EP1394376A1 - Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipes de tels gicleurs - Google Patents

Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipes de tels gicleurs Download PDF

Info

Publication number
EP1394376A1
EP1394376A1 EP03356125A EP03356125A EP1394376A1 EP 1394376 A1 EP1394376 A1 EP 1394376A1 EP 03356125 A EP03356125 A EP 03356125A EP 03356125 A EP03356125 A EP 03356125A EP 1394376 A1 EP1394376 A1 EP 1394376A1
Authority
EP
European Patent Office
Prior art keywords
outlet
piston
nozzle
cooling
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03356125A
Other languages
German (de)
English (en)
Other versions
EP1394376B1 (fr
Inventor
Christophe Bontaz
Denis Clement
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bontaz Centre R&D SAS
Original Assignee
Bontaz Centre SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31497218&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1394376(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR0211081A external-priority patent/FR2844002B1/fr
Application filed by Bontaz Centre SA filed Critical Bontaz Centre SA
Publication of EP1394376A1 publication Critical patent/EP1394376A1/fr
Application granted granted Critical
Publication of EP1394376B1 publication Critical patent/EP1394376B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets

Definitions

  • the present invention relates to the jets of piston cooling of an internal combustion engine, for projecting a cooling fluid such as oil on an appropriate area of the piston, and the engines fitted such jets.
  • the pistons cooling jets usually used are inserts attached to the crankcase and communicating with a coolant supply port.
  • the position of the nozzle is precisely determined to achieve a jet of cooling fluid directed to a specific area of the piston bottom or towards a piston gallery entrance.
  • US 4,206,726 discloses a jet whose fixing in a passage requires simultaneous access to the interior and outside the engine cylinder.
  • Documents FR 2 745 319 and JP 07 317519 describe a nozzle comprising a jet body with penetrating part shaped to engage axially in a housing bore motor and to receive the cooling fluid coming through said bore.
  • the nozzle has an exit structure having a radial passage of fluid in the jet body and having a outlet duct adapted to direct an outlet fluid jet towards the piston bottom zone to be cooled.
  • the nozzle must have a very high precision of the jet, because the entrance to the gallery is usually about 150 millimeters of the nozzle which is fixed on the crankcase, and the entry of the gallery is only 5 or 6 millimeters in diameter. In this small orifice, it is necessary to enter the maximum of fluid of cooling.
  • the jet must have a structure easy to manufacture, so as to be of a reduced cost adapted to a mass production in the automotive industry.
  • JP 07 317519 discloses a one-piece molded structure with two parallel ducts and one connecting ring which is complex and expensive.
  • the document FR 2 745 329 discloses a similar molded and reshaped monoblock conduit with a connecting ring.
  • the problem proposed by the present invention is design a new cooling jet structure, which can further improve the cooling capacity of the piston, for a given flow rate of cooling fluid, while remaining compatible with the very small space available in the engine to place such a cooling nozzle.
  • the invention also aims to conceive such a jet whose structure is particularly simple, to be made in a simple and inexpensive way in mass production.
  • the present invention results from the observation according to which it is certainly very good for cooling to put the maximum oil in a gallery entry of a piston, but failures may still result from an uneven distribution of the oil in the piston body.
  • the invention proposes a cooling nozzle for engine piston to internal combustion, having a nozzle body part shaped penetrant for axially engaging a bore of the motor in an axial direction of penetration and to receive a cooling fluid arriving through said bore;
  • the nozzle has an exit structure with at least one passage radial fluid in the nozzle body and with at least one first outlet duct and a second outlet duct adapted to direct the piston to cool at least two jets of separate coolants;
  • the first exit pipe includes a first outlet tube, attached to the body of nozzle, having a first radial connection section generally perpendicular to the axial direction of penetration, connecting in particular by an elbow to a first axial section of projection ending in a first hole, while the second outlet duct comprises a second outlet tube, having a second radial section of offset connection angularly away from the first radial connection section, connecting by an elbow to a second axial projection section ending with a second orifice.
  • the two jets of cooling fluid produced by this jet are substantially parallel to one another and spaced apart from each other by the distance generated by the radial sections angularly offset from each other.
  • the outlet tubes are connect to the nozzle body in two radial passages in which the proximal ends of the tubes of outlet are fitted and brazed.
  • two outlet tubes connect to the body of jet according to two radial passages separated by two sections connecting radials substantially perpendicular to each other by relative to each other and perpendicular to the axial direction of penetration, the first outlet tube having a connecting section developing in a generally parallel direction or convergent with respect to the radial connection section of the second outlet tube and connecting angularly on the one hand to the first radial section of connection by an elbow and secondly to a first axial projection section by a second elbow, so as to project the cooling fluid to two zones of the same piston clearly apart from each other while remaining at the distance of all moving parts in the engine cylinder.
  • the nozzle comprises a first outlet tube connected in a single radial passage to the jet body, the first outlet tube having the first orifice and having an intermediate section with larger diameter, which continues with a smaller diameter exit section, and connected to a second outlet tube having the second orifice.
  • the first output tube may comprise a upstream section and a downstream section connected to each other by a intermediate sleeve of larger diameter than the upstream sections and downstream, the upstream section being engaged by its ends respective in the radial passage of the jet body and in a first end of the sleeve, the downstream section being engaged in the second end of the sleeve, the sleeve being pierced with a hole side in which is engaged the upstream end of the second tube of exit.
  • an outlet tube receives at its downstream end an outlet end having two orifices outlet, the endpiece having an axial input hole engaging on the downstream end of the outlet tube and communicating with two holes divergent outputs intended to be oriented towards the zones of respective cooling of the piston.
  • the invention provides a motor with internal combustion comprising at least one nozzle with two tubes of outlet as defined above, the nozzle being shaped and positioned to create and direct at least two streams of fluid cooling to two respective gallery entrances dug into the mass of a piston.
  • At least one of the output tubes of the cooling nozzle can advantageously be bent from way around the piston along a portion of its circumference, allowing each of the jets to water the area concerned under the piston without ever being intercepted by the trajectory of the rod.
  • the two output tubes can advantageously direct the cooling fluid jets to two piston zones located on either side of its median plane. This allows to distribute the coolant even more equilibrium in the piston head surface, to improve the cooling.
  • a cooling nozzle 1 provided for to cool an internal combustion engine piston 8, has a nozzle body 2 having a penetrating portion 3 shaped for engage axially in an axial direction of penetration I-I in a bore of the engine to receive a fluid of cooling coming through said bore as illustrated by the arrow 4.
  • the cooling nozzle 1 further includes a output structure 5 protruding, communicating with the party penetrant 3, having an axial passage of fluid from the penetrating part 3, and comprising at least one radial passage 5a (and possibly 5b) fluid in the nozzle body 2.
  • the Cooling nozzle 1 has at least two outlet tubes 6 and 7.
  • Each outlet tube 6 or 7 is bent appropriately to position and orient their outlets 16 and 17 respective ones so as to create two jets of coolant 6a and 7a which are distinguished in FIGS. 2 and 8, and to direct the two jets 6a and 7a towards two zones of respective separate cooling 6b and 7b of the piston 8 of engine.
  • Each outlet tube 6 and 7 is an element reported by fitting and brazing, cut and formed from a tube stretched metal. This avoids having to mold and machine complex monoblock pieces. And we take advantage of the internal surface very smooth and regular stretched metal tubes, favoring a laminar flow of the fluid.
  • the first outlet tube 6 comprises a first section radial connection 6c, generally perpendicular to the axial direction of penetration I-I of the nozzle into the body of motor, and connecting in particular by a 6d elbow to a first axial projection section 6th to first orifice 16 which projects thus the jet of cooling fluid 6a in one direction generally axial with respect to the piston 8.
  • the second tube of output 7 has a second radial connection section 7c substantially perpendicular or strongly angulated with respect to first radial connection section 6c, and connected by a 7d elbow to a second axial projection section 7th to second orifice 17 which thus projects a jet of cooling fluid 7a in a generally axial direction, that is to say parallel to the axis of displacement of the piston 8 in the engine cylinder, the two jets of cooling fluid 6a, 7a being substantially away from each other.
  • two tubes 6 and 7 are connected to the nozzle body in two separate radial passages 5a and 5b respectively of the structure of output 5 by two radial connection sections 6c and 7c.
  • the connecting radial sections 6c and 7c are substantially perpendicular to each other and all two perpendicular to the axial direction I-I of penetration.
  • the first outlet tube 6 comprises a connecting section 6f developing in a generally parallel direction or convergent relative to the second radial connection section 7c of the second outlet tube 7, and being connected angularly with a part in the first radial connection section 6c by a 6d elbow and secondly to a first axial projection section 6e by a second bend 6g, as can be seen in Figure 3.
  • This form nozzle is adapted to project two jets of fluid from cooling to two zones of the same piston located on the on the other side of the median plane of the piston.
  • the two jets of cooling fluid 6a and 7a produced by the cooling nozzle 1 are directed respectively to two cooling zones 6b and 7b which are arranged on either side of the median plane M-M of the piston 8.
  • the two cooling zones 6b and 7b are two inlet openings of one or two galleries provided in the mass of the piston 8, so that the cooling fluid enters the gallery or galleries of the piston to propagate closer to the upper thrust surface 8e (FIG. 15) of the piston, which surface receives the heat energy of the combustion gases.
  • the cooling nozzles are arranged in an engine in the first half-space P containing the engine intake system, for congestion issues supply lines for cooling oil.
  • the hottest parts of the engine, and therefore the piston 8 are in the second half space S containing the exhaust system of the engine.
  • a cooling nozzle 1 which produces two jets of cooling fluid 6a and 7a on both sides of the median plane M-M, we can feed two gallery entries which communicate, by a gallery in the shape of a circular crown, or by two respective galleries in corner crown sector less than 180 °, with two respective piston zones 8a and 8b in the half-space S.
  • the cooling of the most hot 8a and 8b is well balanced.
  • the output structure comprises a first tube of outlet 6 which connects to the nozzle body according to a passage single radial 5a.
  • the first outlet tube 6 has the first orifice 16 and has an intermediate section 6h of larger diameter connected to the second outlet tube 7 which has the second orifice 17.
  • the first outlet tube 6 comprises an upstream section 6c1, a downstream section 6c2, a bend 6d and an axial section of projection 6th, and an intermediate sleeve 6c3 forming the section intermediate 6h of larger diameter than the upstream sections 6c1 and downstream 6c2.
  • the upstream section 6c1 is engaged by its ends respective in the radial nozzle passage 5a and in a first end of the sleeve 6c3.
  • the downstream section 6c2 is engaged in the second end of the sleeve 6c3.
  • the sleeve 6c3 is pierced with a lateral hole 6j in which the end is engaged upstream of the second outlet tube 7.
  • the upstream section 6c1 and the sleeve 6c3 are in one piece.
  • the spacing between the two jets of coolant 6a and 7a is important but the offset outward tubes are insufficient to place the orifices 16 and 17 on both sides of the median plane M-M.
  • nozzles having more than two output tubes to generate more than two jets of cooling fluid.
  • the nozzle must be spaced radially away from the axis A-A of the piston 8.
  • Figures 9 to 14 illustrate a nozzle of cooling having an outlet tube receiving a nozzle outlet for dividing the jet of coolant into two jets 6a and 7a.
  • a nozzle 1 having a nozzle body 2 with a penetrating portion 3 and a outlet structure 5 with radial passage 5a.
  • the outlet tip 10 has an axial input hole 10a shaped to be driven on the downstream end of the outlet tube 6, and communicating with two divergent exit holes 10b and 10c intended to be oriented towards the respective cooling zones of the piston. So, both 10b and 10c exit holes define the outlets respective ones 16 and 17 of the cooling nozzle.
  • the axial input hole 10a may advantageously have a cylindrical shape with circular section adapted to receive the cylindrical downstream end of the outlet tube 6.
  • the two exit holes 10b and 10c may have different diameters eg the exit hole 16 may have a diameter greater than the diameter of the exit hole 17.
  • the diameters are chosen so as to achieve a better distribution of outflow through each orifice, increasing the flow to irrigate the priority areas to be cooled, and reducing the flow to water the lower priority areas to cool.
  • the angles of orientation of the exit holes 10b and 10c are chosen to correspond to the locations of the zones of respective cooling of the piston. At their upstream end, outlet holes 10b and 10c are closer to each other, way to communicate directly with the inside of the outlet tube 6.
  • the outlet tip 10 comprises, on its peripheral face external, at least one plate 11 or 12 as illustrated on the FIGS. 9, 11 and 12, the plate 11 or 12 for locating and fix the angular position of the outlet tip 10 around the tube 6, for rotating the two holes of 16 and 17 during the assembly of the tip 10 on the tube of exit 6.
  • the outlet tip 10 can be used independently of the presence of other characteristics of number and shape of outlet tubes 6 and 7.
  • FIG. 16 illustrates in section the fitting of the outlet tube 7 in the radial passage 5b of the nozzle body 2, for the nozzle of Figure 3.
  • Figure 5 illustrates in section the fitting of the two tubes 6 and 7.
  • Figure 14 illustrates also the fitting of the outlet tube 6 in the body of jet 2.
  • the invention thus provides an internal combustion engine comprising at least one cooling nozzle 1 with two tubes of output 6 and 7 as previously defined, the nozzle of cooling 1 being shaped and positioned to create and directing at least two jets of coolant 6a and 7a to two entries of respective galleries 6b and 7b dug in the mass of a piston 8, as illustrated in Figures 1 and 2.
  • the outlet tubes 6 and 7 can to be bent so as to bypass the piston 8 according to a portion of its circumference and to be outside the trajectory of the piston 8 and connecting rod 9 during operation, leading thus axially the jets of cooling fluid 6a and 7a to two piston zones 6b and 7b located on either side of its median plane M-M. It can be seen in FIG. 2 that the second tube outlet 7 develops radially towards the center of the piston, while the first outlet tube 6 develops first by its section 6c along the periphery of the piston, then radially towards the center of the piston by its section 6f.
  • a nozzle according to FIGS. project two jets of cooling fluid to two zones 6b and 7b located on the same side of the median plane M-M, or to two zones 6b and 7b on both sides of the M-M plane.
  • the efficiency is reduced because the connecting rod 9 momentarily cuts the jet 7a during a portion of its travel cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Nozzles (AREA)

Abstract

Un gicleur selon l'invention comporte un corps de gicleur (2) à partie pénétrante (3) conformée pour s'engager axialement dans un alésage du moteur et pour recevoir un fluide de refroidissement arrivant par ledit alésage. Une structure de sortie (5) comporte deux tubes de sortie (6, 7), chaque tube de sortie (6, 7) étant cintré de façon appropriée pour créer deux jets de fluide de refroidissement et pour les diriger vers deux zones de refroidissement respectives distinctes dans un piston de moteur. <IMAGE>

Description

DOMAINE TECHNIQUE DE L'INVENTION
La présente invention concerne les gicleurs de refroidissement des pistons d'un moteur à combustion interne, permettant de projeter un fluide de refroidissement tel que de l'huile sur une zone appropriée du piston, et les moteurs équipés de tels gicleurs.
Les gicleurs de refroidissement de pistons habituellement utilisés sont des pièces rapportées, fixées sur le carter moteur et communiquant avec un orifice d'amenée de fluide de refroidissement. La position du gicleur est déterminée avec précision pour réaliser un jet de fluide de refroidissement dirigé vers une zone précise du fond de piston ou vers une entrée de galerie de piston.
Dans les moteurs à combustion interne actuellement développés, on associe à chaque piston du moteur, pour son refroidissement, un gicleur de refroidissement qui projette un ou plusieurs jets de fluide de refroidissement vers une seule zone de fond de piston. Par exemple, les documents FR 2 745 329, US 4,206,726, EP 0 423 830, JP 07 317519 projettent un seul jet de fluide de refroidissement vers le fond de piston. Les documents DE 196 34742 et US 5,649,505 projettent plusieurs jets parallèles vers une seule zone de fond de piston. La fixation du gicleur dans le cylindre moteur peut s'effectuer soit de l'extérieur, soit de l'intérieur. Ainsi, les documents US 5,649,505 et EP 0 423 830 décrivent des structures de gicleurs de refroidissement que l'on engage depuis l'extérieur dans le moteur. Ces gicleurs manquent de précision, à cause de la faible longueur du tronçon de sortie de gicleur qui est limitée par la taille du passage d'introduction du gicleur.
Le document US 4,206,726 décrit un gicleur dont la fixation dans un passage nécessite l'accès simultané à l'intérieur et à l'extérieur du cylindre moteur.
Des documents FR 2 745 319 et JP 07 317519 décrivent un gicleur comportant un corps de gicleur à partie pénétrante conformée pour s'engager axialement dans un alésage du carter moteur et pour recevoir le fluide de refroidissement arrivant par ledit alésage. Le gicleur comporte une structure de sortie ayant un passage radial de fluide dans le corps de gicleur et ayant un conduit de sortie adapté pour diriger un jet de fluide de sortie vers la zone de fond de piston à refroidir.
Pour obtenir un bon refroidissement, on choisit de façon appropriée le débit du jet de fluide de refroidissement projeté vers le fond de piston. Cependant, dans les moteurs à combustion interne modernes, dont les performances vont en croissant, il y a un besoin pour augmenter encore la capacité de refroidissement de la partie de piston qui est la plus proche de la zone de combustion des gaz. Il apparaít que les gicleurs actuellement utilisés limitent la capacité de refroidissement du piston.
L'évolution de la thermique des moteurs nécessite des gicleurs plus performants, car les pistons sont de plus en plus chauds. On a tenté d'améliorer le refroidissement en prévoyant, dans le piston, des galeries internes dont le but est d'assurer le refroidissement au plus près de la zone de combustion qui est la zone la plus chaude du moteur. Des pistons à galeries internes sont décrits par exemple dans les documents FR 2 745 329 ou US 4,206,726. Une galerie est une cavité généralement annulaire dans le piston, et elle communique avec l'espace inférieur sous le piston par au moins une entrée. Le gicleur projette le fluide de refroidissement dans cette entrée. Le piston reste ainsi relativement épais, pour supporter les contraintes mécaniques, et la galerie permet d'amener le fluide de refroidissement dans la zone qui est la plus proche du volume de combustion.
Le gicleur doit avoir une très grande précision du jet, car l'entrée de la galerie se trouve généralement à environ 150 millimètres du gicleur qui est fixé sur le carter, et l'entrée de la galerie ne fait que 5 ou 6 millimètres de diamètre. Dans ce petit orifice, il faut entrer le maximum de fluide de refroidissement. Par ailleurs, le gicleur doit avoir une structure facile à fabriquer, de façon à être d'un coût réduit adapté à une production en grande série dans l'industrie automobile.
Or les structures connues de gicleurs ne donnent pas satisfaction. Par exemple, le document JP 07 317519 décrit une structure monobloc moulée à deux conduits parallèles et une couronne de raccordement qui est complexe et onéreuse. Le document FR 2 745 329 décrit un conduit monobloc similaire moulé et réusiné avec une couronne de raccordement.
EXPOSE DE L'INVENTION
Le problème proposé par la présente invention est de concevoir une nouvelle structure de gicleur de refroidissement, qui puisse améliorer encore la capacité de refroidissement du piston, pour un débit donné de fluide de refroidissement, tout en restant compatible avec la place très réduite dont on dispose dans le moteur pour placer un tel gicleur de refroidissement.
L'invention a également pour objet de concevoir un tel gicleur dont la structure soit particulièrement simple, pour être fabriquée de manière simple et peu onéreuse en grande série.
La présente invention résulte de l'observation selon laquelle il est certes très bon pour le refroidissement de mettre le maximum d'huile dans une entrée de galerie d'un piston, mais des défaillances peuvent encore résulter d'une répartition inégale de l'huile dans le corps de piston.
Pour atteindre ces buts ainsi que d'autres, l'invention propose un gicleur de refroidissement pour piston de moteur à combustion interne, comportant un corps de gicleur à partie pénétrante conformée pour s'engager axialement dans un alésage du moteur selon une direction axiale de pénétration et pour recevoir un fluide de refroidissement arrivant par ledit alésage ; le gicleur comporte une structure de sortie avec au moins un passage radial de fluide dans le corps de gicleur et avec au moins un premier conduit de sortie et un second conduit de sortie adaptés pour diriger vers le piston à refroidir au moins deux jets de fluide de refroidissement distincts ; le premier conduit de sortie comprend un premier tube de sortie, rapporté sur le corps de gicleur, comportant un premier tronçon radial de raccordement généralement perpendiculaire à la direction axiale de pénétration, se raccordant notamment par un coude à un premier tronçon axial de projection se terminant par un premier orifice, tandis que le second conduit de sortie comprend un second tube de sortie, comportant un second tronçon radial de raccordement décalé angulairement à l'écart du premier tronçon radial de raccordement, se raccordant par un coude à un second tronçon axial de projection se terminant par un second orifice.
Les deux jets de fluide de refroidissement produits par ce gicleur sont sensiblement parallèles l'un à l'autre, et écartés l'un de l'autre par la distance générée par les tronçons radiaux décalés angulairement l'un par rapport à l'autre.
Dans une première réalisation, les tubes de sortie se raccordent au corps de gicleur selon deux passages radiaux distincts dans lesquels les extrémités proximales des tubes de sortie sont emmanchées et brasées.
Par exemple, deux tubes de sortie se raccordent au corps de gicleur selon deux passages radiaux distincts par deux tronçons radiaux de raccordement sensiblement perpendiculaires l'un par rapport à l'autre et perpendiculaires à la direction axiale de pénétration, le premier tube de sortie ayant un tronçon de liaison se développant selon une direction généralement parallèle ou convergente par rapport au tronçon radial de raccordement du second tube de sortie et se raccordant angulairement d'une part au premier tronçon radial de raccordement par un coude et d'autre part à un premier tronçon axial de projection par un second coude, de façon à projeter le fluide de refroidissement vers deux zones d'un même piston nettement écartées l'une de l'autre tout en restant à l'écart de tous les éléments mobiles dans le cylindre moteur.
Dans une seconde réalisation, le gicleur comporte un premier tube de sortie se raccordant selon un passage radial unique au corps de gicleur, le premier tube de sortie ayant le premier orifice et ayant un tronçon intermédiaire à plus grand diamètre, qui se poursuit par un tronçon de sortie à plus petit diamètre, et auquel se raccorde un second tube de sortie ayant le second orifice.
Par exemple, le premier tube de sortie peut comporter un tronçon amont et un tronçon aval reliés l'un à l'autre par un manchon intermédiaire de plus gros diamètre que les tronçons amont et aval, le tronçon amont étant engagé par ses extrémités respectives dans le passage radial du corps de gicleur et dans une première extrémité du manchon, le tronçon aval étant engagé dans la seconde extrémité du manchon, le manchon étant percé d'un trou latéral dans lequel est engagée l'extrémité amont du second tube de sortie.
Selon un autre aspect de l'invention, un tube de sortie reçoit à son extrémité aval un embout de sortie ayant deux orifices de sortie, l'embout ayant un trou axial d'entrée s'emmanchant sur l'extrémité aval du tube de sortie et communiquant avec deux trous de sortie divergents destinés à être orientés vers les zones de refroidissement respectives du piston.
Selon un autre aspect, l'invention prévoit un moteur à combustion interne comprenant au moins un gicleur à deux tubes de sortie tel que défini ci-dessus, le gicleur étant conformé et positionné de façon à créer et diriger au moins deux jets de fluide de refroidissement vers deux entrées de galerie respectives creusées dans la masse d'un piston.
Dans un tel moteur, l'un au moins des tubes de sortie du gicleur de refroidissement peut avantageusement être cintré de façon à contourner le piston selon une portion de sa circonférence, permettant ainsi à chacun des jets d'arroser la zone concernée sous le piston sans jamais être intercepté par la trajectoire de la bielle. Les deux tubes de sortie peuvent avantageusement diriger les jets de fluide de refroidissement vers deux zones de piston situées de part et d'autre de son plan médian. Cela permet de répartir le fluide de refroidissement de façon encore plus équitable dans la surface de tête de piston, pour améliorer le refroidissement.
DESCRIPTION SOMMAIRE DES DESSINS
D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:
  • la figure 1 est une vue en perspective illustrant schématiquement une structure de piston et un gicleur associé selon l'invention ;
  • la figure 2 est une autre vue en perspective du piston associé au gicleur selon la figure 1 ;
  • la figure 3 est une vue en perspective d'un gicleur selon un mode de réalisation avantageux de l'invention ;
  • la figure 4 est une vue en perspective d'un gicleur selon un autre mode de réalisation de l'invention ;
  • la figure 5 est une coupe partielle longitudinale de la structure de sortie du gicleur de la figure 4 selon une première variante;
  • les figures 6 et 7 sont respectivement une coupe partielle longitudinale et une vue de dessus de la structure de sortie du gicleur de la figure 4 selon une seconde variante ;
  • la figure 8 illustre un moteur ayant un gicleur produisant un premier jet projeté vers une galerie de piston et un second jet projeté vers une zone à lubrifier ;
  • la figure 9 est une vue en perspective d'un gicleur selon un autre mode de réalisation de l'invention ;
  • la figure 10 est une vue de face en coupe longitudinale d'un embout de gicleur de la figure 9 ;
  • les figures 11 et 12 illustrent l'embout de gicleur de la figure 9, vu de dessus et de côté gauche ;
  • les figures 13 et 14 illustrent des coupes longitudinales, vues de côté et de face, du gicleur de la figure 9 ;
  • la figure 15 est une vue de côté d'un gicleur selon les figures 4 à 7 adapté face à un piston ; et
  • la figure 16 est une vue de côté en coupe du gicleur des figures 1 à 3.
DESCRIPTION DES MODES DE REALISATION PREFERES
Dans les modes de réalisation illustrés sur les figures, un gicleur de refroidissement 1 selon l'invention, prévu pour refroidir un piston 8 de moteur à combustion interne, comporte un corps de gicleur 2 ayant une partie pénétrante 3 conformée pour s'engager axialement selon une direction axiale de pénétration I-I dans un alésage du moteur pour recevoir un fluide de refroidissement arrivant par ledit alésage comme illustré par la flèche 4. Le gicleur de refroidissement 1 comporte en outre une structure de sortie 5 dépassante, communiquant avec la partie pénétrante 3, comportant un passage axial de fluide depuis la partie pénétrante 3, et comportant au moins un passage radial 5a (et éventuellement 5b) de fluide dans le corps de gicleur 2.
Dans les modes de réalisation des figures 1 à 8, le gicleur de refroidissement 1 comporte au moins deux tubes de sortie 6 et 7. Chaque tube de sortie 6 ou 7 est cintré de façon appropriée pour positionner et orienter leurs orifices de sortie 16 et 17 respectifs de façon à créer deux jets de fluide de refroidissement distincts respectifs 6a et 7a que l'on distingue sur les figures 1, 2 et 8, et pour diriger les deux jets 6a et 7a vers deux zones de refroidissement respectives distinctes 6b et 7b du piston 8 de moteur. Chaque tube de sortie 6 et 7 est un élément rapporté par emmanchement et brasage, tronçonné et formé à partir d'un tube métallique étiré. On évite ainsi d'avoir à mouler et à usiner des pièces monobloc complexes. Et on met à profit la surface interne très lisse et régulière des tubes métalliques étirés, favorisant un écoulement laminaire du fluide.
Dans l'un et l'autre des modes de réalisation des figures 3 et 4, le premier tube de sortie 6 comporte un premier tronçon radial de raccordement 6c, généralement perpendiculaire à la direction axiale de pénétration I-I du gicleur dans le corps de moteur, et se raccordant notamment par un coude 6d à un premier tronçon axial de projection 6e à premier orifice 16 qui projette ainsi le jet de fluide de refroidissement 6a selon une direction généralement axiale par rapport au piston 8. Le second tube de sortie 7 comporte un second tronçon radial de raccordement 7c sensiblement perpendiculaire ou fortement angulé par rapport au premier tronçon radial de raccordement 6c, et se raccordant par un coude 7d à un second tronçon axial de projection 7e à second orifice 17 qui projette ainsi un jet de fluide de refroidissement 7a selon une direction généralement axiale, c'est-à-dire parallèle à l'axe de déplacement du piston 8 dans le cylindre moteur, les deux jets de fluide de refroidissement 6a, 7a étant sensiblement écartés l'un de l'autre.
Dans le mode de réalisation des figures 1 à 3, deux tubes de sortie 6 et 7 se raccordent au corps de gicleur selon deux passages radiaux distincts 5a et 5b respectifs de la structure de sortie 5 par deux tronçons radiaux de raccordement 6c et 7c. Simultanément, les tronçons radiaux de raccordement 6c et 7c sont sensiblement perpendiculaires l'un par rapport à l'autre et tous deux perpendiculaires à la direction axiale I-I de pénétration. En outre, le premier tube de sortie 6 comporte un tronçon de liaison 6f se développant selon une direction généralement parallèle ou convergente par rapport au second tronçon radial de raccordement 7c du second tube de sortie 7, et se raccordant angulairement d'une part au premier tronçon radial de raccordement 6c par un coude 6d et d'autre part à un premier tronçon axial de projection 6e par un second coude 6g, comme on le voit bien sur la figure 3. Cette forme de gicleur est adaptée pour projeter deux jets de fluide de refroidissement vers deux zones d'un même piston situées de part et d'autre du plan médian du piston.
C'est ainsi que l'on voit, sur les figures 1 et 2, le gicleur de refroidissement 1 selon ce premier mode de réalisation, en position dans un moteur face à un piston 8 sollicité par une bielle 9 elle-même oscillant selon le plan médian M-M du piston 8 autour d'un axe d'oscillation II-II. Le plan médian M-M contient l'axe de translation A-A du piston 8, et est perpendiculaire à l'axe d'oscillation II-II de la bielle 9. Le second tronçon radial de raccordement 7c pénètre radialement sous le piston 8 en direction de son axe A-A. Le premier tronçon radial de raccordement 6c contourne le piston 8 selon une portion de sa circonférence, puis le tronçon de liaison 6f pénètre radialement sous le piston 8 en direction de son axe A-A. Si nécessaire, la jupe du piston comprend deux échancrures respectives 8c et 8d pour le passage des tronçons 7c et 6f.
Les deux jets de fluide de refroidissement 6a et 7a produits par le gicleur de refroidissement 1 sont dirigés respectivement vers deux zones de refroidissement 6b et 7b qui sont disposées de part et d'autre du plan médian M-M du piston 8 . Dans ce cas, les deux zones de refroidissement 6b et 7b sont deux orifices d'entrée d'une ou de deux galeries prévues dans la masse du piston 8, de sorte que le fluide de refroidissement pénètre dans la ou les galeries du piston pour se propager au plus près de la surface supérieure de poussée 8e (figure 15) du piston, surface qui reçoit l'énergie calorifique des gaz de combustion.
Habituellement, les gicleurs de refroidissement sont disposés dans un moteur dans le premier demi-espace P contenant le système d'admission du moteur, pour des questions d'encombrement des canalisations d'amenée d'huile de refroidissement. Cependant, les parties les plus chaudes du moteur, et donc du piston 8, sont dans le second demi-espace S contenant le système d'échappement du moteur. En prévoyant un gicleur de refroidissement 1 qui produit deux jets de fluide de refroidissement 6a et 7a de part et d'autre du plan médian M-M, on peut alimenter deux entrées de galerie qui communiquent, par une galerie en forme de couronne circulaire, ou par deux galeries respectives en secteur de couronne d'angle inférieur à 180°, avec deux zones de piston respectives 8a et 8b dans le demi-espace S. Le refroidissement des zones les plus chaudes 8a et 8b est ainsi équilibré.
Dans le second mode de réalisation illustré sur les figures 4 et 5, la structure de sortie comprend un premier tube de sortie 6 qui se raccorde au corps de gicleur selon un passage radial unique 5a. Le premier tube de sortie 6 a le premier orifice 16 et comporte un tronçon intermédiaire 6h de plus grand diamètre auquel se raccorde le second tube de sortie 7 qui a le second orifice 17.
Dans la réalisation plus spécifiquement illustrée sur la figure 5, le premier tube de sortie 6 comporte un tronçon amont 6c1, un tronçon aval 6c2, un coude 6d et un tronçon axial de projection 6e, et un manchon intermédiaire 6c3 formant le tronçon intermédiaire 6h de plus grand diamètre que les tronçons amont 6c1 et aval 6c2. Le tronçon amont 6c1 est engagé par ses extrémités respectives dans le passage radial 5a de corps de gicleur et dans une première extrémité du manchon 6c3. Le tronçon aval 6c2 est engagé dans la seconde extrémité du manchon 6c3. Le manchon 6c3 est percé d'un trou latéral 6j dans lequel est engagée l'extrémité amont du second tube de sortie 7.
Selon une variante illustrée sur les figures 6 et 7, le tronçon amont 6c1 et le manchon 6c3 sont d'une seule pièce.
Dans les deux cas, l'écartement entre les deux jets de fluide de refroidissement 6a et 7a est important, mais le déport des tubes vers l'extérieur est insuffisant pour placer les orifices 16 et 17 de part et d'autre du plan médian M-M. On place alors le gicleur de refroidissement 1 avec ses deux tubes de sortie 6 et 7 selon un même côté du plan médian M-M.
On peut concevoir, selon l'invention, des gicleurs ayant plus de deux tubes de sortie, pour générer plus de deux jets de fluide de refroidissement.
Dans les réalisations illustrées sur les figures 1 à 4 et 6 à 8, l'un au moins des tubes de sortie 6 et 7 comporte un rétreint formant un tronçon d'extrémité 6i et 7i à diamètre réduit, dont l'effet technique est :
  • de garantir une grande précision du diamètre intérieur du tube, et donc de garantir une bonne précision du débit de fluide de refroidissement,
  • d'améliorer la qualité du jet, produisant un jet laminaire et non diffus,
  • d'augmenter la vitesse et la précision du jet en sortie du tube,
  • de définir aisément les débits identiques ou différents des tubes de sortie 6 et 7, en fonction des différentes zones de piston plus ou moins prioritaires à refroidir.
Pour maximiser le pourcentage de fluide de refroidissement qui pénètre dans la ou les galeries du piston 8, par rapport au débit total traversant le gicleur, on peut avantageusement conformer les tubes du gicleur de façon que les jets de fluide de refroidissement soient parallèles à l'axe A-A du piston 8.
Toutefois, dans certaines configurations de moteurs, il faut écarter le gicleur radialement à l'écart de l'axe A-A du piston 8. On peut alors trouver avantage à prévoir que les jets de refroidissement 6a et 7a sont inclinés dans un plan radial selon un angle légèrement rentrant de quelques degrés par rapport à l'axe A-A du piston 8.
Les figures 9 à 14 illustrent un gicleur de refroidissement comportant un tube de sortie recevant un embout de sortie permettant de diviser le jet de fluide de refroidissement en deux jets 6a et 7a.
Dans ce mode de réalisation, on retrouve un gicleur 1 ayant un corps de gicleur 2 avec une partie pénétrante 3 et une structure de sortie 5 à passage radial 5a.
on retrouve également un tube de sortie 6 cintré, dont la première extrémité est emmanchée dans le trou radial 5a et dont la seconde extrémité s'emmanche dans un embout de sortie 10.
Comme on le voit sur la figure 10, l'embout de sortie 10 présente un trou axial d'entrée 10a conformé pour s'emmancher sur l'extrémité aval du tube de sortie 6, et communiquant avec deux trous de sortie 10b et 10c divergents destinés à être orientés vers les zones de refroidissement respectives du piston. Ainsi, les deux trous de sortie 10b et 10c définissent les orifices de sortie respectifs 16 et 17 du gicleur de refroidissement.
Le trou axial d'entrée 10a peut avantageusement avoir une forme cylindrique à section circulaire adaptée pour recevoir l'extrémité aval cylindrique du tube de sortie 6.
Les deux trous de sortie 10b et 10c peuvent avoir des diamètres différents, par exemple le trou de sortie 16 peut avoir un diamètre supérieur au diamètre du trou de sortie 17. Les diamètres sont choisis de façon à réaliser une meilleure répartition des débits sortant par chaque orifice, en augmentant le débit pour arroser les zones prioritaires à refroidir, et en réduisant le débit pour arroser les zones moins prioritaires à refroidir. Les angles d'orientation des trous de sortie 10b et 10c sont choisis pour correspondre aux emplacements des zones de refroidissement respectives du piston. A leur extrémité amont, les trous de sortie 10b et 10c sont plus rapprochés l'un de l'autre, de façon à communiquer directement avec l'intérieur du tube de sortie 6.
L'embout de sortie 10 comprend, sur sa face périphérique externe, au moins un plat 11 ou 12 tels qu'illustrés sur les figures 9, 11 et 12, le plat 11 ou 12 permettant de repérer et de fixer la position angulaire de l'embout de sortie 10 autour du tube de sortie 6, permettant d'orienter en rotation les deux trous de sortie 16 et 17 lors du montage de l'embout 10 sur le tube de sortie 6.
L'embout de sortie 10 peut être utilisé indépendamment de la présence des autres caractéristiques de nombre et de forme des tubes de sortie 6 et 7.
Dans tous les modes de réalisation décrits ci-dessus, les extrémités proximales des tubes de sortie 6 et 7 sont emmanchées et brasées. Ainsi, la figure 16 illustre en coupe l'emmanchement du tube de sortie 7 dans le passage radial 5b du corps de gicleur 2, pour le gicleur de la figure 3. La figure 5 illustre en coupe l'emmanchement des deux tubes 6 et 7. La figure 14 illustre également l'emmanchement du tube de sortie 6 dans le corps de gicleur 2.
L'invention prévoit ainsi un moteur à combustion interne comprenant au moins un gicleur de refroidissement 1 à deux tubes de sortie 6 et 7 tel que défini précédemment, le gicleur de refroidissement 1 étant conformé et positionné de façon à créer et diriger au moins deux jets de fluide de refroidissement 6a et 7a vers deux entrées de galeries respectives 6b et 7b creusées dans la masse d'un piston 8, comme illustré sur les figures 1 et 2.
Dans un tel moteur, les tubes de sortie 6 et 7 peuvent être cintrés de façon à contourner le piston 8 selon une portion de sa circonférence et à se trouver en dehors de la trajectoire du piston 8 et de la bielle 9 durant le fonctionnement, dirigeant ainsi axialement les jets de fluide de refroidissement 6a et 7a vers deux zones de piston 6b et 7b situées de part et d'autre de son plan médian M-M. On voit, sur la figure 2, que le second tube de sortie 7 se développe radialement vers le centre du piston, tandis que le premier tube de sortie 6 se développe tout d'abord par son tronçon 6c selon la périphérie du piston, puis radialement vers le centre du piston par son tronçon 6f.
En alternative, un gicleur selon les figures 4 à 7 peut projeter deux jets de fluide de refroidissement vers deux zones 6b et 7b situés d'un même côté du plan médian M-M, ou vers deux zones 6b et 7b de part et d'autre du plan M-M. Dans ce dernier cas l'efficacité est réduite, car la bielle 9 coupe momentanément le jet 7a pendant une portion de son cycle de déplacement.
La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations contenues dans le domaine des revendications ci-après.

Claims (14)

  1. Gicleur de refroidissement (1) d'un piston (8) de moteur à combustion interne, comportant un corps de gicleur (2) à partie pénétrante (3) conformée pour s'engager axialement dans un alésage du moteur selon une direction axiale (I-I) de pénétration et pour recevoir un fluide de refroidissement arrivant par ledit alésage, et comportant une structure de sortie (5) avec au moins un passage radial (5a) de fluide dans le corps de gicleur et avec au moins un premier conduit de sortie et un second conduit de sortie adaptés pour diriger vers le piston (8) à refroidir au moins deux jets de fluide de refroidissement (6a, 7a) distincts,
       caractérisé en ce que le premier conduit de sortie comprend un premier tube de sortie (6), rapporté sur le corps de gicleur (2), comportant un premier tronçon radial de raccordement (6c) généralement perpendiculaire à la direction axiale (I-I) de pénétration, se raccordant notamment par un coude (6d) à un premier tronçon axial de projection (6e) se terminant par un premier orifice (16), tandis que le second conduit de sortie comprend un second tube de sortie (7), comportant un second tronçon radial de raccordement (7c) décalé angulairement à l'écart du premier tronçon radial de raccordement (6c), se raccordant par un coude (7d) à un second tronçon axial de projection (7e) se terminant par un second orifice (17).
  2. Gicleur de refroidissement selon la revendication 1, caractérisé en ce que les tubes de sortie (6, 7) se raccordent au corps de gicleur (2) selon des passages radiaux distincts (5a, 5b) dans lesquels les extrémités proximales des tubes de sortie (6, 7) sont emmanchées et brasées.
  3. Gicleur de refroidissement selon la revendication 2, caractérisé en ce que deux tubes de sortie (6, 7) se raccordent au corps de gicleur selon deux passages radiaux distincts (5a, 5b) par deux tronçons radiaux de raccordement (6c, 7c) sensiblement perpendiculaires l'un par rapport à l'autre et perpendiculaires à la direction axiale (I-I) de pénétration, le premier tube de sortie (6) ayant un tronçon de liaison (6f) se développant selon une direction généralement parallèle ou convergente par rapport au tronçon radial de raccordement (7c) du second tube de sortie (7) et se raccordant angulairement d'une part au premier tronçon radial de raccordement (6c) par un coude (6d) et d'autre part à un premier tronçon axial de projection (6e) par un second coude (6g), de façon à projeter le fluide de refroidissement vers deux zones d'un même piston nettement écartées l'une de l'autre tout en restant à l'écart de tous les éléments mobiles dans le cylindre moteur.
  4. Gicleur de refroidissement selon la revendication 1, caractérisé en ce qu'un premier tube de sortie (6) se raccorde au corps de gicleur (2) selon un passage radial unique (5a), le premier tube de sortie (6) ayant le premier orifice (16) et comportant un tronçon intermédiaire (6h) à plus grand diamètre auquel se raccorde un second tube de sortie (7) ayant le second orifice (17).
  5. Gicleur de refroidissement selon la revendication 4, caractérisé en ce que le premier tube de sortie (6) comporte un tronçon amont (6c1), un tronçon aval (6c2), et un manchon intermédiaire (6c3) de plus gros diamètre que les tronçons amont (6c1) et aval (6c2), le tronçon amont (6c1) étant engagé par ses extrémités respectives dans le passage radial (5a) du corps de gicleur (2) et dans une première extrémité du manchon (6c3), le tronçon aval (6c2) étant engagé dans la seconde extrémité du manchon (6c3), le manchon (6c3) étant percé d'un trou latéral (6j) dans lequel est engagée l'extrémité amont du second tube de sortie (7) .
  6. Gicleur de refroidissement selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'un au moins des tubes de sortie (6, 7) comporte un rétreint formant un tronçon d'extrémité (6i, 7i) à diamètre réduit.
  7. Gicleur de refroidissement selon la revendication 1, caractérisé en ce qu'un tube de sortie (6) se raccorde à un embout de sortie (10) ayant les deux orifices de sortie (16, 17), l'embout (10) ayant un trou axial d'entrée (10a) s'emmanchant sur l'extrémité aval du tube de sortie (6) et communiquant avec deux trous de sortie (10b, 10c) divergents destinés à être orientés vers les zones de refroidissement (6b, 7b) respectives du piston (8).
  8. Gicleur de refroidissement selon la revendication 7, caractérisé en ce que l'embout de sortie (10) comprend, sur sa surface périphérique externe, au moins un plat (11, 12), permettant de repérer et de fixer la position angulaire de l'embout de sortie (10) autour du tube de sortie (6).
  9. Moteur à combustion interne, caractérisé en ce qu'il comprend au moins un gicleur (1) à deux tubes de sortie (6, 7) selon l'une quelconque des revendications 1 à 8, conformé et positionné de façon à créer et diriger au moins deux jets de fluide de refroidissement (6a, 7a) vers deux entrées de galeries respectives (6b, 7b) creusées dans la masse d'un piston (8).
  10. Moteur selon la revendication 9, caractérisé en ce que l'un des tubes de sortie (6) est cintré de façon à contourner le piston (8) selon une portion de sa circonférence, permettant ainsi à chacun des jets d'arroser la zone concernée sous le piston (8) sans jamais être intercepté par la trajectoire de la bielle (9), et les tubes de sortie (6, 7) dirigent les jets de fluide de refroidissement (6a, 7a) vers deux zones de piston (6b, 7b) situées de part et d'autre de son plan médian (M-M).
  11. Moteur selon l'une des revendications 9 ou 10, caractérisé en ce que les jets de fluide de refroidissement (6a, 7a) sont parallèles à l'axe (A-A) du piston (8).
  12. Moteur selon l'une des revendications 9 ou 10, caractérisé en ce que les jets de fluide de refroidissement (6a, 7a) sont inclinés dans un plan radial selon un angle légèrement rentrant de quelques degrés par rapport à l'axe (A-A) du piston (8).
  13. Moteur selon l'une quelconque des revendications 9 à 12, caractérisé en ce que les deux entrées de galeries (6b, 7b) communiquent chacune avec une galerie respective en secteur de couronne d'angle inférieure à 180°.
  14. Moteur selon l'une quelconque des revendications 9 à 12, caractérisé en ce que les deux entrées de galeries (6b, 7b) communiquent avec une même galerie en forme de couronne.
EP03356125A 2002-09-02 2003-08-28 Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipés de tels gicleurs Revoked EP1394376B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0211081 2002-09-02
FR0211081A FR2844002B1 (fr) 2002-09-02 2002-09-02 Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipes de tels gicleurs
FR0214550 2002-11-15
FR0214550A FR2844003B1 (fr) 2002-09-02 2002-11-15 Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipes de tels gicleurs

Publications (2)

Publication Number Publication Date
EP1394376A1 true EP1394376A1 (fr) 2004-03-03
EP1394376B1 EP1394376B1 (fr) 2010-01-06

Family

ID=31497218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03356125A Revoked EP1394376B1 (fr) 2002-09-02 2003-08-28 Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipés de tels gicleurs

Country Status (12)

Country Link
US (1) US6895905B2 (fr)
EP (1) EP1394376B1 (fr)
JP (1) JP2004124938A (fr)
CN (1) CN1306151C (fr)
AR (1) AR041115A1 (fr)
AT (1) ATE454542T1 (fr)
BR (1) BR0313912A (fr)
DE (1) DE60330831D1 (fr)
FR (1) FR2844003B1 (fr)
MX (1) MXPA05002358A (fr)
PL (1) PL374559A1 (fr)
WO (1) WO2004020800A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056769A1 (de) * 2004-11-24 2006-06-01 Federal-Mogul Nürnberg GmbH Kolben für einen Verbrennungsmotor und Kombination eines Kolbens mit einer Öleinspritzanordnung
DE102006056012A1 (de) * 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Variabel gestalteter Kühlkanal für einen Kolben
DE102006056011A1 (de) * 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Kühlkanalvarianten für Kolben
CN101865015A (zh) * 2010-06-02 2010-10-20 奇瑞汽车股份有限公司 一种活塞冷却喷嘴
CN104100348A (zh) * 2013-04-11 2014-10-15 邦达研发中心 用于内燃机的紧凑型冷却设备和用于制造这种设备的方法
DE102014005364A1 (de) * 2014-04-11 2015-10-29 Mahle International Gmbh Baueinheit aus einem Kolben und einer Ölspritzdüse für einen Verbrennungsmotor
FR3043343A1 (fr) * 2015-11-09 2017-05-12 Bontaz Centre R & D Dispositif de projection d'un fluide et gicleur de refroidissement comportant un tel dispositif
FR3065025A1 (fr) * 2017-04-11 2018-10-12 Peugeot Citroen Automobiles Sa Limiteur de debit hydraulique et dispositif hydraulique de desactivation de cylindre de moteur thermique
USD921044S1 (en) * 2019-08-02 2021-06-01 Transportation Ip Holdings, Llc Piston cooling apparatus
USD928201S1 (en) * 2019-08-02 2021-08-17 Transportation Ip Holdings, Llc Piston cooling apparatus

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859756B1 (fr) * 2003-09-16 2007-09-21 Bontaz Centre Sa Dispositif de refroidissement pour pistons de moteur.
US7086354B2 (en) 2003-10-29 2006-08-08 Deere & Company Cooling nozzle mounting arrangement
JP4716775B2 (ja) * 2005-04-13 2011-07-06 光精工株式会社 ピストン冷却用オイルジェット
DE102005061059A1 (de) * 2005-12-21 2007-06-28 Mahle International Gmbh Kolben für einen Verbrennungsmotor
KR100837948B1 (ko) 2006-10-10 2008-06-13 현대자동차주식회사 자동차의 피스톤 간섭방지용 쿨링제트 구조
JP4379515B2 (ja) * 2006-12-08 2009-12-09 トヨタ自動車株式会社 内燃機関
CN101113730B (zh) * 2007-08-03 2010-05-19 宝鸡石油机械有限责任公司 钻井泵缸套内外表面冷却装置
US8122859B2 (en) * 2008-10-22 2012-02-28 Cummins, Inc. Nylon body located piston cooling nozzle
DE102012200279A1 (de) * 2012-01-11 2013-07-11 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Betreiben eines Schmiersystems einesVerbrennungsmotors
US8875668B2 (en) * 2012-08-31 2014-11-04 Honda Motor Co., Ltd. Apparatus configured to shelter oil-jet device from inadvertent installation damage
WO2014077964A1 (fr) * 2012-10-10 2014-05-22 Cummins Inc. Système de refroidissement de piston
CN103184918A (zh) * 2012-12-29 2013-07-03 中国兵器工业集团第七0研究所 一种对置活塞二冲程内燃机活塞冷却装置
JP6002657B2 (ja) 2013-02-28 2016-10-05 本田技研工業株式会社 ピストンの冷却装置
JP6148111B2 (ja) * 2013-08-09 2017-06-14 トヨタ自動車株式会社 オイルジェット
JP6288435B2 (ja) * 2014-03-13 2018-03-07 三菱自動車工業株式会社 エンジンのピストン冷却構造
US9850801B2 (en) * 2015-08-28 2017-12-26 Kawasaki Jukogyo Kabushiki Kaisha Piston cooling structure in combustion engine
ITUB20154005A1 (it) 2015-09-29 2017-03-29 Fpt Motorenforschung Ag Sistema di raffreddamento pistoni per un motore a combustione interna
ITUB20153993A1 (it) 2015-09-29 2017-03-29 Fpt Motorenforschung Ag Circuito a olio di lubrificazione e raffreddamento di un motore a combustione interna
GB201519640D0 (en) * 2015-11-06 2015-12-23 Gm Global Tech Operations Inc Piston cooling jet for an internal combustion engine
CN105736112B (zh) * 2016-02-05 2018-04-24 重庆科克发动机技术有限公司 一种发动机冷却润滑油喷嘴
CN106285895A (zh) * 2016-08-29 2017-01-04 潍柴动力股份有限公司 一种发动机及活塞冷却喷嘴总成
DE102016221353A1 (de) * 2016-10-28 2018-05-03 Mahle International Gmbh Brennkraftmaschine
WO2018164878A1 (fr) * 2017-03-07 2018-09-13 Illinois Tool Works Inc. Ensemble à jets de refroidissement de piston
US10704450B2 (en) * 2017-06-16 2020-07-07 Illinois Tool Works Inc. Piston cooling jet assembly
JP2019052604A (ja) * 2017-09-15 2019-04-04 スズキ株式会社 内燃機関
US10895191B2 (en) * 2019-06-07 2021-01-19 Bendix Commercial Vehicle Systems Llc Fluid compressor and method of operating a fluid compressor to reduce oil carryover by a compressor piston assembly
US11333140B2 (en) * 2019-06-11 2022-05-17 Caterpillar Inc. Cooling block for multi-cylinder air compressor
US11248515B2 (en) * 2019-08-02 2022-02-15 Transportation Ip Holdings, Llc Piston cooling jet system
FR3109608B1 (fr) * 2020-04-22 2023-01-13 Bontaz Centre R & D Gicleur de refroidissement de piston double jet en materiau plastique
USD965029S1 (en) * 2020-09-11 2022-09-27 Transportation Ip Holdings, Llc Piston cooling jet
CN113738513A (zh) * 2021-09-07 2021-12-03 中国航空发动机研究院 一种冷却装置、船艇动力的气流冷却器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206726A (en) * 1977-07-18 1980-06-10 Caterpillar Tractor Co. Double orifice piston cooling nozzle for reciprocating engines
US4408575A (en) * 1981-01-23 1983-10-11 Caterpillar Tractor Co. Nozzle assembly for controlled spray
EP0423830A1 (fr) * 1989-10-20 1991-04-24 Cummins Engine Company, Inc. Ajutage pour le refroidissement de piston
WO1993005285A1 (fr) * 1991-09-09 1993-03-18 Caterpillar Inc. Ajutage de refroidissement de piston
EP0682175A1 (fr) * 1994-05-10 1995-11-15 Bontaz Centre Gicleur de refroidissement de piston pour moteur à combustion interne
JPH07317519A (ja) * 1994-05-20 1995-12-05 Unisia Jecs Corp 内燃機関における潤滑・冷却装置
US5649505A (en) * 1996-01-18 1997-07-22 Cummins Engine Company, Inc. Multiple-hole, piston cooling nozzle and assembly arrangement therefore
FR2745329A1 (fr) * 1996-02-23 1997-08-29 Renault Circuit de lubrification pour moteur a combustion interne
DE19634742A1 (de) * 1996-08-28 1998-03-05 Deutz Ag Kolbenspritzdüse für eine Brennkraftmaschine
US5915345A (en) * 1996-08-17 1999-06-29 Dr. Ing. H.C.F. Porsche Ag Injection nozzle for piston cooling in an internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3581093D1 (de) * 1984-03-13 1991-02-07 Elsbett L Oelgekuehlter, zweiteiliger gelenkkolben.
JPH0389908U (fr) * 1989-12-29 1991-09-12
CA2090330A1 (fr) * 1991-09-09 1993-03-10 Willibald G. Berlinger Injecteur de refroidissement des pistons
JPH07243313A (ja) * 1994-02-28 1995-09-19 Unisia Jecs Corp 内燃機関におけるシリンダ潤滑装置
KR100208752B1 (ko) * 1996-10-16 1999-07-15 정몽규 오일 제트의 분사 위치 확인장치
FR2827009B1 (fr) 2001-07-04 2003-12-12 Bontaz Centre Sa Gicleur de refroidissement a piston

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206726A (en) * 1977-07-18 1980-06-10 Caterpillar Tractor Co. Double orifice piston cooling nozzle for reciprocating engines
US4408575A (en) * 1981-01-23 1983-10-11 Caterpillar Tractor Co. Nozzle assembly for controlled spray
EP0423830A1 (fr) * 1989-10-20 1991-04-24 Cummins Engine Company, Inc. Ajutage pour le refroidissement de piston
WO1993005285A1 (fr) * 1991-09-09 1993-03-18 Caterpillar Inc. Ajutage de refroidissement de piston
EP0682175A1 (fr) * 1994-05-10 1995-11-15 Bontaz Centre Gicleur de refroidissement de piston pour moteur à combustion interne
JPH07317519A (ja) * 1994-05-20 1995-12-05 Unisia Jecs Corp 内燃機関における潤滑・冷却装置
US5649505A (en) * 1996-01-18 1997-07-22 Cummins Engine Company, Inc. Multiple-hole, piston cooling nozzle and assembly arrangement therefore
FR2745329A1 (fr) * 1996-02-23 1997-08-29 Renault Circuit de lubrification pour moteur a combustion interne
US5915345A (en) * 1996-08-17 1999-06-29 Dr. Ing. H.C.F. Porsche Ag Injection nozzle for piston cooling in an internal combustion engine
DE19634742A1 (de) * 1996-08-28 1998-03-05 Deutz Ag Kolbenspritzdüse für eine Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 04 30 April 1996 (1996-04-30) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056769A1 (de) * 2004-11-24 2006-06-01 Federal-Mogul Nürnberg GmbH Kolben für einen Verbrennungsmotor und Kombination eines Kolbens mit einer Öleinspritzanordnung
DE102006056012A1 (de) * 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Variabel gestalteter Kühlkanal für einen Kolben
DE102006056011A1 (de) * 2006-11-28 2008-05-29 Ks Kolbenschmidt Gmbh Kühlkanalvarianten für Kolben
EP1930578A3 (fr) * 2006-11-28 2012-02-08 KS Kolbenschmidt GmbH Variantes de canal de ventilation pour piston
EP1930578B1 (fr) 2006-11-28 2019-09-25 KS Kolbenschmidt GmbH Variantes de canal de ventilation pour piston
CN101865015A (zh) * 2010-06-02 2010-10-20 奇瑞汽车股份有限公司 一种活塞冷却喷嘴
KR20140123020A (ko) * 2013-04-11 2014-10-21 본타즈 센트레 알앤디 내연 기관용 소형 냉각 장치 및 이의 제조 방법
FR3004489A1 (fr) * 2013-04-11 2014-10-17 Bontaz Ct R & D Dispositif de refroidissement pour moteur a combustion interne a encombrement reduit et procede de fabrication d'un tel dispositif
EP2789824A1 (fr) 2013-04-11 2014-10-15 Bontaz Centre R&D Dispositif de refroidissement à encombrement reduit pour moteur à combustion interne et procédé de fabrication d'un tel dispositif
US9476344B2 (en) 2013-04-11 2016-10-25 Bontaz Centre R&D Compact cooling device for an internal combustion engine and method for manufacturing such a device
CN104100348B (zh) * 2013-04-11 2018-12-21 邦达研发中心 用于内燃机的紧凑型冷却设备和用于制造这种设备的方法
CN104100348A (zh) * 2013-04-11 2014-10-15 邦达研发中心 用于内燃机的紧凑型冷却设备和用于制造这种设备的方法
DE102014005364A1 (de) * 2014-04-11 2015-10-29 Mahle International Gmbh Baueinheit aus einem Kolben und einer Ölspritzdüse für einen Verbrennungsmotor
US10260452B2 (en) 2014-04-11 2019-04-16 Mahle International Gmbh Assembly of a piston and an oil spray nozzle for an internal combustion engine
FR3043343A1 (fr) * 2015-11-09 2017-05-12 Bontaz Centre R & D Dispositif de projection d'un fluide et gicleur de refroidissement comportant un tel dispositif
FR3065025A1 (fr) * 2017-04-11 2018-10-12 Peugeot Citroen Automobiles Sa Limiteur de debit hydraulique et dispositif hydraulique de desactivation de cylindre de moteur thermique
USD921044S1 (en) * 2019-08-02 2021-06-01 Transportation Ip Holdings, Llc Piston cooling apparatus
USD928201S1 (en) * 2019-08-02 2021-08-17 Transportation Ip Holdings, Llc Piston cooling apparatus

Also Published As

Publication number Publication date
FR2844003B1 (fr) 2006-06-16
DE60330831D1 (de) 2010-02-25
CN1487177A (zh) 2004-04-07
US6895905B2 (en) 2005-05-24
BR0313912A (pt) 2005-07-12
EP1394376B1 (fr) 2010-01-06
ATE454542T1 (de) 2010-01-15
JP2004124938A (ja) 2004-04-22
PL374559A1 (en) 2005-10-31
US20040040520A1 (en) 2004-03-04
CN1306151C (zh) 2007-03-21
MXPA05002358A (es) 2005-09-30
AR041115A1 (es) 2005-05-04
WO2004020800A1 (fr) 2004-03-11
FR2844003A1 (fr) 2004-03-05

Similar Documents

Publication Publication Date Title
EP1394376B1 (fr) Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipés de tels gicleurs
CA2647145C (fr) Dispositif de guidage d&#39;un element dans un orifice d&#39;une paroi de chambre de combustion de turbomachine
FR2913723A1 (fr) Gicleur de refroidissement a clapet
FR2918716A1 (fr) Optimisation d&#39;un film anti-coke dans un systeme d&#39;injection
EP2789824A1 (fr) Dispositif de refroidissement à encombrement reduit pour moteur à combustion interne et procédé de fabrication d&#39;un tel dispositif
CA2754419A1 (fr) Chambre de combustion de turbomachine comprenant des moyens ameliores d&#39;alimentation en air
FR2506837A1 (fr) Conduit pour les gaz d&#39;echappement a monter entre un moteur a combustion interne et un turbo-compresseur a gaz d&#39;echappement
FR2892775A1 (fr) Moteur hydraulique a pistons radiaux avec refroidissement du bloc-cylindres
EP1944476B1 (fr) Siège de soupape usiné en deux chanfreins désaxés
FR3035481A1 (fr) Chambre de combustion de turbomachine comportant un dispositif de guidage de flux d&#39;air de forme specifique
EP0625631B1 (fr) Boisseau rotatif amélioré
FR2562158A1 (fr) Dispositif de refroidissement
WO2019239033A1 (fr) Porte-satellites tournant pour un reducteur mecanique d&#39;une turbomachine
FR2974840A1 (fr) Distributeur de turbine dans une turbomachine
FR3043343B1 (fr) Dispositif de projection d&#39;un fluide et gicleur de refroidissement comportant un tel dispositif
WO1993003260A1 (fr) Boisseau rotatif et utilisation dudit boisseau pour le transfert d&#39;un fluide vers une chambre de combustion d&#39;un moteur a combustion interne
FR2861804A1 (fr) Gicleur de refroidissement de piston a entre-axe reduit
EP3814616B1 (fr) Dispositif de guidage dans une chambre de combustion
FR2868132A1 (fr) Installation d&#39;admission de moteur a combustion interne
EP0010501B1 (fr) Soupape, notamment pour moteurs à combustion interne, du type à champignon et refroidie par circulation forcée d&#39;un fluide réfrigérant
EP4034755B1 (fr) Dispositif de refroidissement par jets d&#39;air d&#39;un carter de turbine
FR3066786A1 (fr) Culasse de moteur a combustion interne
FR2979666A1 (fr) Lubrification de tourillon de vilebrequin
FR2464366A2 (fr) Procede et dispositif d&#39;amenagement de l&#39;ecoulement des gaz dans un collecteur d&#39;echappement d&#39;un moteur a combustion interne
FR2844002A1 (fr) Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipes de tels gicleurs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040511

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070416

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60330831

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SCHMITTERGROUP AG

Effective date: 20101005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

BERE Be: lapsed

Owner name: BONTAZ CENTRE

Effective date: 20100831

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100828

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330831

Country of ref document: DE

Representative=s name: VON BUELOW & TAMADA PATENTANWALTSGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Effective date: 20141016

Ref country code: FR

Ref legal event code: TP

Owner name: BONTAZ CENTRE R & D, FR

Effective date: 20141016

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20141023 AND 20141029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60330831

Country of ref document: DE

Representative=s name: VON BUELOW & TAMADA PATENTANWALTSGESELLSCHAFT, DE

Effective date: 20141029

Ref country code: DE

Ref legal event code: R081

Ref document number: 60330831

Country of ref document: DE

Owner name: BONTAZ CENTRE R&D, FR

Free format text: FORMER OWNER: BONTAZ CENTRE, MARNAZ, FR

Effective date: 20141029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BONTAZ CENTRE R & D

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190812

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190830

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 17

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 60330831

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 60330831

Country of ref document: DE

APAN Information on closure of appeal procedure modified

Free format text: ORIGINAL CODE: EPIDOSCNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20200515

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20200515