EP0432434B1 - Verfahren zur Herstellung von Verbindungselementen aus einem vollaustenitischen Cr-Mn-Stahl. - Google Patents

Verfahren zur Herstellung von Verbindungselementen aus einem vollaustenitischen Cr-Mn-Stahl. Download PDF

Info

Publication number
EP0432434B1
EP0432434B1 EP90120990A EP90120990A EP0432434B1 EP 0432434 B1 EP0432434 B1 EP 0432434B1 EP 90120990 A EP90120990 A EP 90120990A EP 90120990 A EP90120990 A EP 90120990A EP 0432434 B1 EP0432434 B1 EP 0432434B1
Authority
EP
European Patent Office
Prior art keywords
max
steel
diameter
preliminary
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90120990A
Other languages
English (en)
French (fr)
Other versions
EP0432434A1 (de
Inventor
Gerald Stein
Marcus O. Speidel
Peter Uggowitzer
Joachim Menzel
Manfred Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Schmiedewerke GmbH
Original Assignee
Vereinigte Schmiedewerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Schmiedewerke GmbH filed Critical Vereinigte Schmiedewerke GmbH
Publication of EP0432434A1 publication Critical patent/EP0432434A1/de
Application granted granted Critical
Publication of EP0432434B1 publication Critical patent/EP0432434B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N

Definitions

  • the invention relates to a method for producing connecting elements, in particular bolts, screws, nails or wire ropes with a yield strength of at least 1800 N / mm2.
  • AT-PS 337 235 relates to an austenitic stainless steel consisting of 10 to 30% chromium 15 to 45% manganese 0.85 to 3% nitrogen 0.015 to 1% carbon 0.19 to 2% silicon Balance iron and manufacturing-related impurities.
  • This steel is particularly suitable for highly stressed brackets, in motor-generator construction, for submarine cables and for the manufacture of pump housings. In the fully austenitic state, the steel can reach yield strength values of up to 1600 N / mm2 if it is cold-reduced by up to 50%.
  • the steel has a chromium content of 15 to 27% and a manganese content of 21 to 30% according to a formula specified in the AT-PS. Since the steel is melted at atmospheric pressure, the high levels of chromium and manganese are necessary in order to increase the solubility limit of nitrogen in the steel when nitrogen carriers are added.
  • the austenitic nitrogen-containing steel melted according to the AT-PS is characterized by a low porosity.
  • the material breaks at higher degrees of cold reduction, for example when drawing starting material into thin wire cross sections. Porosity in the micro range was also observed. Apart from these metallurgical difficulties, such a steel is very expensive for large-scale use due to its high chromium and manganese content.
  • the production can include the production of blocks after the electro-slag remelting under increased pressure with the addition of nitrogen carriers or the introduction of nitrogen gas, as well as forging and solution annealing. This is followed by quenching in water and uniaxial cold processing. Stress relief annealing at 350 ° C for 2 hours completes the production process of the starting material for the production of the rings.
  • the object of the invention is to produce high-strength, corrosion-resistant connecting elements.
  • the steels of the type according to the invention should be able to be cold worked almost indefinitely. For this purpose, they should be able to be machined from relatively high initial cross sections to the thinnest dimensions without the risk of breakage.
  • the required yield strength values of greater than 1800 N / mm2 can be achieved with certainty, in particular by the outsourcing of the end product preformed with the highest cross-sectional decreases at temperatures of 300 to 500 ° C for a time of 20 times adapted to the cross section Minutes to 5 hours.
  • This aging treatment results in a rearrangement of the dislocations within the steel formed during the previous cold-forming processes, and without changing the so-called dislocation density, which is ultimately responsible for the high strength of these steels.
  • An independent variant for solving the problem according to the invention consists in the use of powder instead of a cast product as the starting material according to claim 2.
  • the metal powder is shaped by hot isostatic pressing into a billet, which is then forged and / or rolled out to a billet of 5 to 150 mm in diameter is, the preliminary product is then cold-formed with a cross-sectional decrease of at least 60% to an end product with a diameter of 0.5 to 90 mm and then the end product is aged at temperatures of 300 to 500 ° C for a period of 20 minutes to 5 hours.
  • Bolts, screws, nails and wire ropes are preferably produced by the method according to the invention.
  • an electrode of the following composition in mass%) carbon 0.06% silicon 0.41% manganese 19.43% phosphorus 0.012% sulfur 0.008% chrome 18.25% molybdenum 0.81% nickel 0.37% Remainder iron, melted and at the same time adjusted to a nitrogen content of 0.88% by adding nitrogenous materials.
  • the steel block solidified in the pressure electro-slag remelting furnace with the above overall analysis was then brought to a cross-section of 7 mm in diameter by forging and rolling.
  • the diameter was cold drawn from 7 mm to 3 mm in 8 passes. This corresponds to a total deformation of 82% (approx. 10% cold deformation per train).
  • the wire was further cold drawn from a diameter of 3 mm to 1.8 mm.
  • the total deformation was 64% in 6 moves (approx. 10% deformation per move).
  • the wire drawn to 1.8 mm in diameter was then aged at a temperature of 400 ° C. for 4 hours.
  • the corresponding values before the aging treatment were 2100 N / mm2 for the yield strength, 2220 N / mm2 for the tensile strength, 6% for the elongation and 46% for the fracture constriction.
  • the aging treatment according to the invention is of high importance. With this aging treatment it is possible to set yield strengths and tensile strength values that were previously unknown. It is particularly surprising that the values for the toughness, expressed here by the elongation and the fracture constriction, remain constant.
  • the steels remain non-magnetic even at the highest degrees of deformation. It also reduces susceptibility to stress corrosion cracking in dilute aqueous solutions up to 80 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Verbindungselementen, insbesondere Bolzen, Schrauben, Nägel oder von Drahtseilen mit einer Streckgrenze von mindestens 1800 N/mm².
  • Die AT-PS 337 235 betrifft einen austenitischen rostfreien Stahl, bestehend aus
       10 bis 30 % Chrom
       15 bis 45 % Mangan
       0,85 bis 3 % Stickstoff
       0,015 bis 1 % Kohlenstoff
       0,19 bis 2 % Silizium
       Rest Eisen und herstellungsbedingte Verunreinigungen.
  • Dieser Stahl eignet sich besonders vorteilhaft für hochbeanspruchte Halterungen, im Motor-Generatorbau, für Unterseekabel und zur Herstellung von Pumpengehäusen. Der Stahl kann im vollaustenitischen Zustand Streckgrenzenwerte bis 1600 N/mm² erreichen, wenn er bis 50 % kaltreduziert wird.
  • Voraussetzung für das Erreichen solch hoher Streckgrenzenwerte ist jedoch, daß der Stahl nach einer in der AT-PS festgelegten Formel Chromgehalte von 15 bis 27 % sowie Mangangehalte von 21 bis 30 % aufweist. Da der Stahl bei Atmosphärendruck erschmolzen wird, sind die hohen Gehalte an Chrom und Mangan erforderlich, um die Löslichkeitsgrenze des Stickstoffs im Stahl bei Zugabe von Stickstoffträgern entsprechend zu erhöhen. Der nach der AT-PS erschmolzene austenitische stickstoffhaltige Stahl zeichnet sich zwar durch eine geringe Porosität aus. Es hat sich jedoch gezeigt, daß ein solcher Stahl nicht durch Kaltreduzieren mit Verformungsgraden oberhalb 50 % auf über 1600 N/mm² liegende Streckgrenzenwerte gebracht werden kann. Versuche haben ergeben, daß bei höheren Kaltreduktionsgraden, beispielsweise beim Ziehen von Vormaterial zu dünnen Drahtquerschnitten, das Material bricht. Außerdem wurde Porosität im Mikrobereich beobachtet. Abgesehen von diesen metallurgischen Schwierigkeiten ist ein solcher Stahl für den großtechnischen Einsatz infolge seiner hohen Chrom- und Mangangehalte sehr teuer.
  • Wie in der AT-PS weiterhin ausgeführt, ist es zwar möglich, die nachteilige Porosität durch ein Erschmelzen der hier in Rede stehenden Chrom-Mangan-Stickstoff-Stähle unter erhöhtem Druck weitgehend zu verhindern. Bei diesen bekannten Verfahren können jedoch nur Maximalstickstoffgehalte von 0,8 Gew.-% erzielt werden. Diese Stickstoffgehalte reichen jedoch nicht aus, um Festigkeitswerte größer 1600 N/mm² zu erzielen.
  • Weiterhin ist es aus der AT-PS 266 900 bekannt, austenitische Stähle mit 0,02 bis 0,55 % C, bis 2 % Si, bis 20 % Mn, 0 bis 30 % Cr, 0 bis 25 % Ni, 0 bis 5 % Mo und/oder V und mehr als 0,5 %, vorzugsweise mindestens 1,4 % Stickstoff, die in Stickstoffatmosphäre unter Druck erschmolzen wurden, zur Herstellung von bewegten, insbesondere schwingend beanspruchten Maschinenteilen zu verwenden.
  • Diese bekannten Stähle sollen im abgeschreckten Zustand Dauerfestigkeiten bis 100 kp/mm² erreichen.
  • Nach dem aus der EP-A-0 249 117 bekannten Verfahren zur Herstellung von korrosionsbeständigem austenitischen Stahl aus 0.4 % C, 12-20 % Cr, 13-25 % Mn, 0.3-1 % N, 2 % Si, Rest Eisen und Verunreinigungen werden vornehmlich Halteringe für einen Generator erzeugt. Unter anderem kann die Erzeugung das Herstellen von Blöcken nach dem Elektro-Schlacke-Umschmelzen unter erhöhtem Druck mit Zugabe von Stickstoffträgern oder Einleiten von Stickstoffgas umfassen, ferner das Schmieden und Lösungsglühen. Danach schließt sich ein Abschrecken in Wasser und eine einachsige Kaltverarbeitung an. Ein Spannungsfreiglühen bei 350 °C für 2 Stunden schließt das Erzeugungsverfahren des Ausgangsmaterials für die Erzeugung der Ringe ab. Die genannte Schrift offenbart, daß hochchrom-, mangan- und stickstoffhaltige Stähle ausgezeichnete Spaltkorrosionsbeständigkeit aufweisen. Über die erzielbaren Festigkeitswerte ist dieser Schrift allerdings nichts zu entnehmen. Generell weiß der Fachmann, z.B. aus der FR-A-2 493 344, daß z.B. bei nicht-magnetischen Kappenringen auch hohe Anforderungen an die mechanischen Eigenschaften gestellt werden. Allerdings wird hier nicht gesagt, wie man dieses Ziel erreicht.
  • Aufgabe der Erfindung ist die Erzeugung hochfester korrosionsbeständiger Verbindungselemente. Dabei sollen sich die Stähle der erfindungsgemäßen Art nahezu unbegrenzt kaltverformen lassen. Sie sollen dazu von relativ hohen Ausgangsquerschnitten bis zu dünnsten Abmessungen ohne Bruchgefahr heruntergearbeitet werden können.
  • Es hat sich gezeigt, daß die Analyseneinstellung im beanspruchten Bereich in Verbindung mit dem an sich bekannten Druckelektroschlackeumschmelzverfahren und der nach dem Kaltumformen erfolgenden Auslagerung zu höchsten Streckgrenzenwerten über 1800 N/mm² führt. Dabei ist der Stahl gleichzeitig auch porenfrei. Verformungsgrade (=Ausgangsquerschnitt-Endquerschnitt:Ausgangsquerschnittx100 %) bis 90 % sind möglich, weil die hohen Streckgrenzenwerte erst nach dem abschließenden Auslagern erzielt werden.
  • Mit dem erfindungsgemäßen Verfahren gemaß Anspruch 1 lassen sich die geforderten Streckgrenzenwerte von größer 1800 N/mm² mit Sicherheit erreichen, insbesondere durch das erfindungsgemäß vorgesehene Auslagern des mit höchsten Querschnittsabnahmen vorverformten Endprodukts bei Temperaturen von 300 bis 500 °C für eine dem Querschnitt angepaßte Zeit von 20 Minuten bis 5 Stunden. Diese Auslagerungsbehandlung bedingt eine Umordnung der bei den vorherigen Kaltverformungsvorgängen gebildeten Versetzungen innerhalb des Stahls, und zwar ohne Änderung der sog. Versetzungsdichte, die letztendlich für die hohe Festigkeit dieser Stähle verantwortlich ist. Beim späteren Einsatz der erfindungsgemäß hergestellten Stähle als Verbindungselemente, wie Bolzen, Schrauben, Nägel oder als Drahtseile, bedingt die so geschaffene innere Struktur der Stähle, daß zur weiteren Verformung sehr hohe innere Spannungen aufgewendet werden müssen. Das bedeutet aber, daß die Stähle bei ihrem späteren Einsatz höchsten Belastungen gewachsen sind.
  • Eine eigenständige Variante zur Lösung des erfindungsgemäßen Problems besteht in dem Einsatz von Pulver anstelle eines Gußprodukts als Ausgangsmaterial gemäß Anspruch 2. Das Metallpulver wird durch heißisostatisches Verpressen zu einem Vorblock geformt, der dann zu einem Vorprodukt von 5 bis 150 mm Durchmesser umgeschmiedet und/oder ausgewalzt wird, das Vorprodukt dann mit einer Querschnittsabnahme von mindestens 60 % zu einem Endprodukt mit 0,5 bis 90 mm Durchmesser kaltverformt wird und anschließend das Endprodukt bei Temperaturen von 300 bis 500 °C für eine Zeit von 20 Minuten bis 5 Stunden ausgelagert wird.
  • Die abhängigen Ansprüche 3 bis 6 betreffen bevorzugte Ausführungsformen des Verfahrens nach Anspruch 1 oder 2.
  • Die Herstellung des Stahls auf pulvermetallurgischem Wege bietet eine ausgezeichnete Garantie für einen hervorragenden Reinheitsgrad und das Nichtvorliegen von Porosität.
  • Bevorzugt werden nach dem erfindungsgemäßen Verfahren Bolzen, Schrauben, Nägel, sowie Drahtseile, erzeugt.
  • Anhand der folgenden Beispiele wird die Erfindung erläutert.
  • In einem Druckelektroschlackeumschmelzofen wurde eine Elektrode der folgenden Zusammensetzung (in Masse-%)
    Kohlenstoff 0,06 %
    Silizium 0,41 %
    Mangan 19,43 %
    Phosphor 0,012 %
    Schwefel 0,008 %
    Chrom 18,25 %
    Molybdän 0,81 %
    Nickel 0,37 %
    Rest Eisen, abgeschmolzen und gleichzeitig durch Zugabe von stickstoffhaltigen Materialien auf einen Stickstoffgehalt von 0,88 % eingestellt.
  • Der im Druckelektroschlackeumschmelzofen erstarrte Stahlblock mit der obigen Gesamtanalyse wurde dann durch Schmieden und Walzen auf einen Querschnitt von 7 mm Durchmesser gebracht. In 8 Zügen wurde der Durchmesser von 7 mm auf 3 mm kaltgezogen. Dies entspricht einer Gesamtverformung von 82 % (ca. 10 % Kaltverformung pro Zug).
  • Nach einer Zwischenglühung bei 1080 °C wurde der Draht weiter kaltgezogen vom Durchmesser 3 mm auf 1,8 mm. Die Gesamtumformung betrug dabei 64 % in 6 Zügen (ca. 10 % Verformung pro Zug). Anschließend wurde der auf 1,8 mm Durchmesser gezogene Draht bei einer Temperatur von 400 °C für 4 Stunden ausgelagert.
  • Danach wurde eine Streckgrenze von Rp = 2400 N/mm², eine Zugfestigkeit Rm von 2550 N/mm², ein Dehnung A = 6,1 % und eine Brucheinschnürung Z von 48,3 % im Rahmen des üblichen Zugversuches ermittelt.
  • Die entsprechenden Werte vor der Auslagerungsbehandlung betrugen für die Streckgrenze 2100 N/mm² , für die Zugfestigkeit 2220 N/mm² , für die Dehnung 6 % und für die Brucheinschnürung 46 %.
  • Daraus erhellt, daß in bezug auf die gewünschte Steigerung der Festigkeitswerte der erfindungsgemäßen Auslagerungsbehandlung ein hoher Stellenwert beizumessen ist. Gelingt es doch mit dieser Auslagerungsbehandlung, Streckgrenzen- und Zugfestigkeitswerte einzustellen, wie sie bisher noch nicht bekannt waren. Dabei ist insbesondere überraschend, daß die Werte für die Zähigkeit, hier ausgedrückt durch die Dehnung und die Brucheinschnürung, konstant bleiben.
  • Es hat sich weiterhin bei den Versuchen gezeigt, daß auch bei sehr hohen Kaltverformungsgraden das austenitische Gefüge durch den hohen Stickstoffgehalt und den hohen Reinheitsgrad so stabilisiert ist, daß ein Umklappen des Austenits in Martensit nicht auftrat. Damit können die bisher bei austenitischen Stählen beobachteten schädlichen Wirkungen des sog. Verformungs-Martensits vermieden werden, insbesondere ein Abfall der Zähigkeit, was ein Ende der Kaltziehfähigkeit bedeutet.
  • Ferner bleiben die Stähle auch bei höchsten Verformungsgraden unmagnetisch. Außerdem wird die Anfälligkeit gegen Spannungsrißkorrosion in verdünnten wässrigen Lösungen bis 80 °C verringert.

Claims (6)

  1. Verfahren zur Herstellung von Verbindungselementen, insbesondere Bolzen, Schrauben, Nägel oder von Drahtseilen mit einer Streckgrenze von mindestens 1800 N/mm² aus einem vollaustenitischen Chrom-Mangan-Stahl mit (in Masse-%):
       max. 0,12 % C
       0,20 bis 1,00 % Si
       17,5 bis 20,0 % Mn
       max. 0,05 % P
       max. 0,015 % S
       17,5 bis 20,0 % Cr
       max. 5,0 % Mo
       max. 3,0 % Ni
       0,8 bis 1,2 % N
    Rest Eisen und übliche erschmelzungsbedingte Verunreinigungen, bei dem eine Elektrode für das Elektroschlackeumschmelzen erzeugt wird, der Stickstoffgehalt des Stahls in einem Druckelektroschlacke-Umschmelzverfahren beim Abschmelzen dieser Elektrode durch Zugabe von stickstoffhaltigen Materialien eingestellt wird, der unter Druck erstarrte Stahlblock dann zu einem Vorprodukt von 5 bis 150 mm Durchmesser ausgeschmiedet und/oder ausgewalzt wird, das Vorprodukt anschließend mit einer Gesamtquerschnittsabnahme von mindestens 60 % zu einem Endprodukt mit 0,5 bis 90 mm Durchmesser kaltverformt wird, worauf das Endprodukt bei Temperaturen von 300 bis 500 °C für 20 Minuten bis 5 Stunden ausgelagert wird.
  2. Verfahren zur Herstellung von Verbindungselementen, insbesondere Bolzen, Schrauben, Nägel oder von Drahtseilen mit einer Streckgrenze von mindestens 1800 N/mm² aus einem vollaustenitischen Stahl mit (in Masse-%):
       max. 0,12 % C
       0,2 bis 1,0 % Si
       17,5 bis 20,0 % Mn
       max. 0,05 % P
       max. 0,015 % S
       17,5 bis 20,0 % Cr
       max. 5,0 % Mo
       max. 3,0 % Ni
       0,8 bis 1,2 % N
    Rest Eisen und übliche erschmelzungsbedingte Verunreinigungen, bei dem ein Metallpulver erzeugt wird, der Stickstoffstoffgehalt durch Aufsticken des Metallpulvers in fester Phase eingestellt wird, das Metallpulver durch heißisostatisches Pressen zu einem Vorblock geformt wird, dieser Vorblock dann zu einem Vorprodukt von 5 bis 150 mm Durchmesser ausgeschmiedet und/oder ausgewalzt wird, das Vorprodukt dann mit einer Gesamtquerschnittsabnahme von mindestens 60 % zu einem Endprodukt mit 0,5 bis 90 mm Durchmesser kaltverformt wird, und anschließend das Endprodukt bei Temperaturen von 300 bis 500 °C für eine Zeit von 20 Minuten bis 5 Stunden ausgelagert wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß das Vorprodukt durch Recken kalt verformt wird.
  4. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß das Vorprodukt durch Ziehen kalt verformt wird.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, daß das Ziehen in mehreren Teilschritten erfolgt.
  6. Verfahren nach den Ansprüchen 4 oder 5,
    dadurch gekennzeichnet, daß nach dem ersten Ziehschritt ein Zwischenglühen bei Temperaturen von 1000 bis 1150 °C vorgenommen wird.
EP90120990A 1989-12-07 1990-11-02 Verfahren zur Herstellung von Verbindungselementen aus einem vollaustenitischen Cr-Mn-Stahl. Expired - Lifetime EP0432434B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3940438 1989-12-07
DE3940438A DE3940438C1 (de) 1989-12-07 1989-12-07

Publications (2)

Publication Number Publication Date
EP0432434A1 EP0432434A1 (de) 1991-06-19
EP0432434B1 true EP0432434B1 (de) 1994-09-21

Family

ID=6394974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90120990A Expired - Lifetime EP0432434B1 (de) 1989-12-07 1990-11-02 Verfahren zur Herstellung von Verbindungselementen aus einem vollaustenitischen Cr-Mn-Stahl.

Country Status (4)

Country Link
EP (1) EP0432434B1 (de)
JP (1) JPH0688160A (de)
AT (1) ATE111968T1 (de)
DE (2) DE3940438C1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607828C2 (de) * 1995-04-15 2003-06-18 Vsg En Und Schmiedetechnik Gmb Verfahren zum Herstellen eines austenitischen Cv-Mn-Stahls
DE19648335C2 (de) 1996-11-22 2000-05-25 Daimler Chrysler Ag Anordnung zur Positionsmessung
DE19758613C2 (de) * 1997-04-22 2000-12-07 Krupp Vdm Gmbh Hochfeste und korrosionsbeständige Eisen-Mangan-Chrom-Legierung
EP0918099A1 (de) * 1997-10-27 1999-05-26 Stahlwerk Ergste Westig GmbH Chrom-Mangan-Stahllegierung
SE9704753L (sv) 1997-12-17 1998-11-09 Haldex Garphyttan Ab Sätt att framställa kalldragen tråd av ESR-omsmält rostfritt stål samt kalldragen tråd
CH694401A5 (de) 1999-05-26 2004-12-31 Basf Ag Nickelarmer, molybdänarmer, biokompatibler, nicht Allergie auslösender, korrosionsbeständiger austenitischer Stahl.
AU5072400A (en) 1999-06-24 2001-01-31 Basf Aktiengesellschaft Nickel-poor austenitic steel
AT407882B (de) 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T Verfahren zur herstellung eines paramagnetischen, korrosionsbeständigen werkstoffes u.dgl. werkstoffe mit hoher dehngrenze, festigkeit und zähigkeit
AT412727B (de) 2003-12-03 2005-06-27 Boehler Edelstahl Korrosionsbeständige, austenitische stahllegierung
AT8763U1 (de) * 2005-12-06 2006-12-15 Teufelberger Seil Ges M B H Lineares zugkraftübertragungselement, insbesondere draht bzw. kombination von drähten
US7658883B2 (en) 2006-12-18 2010-02-09 Schlumberger Technology Corporation Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same
JP5858424B2 (ja) * 2011-12-01 2016-02-10 株式会社日本製鋼所 固体高分子型燃料電池セパレータ用ステンレス鋼およびその製造方法
CN102719682B (zh) * 2012-02-14 2014-05-21 攀钢集团江油长城特殊钢有限公司 Gh901合金的冶炼方法
CN105220067B (zh) * 2014-06-11 2017-03-01 丹阳市凯鑫合金材料有限公司 射频器的谐振杆用殷钢冷镦丝的生产方法
JP6640654B2 (ja) * 2016-05-30 2020-02-05 株式会社東芝 高Cr鋼部品の製造方法
DE102017116615B3 (de) 2017-07-24 2018-08-30 Benteler Steel/Tube Gmbh Kolbenzylindersystem mit mindestens einem Rohrelement
CN111500942B (zh) * 2020-05-11 2021-08-10 湖南恒基粉末科技有限责任公司 一种高氮含量无磁不锈钢粉末及其制备方法
CN112719794B (zh) * 2020-12-16 2022-03-11 浙江福尔加机械股份有限公司 一种汽车轮毂螺栓的加工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2745740A (en) * 1954-09-02 1956-05-15 Ford Motor Co Process of preparing an iron base melt
US2783169A (en) * 1955-02-15 1957-02-26 Ford Motor Co Process of producing nitrogen rich wrought austenitic alloys
AT266900B (de) * 1963-05-24 1968-12-10 Boehler & Co Ag Geb Austenitische unmagnetisierbare Stähle zur Herstellung von bewegten, insbesondere schwingend beanspruchten Maschinenteilen
US3820980A (en) * 1972-05-08 1974-06-28 Allegheny Ludlum Ind Inc Austenitic stainless steel
US3936297A (en) * 1972-05-08 1976-02-03 Allegheny Ludlum Industries, Inc. Method of producing austenitic stainless steel
US3912503A (en) * 1973-05-14 1975-10-14 Armco Steel Corp Galling resistant austenitic stainless steel
IT1039425B (it) * 1974-06-27 1979-12-10 Inteco Int Techn Beratung Procedimento per la produzione di acciai austenitici con elevati contenuti di azoto
DE3143096A1 (de) * 1980-11-05 1982-05-19 General Electric Co., Schenectady, N.Y. "legierung auf eisenbasis, verfahren zu ihrer herstellung und damit hergestellte gegenstaende"
CA1205659A (en) * 1981-03-20 1986-06-10 Masao Yamamoto Corrosion-resistant non-magnetic steel and retaining ring for a generator made of it

Also Published As

Publication number Publication date
EP0432434A1 (de) 1991-06-19
JPH0688160A (ja) 1994-03-29
DE59007249D1 (de) 1994-10-27
DE3940438C1 (de) 1991-05-23
ATE111968T1 (de) 1994-10-15

Similar Documents

Publication Publication Date Title
EP0432434B1 (de) Verfahren zur Herstellung von Verbindungselementen aus einem vollaustenitischen Cr-Mn-Stahl.
DE60016369T2 (de) Kalt bearbeitbarer stahldraht oder stahlstab und verfahren
DE1508416C3 (de) Verfahren zur Herstellung von Stahlteilen wie Bolzen, Schrauben, Zapfen u.dgl.
DE102005052069B4 (de) Verfahren zum Herstellen von Vormaterial aus Stahl durch Warmverformen
EP2111475A1 (de) Bauteile aus ultrahochkohlenstof fhaltigen stählen mit reduzierter dichte und hoher zunderbeständigkeit
EP1420077B1 (de) Reaktionsträger Werkstoff mit erhöhter Härte für thermisch beanspruchte Bauteile
DE1483218B2 (de) Verfahren zum Herstellen eines warmfesten, ferritischen Cr-Mo-V-Stahles mit hoher Zeitstandfestigkeit und verbesserter Zeitbruchdehnung
DE102008040689B4 (de) Kugelzapfen und -hülsen aus hochmanganhaltigem Stahl
EP0315576B1 (de) Verfahren zur Herstellung von plattierten Stahlblechen
DE19546204C1 (de) Verfahren zur Herstellung von hochfesten Gegenständen aus einem Vergütungsstahl und Anwendung dieses Verfahrens zur Erzeugung von Federn
EP2183396B1 (de) Stahl zur herstellung von massiv umgeformten maschinenbauteilen
DE1558687A1 (de) Verfahren zur Verbesserung der Festigkeit und Dehnung von Stahl
DE3730379C2 (de)
DE1290727B (de) Verfahren zur Herstellung von Nioblegierungen hoher Festigkeit
EP0367360B1 (de) Verfahren zur Herstellung nahtloser Druckbehälter
DE3507124A1 (de) Durch elektro-widerstandsschweissen geschweisstes oelbohrungsrohr und verfahren zu dessen herstellung
DE69214421T2 (de) Rohfabrikate grosser Länge für Herstellungsverfahren durch Kaltumformen, insbesondere für Kaltstauchen von formgebend bearbeitete Erzeugnisse wie Bolzen, und Verfahren zur Herstellung dieser kaltgeformten Gegenstände
DE1458359B2 (de) Verwendung einer stahllegierung als hochfester aushaertbarer rostbestaendiger baustahl
EP3458623B1 (de) Verfahren zum herstellen eines stahlwerkstoffs und stahlwerksstoff
DE3136722C2 (de) Verfahren zur Herstellung von Ventilen für Brennkraftmaschinen
DE19921286A1 (de) Wärmebehandlungsverfahren zur Herstellung randschichtgehärteter Lang- nd Flachprodukte aus unlegierten oder niedriglegierten Stählen
WO2015144661A2 (de) Bauteile aus einer stahllegierung und verfahren zur herstellung hochfester bauteile
DE2225517B2 (de) Verfahren zur herstellung eines lagerelementes
DE1807992B2 (de) Wärmebehandlungsverfahren zur Erzielung eines bainitischen Gefüges in einem hochfesten Stahl
EP2628807A1 (de) Vergütetes stiftartiges Verbindungselement und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19910523

17Q First examination report despatched

Effective date: 19930729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940921

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940921

Ref country code: BE

Effective date: 19940921

Ref country code: DK

Effective date: 19940921

REF Corresponds to:

Ref document number: 111968

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940928

REF Corresponds to:

Ref document number: 59007249

Country of ref document: DE

Date of ref document: 19941027

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 90120990.8

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011030

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011107

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021111

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031103

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091130

Year of fee payment: 20

Ref country code: DE

Payment date: 20091124

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091126

Year of fee payment: 20

Ref country code: FR

Payment date: 20091203

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101102