content of at least 0.1% by weight, in particular at least 0.15% by weight.
  • Cu is also one of the alloying elements that reaches or is added to the steel to be used according to the invention via the starting material, the content of which to avoid negative influences in the steel to be used according to the invention is max. 0.3% by weight is limited.
  • Co Cobalt
  • the positive influence of Co can be used in particular in the case of Co contents of at least 0.25% by weight, in particular at least 0.5% by weight, with Co contents of up to 1.0% by weight. have proven to be particularly effective.
  • a steel alloy which is particularly suitable for the purposes according to the invention therefore consists, according to the above explanations, of (in% by weight) 0.12-0.25% C, 0.20-0.80% Si, 0.40-1.20% Mn, 1.0 - 3.0% Cr, 0.5-1.8% Mo, 0.004-0.020% N, up to 0.40% S, 0.004-0.020% Al, 0.0005-0.0025% B, up to 0.10% Nb, up to 0.015% Ti, up to 0.20% V, up to 0.5% Ni, and / or up to 1.5% Co, balance iron and unavoidable impurities, to which the explanations given above in this regard also apply.
  • the steel to be used according to the invention for the production of steel components is suitable for all of the thermochemical diffusion processes “carburizing” (carburizing), “carbonitriding”, “nitriding” or “nitrocarburizing” described in the aforementioned leaflets 452 and 477.
  • carburizing or carbonitriding is first carried out as thermochemical diffusion treatment, as explained in detail in leaflet 452.
  • carburizing or carbonitriding is first carried out as thermochemical diffusion treatment, as explained in detail in leaflet 452.
  • conventional case hardening is followed by hardening according to the hardening processes "direct hardening (type A)", “single hardening (type B)”, “hardening after isothermal hardening”, which are also described in detail in leaflet 452 Convert (Type C) "or” Double Hardness (Type D) ".
  • direct hardening type A
  • the steel component is quenched directly from the heat of the previous carburization or carbonitriding treatment.
  • the steel component In single hardening (type B), the steel component is first cooled to room temperature after the previous carburization or carbonitriding treatment and then reheated to an austenitizing temperature above the Ac1 and below the Ac3 temperature of the steel and then quenched.
  • the steel component When hardening after isothermal conversion (type C), the steel component is first cooled from the heat of the previous carburization or carbonitriding treatment to a temperature range in which certain carbide precipitates form, and then, starting from this temperature range, heated again to an austenitizing temperature above the Ac1 and below the Ac3 temperature of the steel, in order then to be quenched.
  • double hardening (type D) after the steel component has been cooled down to room temperature from the heat of the previous carburizing or carbonitriding treatment, as in single hardening type A, it undergoes two hardening processes, as is done only once in single hardening type A.
  • the cooling to be carried out must be set in such a way that carburizing or carbonitriding occurs on the one hand carburized outer layer hardness-increasing precipitates and in the non-carburized core area of the component, a structure consisting of at least 80% by volume of bainite in accordance with the above-mentioned requirement.
  • the temperature range of 800-500 ° C. is to be run through in each case in a time t8 / 5 of at least 6 s, in particular at least 10 s, and at most 1000 s, in particular at most 600 s.
  • the procedure described in detail in leaflet 477 can be selected. After heating to an austenitizing temperature above the Ac3 temperature of the steel from which the steel component is made, the steel component is continuously cooled such that the temperature range from 800-500 ° C. in a time t8 / 5 of at least 6 s, in particular at least 10 s, and at most 1000 s, in particular at most 200 s, in order to form a structure consisting of at least 80% by volume of bainite in the component according to the above-mentioned requirement.
  • the steel component in each case in accordance with the instructions and instructions contained in leaflet 477 under an atmosphere containing nitrogen or nitrogen and carbon at a temperature below the Ac1 temperature of the steel from which the steel component is made exists, the temperature is maintained and then cooled.
  • the steel to be used according to the invention for the purposes of the invention has the composition already mentioned above as particularly preferred with (in% by weight) 0.12-0.25% C, 0.20-0.80% Si0 , 40-1.20% Mn, 1.0-3.0% Cr, 0.5-1.8% Mo, 0.004-0.020% N, up to 0.40% S, 0.004-0.020% AI, 0 , 0001 - 0.0025% B, up to 0.10% Nb, up to 0.01% Ti, up to 0.20% V or up to 0.5% Ni, and up to ?? % Co, remainder iron and unavoidable impurities, can be achieved by heat treatments adapted to the material, an optimized toughness without loss of strength property.
  • the duration over which the steel component is held under the carbon-containing medium during the carburizing step is determined in a manner known per se depending on the size of the component and taking into account the carbon-containing medium used in each case and the temperature at which the carburizing is carried out chosen that a carburized edge layer with a thickness lying within the specifications according to the invention is achieved.
  • the shortest duration may be indicated, for example, for smaller components, such as gear parts, in particular gear wheels, shafts and axles, of automobile transmissions and the like, whereas the longest duration may be appropriate for large components, such as gear parts, in particular gear wheels, shafts and axles, of large gear units can, which are intended for slewing bearings, such as those used in wind turbines or ship propulsion systems.
  • the temperature at which the steel component is held during the carburizing step (step b.1) is typically up to 950 ° C.
  • the carburizing process can be accelerated and the time required for the required carburizing can be shortened accordingly.
  • the steel component made of steel used according to the invention can optionally be subjected to a stress relief annealing between steps b1) and b2), during which it lasts for a period of 15-120 min Range of 150 - 680 ° C is kept.
  • the steel component can also optionally optionally be subjected to a tempering treatment in a manner known per se, after which it is held at a temperature of 150-275 ° C. for a period of 30-180 min and then cooled uncontrolled to room temperature becomes. Tempering like this can further reduce the risk of cracking.
  • a case-hardened steel component according to the invention can be produced that from the steel to be used according to the invention, which consists of (in% by weight) 0.12-0.25% C, 0.20-0.80% Si, 0.40-1.20% Mn, 1.0-3.0% Cr, 0.5-1.8% Mo, 0.004-0.020% N, up to 0.40% S, 0.004-0.020% AI, 0.0001 - 0.0025% B, up to 0.10% Nb, up to 0.01% Ti, up to 0.20% V, up to 0.5% Ni, up to 1.0% Co and as the rest of iron and unavoidable impurities, is produced and an edge layer with a hardness of 500 - 800 HV and in its core area consists of at least 80 vol .-% of bainite, which consists of high tempered bainite, which comes from the structure that the steel component after insertion (step b.1) and before hardening (step b.2) had, and newly formed bainite and at most 20
  • This structure is created by hardening the components according to the invention in the two-phase area.
  • the existing bainitic microstructure parts resulting from "old”, that is to say before hardening (step b.2) can be separated from the new, high-tempered bainitic microstructure parts resulting from hardening by a slight brown coloring of the new bainite from the old, A distinction is made between high tempered bainite, which has a greyish color and an indicated granular structure.
  • the structure of a component according to the invention which has undergone the case-hardening process described above and modified in accordance with the invention, is characterized in that it has a Charpy-V impact energy of more than 40 J, in particular more, determined in accordance with DIN EN 10045 in the core area of the steel component than 60 J.
  • the Cr, V, Nb or Ti contents present in the steel used according to the invention in accordance with the invention result from the formation of nitrides for a high surface hardness.
  • the respectively set parameters "duration” and "temperature” of the nitriding or nitrocarburizing treatment are adjusted in a manner known per se depending on the component size in such a way that a hardened surface layer with a thickness lying within the specifications according to the invention is achieved.
  • machining of the component is to be carried out, for example to optimize its dimensional accuracy, this is advantageously carried out between work steps B1) and B2) on the steel component, which is still relatively soft after work step B1), in order to prevent tool wear from machining in the finally hardened state Reduce.
  • the steel to be used according to the invention is particularly suitable for the production of gear wheels, axles, shafts or tool holders hardened by surface layers for cutting tools produced by powder metallurgy.
  • a gearwheel was formed from steel S1.
  • the gearwheel was then subjected in a conventional manner to carburizing at 920 ° C. for a period of 300 minutes under a carbon-containing atmosphere known per se for this purpose in a conventional manner in accordance with the procedure described in leaflet 452.
  • This way the gear is through thermochemical diffusion created a carburized (carburized) surface layer with a thickness of 520 ⁇ m.
  • the gearwheel was then cooled to room temperature, the cooling rate being 2 K / s and the critical temperature range of 800-500 ° C. being run through in a t8 / 5 time of 10 minutes.
  • the gear obtained was then heated to an austenitizing temperature of 920 ° C. and held at this temperature for 30 minutes.
  • the gearwheel was then quenched at a cooling rate of 2 K / s.
  • the critical temperature range of 800 - 500 ° C was run through in a t8 / 5 time of 600 s.
  • the case-hardened gear had a hardness of 750 HV on the surface of its hardened outer layer and a completely bainitic structure in its core area (matrix) carrying the hardened outer layer.
  • the Charpy-V notched bar impact work of the unhardened core area of the gear was 106 J. on average from three samples.
  • a gearwheel was again formed from steel S2.
  • the gearwheel was then first subjected to carburizing at 920 ° C. for a period of 30 minutes under a carbon-containing atmosphere customary for this purpose in the prior art.
  • a carburized (carburized) surface layer with a thickness of 535 ⁇ m was created on the gear by thermochemical diffusion.
  • the gear was then quenched in oil to room temperature.
  • the critical temperature range of 800 - 500 ° C was run through in a t8 / 5 time of 17 s.
  • the gear then underwent stress relieving, in which it was held at 650 ° C. for one hour in order to relieve the stresses that had arisen during the carburizing treatment that had previously been carried out.
  • the component was heated in a hardening step to an austenitizing temperature and held at this temperature for one hour, which was 40 ° C. below the Ac3 temperature of the steel S2, the Ac3 temperature of the steel S2 previously being known per se Way has been determined by means of a dilatometer experiment. Then the gear was again quenched in oil so that the t8 / 5 time was 17 s.
  • the gear was subjected to conventional tempering, in which it was held at 180 ° C for over an hour.
  • the case-hardened gearwheel on the surface of its hardened surface layer had a hardness of 750 HV and in its core area (matrix) supporting the hardened surface layer a completely bainitic structure consisting of newly formed and old highly tempered bainite.
  • the Charpy-V notched bar impact work averaged 62 J for three samples.
  • a gearwheel with a diameter of less than 40 mm was formed from the steel S3.
  • the gearwheel was then subjected to carburizing at 920 ° C. for a period of 30 minutes under a carbon-containing atmosphere that is usually used for this purpose.
  • a carburized (carburized) surface layer with a thickness of 530 ⁇ m was created on the gear by thermochemical diffusion.
  • the gearwheel was then quenched in water at a cooling rate of 3 K / s to room temperature.
  • the critical temperature range of 800 - 500 ° C was run through in a t8 / 5 time of 300 s.
  • the component was heated to an austenitizing temperature in a hardening step and held at this temperature for an hour, which was 920 ° C.
  • the gear wheel was then quenched in water, the t8 / 5 time here being 300 s.
  • the case-hardened gear wheel had a hardness of 760 HV on the surface of its hardened outer layer and a completely bainitic structure in its core area (matrix) carrying the hardened outer layer.
  • the Charpy-V notched bar impact work averaged 78 J for three samples.

Abstract

Die Erfindung betrifft die Verwendung eines Stahls zur Herstellung eines Stahlbauteils, nämlich einem Zahnrad, einer Welle, einer Achse oder einem Werkzeughalter, mit einer thermochemisch gehärteten Randschicht, wobei das Stahlbauteil in seinem Kernbereich ein zu mindestens 80 Vol.-% aus Bainit bestehendes Gefüge aufweist und der verwendete Stahl aus (in Gew.-%) C: 0,1 - 0,30 %, Si: 0 - 0,80 %, Mn: 0,20 - 2,00 %, Cr: 0 - 4,00 %, Mo: 0,5 - 1,80 %, N: 0,004 - 0,020 %, S: 0 - 0,40 %, AI: 0,004 - 0,020 %, B: 0 - 0,0025 %, Nb: 0 - 0,20 %, Ti: 0 - 0,02 %, V: 0 - 0,40 %, Ni: 0 - 0,5 %, Cu: 0 - 0,3 %, Co: 0 - 1,5 %, Rest Eisen und unvermeidbaren Verunreinigungen besteht, wobei für den Al-Gehalt %Al, den Nb-Gehalt %Nb, den Ti-Gehalt %Ti, den V-Gehalt %V und den N-Gehalt %N des Stahls folgende Bedingung gilt: %Al/27 + %Nb/45 + %Ti/48 + %V/25 > %N/3,5.Die Erfindung betrifft auch ein verwendungsgemäß beschaffenes Stahlbauteil.The invention relates to the use of a steel for producing a steel component, namely a gear wheel, a shaft, an axle or a tool holder, with a thermochemically hardened surface layer, the steel component having a structure consisting of at least 80% by volume of bainite in its core area and the steel used consists of (in% by weight) C: 0.1-0.30%, Si: 0-0.80%, Mn: 0.20-2.00%, Cr: 0-4.00 %, Mo: 0.5 - 1.80%, N: 0.004 - 0.020%, S: 0 - 0.40%, AI: 0.004 - 0.020%, B: 0 - 0.0025%, Nb: 0 - 0 , 20%, Ti: 0-0.02%, V: 0-0.40%, Ni: 0-0.5%, Cu: 0-0.3%, Co: 0-1.5%, remainder Iron and unavoidable impurities, the following condition applies to the Al content% Al, the Nb content% Nb, the Ti content% Ti, the V content% V and the N content% N of the steel:% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3.5. The invention also relates to a steel component made in accordance with its use.

Description

Die Erfindung betrifft die Verwendung eines Stahls zur Herstellung eines Stahlbauteils, bei dem es sich um ein Zahnrad, eine Welle, eine Achse oder einen Werkzeughalter handelt und das eine thermochemisch gehärtete Randschicht aufweist, sowie ein derartiges Stahlbauteil, das eine durch eine thermochemische Diffusionsbehandlung erzeugte Randschicht besitzt.The invention relates to the use of a steel for producing a steel component, which is a gear, a shaft, an axis or a tool holder and which has a thermochemically hardened surface layer, and to such a steel component which has an edge layer produced by a thermochemical diffusion treatment has.

Wenn nachfolgend "%"-Angaben zu Legierungen oder Stahlzusammensetzungen gemacht werden, so beziehen diese sich jeweils auf das Gewicht, soweit nichts ausdrücklich anderes angegeben ist.If "%" information on alloys or steel compositions is given below, then these refer to the weight, unless expressly stated otherwise.

Sämtliche der im vorliegenden Text angegebenen mechanischen Eigenschaften des erfindungsgemäß zu verwendenden Stahls und der gegebenenfalls zum Vergleich angeführten Stähle sind, soweit nicht anders angegeben, nach DIN EN ISO 6892-1 bestimmt worden.Unless otherwise stated, all of the mechanical properties of the steel to be used according to the invention and of the steels used for comparison, as specified in the present text, have been determined in accordance with DIN EN ISO 6892-1.

Bei den hier betrachteten Stahlbauteilen handelt es sich typischerweise um Bauelemente, die in der Praxis mit anderen Bauteilen in einer Abwälz- oder Abrollbewegung in metallischem Kontakt kommen und daher im Bereich ihrer Kontaktfläche hohen mechanischen Belastungen ausgesetzt sind. Typische Beispiele für solche Bauteile sind Zahnräder, Wellen oder Achsen. Zu vergleichbaren Belastungen kann es bei Haltern von Werkzeugen, beispielsweise Schneidwerkzeugen und desgleichen, im Bereich der Anlageflächen zwischen dem Halter und dem jeweiligen Werkzeug kommen.The steel components considered here are typically components which, in practice, come into metallic contact with other components in a rolling or rolling motion and are therefore exposed to high mechanical loads in the area of their contact surface. Typical examples of such components are gears, shafts or axes. Comparable loads can occur with tool holders, For example, cutting tools and the like, come in the area of the contact surfaces between the holder and the respective tool.

Dabei besteht die besondere Herausforderung, dass solche Stahlbauteile in der Regel komplex geformt sind und nur durch aufwändige spanabhebende Bearbeitung gefertigt werden können. Eine solche spanabhebende Bearbeitung lässt sich dann besonders wirtschaftlich durchführen, wenn die Bauteile aus Stählen mit niedrigen Kohlenstoffgehalten bestehen, also eine geringe Härte besitzen. Gleichzeitig erweist sich eine vergleichbar geringe Härte und damit einhergehend hohe Zähigkeit des Stahls, aus denen solche Bauteile bestehen, im Hinblick auf deren Dauerfestigkeit insbesondere unter Betriebsbedingungen als günstig, in denen die vom jeweiligen Bauteil aufzunehmenden Belastungen dynamisch auftreten.The particular challenge here is that such steel components are generally complex in shape and can only be manufactured by complex machining. Such machining can be carried out particularly economically if the components consist of steels with low carbon contents, that is to say they have a low hardness. At the same time, a comparably low hardness and the associated high toughness of the steel, of which such components are made, prove to be favorable with regard to their fatigue strength, in particular under operating conditions in which the loads to be absorbed by the respective component occur dynamically.

Beispielsweise für die Zahnradfertigung werden heute typischerweise Einsatzstähle verwendet, zu denen exemplarisch die Stähle mit der 16MnCr5 / 16MnCrS5 (Werkstoffnummern 1.7131 / 1.7139) und 18CrNiMo7-6 (Werkstoffnummer 1.6587) zu nennen sind.For example, case hardening steels are typically used today for gear manufacturing, for example the steels with the 16MnCr5 / 16MnCrS5 (material numbers 1.7131 / 1.7139) and 18CrNiMo7-6 (material number 1.6587).

Werkzeughalter, wie beispielsweise Halter für pulvermetallurgisch erzeugte Schneidkörper, werden häufig aus relativ teuren Werkzeugstählen, wie Stählen mit den Werkstoffnummern 1.2311, 1.2312, 1.2738, 1.2343 oder 1.2343, hergestellt.Tool holders, such as holders for cutting elements produced by powder metallurgy, are often produced from relatively expensive tool steels, such as steels with the material numbers 1.2311, 1.2312, 1.2738, 1.2343 or 1.2343.

Es sind verschiedene Wärmebehandlungsverfahren bekannt, mit denen sich die Lebensdauer von aus solchen von Haus aus vergleichbar weichen Stählen gefertigten Werkstücken und Werkzeugen verbessern lassen. Diese Verfahren basieren darauf, dass in einer Randschicht, die die im Gebrauch belastete Kontaktfläche trägt, eine höhere Härte erzeugt wird, als im die betreffende Randschicht tragenden Kernbereich des Bauteils, in dem auch nach der Wärmebehandlung weiterhin eine hohe Zähigkeit vorliegt.Various heat treatment processes are known with which the service life of workpieces and tools made from such comparatively soft steels can be improved. These methods are based on the fact that a hardness is generated in an edge layer that bears the contact surface that is loaded during use than in the core area of the component that carries the relevant edge layer, in which a high level of toughness is still present even after the heat treatment.

Wie in den Merkblättern 452 "Einsatzhärten", Ausgabe 2008, und 477 "Wärmebehandlung von Stahl - Nitrieren und Nitrocarburieren" , Ausgabe 2005, beide herausgegeben vom Stahl-Informations-Zentrum, Postfach 10 48 42, 40039 Düsseldorf, Deutschland, und unter URL http://www.stahl-online.de/index.php/service/publikationen/stahlanwendung-merkblaetter/ zum Download bereitgestellt, im Einzelnen erläutert, arbeiten die auf die Ausbildung einer gehärteten Randschichtzone an Stahlbauteilen ausgerichteten Wärmebehandlungsverfahren ohne und mit chemischer Veränderung der Randschicht. Die auf einer chemischen Veränderung beruhenden Verfahren, bei denen die Aufhärtung der Bauteilrandschicht durch thermochemische Diffusionsvorgänge bewirkt wird, unterscheiden sich zudem noch einmal dadurch, ob nach der Wärmebehandlung eine zusätzliche Wärmebehandlung (Härten) durchgeführt wird, oder nicht.As in leaflets 452 "Case hardening", edition 2008, and 477 "Heat treatment of steel - nitriding and nitrocarburizing", edition 2005, both published by the steel information center, PO Box 10 48 42, 40039 Düsseldorf, Germany, and at URL http : //www.stahl-online.de/index.php/service/publikationen/stahlanendung-merkblaetter/ available for download, explained in detail, the heat treatment processes aimed at forming a hardened surface layer zone on steel components work without and with chemical changes in the surface layer , The processes based on a chemical change, in which the hardening of the component surface layer is brought about by thermochemical diffusion processes, also differ again in whether or not an additional heat treatment (hardening) is carried out after the heat treatment.

Zu den gängigen Verfahren, mit denen sich insbesondere Zahnräder und im Gebrauch vergleichbar belastete Bauteile mit einer gehärteten Randschicht versehen lassen, gehören das Einsatzhärten (s. Merkblatt 452), bei dem zunächst die Randschicht des Stahlbauteils eine Carburierungs- bzw. Carbonitrierungsbehandlung eine Erhöhung des Kohlenstoffgehalts und anschließend das Bauteil ein Härten durchläuft, um in der gehärteten Randschicht eine maximale Härte zu erzielen, und das Nitrieren bzw. Nitrocarburieren (s. Merkblatt 477), bei dem die Härtezunahme der Randschicht wesentlich durch eindiffundierten Stickstoff erzielt wird, wobei eine zusätzliche Härteerhöhung durch in Kombination mit dem Stickstoff eindiffundierten Kohlenstoff erzielt werden kann.Common processes that can be used to provide gearwheels and components that are subjected to comparable loads with a hardened surface layer include case hardening (see leaflet 452), in which the surface layer of the steel component is first subjected to carburizing or carbonitriding treatment to increase the carbon content and then the component undergoes hardening in order to achieve maximum hardness in the hardened surface layer, and nitriding or nitrocarburizing (see leaflet 477), in which the increase in hardness of the surface layer is achieved essentially by nitrogen diffused in, with an additional increase in hardness by can be achieved in combination with the carbon diffused in nitrogen.

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, einen Stahl zu nennen, dessen Verwendung eine optimale Eigenschaftskombination insbesondere bei solchen durch eine thermochemische Diffusionsbehandlung randschichtgehärteten Stahlbauteilen ergibt, die im Gebrauch im wälzenden oder abrollenden Kontakt mit einem anderen Bauteil stehen.Against the background of the prior art explained above, the object of the invention was to name a steel, the use of which is an optimal combination of properties, particularly in those hardened by a thermochemical diffusion treatment Steel components results that are in rolling or rolling contact with another component in use.

Ebenso sollte ein randschichtgehärtetes Stahlbauteil genannt werden, das eine im Hinblick auf seine Dauerfestigkeit optimale Kombination aus Härte in seiner Randschicht und Zähigkeit in seinem die Randschicht tragenden Kernbereich besitzt.An outer layer hardened steel component should also be mentioned, which has an optimal combination of hardness in its outer layer and toughness in its core area supporting the outer layer with regard to its fatigue strength.

Zur Herstellung von randschichtgehärteten Stahlbauteilen, die einen optimal zähen Kernbereich aufweisen und sich gleichzeitig gut für eine Randschichthärtung durch ein thermochemisches Verfahren eignen, schlägt die Erfindung den gemäß Anspruch 1 zu verwendenden Stahl vor.For the production of surface-hardened steel components which have an optimally tough core area and at the same time are well suited for surface hardening by a thermochemical process, the invention proposes the steel to be used according to claim 1.

Ein die voranstehend genannte Aufgabe lösendes Stahlbauteil weist dementsprechend erfindungsgemäß die in Anspruch 8 angegebenen Merkmale auf.A steel component which achieves the above-mentioned object accordingly has the features specified in claim 8 according to the invention.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous refinements of the invention are specified in the dependent claims and are explained in detail below, like the general inventive concept.

Der erfindungsgemäß zu verwendende Stahl eröffnet einen robusten und kostengünstigen Fertigungsweg für die Erzeugung von durch eine thermochemische Diffusionsbehandlung randschichtzuhärtenden Stahlbauteilen, wie Zahnräder, Achsen, Wellen oder Werkzeuge mit speziellen Anwendungsbedingungen. Dabei weisen die aus erfindungsgemäß verwendetem Stahl erzeugten Bauteile nach der jeweils für ihre thermochemische Randschichthärtung durchgeführten Wärmebehandlung eine höhere Zähigkeit in ihrem Kernbereich, auch "Matrix" genannt, auf, als dies bei heute üblicherweise zu diesem Zweck verwendeten Stählen der Fall ist.The steel to be used according to the invention opens up a robust and cost-effective production route for the production of steel components to be hardened by a thermochemical diffusion treatment, such as gear wheels, axles, shafts or tools with special application conditions. The components produced from steel used in accordance with the invention, after the heat treatment carried out for their thermochemical surface hardening, have a higher toughness in their core area, also called "matrix", than is the case with steels commonly used today for this purpose.

Die Erfindung geht von der Erkenntnis aus, dass sich eine Modifikation eines ein bainitisches Gefüge bildenden Stahls, der grundsätzlich aus der Veröffentlichung EP 3 168 312 A1 einer Europäischen Patentanmeldung bereits für die schmiedetechnische Erzeugung von Bauteilen bekannt ist, in besonderem Maße auch als Werkstoff für die Herstellung von Stahlbauteilen mit einer thermochemisch gehärteten Randschicht eignet. So hat es sich überraschend gezeigt, dass das an sich für schmiedetechnische Anwendungen vorgesehene Legierungskonzept aufgrund der hohen Anlassbeständigkeit des bainitischen Gefüges des erfindungsgemäß zur Verwendung vorgeschlagenen Stahls auch erhebliche Vorteile bei der thermochemischen Randschichthärtung insbesondere im Hinblick auf die Zähigkeit des Stahlbauteils in seinem Kernbereich aufweist.The invention is based on the knowledge that a modification of a steel which forms a bainitic structure is basically the result of the publication EP 3 168 312 A1 a European patent application is already known for the forging production of components, is also particularly suitable as a material for the production of steel components with a thermochemically hardened surface layer. It has surprisingly been found that the alloy concept, which is intended for forging applications, has considerable advantages in thermochemical surface hardening due to the high tempering resistance of the bainitic structure of the steel proposed for use, particularly with regard to the toughness of the steel component in its core area.

In dieser Hinsicht erweist es sich als besonders vorteilhaft, dass der aus der der Veröffentlichung der voranstehend genannten Europäischen Patentanmeldung an sich bekannte Stahl, wie in der EP 3 168 312 A1 ausführlich erläutert, im Zeit-Temperatur-Diagramm ("ZTU-Diagramm") ein breites Bainitfenster besitzt, also über einen großen Bereich von Abkühlgeschwindigkeiten zuverlässig ein von Bainit zu mindestens 80 Vol.-% dominiertes bainitisches Gefüge bildet. Überraschend hat sich hier gezeigt, dass die bekannte Legierungsvorschrift diese Eigenschaften des Stahls auch dann gewährleistet, wenn der Stahl nicht, wie ursprünglich vorgesehen, aus der Schmiedehitze abgekühlt, sondern einer thermochemischen Diffusionsbehandlung unterzogen wird. Dies gilt auch dann, wenn das jeweilige Stahlbauteil, wie beim Einsatzhärten üblich, nach der Diffusionsbehandlung einem Härten unterzogen wird.In this regard, it proves to be particularly advantageous that the steel known per se from the publication of the aforementioned European patent application, as in the EP 3 168 312 A1 explained in detail, has a wide bainite window in the time-temperature diagram ("ZTU diagram"), ie reliably forms a bainitic structure dominated by bainite to at least 80% by volume over a large range of cooling rates. Surprisingly, it has been shown here that the known alloy specification ensures these properties of the steel even if the steel is not cooled from the forging heat as originally intended, but is subjected to a thermochemical diffusion treatment. This also applies if the respective steel component is subjected to hardening after the diffusion treatment, as is customary in case hardening.

Aus erfindungsgemäß verwendetem Stahl erzeugte Stahlbauteile, also Zahnräder, Wellen, Achsen oder Werkzeughalter, zeichnen sich durch ein besonders homogenes Gefüge mit einer geringen Varianz der Härte aus. Diese optimal gleichmäßige Verteilung der Gefügeeigenschaften liegt auch bei unterschiedlichsten Abmessungen der aus erfindungsgemäß zu verwendenden Stahl herzustellenden Stahlbauteile und bei den durch diese Abmessungsunterschiede bedingten, über eine große Spanne variierenden Abkühlbedingungen vor. Der bei erfindungsgemäßer Verwendung des Stahls sich einstellende homogene Gefügezustand bedingt darüber hinaus geringe Eigenspannungen im Bauteil. Dementsprechend neigen die aus erfindungsgemäß verwendetem Stahl erzeugten Stahlbauteile im Zuge der thermochemischen Randschichthärtung allenfalls geringfügig zu Verzug und zur Entstehung von Rissen oder anderen spannungsbedingten Schäden.Steel components produced from steel used according to the invention, that is to say gear wheels, shafts, axes or tool holders, are distinguished by a particularly homogeneous structure with a low variance in hardness. This optimally uniform distribution of the structural properties is also included Different dimensions of the steel components to be produced from steel to be used according to the invention and in the cooling conditions which vary over a wide range and which are caused by these dimensional differences. The homogeneous structural state that arises when the steel is used according to the invention also causes low internal stresses in the component. Accordingly, the steel components produced from the steel used in accordance with the invention tend to warp only slightly in the course of the thermochemical surface layer hardening and to the development of cracks or other stress-related damage.

Erfindungsgemäß wird somit zur Herstellung eines Stahlbauteils, bei dem es sich um ein Zahnrad, eine Welle, eine Achse oder einen Werkzeughalter handelt, mit einer thermochemisch gehärteten Randschicht ein Stahl verwendet, der aus (in Gew.-%) 0,1 - 0,30 % C, bis zu 0,80 % Si, 0,20 - 2,00 % Mn, bis zu 4,00 % Cr, 0,5 - 1,80 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,004 - 0,020 % Al, bis zu 0,0025 % B, bis zu 0,20 % Nb, bis zu 0,02 % Ti, bis zu 0,40 % V, bis zu 0,5 % Ni, 0,3 % Cu, bis zu 1,5 % Co und als Rest aus Eisen und unvermeidbaren Verunreinigungen, besteht, wobei der Al-Gehalt %Al, der Nb-Gehalt %Nb, der Ti-Gehalt %Ti, der V-Gehalt %V und der N-Gehalt %N des Stahls folgende Bedingung erfüllen: % Al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3 , 5.

Figure imgb0001
According to the invention, a steel is therefore used to produce a steel component, which is a gear wheel, a shaft, an axis or a tool holder, with a thermochemically hardened surface layer, which consists of (in% by weight) 0.1-0. 30% C, up to 0.80% Si, 0.20 - 2.00% Mn, up to 4.00% Cr, 0.5 - 1.80% Mo, 0.004 - 0.020% N, up to 0, 40% S, 0.004 - 0.020% Al, up to 0.0025% B, up to 0.20% Nb, up to 0.02% Ti, up to 0.40% V, up to 0.5% Ni, 0.3% Cu, up to 1.5% Co and the balance iron and unavoidable impurities, where the Al content% Al, the Nb content% Nb, the Ti content% Ti, the V content % V and the N content% N of the steel meet the following condition: % al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3 . 5th
Figure imgb0001

Der erfindungsgemäß zu verwendende Stahl ist dabei so legiert und lässt sich so verarbeiten, dass das Stahlbauteil, das aus ihm hergestellt ist, in seinem Kernbereich ein zu mindestens 80 Vol.-% aus Bainit bestehendes Gefüge aufweist. Dabei gehören zu den herstellungsbedingt unvermeidbaren Verunreinigungen des erfindungsgemäß zu verwendenden Stahls alle Elemente, die in Bezug auf die hier interessierenden Eigenschaften in legierungstechnisch unwirksamen Mengen vorhanden sind und aufgrund der jeweils gewählten Route zur Erzeugung des Stahlpulvers oder des jeweils gewählten Ausgangsmaterials (Schrott) in den Stahl gelangen. Insbesondere gehören zu den unvermeidbaren Verunreinigungen auch Gehalte an P von bis zu 0,0035 Gew.-%.The steel to be used according to the invention is alloyed and can be processed in such a way that the steel component that is made from it has a structure consisting of at least 80% by volume of bainite in its core area. The production-related unavoidable impurities of the steel to be used according to the invention include all elements which are present in quantities which are ineffective in alloying technology with regard to the properties of interest here and on account of the the selected route for producing the steel powder or the respectively selected starting material (scrap) get into the steel. In particular, the inevitable impurities also include P contents of up to 0.0035% by weight.

Ein aus erfindungsgemäß zu verwendendem Stahl erzeugtes Stahlbauteil zeichnet sich somit dadurch aus, dass es ein zu mindestens 80 Vol.-% aus Bainit bestehendes Gefüge besitzt. Das übrige Gefüge von in Summe höchstens 20 Vol.-% des Gesamtgefüges wird dabei von Restaustenit, Ferrit, Perlit und/oder Martensit eingenommen. Typischerweise sind jedoch die Gehalte an nicht bainitschen Gefügebestandteilen eines aus erfindungsgemäß zu verwendendem Stahl bestehenden Stahlbauteils so stark minimiert, dass in ihm im technischen Sinne ein vollständig bainitisches Gefüge vorliegt.A steel component produced from steel to be used according to the invention is thus characterized in that it has a structure consisting of at least 80% by volume of bainite. The remaining structure of a total of at most 20 vol .-% of the total structure is occupied by residual austenite, ferrite, pearlite and / or martensite. Typically, however, the contents of non-bainitic structural components of a steel component consisting of steel to be used according to the invention are minimized to such an extent that there is a completely bainitic structure in the technical sense.

Das dem erfindungsgemäß zu verwendenden Stahl zu Grund liegende Legierungskonzept vermeidet teure Legierungsbestandteile, wie sie heute üblicherweise bei den für die Herstellung von Stahlbauteilen der hier in Rede stehenden verwendeten Einsatz- und Werkzeugstähle benötigt werden, um die erforderliche Härte einzustellen. Dies gelingt dadurch, dass die Legierungselemente und deren Gehalte beim erfindungsgemäß zu verwendenden Stahl wie folgt ausgewählt sind:
Kohlenstoff ("C") ist im erfindungsgemäß zu verwendenden Stahl in Gehalten von 0,1 - 0,3 Gew.-% enthalten, um durch Karbidbildung zur Steigerung der Festigkeit des Werkstoffs beizutragen. So kann durch die Zugabe von jeweils 0,01 Gew.-% eine Festigkeitserhöhung um jeweils ca. 70 MPa bewirkt werden. Dieser Effekt setzt insbesondere ab einem Gehalt von mindestens 0,09 Gew.-% C, insbesondere mindestens 0,12 Gew.-% C, ein. Durch die Begrenzung des C-Gehalts auf höchstens 0,30 Gew.-%, insbesondere höchstens 0,25 Gew.-%, wird dabei erreicht, dass der Stahl trotz seiner maximierten Festigkeit gute Dehnungs- und Zähigkeitseigenschaften besitzt. Gleichzeitig trägt der vergleichbar geringe C-Gehalt bei einem erfindungsgemäß zu verwendenden Stahl auch zur Beschleunigung der Bainitumwandlung bei, so dass die Entstehung von unerwünschten Gefügebestandteilen vermieden wird. Eine optimierte Wirkung der Anwesenheit von C im erfindungsgemäß zu verwendenden Stahl kann dadurch erreicht werden, dass der C-Gehalt auf 0,12 - 0,25 Gew.-% eingestellt wird.
The alloy concept on which the steel to be used according to the invention is based avoids expensive alloy constituents, such as are usually required today in the case and tool steels used for the production of steel components in question, in order to set the required hardness. This is achieved by selecting the alloy elements and their contents in the steel to be used according to the invention as follows:
Carbon ("C") is contained in the steel to be used according to the invention in a content of 0.1-0.3% by weight in order to contribute to increasing the strength of the material by carbide formation. For example, the addition of 0.01% by weight can increase the strength by approx. 70 MPa in each case. This effect occurs in particular from a content of at least 0.09% by weight of C, in particular at least 0.12% by weight of C. By limiting the C content to at most 0.30% by weight, in particular at most 0.25% by weight, it is achieved that the steel has good stretch and toughness properties despite its maximized strength. At the same time, the comparatively low C content in a steel to be used according to the invention also contributes to the acceleration of the bainite conversion, so that the formation of undesired structural components is avoided. An optimized effect of the presence of C in the steel to be used according to the invention can be achieved by setting the C content to 0.12-0.25% by weight.

Silizium ("Si") unterdrückt im erfindungsgemäß zu verwendenden Stahl die Zementitbildung und verschiebt die Ferritbildung zu kürzeren Zeiten. Der Si-Gehalt eines erfindungsgemäß zu verwendenden Stahls ist deshalb auf 0,80 Gew.-%, beschränkt, um die Bainitumwandlung möglichst früh ablaufen zu lassen. Gleichzeitig tragen Si-Gehalte bis zu dieser Obergrenze zur Erhöhung der Festigkeit durch Mischkristallverfestigung bei. Um die vorteilhaften Wirkungen von Si im erfindungsgemäß zu verwendenden Stahl besonders sicher nutzen können, ist der Si-Gehalt daher vorzugsweise auf mindestens 0,2 Gew.-%, insbesondere mehr als 0,45 Gew.-%, wie mindestens 0,46 Gew.-%, eingestellt.Silicon ("Si") suppresses the formation of cementite in the steel to be used according to the invention and shifts the formation of ferrite at shorter times. The Si content of a steel to be used according to the invention is therefore limited to 0.80% by weight in order to allow the bainite conversion to take place as early as possible. At the same time, Si contents up to this upper limit contribute to increasing the strength through solid solution strengthening. In order to be able to use the advantageous effects of Si in the steel to be used according to the invention particularly reliably, the Si content is therefore preferably at least 0.2% by weight, in particular more than 0.45% by weight, such as at least 0.46% by weight .-%, set.

Mangan ("Mn") ist in Gehalten von 0,20 - 2,00 Gew.-% im erfindungsgemäß zu verwendenden Stahl vorhanden, um die Zugfestigkeit und Streckgrenze durch Mischkristallbildung einzustellen. Ein Mindestgehalt von 0,20 Gew.-% Mn ist erforderlich, damit es zu einer Festigkeitssteigerung kommt. Soll dieser Effekt besonders sicher erreicht werden, so kann ein Mn-Gehalt von mindestens 0,4 Gew.-% vorgesehen werden. Zu hohe Mn-Gehalte würden jedoch zur Verzögerung der Bainitumwandlung und damit zu einer überwiegend martensitischen Umwandlung führen. Daher ist der Mn-Gehalt auf höchstens 2,00 Gew.-%, insbesondere höchstens 1,5 Gew.-%, beschränkt. Negative Einflüsse der Anwesenheit von Mn lassen sich besonders sicher vermeiden, indem der Mn-Gehalt beim erfindungsgemäß zu verwendenden Stahl auf maximal 1,2 Gew.-% beschränkt wird.Manganese ("Mn") is present in the steel to be used according to the invention in a content of 0.20-2.00% by weight in order to adjust the tensile strength and yield strength by means of mixed crystal formation. A minimum content of 0.20% by weight of Mn is required in order to increase the strength. If this effect is to be achieved particularly reliably, a Mn content of at least 0.4% by weight can be provided. However, too high Mn contents would delay the bainite conversion and thus lead to a predominantly martensitic conversion. The Mn content is therefore limited to at most 2.00% by weight, in particular at most 1.5% by weight. The presence of Mn can be negatively influenced Avoid particularly safely by limiting the Mn content of the steel to be used according to the invention to a maximum of 1.2% by weight.

Optional vorhandene Gehalte an Chrom ("Cr") von bis zu 4,00 Gew.-% tragen durch die Bildung von Sonderkarbiden und Chromnitriden bei einer der erfindungsgemäß durchgeführten Nitrierbehandlung zur Härtbarkeit und Korrosionsbeständigkeit des erfindungsgemäß zu verwendenden Stahls bei. Hierzu können beispielsweise mindestens 0,5 Gew.-% oder mindestens 0,8 Gew.-% Cr vorgesehen sein. Eine optimale Wirkung der Anwesenheit von Cr ergibt sich bei einem Cr-Gehalt von mindestens 1,00 Gew.-%. Oberhalb von 4,00 Gew.-% liegende Cr-Gehalte würden eine unerwünschte Martensitbildung im Gefüge des erfindungsgemäß zu verwendenden Stahl begünstigen. Um dies sicher zu vermeiden, kann der Cr-Gehalt auf bis zu 3 Gew.-% oder bis zu 2,5 Gew.-% beschränkt werden.Optional chromium ("Cr") contents of up to 4.00% by weight contribute to the hardenability and corrosion resistance of the steel to be used according to the invention by the formation of special carbides and chromium nitrides in one of the nitriding treatments carried out according to the invention. For this purpose, for example at least 0.5% by weight or at least 0.8% by weight of Cr can be provided. The optimal effect of the presence of Cr is obtained with a Cr content of at least 1.00% by weight. Cr contents above 4.00% by weight would favor undesirable martensite formation in the structure of the steel to be used according to the invention. In order to reliably avoid this, the Cr content can be limited to up to 3% by weight or up to 2.5% by weight.

Molybdän ("Mo") ist im erfindungsgemäß zu verwendenden Stahl in Gehalten von 0,5 - 1,8 Gew.-% vorhanden, um die Umwandlung des Gefüges in Ferrit oder Perlit zu verzögern und das Fenster für die Bainitumwandlung zu vergrößern. Diese Wirkung tritt insbesondere dann ein, wenn mindestens 0,6 Gew.-% im Stahl vorhanden sind. Bei Gehalten von mehr als 1,8 Gew.-% tritt bezogen auf die hier im Mittelpunkt stehende Nutzung des erfindungsgemäß zu verwendenden Stahl keine wirtschaftlich vertretbare weitere Steigerung der positiven Wirkung von Mo mehr ein. Durch die Begrenzung des Mo-Gehalts auf 1,8 Gew.-% wird die Bildung einer molybdänreichen Karbidphase sicher ausgeschlossen, welche die Zähigkeitseigenschaften negativ beeinflussen würde. Optimale Wirkungen von Mo im erfindungsgemäß zu verwendenden Stahl können erwartet werden, wenn der Mo-Gehalt mindestens 0,7 Gew.-% beträgt. Als besonders effektiv haben sich dabei Mo-Gehalte von höchstens 1,5 Gew.-% oder höchstens 1,0 Gew.-% erwiesen.Molybdenum ("Mo") is present in the steel to be used according to the invention in contents of 0.5-1.8% by weight in order to delay the transformation of the structure into ferrite or pearlite and to enlarge the window for the bainite transformation. This effect occurs in particular if there is at least 0.6% by weight in the steel. At levels of more than 1.8% by weight, based on the use of the steel to be used according to the invention, which is the focus here, there is no longer an economically justifiable further increase in the positive effect of Mo. By limiting the Mo content to 1.8% by weight, the formation of a molybdenum-rich carbide phase which would have a negative effect on the toughness properties is reliably ruled out. Optimal effects of Mo in the steel to be used according to the invention can be expected if the Mo content is at least 0.7% by weight. Mo contents of at most 1.5% by weight or at most 1.0% by weight have proven to be particularly effective.

Die Anwesenheit von N in den erfindungsgemäß vorgesehenen Gehalten von 0,004 - 0,020 Gew.-% ermöglicht die Bildung von Nitriden und Karbonitriden zur Festigkeitssteigerung und Erhöhung der Feinkornbeständigkeit, ohne dass es zur Versprödung kommt. So bildet Al mit N Aluminiumnitrid, das zur Feinkornstabilität beiträgt.The presence of N in the contents of 0.004-0.020% by weight provided according to the invention enables the formation of nitrides and carbonitrides to increase the strength and increase the resistance to fine grains, without causing embrittlement. So Al forms with N aluminum nitride, which contributes to fine grain stability.

Der Gehalt an Schwefel ("S") kann im erfindungsgemäß zu verwendenden Stahl bis zu 0,4 Gew.-%, insbesondere höchstens 0,1 Gew.-%, betragen, um die Zerspanbarkeit des Stahls zu unterstützen. Zu diesem Zweck kann ein S-Gehalt von mindestens 0,001 Gew.-% vorgesehen sein. Bei oberhalb von 0,4 Gew.-% liegenden S-Gehalten besteht die Gefahr der Entstehung von Rotbrüchigkeit. Optimale Wirkungen der Anwesenheit von S im erfindungsgemäß zu verwendenden Stahl können bei Gehalten von 0,003 - 0,1 Gew.-% erzielt werden.The sulfur ("S") content in the steel to be used according to the invention can be up to 0.4% by weight, in particular at most 0.1% by weight, in order to support the machinability of the steel. For this purpose, an S content of at least 0.001% by weight can be provided. If the S content is above 0.4% by weight, there is a risk of developing red brittleness. Optimal effects of the presence of S in the steel to be used according to the invention can be achieved at contents of 0.003-0.1% by weight.

Die Anwesenheit von B in Gehalten von bis zu 0,0025 Gew.-%, insbesondere mindestens 0,0001 Gew.-% oder mindestens 0,0005 Gew.-%, im erfindungsgemäß zu verwendenden Stahl verzögert die Entstehung von Ferrit oder Perlit und sichert so die Entstehung des angestrebten bainitischen Gefüges im erfindungsgemäß zu verwendenden Stahl ab. Oberhalb von 0,0025 Gew.-% liegende B-Gehalte würden die Gefahr einer Versprödung mit sich bringen. Die jeweils optional vorhandenen Mikrolegierungselemente Nb, Ti und V bilden Karbonitride und können so einen wesentlichen Beitrag zur Optimierung der Feinkornstabilität und Festigkeit des erfindungsgemäß zu verwendenden Stahls leisten.The presence of B in contents of up to 0.0025% by weight, in particular at least 0.0001% by weight or at least 0.0005% by weight, in the steel to be used according to the invention delays the formation of ferrite or pearlite and ensures it thus the formation of the desired bainitic structure in the steel to be used according to the invention. B contents above 0.0025% by weight would entail the risk of embrittlement. The optionally available microalloying elements Nb, Ti and V form carbonitrides and can thus make a significant contribution to optimizing the fine grain stability and strength of the steel to be used according to the invention.

Die legierungstechnische Feinjustierung in Bezug auf die mechanischen Eigenschaften und die Gefügebeschaffenheit eines erfindungsgemäß verwendeten Stahls erfolgt nach dem erfindungsgemäß verwendeten Legierungskonzept über eine kombinierte Mikrolegierung aus den Elementen Bor ("B") in optionalen Gehalten von bis zu 0,0025 Gew.-%, insbesondere in Gehalten von 0,0001 - 0,0025 Gew.-% B oder 0,0005 - 0,0025 Gew.-% B, Stickstoff ("N") in Gehalten von 0,004 - 0,020 Gew.-%, insbesondere mindestens 0,006 Gew.-% N oder bis zu 0,0150 Gew.-% N, Aluminium ("AI") in Gehalten von 0,004 - 0,020 Gew.-% sowie Niob ("Nb") in optionalen Gehalten von bis zu 0,020 Gew.-%, insbesondere bis zu 0,015 Gew.-% und insbesondere mindestens 0,003 Gew.-% oder mindestens 0,005 Gew.-% Nb, Titan ("Ti") in optionalen Gehalten von bis zu 0,02 Gew.-% oder bis zu 0,015 Gew.-%, insbesondere mindestens 0,001 Gew.-% oder mindestens 0,005 Gew.-% Ti, und Vanadium ("V") in optionalen Gehalten von bis zu 0,40 Gew.-%, insbesondere bis zu 0,3 Gew.-% und insbesondere mindestens 0,01 Gew.-% oder mindestens 0,02 Gew.-% V.The alloy-technical fine adjustment with regard to the mechanical properties and the texture of a steel used according to the invention is carried out according to the alloy concept used according to the invention by means of a combined micro-alloy from the elements Boron ("B") in optional contents of up to 0.0025% by weight, in particular in contents of 0.0001 - 0.0025% by weight B or 0.0005 - 0.0025% by weight B, Nitrogen ("N") in contents of 0.004 - 0.020% by weight, in particular at least 0.006% by weight N or up to 0.0150% by weight N, aluminum ("AI") in contents of 0.004 - 0.020% by weight .-% and niobium ("Nb") in optional contents of up to 0.020% by weight, in particular up to 0.015% by weight and in particular at least 0.003% by weight or at least 0.005% by weight of Nb, titanium (" Ti ") in optional contents of up to 0.02% by weight or up to 0.015% by weight, in particular at least 0.001% by weight or at least 0.005% by weight of Ti, and vanadium (" V ") in optional Contained up to 0.40% by weight, in particular up to 0.3% by weight and in particular at least 0.01% by weight or at least 0.02% by weight of V.

Um die Vorteile der Anwesenheit der Mikrolegierungselemente und von Aluminium sicher zu nutzen, kann es zweckmäßig sein, den Al-Gehalt auf mindestens 0,005 Gew.-%, den Ti-Gehalt auf mindestens 0,001 Gew.-%, den V-Gehalt auf mindestens 0,02 Gew.-% oder den Nb-Gehalt auf mindestens 0,003 Gew.-% einzustellen. Dabei können die Mikrolegierungselemente V, Ti, Nb einerseits und Al andererseits jeweils in Kombination mit einem oder mehreren Elementen der Gruppe "Al, V, Ti, Nb" oder alleine in oberhalb der genannten Mindestgehalte liegenden Mengen vorhanden sein. Bei Gehalten von bis zu 0,01 Gew.-% Ti, von bis zu 0,1 Gew.-% Nb, von bis zu 0,075 Gew.-% V oder von bis zu 0,020 Gew.-% AI lassen sich die Wirkungen dieser Elemente im erfindungsgemäß verwendeten Stahl besonders wirksam nutzen. Auch hier können die genannten Obergrenzen der Gehalte an Ti, Nb, V oder Al jeweils alleine oder in Kombination miteinander eingehalten werden, um die jeweils optimale Wirkung des betreffenden Legierungselements zu erzielen.In order to safely take advantage of the presence of the microalloying elements and of aluminum, it may be expedient to reduce the Al content to at least 0.005% by weight, the Ti content to at least 0.001% by weight and the V content to at least 0 , 02% by weight or the Nb content to at least 0.003% by weight. The microalloying elements V, Ti, Nb on the one hand and Al on the other hand can each be present in combination with one or more elements from the group "Al, V, Ti, Nb" or alone in amounts above the minimum contents mentioned. With effects of up to 0.01 wt.% Ti, up to 0.1 wt.% Nb, up to 0.075 wt.% V or up to 0.020 wt Use elements in the steel used according to the invention particularly effectively. Here, too, the cited upper limits of the contents of Ti, Nb, V or Al can be complied with individually or in combination with one another in order to achieve the optimum effect of the alloy element in question.

Die Gehalte %AI, %Nb, %Ti, %V und %N an Al, Nb, Ti, V und N sind dabei im erfindungsgemäß zu verwendenden Stahl über die Bedingung % Al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3 , 5

Figure imgb0002
so miteinander verknüpft, dass der im erfindungsgemäß zu verwendenden Stahl enthaltene Stickstoff über die jeweils vorhandenen Gehalte an AI sowie die gegebenenfalls zusätzlich zugegebenen Gehalte an Nb, Ti und V vollständig abgebunden ist und Bor somit umwandlungsverzögernd wirken kann. Die erfindungsgemäße Abbindung von N ermöglicht darüber hinaus, dass das optional vorhandene Bor als gelöstes Element in der Matrix des Stahls wirksam wird und die Bildung von Ferrit und/oder Perlit unterdrückt.The contents of% Al,% Nb,% Ti,% V and% N of Al, Nb, Ti, V and N are in the steel to be used according to the invention via the condition % al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3 . 5
Figure imgb0002
linked with one another in such a way that the nitrogen contained in the steel to be used according to the invention is completely bound via the respectively present contents of Al and the optionally additionally added contents of Nb, Ti and V, and boron can thus delay the conversion. The setting of N according to the invention also enables the optionally present boron to act as a dissolved element in the matrix of the steel and to suppress the formation of ferrite and / or pearlite.

Ebenso optional vorhandene Gehalte an Ni von bis zu 0,5 Gew.-% verbessern die Zähigkeit des erfindungsgemäß zu verwendenden Stahls. Falls dieser Effekt genutzt werden soll, tritt er ab einem Ni-Gehalt von mindestens 0,1 Gew.-%, insbesondere mindestens 0,15 Gew.-%, ein.Also optionally present Ni contents of up to 0.5% by weight improve the toughness of the steel to be used according to the invention. If this effect is to be used, it occurs from a Ni content of at least 0.1% by weight, in particular at least 0.15% by weight.

Zu den über das Ausgangsmaterial in den erfindungsgemäß zu verwendenden Stahl gelangenden oder gezielt zugegebenen Legierungselementen gehört auch Cu, dessen Gehalt zur Vermeidung von negativen Einflüssen im erfindungsgemäß zu verwendenden Stahl auf max. 0,3 Gew.-% begrenzt ist.Cu is also one of the alloying elements that reaches or is added to the steel to be used according to the invention via the starting material, the content of which to avoid negative influences in the steel to be used according to the invention is max. 0.3% by weight is limited.

Optional im erfindungsgemäß zu verwendenden Stahl vorhandenes Kobald ("Co") bewirkt in Gehalten von bis zu 1,5 Gew.-% eine Verschiebung der Bainitbildung zu kürzeren Zeiten. Der positive Einfluss von Co kann dabei insbesondere bei Co-Gehalten von mindestens 0,25 Gew.-%, insbesondere mindestens 0,5 Gew.-%, genutzt werden, wobei sich Co-Gehalte von bis zu 1,0 Gew.-% als besonders wirksam herausgestellt haben.Cobalt ("Co") optionally present in the steel to be used according to the invention causes a shift in the formation of bainite at shorter times in contents of up to 1.5% by weight. The positive influence of Co can be used in particular in the case of Co contents of at least 0.25% by weight, in particular at least 0.5% by weight, with Co contents of up to 1.0% by weight. have proven to be particularly effective.

Eine für die erfindungsgemäßen Zwecke besonders geeignete Stahllegierung besteht demnach entsprechend den voranstehenden Erläuterungen aus (in Gew.-%) 0,12 - 0,25 % C, 0,20 - 0,80 % Si, 0,40 - 1,20 % Mn, 1,0 - 3,0 % Cr, 0,5 - 1,8 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,004 - 0,020 % Al, 0,0005 - 0,0025 % B, bis zu 0,10 % Nb, bis zu 0,015 % Ti, bis zu 0,20 % V, bis zu 0,5 % Ni, und/oder bis zu 1,5 % Co, Rest Eisen und unvermeidbare Verunreinigungen, für die auch hier die oben bereits diesbezüglich gegebenen Erläuterungen gelten.A steel alloy which is particularly suitable for the purposes according to the invention therefore consists, according to the above explanations, of (in% by weight) 0.12-0.25% C, 0.20-0.80% Si, 0.40-1.20% Mn, 1.0 - 3.0% Cr, 0.5-1.8% Mo, 0.004-0.020% N, up to 0.40% S, 0.004-0.020% Al, 0.0005-0.0025% B, up to 0.10% Nb, up to 0.015% Ti, up to 0.20% V, up to 0.5% Ni, and / or up to 1.5% Co, balance iron and unavoidable impurities, to which the explanations given above in this regard also apply.

Grundsätzlich eignet sich der erfindungsgemäß für die Herstellung von Stahlbauteilen zu verwendende Stahl für sämtliche der in den oben bereits genannten Merkblättern 452 und 477 beschriebenen thermochemischen Diffusionsverfahren "Carburieren" (Aufkohlen), "Carbonitrieren", "Nitrieren" oder "Nitrocarburieren".In principle, the steel to be used according to the invention for the production of steel components is suitable for all of the thermochemical diffusion processes “carburizing” (carburizing), “carbonitriding”, “nitriding” or “nitrocarburizing” described in the aforementioned leaflets 452 and 477.

Soweit ein Einsatzhärten durchgeführt werden soll, wird, wie im Merkblatt 452 im Einzelnen erläutert, zunächst als thermochemische Diffusionsbehandlung ein Carburieren oder Carbonitrieren durchgeführt. Nach der hierbei durch thermochemische Diffusion bewirkten Aufkohlung (Carburieren, Carbonitrieren) der Randschicht erfolgt beim konventionellen Einsatzhärten ein Härten gemäß den im Merkblatt 452 ebenfalls detailliert beschriebenen Härteverfahren "Direkthärten (Typ A)", "Einfachhärten (Typ B)", "Härten nach isothermischem Umwandeln (Typ C)" oder "Doppelhärten (Typ D)". Beim Direkthärten (Typ A) wird das Stahlbauteil direkt aus der Hitze der vorangegangen Carburierungs- oder Carbonitrierungsbehandlung abgeschreckt. Beim Einfachhärten (Typ B) wird das Stahlbauteil nach der vorangegangen Carburierungs- oder Carbonitrierungsbehandlung zunächst auf Raumtemperatur abgekühlt und anschließend erneut auf eine oberhalb der Ac1- und unterhalb der Ac3-Temperatur des Stahls liegende Austenitisierungstemperatur durcherwärmt und anschließend abgeschreckt. Beim Härten nach isothermischem Umwandeln (Typ C) wird das Stahlbauteil aus der Hitze der vorangegangen Carburierungs- oder Carbonitrierungsbehandlung zunächst bis zu einem Temperaturbereich abgekühlt, in dem sich bestimmte Carbidausscheidungen bilden, und anschließend ausgehend von diesem Temperaturbereich wieder auf eine oberhalb der Ac1- und unterhalb der Ac3- Temperatur des Stahls liegende Austenitisierungstemperatur durcherwärmt, um dann abgeschreckt zu werden. Beim Doppelhärten (Typ D) durchläuft das Stahlbauteil, nachdem es aus der Hitze der vorangegangen Carburierungs- oder Carbonitrierungsbehandlung wie beim Einfachhärten Typ A auf Raumtemperatur abgekühlt wurde, zweimal einen Härtevorgang, wie er beim Einfachhärten Typ A nur einmal absolviert wird.If case hardening is to be carried out, carburizing or carbonitriding is first carried out as thermochemical diffusion treatment, as explained in detail in leaflet 452. After the carburization (carburizing, carbonitriding) of the surface layer caused by thermochemical diffusion, conventional case hardening is followed by hardening according to the hardening processes "direct hardening (type A)", "single hardening (type B)", "hardening after isothermal hardening", which are also described in detail in leaflet 452 Convert (Type C) "or" Double Hardness (Type D) ". In direct hardening (type A), the steel component is quenched directly from the heat of the previous carburization or carbonitriding treatment. In single hardening (type B), the steel component is first cooled to room temperature after the previous carburization or carbonitriding treatment and then reheated to an austenitizing temperature above the Ac1 and below the Ac3 temperature of the steel and then quenched. When hardening after isothermal conversion (type C), the steel component is first cooled from the heat of the previous carburization or carbonitriding treatment to a temperature range in which certain carbide precipitates form, and then, starting from this temperature range, heated again to an austenitizing temperature above the Ac1 and below the Ac3 temperature of the steel, in order then to be quenched. In double hardening (type D), after the steel component has been cooled down to room temperature from the heat of the previous carburizing or carbonitriding treatment, as in single hardening type A, it undergoes two hardening processes, as is done only once in single hardening type A.

Unabhängig davon, welches der vier hier genannten konventionellen Härteverfahren zur Anwendung kommt, sind bei der thermochemischen Diffusionsbehandlung und der anschließenden Härtung der aus erfindungsgemäß zu verwendendem Stahl bestehenden Stahlbauteile die durchzuführenden Abkühlungen in jedem Fall so einzustellen, dass sich einerseits in der durch das Carburieren oder Carbonitrieren aufgekohlten Randschicht härtesteigernde Ausscheidungen und im nicht aufgekohlten Kernbereich des Bauteils ein nach der oben erläuterten Maßgabe zu mindestens 80 Vol.-% aus Bainit bestehendes Gefüge einstellt. Hierzu ist bei der Abkühlung der Temperaturbereich von 800 - 500 °C jeweils in einer Zeit t8/5 von mindestens 6 s, insbesondere mindestens 10 s, und höchstens 1000 s, insbesondere höchstens 600 s, zu durchlaufen.Regardless of which of the four conventional hardening processes mentioned here is used, in the case of thermochemical diffusion treatment and the subsequent hardening of the steel components consisting of steel to be used according to the invention, the cooling to be carried out must be set in such a way that carburizing or carbonitriding occurs on the one hand carburized outer layer hardness-increasing precipitates and in the non-carburized core area of the component, a structure consisting of at least 80% by volume of bainite in accordance with the above-mentioned requirement. For this purpose, the temperature range of 800-500 ° C. is to be run through in each case in a time t8 / 5 of at least 6 s, in particular at least 10 s, and at most 1000 s, in particular at most 600 s.

Soll dagegen zwecks Ausbildung der gehärteten Randschicht die thermochemische Diffusionsbehandlung als Nitrieren oder Nitrocarburieren durchgeführt werden, so kann dazu die im Merkblatt 477 detailliert beschriebene Vorgehensweise gewählt werden. Hierbei wird das Stahlbauteil nach einer Erwärmung auf eine oberhalb der Ac3-Temperatur des Stahls, aus dem das Stahlbauteil besteht, liegenden Austenitisierungstemperatur kontinuierlich so abgekühlt, dass der Temperaturbereich von 800 - 500 °C in einer Zeit t8/5 von mindestens 6 s, insbesondere mindestens 10 s, und höchstens 1000 s, insbesondere höchstens 200 s, durchlaufen wird, um im Bauteil ein nach der oben erläuterten Maßgabe zu mindestens 80 Vol.-% aus Bainit bestehendes Gefüge zu bilden. Anschließend erfolgt dann der Nitrier- oder Nitrocarburier-Schritt, bei dem das Stahlbauteil jeweils entsprechend den im Merkblatt 477 enthaltenen Hinweisen und Maßgaben unter einer stickstoff- oder einer stickstoff- und kohlenstoffhaltigen Atmosphäre bei einer unterhalb der Ac1-Temperatur des Stahls, aus dem das Stahlbauteil besteht, liegenden Temperatur gehalten und anschließend abgekühlt wird.If, on the other hand, the thermochemical diffusion treatment is to be carried out as nitriding or nitrocarburizing in order to form the hardened surface layer, the procedure described in detail in leaflet 477 can be selected. After heating to an austenitizing temperature above the Ac3 temperature of the steel from which the steel component is made, the steel component is continuously cooled such that the temperature range from 800-500 ° C. in a time t8 / 5 of at least 6 s, in particular at least 10 s, and at most 1000 s, in particular at most 200 s, in order to form a structure consisting of at least 80% by volume of bainite in the component according to the above-mentioned requirement. This is followed by the nitriding or nitrocarburizing step, in which the steel component in each case in accordance with the instructions and instructions contained in leaflet 477 under an atmosphere containing nitrogen or nitrogen and carbon at a temperature below the Ac1 temperature of the steel from which the steel component is made exists, the temperature is maintained and then cooled.

Insbesondere dann, wenn der für die erfindungsgemäßen Zwecke erfindungsgemäß zu verwendende Stahl die oben bereits als besonders bevorzugt erwähnte Zusammensetzung mit (in Gew.-%) 0,12 - 0,25 % C, 0,20 - 0,80 % Si, 0,40 - 1,20 % Mn, 1,0 - 3,0 % Cr, 0,5 - 1,8 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,004 - 0,020 % AI, 0,0001 - 0,0025 % B, bis zu 0,10 % Nb, bis zu 0,01 % Ti, bis zu 0,20 % V oder bis zu 0,5 % Ni, sowie bis zu ?? % Co, Rest Eisen und unvermeidbaren Verunreinigungen aufweist, lässt sich durch für den Werkstoff angepasste Wärmebehandlungen eine optimierte Zähigkeit ohne Verlust der Festigkeitseigenschaft erzielen.In particular when the steel to be used according to the invention for the purposes of the invention has the composition already mentioned above as particularly preferred with (in% by weight) 0.12-0.25% C, 0.20-0.80% Si0 , 40-1.20% Mn, 1.0-3.0% Cr, 0.5-1.8% Mo, 0.004-0.020% N, up to 0.40% S, 0.004-0.020% AI, 0 , 0001 - 0.0025% B, up to 0.10% Nb, up to 0.01% Ti, up to 0.20% V or up to 0.5% Ni, and up to ?? % Co, remainder iron and unavoidable impurities, can be achieved by heat treatments adapted to the material, an optimized toughness without loss of strength property.

Im Fall, dass das Stahlbauteil einem Einsatzhärten unterzogen werden soll, wird dazu in einem Arbeitsschritt

  • a) aus dem erfindungsgemäß zu verwendenden Stahl in konventioneller Weise ein Stahlbauteil, bei dem es sich beispielsweise um ein Zahnrad, eine Welle, eine Achse oder einen Werkzeughalter und desgleichen handeln kann, geformt.
    Anschließend wird in einem Arbeitsschritt
  • b) das betreffende Stahlbauteil dann einsatzgehärtet, indem
  • b1) das Stahlbauteil zunächst in einem Aufkohlungsschritt über eine Dauer von 150 min bis 250 Stunden bei einer Temperatur von 900 -1050 °C unter einem Medium gehalten wird, das Kohlenstoff und optional zusätzlich Stickstoff enthält, um an dem Stahlbauteil eine carburierte oder carbonitrierte Randschicht mit einer Dicke von 0,3 - 15 µm zu erzeugen, und anschließend an den Aufkohlungsschritt dann so schnell auf Raumtemperatur abgekühlt wird, dass bei der Abkühlung der Temperaturbereich von 800 - 500 °C innerhalb von 6 - 600 s durchlaufen wird. Hierzu geeignete Abkühlgeschwindigkeiten betragen typischerweise bis zu 5 K/s, insbesondere mindestens 0,5 K/s, wobei die Abkühlung im Temperaturbereich von 800 - 500 °C insbesondere mit mehr als 1,5 K/s absolviert wird.
If the steel component is to be case hardened, this is done in one step
  • a) formed from the steel to be used according to the invention in a conventional manner, a steel component, which can be, for example, a gear, a shaft, an axis or a tool holder and the like.
    Then in one step
  • b) the steel component in question is then case hardened by
  • b1) the steel component is first kept in a carburizing step over a period of 150 minutes to 250 hours at a temperature of 900-1050 ° C. under a medium which contains carbon and optionally also nitrogen in order to have a carburized or carbonitrided surface layer on the steel component to produce a thickness of 0.3 - 15 µm, and then, after the carburizing step, it is cooled to room temperature so quickly that the temperature range of 800 - 500 ° C is run within 6 - 600 s during cooling. Cooling speeds suitable for this purpose are typically up to 5 K / s, in particular at least 0.5 K / s, with cooling in the temperature range from 800-500 ° C. being carried out in particular at more than 1.5 K / s.

Die Dauer, über die das Stahlbauteil während des Aufkohlungsschritts unter dem kohlenstoffhaltigen Medium gehalten wird, wird in an sich bekannter Weise in Abhängigkeit von der Größe des Bauteils sowie unter Berücksichtigung des jeweils eingesetzten kohlenstoffhaltigen Mediums und der Temperatur, bei der die Aufkohlung durchgeführt wird, so gewählt, dass eine aufgekohlte Randschicht mit einer innerhalb der erfindungsgemäßen Vorgaben liegenden Dicke erreicht wird. Die kürzeste Dauer kann dabei beispielsweise für kleinere Bauteile, wie Getriebeteile, insbesondere Zahnräder, Wellen und Achsen, von Automobilgetrieben und desgleichen, angezeigt sein, wogegen die längste Dauer bei großen Bauteilen, wie Getriebeteilen, insbesondere Zahnrädern, Wellen und Achsen, von Großgetrieben angemessen sein können, die für Großwälzlager bestimmt sind, wie sie in Windkraftanlagen oder Schiffsantrieben Verwendung finden.The duration over which the steel component is held under the carbon-containing medium during the carburizing step is determined in a manner known per se depending on the size of the component and taking into account the carbon-containing medium used in each case and the temperature at which the carburizing is carried out chosen that a carburized edge layer with a thickness lying within the specifications according to the invention is achieved. The shortest duration may be indicated, for example, for smaller components, such as gear parts, in particular gear wheels, shafts and axles, of automobile transmissions and the like, whereas the longest duration may be appropriate for large components, such as gear parts, in particular gear wheels, shafts and axles, of large gear units can, which are intended for slewing bearings, such as those used in wind turbines or ship propulsion systems.

In der Praxis liegt die Temperatur, bei dem das Stahlbauteil während des Aufkohlungsschritts (Arbeitsschritt b.1) gehalten wird, typischerweise bei bis zu 950 °C. Durch die Wahl höherer Temperaturen kann der Aufkohlungsvorgang beschleunigt und dementsprechend die für die erforderliche Aufkohlung benötigte Dauer verkürzt werden.In practice, the temperature at which the steel component is held during the carburizing step (step b.1) is typically up to 950 ° C. By choosing higher temperatures, the carburizing process can be accelerated and the time required for the required carburizing can be shortened accordingly.

Nach dem Arbeitsschritt b1) wird das Stahlbauteil in einem Härteschritt

  • b2) auf eine Austenitisierungstemperatur erwärmt, die mindestens 20 °C oberhalb der Ac1-Temperatur und unterhalb der Ac3-Temperatur des Stahls liegt, aus dem das Stahlbauteil besteht, und ausgehend von der
    Austenitisierungstemperatur mit einer Abkühlgeschwindigkeit von 0,5 - 50 K/s, insbesondere mindestens 1,5 K/s oder mehr als 1,5 K/s, auf Raumtemperatur abgekühlt.
After step b1), the steel component is hardened
  • b2) heated to an austenitizing temperature which is at least 20 ° C above the Ac1 temperature and below the Ac3 temperature of the steel from which the steel component is made, and starting from the
    Austenitizing temperature is cooled to room temperature with a cooling rate of 0.5-50 K / s, in particular at least 1.5 K / s or more than 1.5 K / s.

Um nach der thermochemischen Diffusionsbehandlung (Arbeitsschritt b1) möglicherweise im Bauteil vorhandene Spannungen abzubauen, kann das aus erfindungsgemäß verwendetem Stahl bestehende Stahlbauteil zwischen den Arbeitsschritten b1) und b2) optional einem Spannungsarmglühen unterzogen werden, bei dem es über eine Dauer von 15 - 120 min im Bereich von 150 - 680 °C gehalten wird.In order to reduce any stresses that may be present in the component after the thermochemical diffusion treatment (step b1), the steel component made of steel used according to the invention can optionally be subjected to a stress relief annealing between steps b1) and b2), during which it lasts for a period of 15-120 min Range of 150 - 680 ° C is kept.

Ebenso optional kann das Stahlbauteil nach dem Härten (Arbeitsschritt b2) optional in an sich bekannter Weise einer Anlassbehandlung unterzogen werden, bei der es über eine Dauer von 30 -180 min bei einer Temperatur von 150 - 275 °C gehalten und anschließend ungesteuert auf Raumtemperatur abgekühlt wird. Durch ein solches Anlassen kann das Risiko von Rissbildung weiter reduziert werden.The steel component can also optionally optionally be subjected to a tempering treatment in a manner known per se, after which it is held at a temperature of 150-275 ° C. for a period of 30-180 min and then cooled uncontrolled to room temperature becomes. Tempering like this can further reduce the risk of cracking.

Insbesondere durch Anwendung des voranstehend erläuterten Verfahrens kann ein erfindungsgemäßes einsatzgehärtetes Stahlbauteil erzeugt werden, dass aus dem erfindungsgemäß zu verwendenden Stahl, der aus (in Gew.-%) 0,12 - 0,25 % C, 0,20 - 0,80 % Si, 0,40 - 1,20 % Mn, 1,0 - 3,0 % Cr, 0,5 - 1,8 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,004 - 0,020 % AI, 0,0001 - 0,0025 % B, bis zu 0,10 % Nb, bis zu 0,01 % Ti, bis zu 0,20 % V, bis zu 0,5 % Ni, bis zu 1,0 % Co und als aus Rest Eisen und unvermeidbaren Verunreinigungen besteht, hergestellt ist und eine Randschicht mit einer Härte von 500 - 800 HV aufweist sowie in seinem Kernbereich zu mindestens 80 Vol.-% aus Bainit besteht, der aus hoch angelassenem Bainit, welcher aus dem Gefüge stammt, das das Stahlbauteil nach dem Einsetzen (Arbeitsschritt b.1) und vor dem Härten (Arbeitsschritt b.2) aufwies, und neu gebildetem Bainit sowie zu höchstens 20 Vol.-% aus Restaustenit, Ferrit, Perlit oder Martensit zusammengesetzt ist.In particular by using the method explained above, a case-hardened steel component according to the invention can be produced that from the steel to be used according to the invention, which consists of (in% by weight) 0.12-0.25% C, 0.20-0.80% Si, 0.40-1.20% Mn, 1.0-3.0% Cr, 0.5-1.8% Mo, 0.004-0.020% N, up to 0.40% S, 0.004-0.020% AI, 0.0001 - 0.0025% B, up to 0.10% Nb, up to 0.01% Ti, up to 0.20% V, up to 0.5% Ni, up to 1.0% Co and as the rest of iron and unavoidable impurities, is produced and an edge layer with a hardness of 500 - 800 HV and in its core area consists of at least 80 vol .-% of bainite, which consists of high tempered bainite, which comes from the structure that the steel component after insertion (step b.1) and before hardening (step b.2) had, and newly formed bainite and at most 20 vol .-% of residual austenite, ferrite, pearlite or martensite is composed.

Diese Gefügezusammensetzung entsteht durch eine Härtung der erfindungsgemäßen Bauteile im Zweiphasengebiet. Dabei können die aus "alten", also vor dem Härten (Arbeitsschritt b.2) entstandenen bestehenden bainitischen Gefügeanteile von den aus "neuen", im Zuge des Härtens entstandenen und hoch angelassenen bainitischen Gefügeanteilen durch eine leichte Braunfärbung des neuen Bainits von dem alten, hoch angelassenen Bainit unterschieden werden, der eine gräuliche Färbung und eine angedeutet körnige Struktur besitzt.This structure is created by hardening the components according to the invention in the two-phase area. The existing bainitic microstructure parts resulting from "old", that is to say before hardening (step b.2), can be separated from the new, high-tempered bainitic microstructure parts resulting from hardening by a slight brown coloring of the new bainite from the old, A distinction is made between high tempered bainite, which has a greyish color and an indicated granular structure.

Dabei zeichnet sich das Gefüge eines erfindungsgemäßen Bauteils, das das voranstehend erläuterte, nach Maßgabe der Erfindung modifizierte Einsatzhärtverfahren durchlaufen hat, dadurch aus, dass es im Kernbereich des Stahlbauteils eine gemäß DIN EN 10045 bestimmte Charpy-V Kerbschlagarbeit von mehr als 40 J, insbesondere mehr als 60 J, aufweist.The structure of a component according to the invention, which has undergone the case-hardening process described above and modified in accordance with the invention, is characterized in that it has a Charpy-V impact energy of more than 40 J, in particular more, determined in accordance with DIN EN 10045 in the core area of the steel component than 60 J.

Soll die gehärtete Randschicht erfindungsgemäß durch Nitrieren oder Nitrocarburieren erzeugt werden, so kann die dazu erforderliche thermochemische Diffusionsbehandlung insbesondere ausgehend von der optimierten Zusammensetzung des erfindungsgemäß zu verwendenden Stahls mit (in Gew.-%) 0,12 - 0,25 % C, 0,20 - 0,80 % Si, 0,40 - 1,20 % Mn, 1,0 - 3,0 % Cr, 0,5 - 1,8 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,004 - 0,020 % Al, 0,0005 - 0,0025 % B, bis zu 0,10 % Nb, bis zu 0,01 % Ti, bis zu 0,20 % V oder bis zu 0,5 % Ni, sowie bis zu 1,5 % Co, Rest Eisen und unvermeidbaren Verunreinigungen, wie folgt durchgeführt werden:

  • A) Aus dem Stahl wird ein Stahlbauteil geformt.
  • B) Das Stahlbauteil wird einer Nitrier- oder Nitrocarburier-Behandlung unterzogen, bei der
  • B.1) das Stahlbauteil zunächst über eine Austenitisierungsdauer von 15 - 120 min auf eine Austenitsierungsstemperatur, die mindestens 20 °C, insbesondere 20 - 100 °C oder 30 - 50 °C, oberhalb der Ac3-Temperatur des Stahls liegt, aus dem das Stahlbauteil besteht, durcherwärmt und anschließend so schnell auf Raumtemperatur abgekühlt wird, dass bei der Abkühlung der Temperaturbereich von 800 - 500 °C innerhalb von weniger als 200 s durchlaufen wird, um ein zu mindestens 80 Vol.-% bestehendes Gefüge im Bauteil zu erzeugen,
    und
  • B.2) das Stahlbauteil anschließend für das Nitrieren oder Nitrocarburieren über eine Dauer von 60 min bis 100 Stunden unter einer stickstoff- oder stickstoff- und kohlenstoffhaltigen Atmosphäre, bei einer unterhalb der Ac1-Temperatur des Stahls, aus dem das Stahlbauteil besteht, liegenden, typischerweise 440 - 580 °C betragenden Temperatur gehalten und anschließend abgekühlt wird, um an dem Stahlbauteil eine gehärtete Randschicht mit einer Dicke von 1 - 1200 µm zu erzeugen.
If, according to the invention, the hardened surface layer is to be produced by nitriding or nitrocarburizing, the thermochemical diffusion treatment required for this, in particular based on the optimized composition of the steel to be used according to the invention, can be (in% by weight) 0.12-0.25% C, 0.1 20 - 0.80% Si, 0.40 - 1.20% Mn, 1.0 - 3.0% Cr, 0.5 - 1.8% Mo, 0.004 - 0.020% N, up to 0.40% S, 0.004 - 0.020% Al, 0.0005 - 0.0025% B, up to 0.10% Nb, up to 0.01% Ti, up to 0.20% V or up to 0.5% Ni and up to 1.5% Co, balance iron and unavoidable impurities, are carried out as follows:
  • A) A steel component is formed from the steel.
  • B) The steel component is subjected to a nitriding or nitrocarburizing treatment, in which
  • B.1) the steel component first over an austenitizing period of 15-120 min to an austenitizing temperature which is at least 20 ° C, in particular 20-100 ° C or 30-50 ° C, above the Ac3 temperature of the steel from which the Steel component exists, heated through and then cooled to room temperature so quickly that the temperature range of 800 - 500 ° C is passed within less than 200 s during cooling in order to create an existing structure in the component with at least 80 vol.%,
    and
  • B.2) the steel component is then subjected to nitriding or nitrocarburizing for a period of 60 minutes to 100 hours under an atmosphere containing nitrogen or nitrogen and carbon, at a temperature below the Ac1 temperature of the steel from which the steel component is made, typically 440-580 ° C temperature is maintained and then cooled to produce a hardened surface layer with a thickness of 1 - 1200 microns on the steel component.

Beim in der voranstehend angegebenen Weise durchgeführten Nitrieren oder Nitrocarburieren entstehen aus den im erfindungsgemäß verwendeten Stahl nach Maßgabe der Erfindung vorhandene Gehalte an Cr, V, Nb oder Ti durch die Bildung von Nitriden für eine hohe Oberflächenhärte. Der bainitische Kernbereich (Matrix) erfährt beim Nitrieren oder Nitrocarborieren eine Härtesteigerung um ca. 100 - 150 MPa durch die Entstehung von Sonderkarbiden insbesondere aus den im Stahl enthaltenen Gehalten an Mo (molybdänreiches Karbid).In the nitriding or nitrocarburizing carried out in the manner indicated above, the Cr, V, Nb or Ti contents present in the steel used according to the invention in accordance with the invention result from the formation of nitrides for a high surface hardness. The bainitic core area (matrix) experiences a hardness increase of approx. 100 - 150 MPa through the formation of nitriding or nitrocarboration Special carbides, in particular from the Mo content contained in the steel (molybdenum-rich carbide).

Die jeweils konkret eingestellten Parameter "Dauer" und "Temperatur" der Nitrier- oder Nitrocarburier-Behandlung werden dabei in an sich bekannter Weise in Abhängigkeit von der Bauteilgröße so eingestellt, dass eine gehärtete Randschicht mit einer innerhalb der erfindungsgemäßen Vorgaben liegenden Dicke erzielt wird.The respectively set parameters "duration" and "temperature" of the nitriding or nitrocarburizing treatment are adjusted in a manner known per se depending on the component size in such a way that a hardened surface layer with a thickness lying within the specifications according to the invention is achieved.

Soll eine spanabhebende Bearbeitung des Bauteils durchgeführt werden, um beispielsweise seine Maßhaltigkeit zu optimieren, so wird diese vorteilhafterweise zwischen den Arbeitsschritten B1) und B2) am nach dem Arbeitsschritt B1) noch relativ weichen Stahlbauteil durchgeführt, um den Werkzeugverschleiß gegenüber einer Zerspanung im endgehärteten Zustand zu vermindern.If machining of the component is to be carried out, for example to optimize its dimensional accuracy, this is advantageously carried out between work steps B1) and B2) on the steel component, which is still relatively soft after work step B1), in order to prevent tool wear from machining in the finally hardened state Reduce.

Der erfindungsgemäß zu verwendende Stahl ist besonders zur Herstellung von randschichtgehärteten Zahnrädern, Achsen, Wellen oder Werkzeughalter für pulvermetallurgisch hergestellte Schneidwerkzeuge geeignet.The steel to be used according to the invention is particularly suitable for the production of gear wheels, axles, shafts or tool holders hardened by surface layers for cutting tools produced by powder metallurgy.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen erläutert.The invention is explained below using exemplary embodiments.

Es sind zwei erfindungsgemäß zu verwende Schmelzen S1, S2, S3 erschmolzen worden, deren Zusammensetzung in Tabelle 1 angegeben ist.Two melts S1, S2, S3 to be used according to the invention have been melted, the composition of which is given in Table 1.

In einem ersten Versuch ist aus dem Stahl S1 ein Zahnrad geformt worden. Das Zahnrad ist anschließend einem in konventioneller Weise nach Maßgabe der im Merkblatt 452 beschriebenen Vorgehensweise zunächst einem Aufkohlen bei 920 °C über eine Dauer von 300 min unter einer in an sich für diesen Zweck bekannten Weise zusammengesetzten kohlenstoffhaltigen Atmosphäre unterzogen worden. Auf diese Weise ist an dem Zahnrad durch thermochemische Diffusion eine aufgekohlte (carburierte) Randschicht mit einer Dicke von 520 µm entstanden. Anschließend ist das Zahnrad auf Raumtemperatur abgekühlt worden, wobei die Abkühlrate 2 K/s betrug und der kritische Temperaturbereich von 800 - 500 °C in einer t8/5-Zeit von 10 min durchlaufen worden ist.In a first experiment, a gearwheel was formed from steel S1. The gearwheel was then subjected in a conventional manner to carburizing at 920 ° C. for a period of 300 minutes under a carbon-containing atmosphere known per se for this purpose in a conventional manner in accordance with the procedure described in leaflet 452. This way the gear is through thermochemical diffusion created a carburized (carburized) surface layer with a thickness of 520 µm. The gearwheel was then cooled to room temperature, the cooling rate being 2 K / s and the critical temperature range of 800-500 ° C. being run through in a t8 / 5 time of 10 minutes.

Das erhaltene Zahnrad ist daraufhin auf eine 920 °C betragende Austenitisierungstemperatur erwärmt und bei dieser Temperatur für 30 min gehalten worden. Anschließend ist das Zahnrad mit einer Abkühlgeschwindigkeit von 2 K/s abgeschreckt worden. Dabei ist der kritische Temperaturbereich von 800 - 500 °C in einer t8/5-Zeit von 600 s durchlaufen worden.The gear obtained was then heated to an austenitizing temperature of 920 ° C. and held at this temperature for 30 minutes. The gearwheel was then quenched at a cooling rate of 2 K / s. The critical temperature range of 800 - 500 ° C was run through in a t8 / 5 time of 600 s.

Das derart einsatzgehärtete Zahnrad wies an der Oberfläche seiner gehärteten Randschicht eine Härte von 750 HV und in seinem die gehärtete Randschicht tragenden Kernbereich (Matrix) ein vollständig bainitisches Gefüge auf. Die Kerbschlagarbeit Charpy-V des ungehärteten Kernbereichs des Zahnrads betrug im Mittel von drei Proben 106 J.The case-hardened gear had a hardness of 750 HV on the surface of its hardened outer layer and a completely bainitic structure in its core area (matrix) carrying the hardened outer layer. The Charpy-V notched bar impact work of the unhardened core area of the gear was 106 J. on average from three samples.

In einem zweiten Versuch ist aus dem Stahl S2 wiederum ein Zahnrad geformt worden. Das Zahnrad ist anschließend zunächst einem Aufkohlen bei 920 °C über eine Dauer von 30 min unter einer für diesen Zweck im Stand der Technik üblichen kohlenstoffhaltigen Atmosphäre unterzogen worden. Auf diese Weise ist an dem Zahnrad durch thermochemische Diffusion eine aufgekohlte (carburierte) Randschicht mit einer Dicke von 535 µm entstanden.In a second experiment, a gearwheel was again formed from steel S2. The gearwheel was then first subjected to carburizing at 920 ° C. for a period of 30 minutes under a carbon-containing atmosphere customary for this purpose in the prior art. In this way, a carburized (carburized) surface layer with a thickness of 535 µm was created on the gear by thermochemical diffusion.

Anschließend ist das Zahnrad in Öl auf Raumtemperatur abgeschreckt worden. Der kritische Temperaturbereich von 800 - 500 °C ist dabei in einer t8/5-Zeit von 17 s durchlaufen worden.The gear was then quenched in oil to room temperature. The critical temperature range of 800 - 500 ° C was run through in a t8 / 5 time of 17 s.

Daraufhin hat das Zahnrad ein Spannungsarmglühen durchlaufen, bei dem es für eine Stunde bei 650 °C gehalten worden ist, um bei der zuvor absolvierten Aufkohlungsbehandlung entstandene Spannungen abzubauen.The gear then underwent stress relieving, in which it was held at 650 ° C. for one hour in order to relieve the stresses that had arisen during the carburizing treatment that had previously been carried out.

Nach dem Spannungsarmglühen ist das Bauteil in einem Härteschritt auf eine Austenitisierungstemperatur erwärmt und bei dieser Temperatur für eine Stunde gehalten worden, die 40 °C unterhalb der Ac3-Temperatur des Stahls S2 lag, wobei die Ac3-Temperatur des Stahls S2 zuvor in an sich bekannter Weise mittels eines Dilatometerversuchs bestimmt worden ist. Anschließend ist das Zahnrad wiederum in Öl abgeschreckt worden, so dass auch hier die t8/5-Zeit 17 s betrug.After the stress relief annealing, the component was heated in a hardening step to an austenitizing temperature and held at this temperature for one hour, which was 40 ° C. below the Ac3 temperature of the steel S2, the Ac3 temperature of the steel S2 previously being known per se Way has been determined by means of a dilatometer experiment. Then the gear was again quenched in oil so that the t8 / 5 time was 17 s.

Nach dem Härten ist das Zahnrad einem konventionellen Anlassen unterzogen worden, bei dem es über eine Stunde bei 180 °C gehalten worden ist.After hardening, the gear was subjected to conventional tempering, in which it was held at 180 ° C for over an hour.

Das derart einsatzgehärtete Zahnrad wies an der Oberfläche seiner gehärteten Randschicht eine Härte von 750 HV und in seinem die gehärtete Randschicht tragenden Kernbereich (Matrix) ein vollständig bainitisches Gefüge auf, das aus neu gebildetem und altem hoch angelassenen Bainit bestand. Die Kerbschlagarbeit Charpy-V betrug bei drei Proben im Mittel 62 J.The case-hardened gearwheel on the surface of its hardened surface layer had a hardness of 750 HV and in its core area (matrix) supporting the hardened surface layer a completely bainitic structure consisting of newly formed and old highly tempered bainite. The Charpy-V notched bar impact work averaged 62 J for three samples.

In einem dritten Versuch ist aus dem Stahl S3 ein Zahnrad mit einem Durchmesser von weniger als 40 mm geformt worden. Das Zahnrad ist anschließend zunächst einem Aufkohlen bei 920 °C über eine Dauer von 30 min unter einer zu diesem Zweck üblicherweise eingesetzten kohlenstoffhaltigen Atmosphäre unterzogen worden. Auf diese Weise ist an dem Zahnrad durch thermochemische Diffusion eine aufgekohlte (carburierte) Randschicht mit einer Dicke von 530 µm entstanden. Anschließend ist das Zahnrad mit einer Abkühlgeschwindigkeit von 3 K/s auf Raumtemperatur in Wasser abgeschreckt worden. Der kritische Temperaturbereich von 800 - 500 °C ist dabei in einer t8/5-Zeit von 300 s durchlaufen worden.In a third experiment, a gearwheel with a diameter of less than 40 mm was formed from the steel S3. The gearwheel was then subjected to carburizing at 920 ° C. for a period of 30 minutes under a carbon-containing atmosphere that is usually used for this purpose. In this way, a carburized (carburized) surface layer with a thickness of 530 µm was created on the gear by thermochemical diffusion. The gearwheel was then quenched in water at a cooling rate of 3 K / s to room temperature. The critical temperature range of 800 - 500 ° C was run through in a t8 / 5 time of 300 s.

Nach dieser Aufkohlungsbehandlung ist das Bauteil in einem Härteschritt auf eine Austenitisierungstemperatur erwärmt und bei dieser Temperatur für eine Stunde gehalten worden, die 920 °C betrug. Anschließend ist das Zahnrad in Wasser abgeschreckt worden, wobei hier die t8/5-Zeit 300 s betrug.After this carburizing treatment, the component was heated to an austenitizing temperature in a hardening step and held at this temperature for an hour, which was 920 ° C. The gear wheel was then quenched in water, the t8 / 5 time here being 300 s.

Das derart einsatzgehärtete Zahnrad wies an der Oberfläche seiner gehärteten Randschicht eine Härte von 760 HV und in seinem die gehärtete Randschicht tragenden Kernbereich (Matrix) ein vollständig bainitisches Gefüge auf. Die Kerbschlagarbeit Charpy-V betrug bei drei Proben im Mittel 78 J.The case-hardened gear wheel had a hardness of 760 HV on the surface of its hardened outer layer and a completely bainitic structure in its core area (matrix) carrying the hardened outer layer. The Charpy-V notched bar impact work averaged 78 J for three samples.

Mit dem dritten Versuch konnte somit gezeigt werden, dass durch die Zugabe wirksamer Gehalte an Co der Gefahr begegnet werden kann, dass es bei aus erfindungsgemäß legierten Stahlbauteilen mit kleinen Durchmessern von in der Regel weniger als 40 mm und einer schroffen Abkühlung in Wasser auch bei grundsätzlich bainitisch umwandelnden Stählen zu einer unerwünschten martensitischen Umwandlung der äußeren Schale kommt. Die Zone martensitischer Umwandlung kann ohne geeignete Gegenmaßnahmen mehrere Millimeter dick sein und ist vor allem bei einer mechanischen Bearbeitung störend. Durch den Zusatz von Kobalt kann der Beginn der bainitischen Umwandlung beschleunigt werden, wie anhand des in Fig. 1 wiedergegebenen ZTU-Schaubilds zum Stahl S3 nachvollziehbar. Tabelle 1 Element S1 S2 S3 C 0,19 0,17 0,18 Si 0,29 0,62 0,65 Mn 0,79 1,37 1,42 Cr 2,0 0,83 0,87 Mo 0,70 0,75 0,82 V 0,097 0,12 0,12 Al 0,020 0,018 0,010 N 0,007 0,007 0,008 B 0,0001 0,0010 0,0001 Nb 0,020 0,002 0,002 Co 0,001 0,001 0,890 Ti 0,001 0,01 0,01 S 0,0016 0,003 0,003 Ni 0,22 0,12 0,10 Cu 0,03 0,03 0,04 Angaben in Gew.-%, Rest Eisen und Verunreinigungen With the third experiment it was thus possible to show that the addition of effective contents of Co can counter the risk that, in the case of steel components alloyed in accordance with the invention with small diameters of generally less than 40 mm and a rugged cooling in water, even in principle bainitic transforming steels leads to an undesirable martensitic transformation of the outer shell. The zone of martensitic transformation can be several millimeters thick without suitable countermeasures and is particularly troublesome during mechanical processing. The addition of cobalt can accelerate the start of the bainitic transformation, as can be seen from the in Fig. 1 reproduced ZTU diagram for steel S3 understandable. Table 1 element S1 S2 S3 C 0.19 0.17 0.18 Si 0.29 0.62 0.65 Mn 0.79 1.37 1.42 Cr 2.0 0.83 0.87 Mo 0.70 0.75 0.82 V 0.097 0.12 0.12 al 0,020 0,018 0,010 N 0,007 0,007 0,008 B 0.0001 0.0010 0.0001 Nb 0,020 0,002 0,002 Co 0.001 0.001 0.890 Ti 0.001 0.01 0.01 S 0.0016 0,003 0,003 Ni 0.22 0.12 0.10 Cu 0.03 0.03 0.04 Figures in% by weight, remainder iron and impurities

Claims (9)

Verwendung eines Stahls, der aus (in Gew.-%) C: 0,1 - 0,30 %, Si: 0 - 0,80 %, Mn: 0,20 - 2,00 %, Cr: 0 - 4,00 %, Mo: 0,5 - 1,80 %, N: 0,004 - 0,020 %, S: 0 - 0,40 %, Al: 0,004 - 0,020 %, B: 0 - 0,0025 %, Nb: 0 - 0,20 %, Ti: 0 - 0,02 %, V: 0 - 0,40 %, Ni: 0 - 0,5 %, Cu: 0 - 0,3 %, Co: 0 - 1,5 %
Rest Eisen und unvermeidbaren Verunreinigungen
besteht,
wobei der Al-Gehalt %Al, der Nb-Gehalt %Nb, der Ti-Gehalt %Ti, der V-Gehalt %V und der N-Gehalt %N des Stahls folgende Bedingung erfüllen: %Al/27 + %Nb/45 + %Ti/48 + %V/25 > %N/3,5 zur Herstellung eines Stahlbauteils, nämlich einem Zahnrad, einer Welle, einer Achse oder einem Werkzeughalter, mit einer thermochemisch gehärteten Randschicht, wobei das Stahlbauteil in seinem Kernbereich ein zu mindestens 80 Vol.-% aus Bainit bestehendes Gefüge aufweist.
Use of a steel consisting of (in% by weight) C: 0.1 - 0.30%, Si: 0 - 0.80%, Mn: 0.20 - 2.00%, Cr: 0 - 4.00%, Mo: 0.5 - 1.80%, N: 0,004 - 0.020%, S: 0 - 0.40%, al: 0,004 - 0.020%, B: 0 - 0.0025%, Nb: 0 - 0.20%, Ti: 0 - 0.02%, V: 0 - 0.40%, Ni: 0 - 0.5%, Cu: 0 - 0.3%, Co: 0 - 1.5%
Rest of iron and unavoidable impurities
consists,
the Al content% Al, the Nb content% Nb, the Ti content% Ti, the V content% V and the N content% N of the steel meet the following condition:% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3.5 for the production of a steel component, namely a gear, a shaft, an axis or a tool holder, with a thermochemically hardened surface layer, the steel component in its core area at least one Has 80 vol .-% structure consisting of bainite.
Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass der Stahl (in Gew.-%) 0,12 - 0,25 % C, 0,20 - 0,80 % Si, 0,40 - 1,20 % Mn, 1,0 - 3,0 % Cr, 0,5 - 1,8 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,004 - 0,020 % Al, 0,0001 - 0,0025 % B, bis zu 0,10 % Nb, bis zu 0,015 % Ti, bis zu 0,20 % V, bis zu 0,5 % Ni und/oder bis zu 1,0 % Co enthält.Use according to claim 1, characterized in that the steel (in% by weight) 0.12-0.25% C, 0.20-0.80% Si, 0.40-1.20% Mn, 1, 0-3.0% Cr, 0.5-1.8% Mo, 0.004-0.020% N, up to 0.40% S, 0.004-0.020% Al, 0.0001-0.0025% B, up to Contains 0.10% Nb, up to 0.015% Ti, up to 0.20% V, up to 0.5% Ni and / or up to 1.0% Co. Verwendung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass a) aus dem Stahl ein Stahlbauteil geformt wird
und
b) das Stahlbauteil einsatzgehärtet wird, indem b1) das Stahlbauteil in einem Aufkohlungsschritt über eine Dauer von 150 min bis 250 Stunden bei einer Temperatur von 900 - 1050 °C unter einem Medium gehalten wird, das Kohlenstoff und optional zusätzlich Stickstoff enthält, um an dem Stahlbauteil eine carburierte oder carbonitrierte Randschicht mit einer Dicke von 0,3 - 15 µm zu erzeugen, und im Anschluss an den Aufkohlungsschritt so schnell auf Raumtemperatur abgekühlt wird, dass bei der Abkühlung der Temperaturbereich von 800 - 500 °C innerhalb von 6 - bis 600 s durchlaufen wird,
und
b2) das Stahlbauteil in einem nach dem Aufkohlungsschritt (Arbeitsschritt b1) absolvierten Härteschritt auf eine Austenitisierungstemperatur erwärmt wird, die mindestens 20 °C oberhalb der Ac1-Temperatur und unterhalb der Ac3-Temperatur des Stahls liegt, aus dem das Stahlbauteil besteht, und ausgehend von der Austenitisierungstemperatur mit einer Abkühlgeschwindigkeit von 0,5 - 50 K/s auf Raumtemperatur abgekühlt wird.
Use according to one of the preceding claims, characterized in that a) a steel component is formed from the steel
and
b) the steel component is case hardened by b1) the steel component is held in a carburizing step over a period of 150 minutes to 250 hours at a temperature of 900-1050 ° C. under a medium which contains carbon and optionally also nitrogen, in order to form a carburized or carbonitrided surface layer on the steel component To produce a thickness of 0.3 - 15 µm and, after the carburizing step, it is cooled to room temperature so quickly that the temperature range of 800 - 500 ° C is passed within 6 to 600 s during cooling,
and
b2) the steel component is heated in a hardening step carried out after the carburizing step (work step b1) to an austenitizing temperature which is at least 20 ° C. above the Ac1 temperature and below the Ac3 temperature of the steel from which the steel component is made, and starting from the austenitizing temperature with a Cooling rate of 0.5 - 50 K / s is cooled to room temperature.
Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass das Stahlbauteil zwischen den Arbeitsschritten b1) und b2) optional einem Spannungsarmglühen bei einer Temperatur von 150 - 680 °C über eine Dauer von 15 - 120 min unterzogen wird.Use according to claim 3, characterized in that between the steps b1) and b2) , the steel component is optionally subjected to a stress relief annealing at a temperature of 150-680 ° C for a period of 15-120 min. Verwendung nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass das Stahlbauteil nach dem Härten (Arbeitsschritt b2) optional einer Anlassbehandlung unterzogen wird, bei der es über eine Dauer von 30 - 180 min bei einer Temperatur von 150 - 275 °C gehalten und anschließend ungesteuert auf Raumtemperatur abgekühlt wird.Use according to one of claims 3 or 4, characterized in that the steel component after hardening (step b2) is optionally subjected to a tempering treatment in which it is held at a temperature of 150-275 ° C for a period of 30-180 min is then cooled uncontrolled to room temperature. Verwendung nach Anspruch 1oder 2, dadurch gekennzeichnet, dass A) aus dem Stahl ein Stahlbauteil geformt wird
und
B) das Stahlbauteil einer Nitrier- oder Nitrocarburier-Behandlung unterzogen wird, bei der B.1) das Stahlbauteil zunächst über eine Austenitisierungsdauer von 15 - 120 min auf eine Austenitsierungsstemperatur, die mindestens 20 °C oberhalb der Ac3-Temperatur des Stahls liegt, aus dem das Stahlbauteil besteht, durcherwärmt und anschließend so schnell auf Raumtemperatur abgekühlt wird, dass bei der Abkühlung der Temperaturbereich von 800 - 500 °C innerhalb von weniger als 200 s durchlaufen wird, um ein zu mindestens 80 Vol.-% bestehendes Gefüge im Bauteil zu erzeugen,
und
B.2) das Stahlbauteil anschließend für das Nitrieren oder Nitrocarburieren über eine Dauer von 60 min bis 100 Stundenunter einer stickstoff- oder einer stickstoff- und kohlenstoffhaltigen Atmosphäre bei einer unterhalb der Ac1-Temperatur des Stahls, aus dem das Stahlbauteil besteht, liegenden Temperatur gehalten und anschließend abgekühlt wird, um an dem Stahlbauteil eine gehärtete Randschicht mit einer Dicke von 1 - 1200 µm zu erzeugen.
Use according to claim 1 or 2, characterized in that A) a steel component is formed from the steel
and
B) the steel component is subjected to a nitriding or nitrocarburizing treatment, in which B.1) the steel component is initially heated over an austenitizing period of 15-120 min to an austenitizing temperature that is at least 20 ° C above the Ac3 temperature of the steel from which the steel component is made and then cooled to room temperature so quickly that when cooling, the temperature range of 800 - 500 ° C is run within less than 200 s in order to create an existing structure in the component with at least 80% by volume,
and
B.2) the steel component is then held for a period of 60 minutes to 100 hours under a nitrogen or nitrogen and carbon-containing atmosphere for a nitriding or nitrocarburizing at a temperature below the Ac1 temperature of the steel of which the steel component is made and then cooled to produce a hardened surface layer with a thickness of 1 - 1200 microns on the steel component.
Verwendung nach Anspruch 6,dadurch gekennzeichnet, dass das Stahlbauteil zwischen den Arbeitsschritten B.1) und B.2) einer zerspanenden Bearbeitung unterzogen wird.Use according to claim 6, characterized in that the steel component is subjected to machining between work steps B.1) and B.2). Einsatzgehärtetes Stahlbauteil, nämlich Zahnrad, Welle, Achse oder Werkzeughalter, bestehend aus einem Stahl, der aus (in Gew.-%) 0,12 - 0,25 % C, 0,20 - 0,80 % Si, 0,40 - 1,20 % Mn, 1,0 - 3,0 % Cr, 0,5 - 1,8 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,004 - 0,020 % Al, 0,0001 - 0,0025 % B, bis zu 0,10 % Nb, bis zu 0,015 % Ti, bis zu 0,20 % V, bis zu 0,5 % Ni, bis zu 1,0 % Co und als aus Rest Eisen und unvermeidbaren Verunreinigungen besteht, wobei das Stahlbauteil eine Randschicht mit einer Härte von 500 - 800 HV aufweist und in seinem Kernbereich zu mindestens 80 Vol.-% aus Bainit besteht, der aus hoch angelassenem Bainit, welcher aus dem Gefüge stammt, das das Stahlbauteil nach dem Einsetzen (Arbeitsschritt b.1) und vor dem Härten (Arbeitsschritt b.2) aufwies, und neu gebildetem Bainit sowie zu höchstens 20 Vol.-% aus Restaustenit, Ferrit, Perlit oder Martensit zusammengesetzt ist.Case hardened steel component, namely gear, shaft, axle or tool holder, consisting of a steel consisting of (in% by weight) 0.12 - 0.25% C, 0.20 - 0.80% Si, 0.40 - 1.20% Mn, 1.0 - 3.0% Cr, 0.5 - 1.8% Mo, 0.004 - 0.020% N, up to 0.40% S, 0.004 - 0.020% Al, 0.0001 - 0.0025% B, up to 0.10% Nb, up to 0.015% Ti, up to 0.20% V, up to 0.5% Ni, up to 1.0% Co and as from the rest iron and unavoidable Contamination exists, whereby the steel component has an edge layer with a hardness of 500 - 800 HV and in its core area consists of at least 80 vol.% Of bainite, which consists of highly tempered bainite, which comes from the structure that the steel component has after insertion (Work step b.1) and before hardening (work step b.2), and newly formed bainite and at most 20% by volume is composed of residual austenite, ferrite, pearlite or martensite. Stahlbauteil nach Anspruch 8,dadurch gekennzeichnet, dass es durch Anwendung des Verfahrens gemäß einem der Ansprüche 3 bis 5 hergestellt ist und das Gefüge im Kernbereich des Stahlbauteils eine Charpy-V Kerbschlagarbeit von mehr als 40 J aufweist.Steel component according to claim 8, characterized in that it is produced by applying the method according to one of claims 3 to 5 and the structure in the core area of the steel component has a Charpy-V impact energy of more than 40 J.
EP18182024.2A 2018-07-05 2018-07-05 Method for producing a case-hardened steel component Active EP3591081B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18182024.2A EP3591081B1 (en) 2018-07-05 2018-07-05 Method for producing a case-hardened steel component
PT181820242T PT3591081T (en) 2018-07-05 2018-07-05 Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer
ES18182024T ES2878652T3 (en) 2018-07-05 2018-07-05 Procedure for the fabrication of a case-hardened steel construction part
PL18182024T PL3591081T3 (en) 2018-07-05 2018-07-05 Method for producing a case-hardened steel component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18182024.2A EP3591081B1 (en) 2018-07-05 2018-07-05 Method for producing a case-hardened steel component

Publications (2)

Publication Number Publication Date
EP3591081A1 true EP3591081A1 (en) 2020-01-08
EP3591081B1 EP3591081B1 (en) 2021-04-07

Family

ID=62874697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18182024.2A Active EP3591081B1 (en) 2018-07-05 2018-07-05 Method for producing a case-hardened steel component

Country Status (4)

Country Link
EP (1) EP3591081B1 (en)
ES (1) ES2878652T3 (en)
PL (1) PL3591081T3 (en)
PT (1) PT3591081T (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878985A1 (en) * 2020-03-09 2021-09-15 Areospace Trasmission Technologies GmbH Method and device for manufacturing heat-treated workpieces, in particular helical gear wheels
CN113652611A (en) * 2021-08-17 2021-11-16 山西太钢不锈钢股份有限公司 High-speed rail gear steel and preparation method thereof
CN114410947A (en) * 2022-01-26 2022-04-29 马鞍山钢铁股份有限公司 Efficient heat treatment process for carburized driven gear blank for railway locomotive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070760A2 (en) * 1999-07-21 2001-01-24 Nissan Motor Co., Ltd. High bearing pressure-resistant member and production process therefor
JP2006169637A (en) * 2001-05-14 2006-06-29 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized part
US20060225814A1 (en) * 2005-04-12 2006-10-12 Honda Motor Co., Ltd. Crankshaft and method for manufacturing same
EP2357262A1 (en) * 2010-01-28 2011-08-17 Honda Motor Co., Ltd. Crankshaft and production method therefor
EP2578717A1 (en) * 2010-11-17 2013-04-10 Nippon Steel & Sumitomo Metal Corporation Steel for nitriding purposes, and nitrided member
EP3168312A1 (en) 2015-11-16 2017-05-17 Deutsche Edelstahlwerke GmbH Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070760A2 (en) * 1999-07-21 2001-01-24 Nissan Motor Co., Ltd. High bearing pressure-resistant member and production process therefor
JP2006169637A (en) * 2001-05-14 2006-06-29 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized part
US20060225814A1 (en) * 2005-04-12 2006-10-12 Honda Motor Co., Ltd. Crankshaft and method for manufacturing same
EP2357262A1 (en) * 2010-01-28 2011-08-17 Honda Motor Co., Ltd. Crankshaft and production method therefor
EP2578717A1 (en) * 2010-11-17 2013-04-10 Nippon Steel & Sumitomo Metal Corporation Steel for nitriding purposes, and nitrided member
EP3168312A1 (en) 2015-11-16 2017-05-17 Deutsche Edelstahlwerke GmbH Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878985A1 (en) * 2020-03-09 2021-09-15 Areospace Trasmission Technologies GmbH Method and device for manufacturing heat-treated workpieces, in particular helical gear wheels
CN113652611A (en) * 2021-08-17 2021-11-16 山西太钢不锈钢股份有限公司 High-speed rail gear steel and preparation method thereof
CN114410947A (en) * 2022-01-26 2022-04-29 马鞍山钢铁股份有限公司 Efficient heat treatment process for carburized driven gear blank for railway locomotive
CN114410947B (en) * 2022-01-26 2024-01-16 马鞍山钢铁股份有限公司 Efficient heat treatment process for carburized driven gear blank for railway locomotive

Also Published As

Publication number Publication date
PT3591081T (en) 2021-06-01
EP3591081B1 (en) 2021-04-07
PL3591081T3 (en) 2021-10-25
ES2878652T3 (en) 2021-11-19

Similar Documents

Publication Publication Date Title
DE3922720C2 (en)
DE19758822B4 (en) roller bearing
EP1276915B1 (en) Rolling bearing component
DE69736020T2 (en) Steel part with high surface pressure resistance and corresponding manufacturing process
EP2045339B1 (en) Workpiece for rolling wear stress made of through hardened steel and method of heat treatment
EP1837415B1 (en) Alloy for roller bearings
JPH0578814A (en) Rolling bearing
DE4321477A1 (en) Gear for use in motor vehicles and process for its manufacture
EP3591081B1 (en) Method for producing a case-hardened steel component
DE102006017263A1 (en) Crankshaft and method for its production
DE2830850C3 (en) Use of a case-hardening steel
DE102011088234A1 (en) component
EP3323902A1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP0751234B1 (en) Blade body for saws such as circular or gang saws, cutting discs and cutting or scrapping apparatus
DE102015220195A1 (en) Carburized alloy steel with improved durability and method of making the same
DE112008003146T5 (en) Induction hardening steel having excellent cold workability, rolling member formed of such a steel, and motion guide apparatus using such a rolling member
WO2020058269A1 (en) Steel for surface hardening with high edge hardness and with a fine ductile core structure
DE19960235A1 (en) Rolling contact bearing, especially a large bearing for a steel rolling mill, has a race ring and/or rolling element made of a carburized or carbonitrided, high carbon, low nickel steel
US20080095657A1 (en) Optimization Of Steel Metallurgy To Improve Broach Tool Life
DE4327440A1 (en) Process for the thermochemical-thermal treatment of hardened steels, heat-treatable steels and bearing steels
DE112019001853T5 (en) Method for manufacturing a machine component
EP1681365B1 (en) Method of producing highly stressed machine components
DE102017215222A1 (en) Case hardenable stainless steel alloy
DE69909940T2 (en) Martensitic stainless steel parts and process for their manufacture
EP0733719A1 (en) Iron base alloy for use at high temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200622

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018004621

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0009320000

Ipc: C21D0009280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/18 20060101ALI20200928BHEP

Ipc: C23C 8/02 20060101ALI20200928BHEP

Ipc: C22C 38/06 20060101ALI20200928BHEP

Ipc: C22C 38/42 20060101ALI20200928BHEP

Ipc: C21D 9/32 20060101ALI20200928BHEP

Ipc: C21D 9/28 20060101AFI20200928BHEP

Ipc: C22C 38/46 20060101ALI20200928BHEP

Ipc: C22C 38/12 20060101ALI20200928BHEP

Ipc: C22C 38/02 20060101ALI20200928BHEP

Ipc: C23C 8/34 20060101ALI20200928BHEP

Ipc: C22C 38/00 20060101ALI20200928BHEP

Ipc: C23C 8/32 20060101ALI20200928BHEP

Ipc: C23C 8/80 20060101ALI20200928BHEP

Ipc: C22C 38/04 20060101ALI20200928BHEP

Ipc: C22C 38/44 20060101ALI20200928BHEP

Ipc: C23C 8/26 20060101ALI20200928BHEP

Ipc: C22C 38/50 20060101ALI20200928BHEP

Ipc: C21D 1/06 20060101ALI20200928BHEP

Ipc: C22C 38/48 20060101ALI20200928BHEP

Ipc: C23C 8/22 20060101ALI20200928BHEP

INTG Intention to grant announced

Effective date: 20201015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1379759

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004621

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3591081

Country of ref document: PT

Date of ref document: 20210601

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210525

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2878652

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004621

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230525

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230725

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230703

Year of fee payment: 6

Ref country code: IT

Payment date: 20230726

Year of fee payment: 6

Ref country code: GB

Payment date: 20230725

Year of fee payment: 6

Ref country code: ES

Payment date: 20230825

Year of fee payment: 6

Ref country code: AT

Payment date: 20230726

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230704

Year of fee payment: 6

Ref country code: FR

Payment date: 20230725

Year of fee payment: 6

Ref country code: DE

Payment date: 20230725

Year of fee payment: 6