EP1367068A1 - Polymères de propylène - Google Patents
Polymères de propylène Download PDFInfo
- Publication number
- EP1367068A1 EP1367068A1 EP02011675A EP02011675A EP1367068A1 EP 1367068 A1 EP1367068 A1 EP 1367068A1 EP 02011675 A EP02011675 A EP 02011675A EP 02011675 A EP02011675 A EP 02011675A EP 1367068 A1 EP1367068 A1 EP 1367068A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer
- mfr
- propylene polymer
- weight
- propylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 49
- 229920000642 polymer Polymers 0.000 claims abstract description 73
- 230000003446 memory effect Effects 0.000 claims abstract description 50
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000005977 Ethylene Substances 0.000 claims abstract description 21
- 238000005227 gel permeation chromatography Methods 0.000 claims abstract description 15
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000008096 xylene Substances 0.000 claims abstract description 9
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 claims abstract description 4
- 239000000155 melt Substances 0.000 claims abstract description 4
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 19
- 239000012968 metallocene catalyst Substances 0.000 claims description 9
- 229920001519 homopolymer Polymers 0.000 claims description 4
- 229920005604 random copolymer Polymers 0.000 claims description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 49
- 125000001183 hydrocarbyl group Chemical group 0.000 description 47
- 239000001257 hydrogen Substances 0.000 description 44
- 229910052739 hydrogen Inorganic materials 0.000 description 44
- 238000006116 polymerization reaction Methods 0.000 description 40
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 39
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 39
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 32
- 239000000243 solution Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 28
- -1 polypropylene Polymers 0.000 description 28
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 27
- 239000003054 catalyst Substances 0.000 description 26
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 21
- 229910052735 hafnium Inorganic materials 0.000 description 21
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 21
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- 239000002002 slurry Substances 0.000 description 19
- 238000000465 moulding Methods 0.000 description 18
- 239000002904 solvent Substances 0.000 description 17
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000005342 ion exchange Methods 0.000 description 15
- 238000003756 stirring Methods 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 14
- 238000009826 distribution Methods 0.000 description 14
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 13
- 229910052901 montmorillonite Inorganic materials 0.000 description 13
- 239000011369 resultant mixture Substances 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 239000004743 Polypropylene Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 150000002431 hydrogen Chemical class 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 10
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 10
- 230000002349 favourable effect Effects 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000011949 solid catalyst Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 150000004760 silicates Chemical class 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000010306 acid treatment Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 150000003623 transition metal compounds Chemical class 0.000 description 5
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 5
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 2
- KUNZSLJMPCDOGI-UHFFFAOYSA-L [Cl-].[Cl-].[Hf+2] Chemical compound [Cl-].[Cl-].[Hf+2] KUNZSLJMPCDOGI-UHFFFAOYSA-L 0.000 description 2
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 125000003963 dichloro group Chemical group Cl* 0.000 description 2
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 2
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229920001384 propylene homopolymer Polymers 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- XNKXVDARUIEQOQ-UHFFFAOYSA-N 2-ethyl-4-(3-fluoro-4-phenylphenyl)-1,4-dihydroazulene Chemical compound C1C(CC)=CC2=C1C=CC=CC2C(C=C1F)=CC=C1C1=CC=CC=C1 XNKXVDARUIEQOQ-UHFFFAOYSA-N 0.000 description 1
- FFJMBSDTSVGLBH-UHFFFAOYSA-N 2-ethylazulene Chemical compound C1=CC=CC2=CC(CC)=CC2=C1 FFJMBSDTSVGLBH-UHFFFAOYSA-N 0.000 description 1
- ZRCFBHGCJAIXIH-UHFFFAOYSA-N 2-methylazulene Chemical compound C1=CC=CC2=CC(C)=CC2=C1 ZRCFBHGCJAIXIH-UHFFFAOYSA-N 0.000 description 1
- JVPDAEVSXKYYAS-UHFFFAOYSA-N 3-bromo-1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC(Br)=CC2=C1 JVPDAEVSXKYYAS-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- HTRNHWBOBYFTQF-UHFFFAOYSA-N 4-bromo-2-fluoro-1-phenylbenzene Chemical group FC1=CC(Br)=CC=C1C1=CC=CC=C1 HTRNHWBOBYFTQF-UHFFFAOYSA-N 0.000 description 1
- 229910014813 CaC2 Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021560 Chromium(III) bromide Inorganic materials 0.000 description 1
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 1
- 229910021564 Chromium(III) fluoride Inorganic materials 0.000 description 1
- 229910019167 CoC2 Inorganic materials 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 229910021582 Cobalt(II) fluoride Inorganic materials 0.000 description 1
- 229910019929 CrO2Cl2 Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910006109 GeBr4 Inorganic materials 0.000 description 1
- 229910006113 GeCl4 Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910021570 Manganese(II) fluoride Inorganic materials 0.000 description 1
- 229910020101 MgC2 Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910005581 NiC2 Inorganic materials 0.000 description 1
- 229910021585 Nickel(II) bromide Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910006130 SO4 Inorganic materials 0.000 description 1
- 229910011006 Ti(SO4)2 Inorganic materials 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 229910010342 TiF4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021551 Vanadium(III) chloride Inorganic materials 0.000 description 1
- 229910021552 Vanadium(IV) chloride Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910008159 Zr(SO4)2 Inorganic materials 0.000 description 1
- 229910007932 ZrCl4 Inorganic materials 0.000 description 1
- 229910007998 ZrF4 Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 229910008334 ZrO(NO3)2 Inorganic materials 0.000 description 1
- 229910006213 ZrOCl2 Inorganic materials 0.000 description 1
- HEUKQGBQNDMRIL-UHFFFAOYSA-N [(2-dimethylphosphanylphenyl)-phenylboranyl]-diphenylphosphane Chemical compound CP(C)C1=C(C=CC=C1)B(C1=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1 HEUKQGBQNDMRIL-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- IYOQKDFPBZQHSI-UHFFFAOYSA-L [Cl-].[Cl-].C(C)(C)=[Hf+2](C1=C(C=C2C(CC=CC=C12)C1=CC=CC=C1)CC)C1=C(C=C2C(CC=CC=C12)C1=CC=CC=C1)CC Chemical compound [Cl-].[Cl-].C(C)(C)=[Hf+2](C1=C(C=C2C(CC=CC=C12)C1=CC=CC=C1)CC)C1=C(C=C2C(CC=CC=C12)C1=CC=CC=C1)CC IYOQKDFPBZQHSI-UHFFFAOYSA-L 0.000 description 1
- VPBXOYZHTHLGHV-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Hf+2](C1=C(C=C2C(CC=CC=C12)C1=CC=CC2=CC=CC=C12)C)C1=C(C=C2C(CC=CC=C12)C1=CC=CC2=CC=CC=C12)C)C1=CC=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)[Si](=[Hf+2](C1=C(C=C2C(CC=CC=C12)C1=CC=CC2=CC=CC=C12)C)C1=C(C=C2C(CC=CC=C12)C1=CC=CC2=CC=CC=C12)C)C1=CC=CC=C1 VPBXOYZHTHLGHV-UHFFFAOYSA-L 0.000 description 1
- TYRFZSPJXZPLJM-UHFFFAOYSA-L [Cl-].[Cl-].Cc1ccccc1C1=Cc2ccccc2C1[Zr++]([C@H]1C(=Cc2ccccc12)c1ccccc1C)=[Si](C)C Chemical compound [Cl-].[Cl-].Cc1ccccc1C1=Cc2ccccc2C1[Zr++]([C@H]1C(=Cc2ccccc12)c1ccccc1C)=[Si](C)C TYRFZSPJXZPLJM-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000019647 acidic taste Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PQLAYKMGZDUDLQ-UHFFFAOYSA-K aluminium bromide Chemical compound Br[Al](Br)Br PQLAYKMGZDUDLQ-UHFFFAOYSA-K 0.000 description 1
- CECABOMBVQNBEC-UHFFFAOYSA-K aluminium iodide Chemical compound I[Al](I)I CECABOMBVQNBEC-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- VMLPRHIGSSWTPG-UHFFFAOYSA-N bis[4-(4-chloronaphthalen-2-yl)-2-ethyl-1,4-dihydroazulen-1-yl]-dimethylsilane Chemical compound CCC1=CC(C(C=CC=C2)C=3C=C4C=CC=CC4=C(Cl)C=3)=C2C1[Si](C)(C)C1C(CC)=CC2=C1C=CC=CC2C1=CC(Cl)=C(C=CC=C2)C2=C1 VMLPRHIGSSWTPG-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- VNSBYDPZHCQWNB-UHFFFAOYSA-N calcium;aluminum;dioxido(oxo)silane;sodium;hydrate Chemical compound O.[Na].[Al].[Ca+2].[O-][Si]([O-])=O VNSBYDPZHCQWNB-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- ZJRWDIJRKKXMNW-UHFFFAOYSA-N carbonic acid;cobalt Chemical compound [Co].OC(O)=O ZJRWDIJRKKXMNW-UHFFFAOYSA-N 0.000 description 1
- ONIOAEVPMYCHKX-UHFFFAOYSA-N carbonic acid;zinc Chemical compound [Zn].OC(O)=O ONIOAEVPMYCHKX-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000011636 chromium(III) chloride Substances 0.000 description 1
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 description 1
- UZDWIWGMKWZEPE-UHFFFAOYSA-K chromium(iii) bromide Chemical compound [Cr+3].[Br-].[Br-].[Br-] UZDWIWGMKWZEPE-UHFFFAOYSA-K 0.000 description 1
- 229910000152 cobalt phosphate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 229910000001 cobalt(II) carbonate Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- QSDQMOYYLXMEPS-UHFFFAOYSA-N dialuminium Chemical compound [Al]#[Al] QSDQMOYYLXMEPS-UHFFFAOYSA-N 0.000 description 1
- LDYLHMQUPCBROZ-UHFFFAOYSA-N diethyl(methoxy)alumane Chemical compound [O-]C.CC[Al+]CC LDYLHMQUPCBROZ-UHFFFAOYSA-N 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- CTNMMTCXUUFYAP-UHFFFAOYSA-L difluoromanganese Chemical compound F[Mn]F CTNMMTCXUUFYAP-UHFFFAOYSA-L 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910000015 iron(II) carbonate Inorganic materials 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(II) nitrate Inorganic materials [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- IPLJNQFXJUCRNH-UHFFFAOYSA-L nickel(2+);dibromide Chemical compound [Ni+2].[Br-].[Br-] IPLJNQFXJUCRNH-UHFFFAOYSA-L 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000276 sauconite Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- VJHDVMPJLLGYBL-UHFFFAOYSA-N tetrabromogermane Chemical compound Br[Ge](Br)(Br)Br VJHDVMPJLLGYBL-UHFFFAOYSA-N 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Inorganic materials [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
- HDUMBHAAKGUHAR-UHFFFAOYSA-J titanium(4+);disulfate Chemical compound [Ti+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O HDUMBHAAKGUHAR-UHFFFAOYSA-J 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- FTBATIJJKIIOTP-UHFFFAOYSA-K trifluorochromium Chemical compound F[Cr](F)F FTBATIJJKIIOTP-UHFFFAOYSA-K 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical compound CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- JTJFQBNJBPPZRI-UHFFFAOYSA-J vanadium tetrachloride Chemical compound Cl[V](Cl)(Cl)Cl JTJFQBNJBPPZRI-UHFFFAOYSA-J 0.000 description 1
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 description 1
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 1
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Inorganic materials [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Inorganic materials [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
- OMQSJNWFFJOIMO-UHFFFAOYSA-J zirconium tetrafluoride Chemical compound F[Zr](F)(F)F OMQSJNWFFJOIMO-UHFFFAOYSA-J 0.000 description 1
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 description 1
- LBVWQMVSUSYKGQ-UHFFFAOYSA-J zirconium(4+) tetranitrite Chemical compound [Zr+4].[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O LBVWQMVSUSYKGQ-UHFFFAOYSA-J 0.000 description 1
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
Definitions
- This invention relates to propylene polymers which are excellent in rigidity and heat resistance and have an appropriate melt tension and favorable molding processability and appearance.
- propylene polymers Because of having the characteristics of being excellent in rigidity, heat resistance, molding properties, transparency and chemical resistance, propylene polymers have attracted public attention and are widely used for a number of purposes such as various industrial materials, various containers, daily necessities, films and fibers.
- Metallocene catalysts with the use of metallocene transition metal compounds have been widely employed in their production, since these catalysts generally have a high activity and propylene polymers obtained thereby are excellent in stereostructural properties.
- the propylene polymers produced by using metallocene catalysts have a disadvantage of having a small memory effect (ME) due to a narrow molecular weight distribution and thus showing a poor molding processability.
- ME is a value serving as an indication of the non-Newtonian properties of a resin.
- a higher ME indicates the wider molecular weight distribution and a tendency towards more favorable molding properties particularly owing to the effects of high-molecular weight components.
- 2001-500176 proposes to broaden molecular weight distribution by using two types of Zr complexes having high stereoregularity.
- the distribution is about 7 or lower
- ME cannot be improved by these methods.
- ME can be improved thereby in a system having a larger molecular weight distribution value, no homogeneous mixture can be obtained, which results in a tendency that the molding appearance is worsened. It is therefore required to solve these problems.
- Japanese Patent Laid-Open No. 181343/2001 and No. 294609/2001 propose polymers having Mw/Mn ratios ranging from 6 to 50 and a process for producing the same. Although these polymers have high Mw/Mn ratios, MEs thereof are not so high.
- Japanese Patent Laid-Open No. 288220/2001 proposes single-peak polymers having Mw/Mn values of from 4 to 6.
- Mw/Mn values of from 4 to 6.
- the present invention provides propylene polymers which are not only excellent in rigidity and heat resistance but also contain an appropriate amount of high-molecular weight components with little eluting components and have excellent molding processability.
- the propylene polymer of the present invention which may be copolymerized with ethylene of 0 to 7% by weight, is characterized by comprising satisfying the following requirements:
- the present invention is also characterized in that the propylene polymer has been polymerized by using a metallocene catalyst.
- the present invention provides novel propylene polymers meeting with the physiological requirements (1) to (5) as described below.
- the propylene polymer according to the present invention has a melt flow rate (MFR) measured at 230°C under a 2.16 kg load of from 0.1 to 1000 g/10 min. It is unfavorable from the viewpoint of the molding process that MFR is lower than 0.1, since the fluidity of the polymer is extremely worsened in this case. It is also unfavorable that MFR exceeds 1000, since the impact strength of the polymer is extremely lowered in this case.
- MFR melt flow rate
- the MFR ranges from 0.5 to 500.
- Favorable uses are restricted depending on the MFR level. In the case of applications in injection molding, it is favorable that MFR ranges from 10 to 300. In the case of applications in film-molding or sheet-molding, it is favorable that MFR ranges from 0.5 to 10, still preferably from 1.0 to 10.
- the propylene polymer according to the present invention has an isotactic triad fraction measured by 13 C-NMR in the propylene unit chain moiety made up of head-to-tail bonds (i.e., the ratio of propylene unit triads, in which propylene units are bonded to each other via head-to-tail bonds and the methyl branches in the propylene units are in the same direction, to arbitrary propylene unit triads in the polymer chain) of 99.0% or above, preferably 99.5% or above.
- the isotactic triad fraction will be sometimes referred to as mm fraction thereinafter.
- This isotactic triad fraction is a value which indicates that the stereostructure of methyl groups in the polypropylene molecular chain is isotactically regular.
- a higher value means a higher extent of the regularity. In case where this value is less than the lower limit as specified above, there arises a problem of poor heat resistance.
- the 13 C-NMR spectrum can be measured by the following method. Namely, the 13 C-NMR spectrum is measured by completely dissolving a sample (350 to 500 mg) in a solvent prepared by adding about 0.5ml of deuterated benzene which is a lock solvent to about 2.0 ml of o-dichlorobenzene in an NMR sample tube of 10 mm in diameter followed by the measurement by the proton complete decoupling method at 130°C.
- the measurement conditions are selected so as to give a flip angle of 65° and a pulse interval of 5T 1 or longer (wherein T 1 stands for the maximum value in the methyl group spin-lattice relaxation times).
- T 1 of methylene group and T 1 of methine group are shorter than T 1 of methyl group.
- the recovery ratios of the magnetization of all carbon atoms become 99% or above under these measurement conditions.
- NMR peaks of the propylene polymer of the present invention are identified in accordance with a publicly known method described in Japanese Patent Laid-Open No. 273507/1998.
- the methyl group in the third unit of a propylene unit pentad in which the chemical shift is bonded via a head-to-tail bond and the methyl branches are in the same direction, is referred to as 21.8 ppm and chemical shifts of other carbon peaks are determined on the basis of this standard.
- the peak assignable to the methyl group in the second unit of the propylene triad represented by PPP [mm] appears within the range of 21.3 to 22.2 ppm
- the peak assignable to the methyl group in the second unit of the propylene triad represented by PPP [mr] appears within the range of 20.5 to 21.3 ppm
- the peak assignable to the methyl group in the second unit of the propylene triad represented by PPP [rr] appears within the range of 19.7 to 20.5 ppm.
- the Q value i.e., the ratio of weight-average molecular weight (Mw) to number-average molecular weight (Mn) measured by gel permeation chromatography (GPC) is specified as ranging from 2.0 to 6.0. It is unfavorable from the viewpoint of operation that the Q value.is lower than 2.0, since the resin pressure is elevated in the process of molding the polymer in this case. It is also unfavorable that the Q value exceeds 6.0, since the molecular distribution shifts toward the low-molecular weight side too and thus low-molecular weight components are increased, thereby worsening the physical properties such as rigidity in this case.
- the polymer according to the present invention is characterized by essentially containing little low-molecular weight components and CXS components. It is preferable that the Q value ranges from 2.5 to 5.5, still preferably from 3.0 to 5.0.
- the propylene polymer according to the present invention is characterized in that the correlation between memory effect (ME), which serves as an indication of the content of high-molecular weight components in the polymer, and MFR, which serves as an indication of the average molecular weight of the polymer, is in a specific relationship represented by the following formula (I).
- ME is an indication relating to the molding properties and surface appearance of a polymer and generally correlates to the molecular weight and molecular weight distribution.
- the optimum range of ME varies depending on purpose. In the case of films, sheets and injection molding, an excessively small ME generally results in an increase in the resin pressure during molding and thus there arise some problems such as uneven film thickness or flow irregularities in injection molding.
- the polymer according to the present invention has a correlationship between ME and MFR within a specific range while maintaining the molecular weight distribution as described above 1.75 ⁇ (ME) + 0.26 x log(MFR) ⁇ 1.40
- the polymer according to the present invention is characterized by having a relatively large ME with respect to MFR compared with conventionally known uniform polymers. It is known that an appropriately high ME contributes to the achievement of favorable molding properties. Thus, the propylene polymer according to the present invention is excellent in molding properties. It is still preferable that the relationship represented by the following formula (I-1) is satisfied. 1.75 ⁇ (ME) + 0.26 x log (MFR) ⁇ 1.45 It is further preferable that the relationship represented by the following formula (I-2) is satisfied. 1.75 ⁇ (ME) + 0.26 x log(MFR) ⁇ 1.55
- the propylene polymer may be a copolymer.
- the (co)polymer according to the present invention is characterized in that the cold xylene solubles (CXS) at 23°C, which indicates the low-crystallinity components in the polymer, MFR, which indicates of the polymer molecular weight, and the ethylene unit content [C2] (unit: % by weight), which indicates the polymer crystallinity, satisfy the relationship represented by the following formula (II).
- [C2] in the following formula is 0. It is known by experience that CXS primarily correlates to MFR and ethylene content.
- a polymer having a smaller molecular weight i.e., a larger MFR
- MFR molecular weight
- the crystallinity of the polymer is lowered and thus the polymer becomes more soluble in water, thereby causing a decrease in the CXS value.
- the content of the ethylene comonomer is from 0 to 7% by weight, preferably from 0 to 5% by weight. It is preferable that the polymer is a homopolymer.
- the polymer according to the present invention is characterized by having little CXS. Namely, it contains little low-crystallinity components and low-molecular weight components causing a high stickiness of products, worsening rigidity or heat resistance, etc.
- the polymer satisfies the relationship represented by the following formula (II-2).
- CXS ⁇ 0.5 x [C2] + 0.2 x log(MFR) + 0.3
- the propylene polymer according to the present invention is preferably characterized by having a melting temperature Tm (°C) measured by DSC of 120°C or above.
- Tm melting temperature measured by DSC
- the melting temperature can be elevated by reducing the amount of a comonomer to be used in the polymerization and thus lowering the ethylene content in the polymer.
- a propylene-ethylene random copolymer containing about 5 to 6% by weight of ethylene has a melting temperature of about 120 to 130°C.
- the propylene homopolymer according to the present invention has a polymer melting temperature (Tmh) of 149°C or above, still preferably 155°C or above and particularly preferably 157°C or above.
- Tmh polymer melting temperature
- the melting temperature (Tmr) of the random copolymer preferably satisfies Tmr ⁇ 120°C and the relationship Tmr ⁇ 149-5.5 [E] wherein [E] represents the content (% by weight) of ethylene in the polymer, more preferably Tmr ⁇ 155-5.5 [E], and particularly preferably Tmr ⁇ 157-5.5 [E].
- the propylene polymer according to the present invention may be prepared by an arbitrary process without restriction, so long as a propylene polymer satisfying the above requirements can be obtained thereby.
- metallocene catalysts are adequate as a catalyst system to be used in producing the polymer of the present invention and it is preferable to use a specific metallocene catalyst.
- the propylene polymer can be produced by using the following catalysts.
- Component A at least one metallocene compound selected from the transition metal compounds as will be cited herein below;
- component B at least one compound selected from the group consisting of ion-exchange layered silicates; optionally together with
- component C an organic aluminum compound.
- transition metal compounds to be used as the component A constituting polymerization catalysts which are favorable in producing the propylene polymer according to the present invention are transition metal compounds represented by the following general formula (1).
- Q represents a linkage group cross linking two conjugated five-membered cyclic ligands
- M represents a metal atom selected from among titanium zirconium and hafnium
- X and Y represent each a hydrogen atom, a halogen atom, a hydrocarbyl group, an alkoxy group, an amino group, a nitrogen-containing hydrocarbyl group, a phosphorus-containing hydrocarbyl group or a silicon-containing hydrocarbyl group bonded to M
- R 1 and R 3 represent each hydrogen, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a silicon-containing hydrocarbyl group, a nitrogen-containing hydrocarbyl group, an oxygen-containing hydrocarbyl group, a
- Q represents a divalent linkage group crosslinking two conjugated five-membered cyclic ligands and examples thereof include:
- an alkylene group and a silylene group having a hydrocarbyl group as a substituent are preferable.
- X and Y may be either the same or different and each independently represents the following preferred groups: (a) hydrogen , (b) a halogen, (c) a hydrocarbyl group having 1 to 20, preferably 1 to 12, carbon atoms, or (d) a hydrocarbyl group having 1 to 20, preferably 1 to 12, carbon atoms and containing oxygen, nitrogen or silicon.
- preferable examples thereof include hydrogen, chlorine, methyl, isobutyl, phenyl, dimethylamido and diethylamido groups, etc.
- R 1 and R 3 represent each hydrogen, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a silicon-containing hydrocarbyl group, a nitrogen-containing hydrocarbyl group, an oxygen-containing hydrocarbyl group, a boron-containing hydrocarbyl group or a phosphorus-containing hydrocarbyl group.
- Specific examples thereof include methyl, ethyl, propyl, butyl, hexyl, octyl, phenyl naphthyl, butenyl and butadienyl groups, etc.
- hydrocarbyl groups In addition to the hydrocarbyl groups, citation may be made, as typical examples thereof, of methoxy, ethoxy, phenoxy, trimethylsilyl, diethylamino, diphenylamino, pyrazolyl, indolyl, dimethylphosphino, diphenylphosphino, diphenylboron and diemthoxyboron groups, etc. containing halogen, silicon, nitrogen, oxygen, boron, phosphorus, etc. Among them, hydrocarbyl groups are preferable and methyl, ethyl, propyl and butyl groups are particularly preferable.
- R 2 represent each hydrogen, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a silicon-containing hydrocarbyl group, a nitrogen-containing hydrocarbyl group, an oxygen-containing hydrocarbyl group, a boron-containing hydrocarbyl group or a phosphorus-containing hydrocarbyl group.
- aryl groups having 6 to 16 carbon atoms more specifically, phenyl, ⁇ -naphthyl, ⁇ -naphthyl, anthracenyl, phenanthryl, pyrenyl, acenaphthyl, aceantrithrenyl groups, etc. are preferable,
- aryl groups may be substituted by a halogen, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a nitrogen-containing hydrocarbyl group, an oxygen-containing hydrocarbyl group, a boron-containing hydrocarbyl group or a phosphorus-containing hydrocarbyl group.
- a halogen a hydrocarbyl group having 1 to 20 carbon atoms
- a halogenated hydrocarbyl group having 1 to 20 carbon atoms a nitrogen-containing hydrocarbyl group
- an oxygen-containing hydrocarbyl group a boron-containing hydrocarbyl group or a phosphorus-containing hydrocarbyl group.
- phenyl and naphthyl groups are preferable.
- M is a metal selected from among titanium, zirconium and hafnium and hafnium is preferable.
- Non-limiting examples of the above-described transition metal compounds are as follows:
- particularly preferable compounds include dimethylsilylenebis(2-ethyl-4-(2-fluoro-4-biphenyl)-4H-azu lenyl)hafnium dichloride, dimethylsilylenebis(2-ethyl-4-(4-chloro-2-naphthyl-4H-azul enyl)hafnium dichloride and dimethylsilylenebis(2-ethyl-4-(3-chloro-4-t-butyl-4H-azule nyl))hafnium dichloride.
- a polymer according to the present invention which is excellent in molding properties and contains less xylene solubles, is not a technique common to all metallocenes.
- it is required to have a special structure capable of forming heterologous active sites differing in hydrogen-dependency in a state of being carried on a clay mineral.
- Complexes having the azulene skeleton are liable to exert such characteristics. Even in azulene-type compounds, these characteristics can be hardly exhibited in case where the seven-membered ring is hydrogenated.
- these characteristics closely relate to the state of carriers and the method of carrying as will be described hereinafter. It is therefore not essentially in the present invention to specify the structure of the complex. Accordingly, the above description merely indicates an example of the formation of the polymer according to the present invention.
- At least one compound selected from the group consisting of ion-exchange layered silicates to be used as the component B in the present invention is a silicate compound having a crystalline structure in which planes formed by ionic bonds, etc. are piled up in parallel at weak bonding strength and the ion contained therein is exchangeable.
- Most of ion-exchange layered silicates are produced as the main components of clay minerals in nature. However, these ion-exchange layered silicates are not restricted to natural ones but artificial ones are also usable.
- ion-exchange layered silicate examples include publicly known layered silicates described in "Nendo Kobutugaku", Haruo Shiramizu, Asakura-shoten (1995), etc. It is preferable to use smectites, vermiculites and micas such as montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stevensite, bentonite or teaniolite.
- the component B may be used as such without resort to any special treatment, it is preferable to chemically treat the component B.
- the chemical treatment use may be made of either a surface treatment for eliminating impurities adhering to the surface or a treatment affecting the crystalline structure of the clay. More specifically, examples of the treatment include acid-treatments, alkali-treatment, salt-treatment and organic matter-treatments.
- the salt to be used in the salt-treatment aiming at the ion exchange is a compound consisting of a cation containing at least one atom selected from the group consisting of the atoms of the groups 1 to 14 and at least one anion selected from the group consisting of halogen atoms, inorganic acids and organic acids.
- it is a compound consisting of a cation containing at least one atom selected from the group consisting of the atoms of the groups 2 to 14 and at least one anion selected from the group consisting of Cl, Br, I, F, PO 4 , SO 4 , NO 3 , CO 3 , C 2 O 4, , ClO 4 , OOCCH 3 , CH 3 COCHCOCH 3 , OCl 2 , O(NC 3 ) 2 , O(ClO 4 ) 2 , O(SO 4 ), OH, O 2 Cl 2 , OCl 3 , OOCH, OOCCH 2 CH 3 , C 2 H 4 O a and C 3 H 5 O 7 .
- the process for selecting the polymer according to the present invention varies depending on the complex, carrier and the method of using hydrogen during the polymerization. Therefore, it is not essential in the present invention to specify the method of treating the component (B).
- the non-uniformity formation of heterologous active sites occurring in carrying the complex is caused by the formation of sites having different acidities on the clay surface. Owing to the balance between the extent of the non-uniformity and the degrees of the easiness in carrying the complex at the respective sites, a PP polymer having a special balance, which is never observed in the conventional polymers, can be produced.
- impurities on the surface can be eliminated and, moreover, a part or all of cations such as Al, Fe or Mg in the crystalline structure can be eluted.
- the acid to be used in the acid-treatment is selected from among hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and oxalic acid.
- Two or more salts and acids may be used in the treatment.
- the conditions for the salt- and acid-treatment are not particularly restricted, it is preferable that the treatment is performed at a salt and acid concentration of from 0.1 to 50% by weight and at a temperature from room temperature to the boiling point of the solvent for 5 minutes to 24 hours so that at least a part of the substance(s)constituting at least one compound selected from the group consisting of the ion-exchange layered silicates can be eluted.
- the salts and acids are usually employed as an aqueous solution.
- ion-exchange layered silicates usually contain adsorption water and interlayer water. It is preferable in the present invention to use such an ion-exchange layered silicate as the component B after removing these absorption water and interlayer water.
- the heat treatment method for removing the adsorption water and the interlayer water is not particularly restricted, it is necessary to select such conditions as enabling the complete removal of the interlayer water without causing structural destruction.
- the heating is performed for 0.5 hour or longer, preferably an hour or longer.
- the moisture content of the component B after the treatment is 3% by weight or less, still preferably 1% by weight or less, where the moisture content achieved after dehydrating at a temperature of 200°C under a pressure of 1 mmHg for 2 hours is referred to as 0% by weight.
- the component B an ion-exchange layered silicate having a moisture content of 3% by weight or less which is obtained by treatment with salts and/or acids.
- spherical particles having an average particle diameter of 5 ⁇ m or above.
- a natural substance or a marketed product may be used as such, so long as the particles are spherical.
- use can be made of particles the shape and diameter of which have beencontrolledbygranulation, classification, fractionation, etc.
- Examples of the granulation method to be used herein include stirring granulation and spray granulation. It is also possible to use a marketed product. In the granulation, use may be made of organic matters, inorganic solvents, inorganic salts or various binders.
- the spherical particles thus obtained have a compressive destruction strength of 0.2 MPa or above, still preferably 0.5 MPa or above. In case where the particles have such a strength, the effect of improving the particle properties can be effectively achieved particularly in performing pre-polymerization.
- Examples of the organic aluminum compound to be used as the component C in a preferable polymerization catalyst in the present invention include trialkylaluminums such as trimethylaluminum, triethylaluminum, tripropylaluminum and triisobutylaluminum and halogen- or alkoxy-containing alkylammoniums such as diethylaluminum monochloride and diethylaluminum monomethoxide represented by the following general formula: AlR a P 3-a wherein R represents a hydrocarbyl group having 1 to 20 carbon atoms; P represents hydrogen, halogen or an alkoxy group; and a is an integer satisfying the requirement 0 ⁇ a ⁇ 3. It is also possible to use aluminoxanes such as methylaluminoxane. Among them, a trialkylaluminum is particularly preferable.
- the component A, the component B and, if needed, the component C are brought into contact with each other to give a catalyst.
- the contact may be carried out in the following orders, though the present invention is not restricted thereto.
- the contact may be performed not only in the step of preparing the catalyst but also in the pre-polymerization of the olefin or in the polymerization of the olefin.
- the three components may be brought into contact with each other at the same time.
- a polymer such as polyethylene or polypropylene or an organic oxide such as silica or alumina may coexist or come into contact.
- Contacting may be carried out in an inert gas or an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene or xylene.
- the contact temperature is from -20°C to the boiling point of the solvent, particularly preferably from room temperature to the boiling point of the solvent.
- the catalyst thus obtained may be used as such without washing with an inert solvent.
- a solvent in particular, a hydrocarbon such as hexane or heptane before use.
- the above-described component C maybe newly combined therewith.
- the amount of the component C employed herein is selected so as to give an atomic ratio of the aluminum in the component C to the transition metal in the component A of 1:0 to 1:10,000.
- a catalyst prepared by pre-polymerizing an olefin such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane or styrene followed by, if needed, washing.
- an olefin such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane or styrene followed by, if needed, washing.
- prepolymerization it is preferable to carry out this prepolymerization in an inert solvent under mild conditions. It is desirable that the prepolymerization is performed so that from 0.01 to 1000 g, preferably from 0.1 to 100 g, of the polymer is formed per gram of the solid catalyst.
- the polymerization reaction is carried out either in the presence or absence of an inert hydrocarbon such as butane, pentane, hexane, heptane, toluene or cyclohexane or a solvent such a as liquefied ⁇ -olefin.
- the polymerization temperature ranges from -50°C to 250°C, while the pressure preferably ranges from atmospheric pressure to about 2000 kg•f/cm 2 , though the present invention is not restricted thereto.
- the polymerization can be performed either by the batch method, the continuous method or the semi-batch method.
- the molecular weight and the molecular weight distribution can be controlled to give the desired polymer.
- the Q value also depends on the polymerization temperature and the polymerization pressure, it can be regulated within a desired range by optimizing these factors.
- a metallocene catalyst particularly vigorously consumes hydrogen, the-hydrogen concentration varies widely in case of feeding hydrogen exclusively in the early stage. In this case, a low-molecular weight polymer is formed in the early stage and then an ultrahigh-molecular weight polymer is formed in the later stage under hydrogen-free conditions.
- a metallocene catalyst capable of forming an ultrahigh-molecular weight polymer under the hydrogen-free conditions problems might arise in that the ME becomes excessively large and thus worsens the molding properties or the appearance of molded articles. Accordingly, it is beneficial to regulate the hydrogen concentration within a specific range in the course of the polymerization. Therefore, it is preferable in the present invention to use a device by which hydrogen can be continuously fed so as to maintain the hydrogen concentration at a constant level throughout the polymerization.
- hydrogen it is preferable to continuously feed hydrogen so as to maintain the hydrogen concentration in the gas phase in an autoclave at a constant level throughout the polymerization in case of bulk polymerization by the batch method or gas phase polymerization.
- the hydrogen concentration may be regulated to an arbitrary level from 1 ppm to 10000 ppm.
- the hydrogen concentration may be regulated to an arbitrary level from 1 ppm to 10000 ppm too.
- Copolymerization may carried out by adding a small amount of an ⁇ -olefin (C 4 to C 6 ) other than ethylene, as long as the physical properties of the polymer disclosed in the present invention are not impaired thereby.
- the ⁇ -olefin may be added in an amount up to 6.0% by mol based on propylene.
- the physical properties are respectively defined by using the following measurement methods and apparatus.
- a propylene polymer sample was blended with 0.10% by weight of IRGANOX1010 (manufactured by Ciba Speciality Chemicals), 0.10% by weight of IRGAFOS168 (manufactured by Ciba Speciality Chemicals) and 0.05% by weight of calcium stearate at blending ratio (% by weight) and kneaded and granulated in a monoaxial extruder to give a resin composition in the form of pellets.
- the sample pellets thus obtained were subjected to the following measurements.
- MFR unit: g/10 min
- JIS-K7210 230°C, under 2.16 kg load
- the weight-average molecular weight Mw and the number-average molecular weight Mn were measured by using Model GPC150C (manufactured by Waters), three AD80M/S columns (manufactured by Showa Denko) and o-dichlorobenzene as a solvent at a measurement temperature of 140°C.
- Apparatus Melt Indexer manufactured by Takara. Measurement method: The sample was extruded at 190°C from orifices (diameter: 1.0 mm, length: 8.0mm) under loading. At an extrusion speed of 0.1 g/min, the polymer extruded from the orifices was quenched in methanol and then the strand diameter was calculated.
- the ethylene unit content (unit: %by weight) inthepolymer originating in ethylene comonomer was determined by pressing the obtained polymer into a sheet and measuring by the IR method. More specifically, it was calculated from the height of a peak assignable tothemeihylene chain which was observed at around 730 cm -1 .
- a sample (about 5 mg) was weighed, molten at 200°C for 5 minutes and then crystallized by cooling to 40°C at a rate of 10°C/min. Next, it was molten by heating to 200°C at a rate of 10°C/min. Then evaluation was made on the basis of the melting peak temperature and the temperature at the completion of melting.
- 2-Bromo-4-chloronaphthalene (2.50 g, 10.30 mmol) was dissolved in a solvent mixture of diethyl ether (50 mL) and hexane (7.5 mL). Then a hexane solution of n-butyllithium (6.8 mL, 10.4 mmol, 1.53 N) was dropped thereinto at 19°C. After stirring at 20°C for 1 hour, 2-ethylazulene (1.47 g, 9.41 mmol) was added to this solution at 5°C followed by stirring at room temperature for 1 hour. In the course of the stirring, diethyl ether (5.0 mL) was added.
- reaction product (3.09 g, 4.21 mmol) obtained above was dissolved in diethyl ether (44 mL). After dropping a hexane solution of n-butyllithium (5.5 mL, 8.41 mmol, 1.53 mol/L) at -70°C, the mixture was slowly heated and stirred at room temperature for 2 hours. After distilling off the solvent, toluene (11mL) and diethyl ether (99mL) wereadded. Themixture was cooled to -70°C and, after adding hafnium tetrachloride (1.375 g, 4.29 mmol), slowly heated and stirred at room temperature overnight.
- a 500 mL round-bottomed flask was provided with a vacuum stirrer. Then 196.5 g of ion-exchanged water and 51.25 g (525 mmol) of sulfuric acid were successively added thereto followed by stirring. Further, 12.45 g (525 mmol) of lithium hydroxide was added and dissolved therein.
- the liquid mixture of the montmorillonite slurry and the dimethylsilylenebis(2-ethyl-4-(4-chloro-2-naphthyl-4H-azulenyl)hafnium dichloride prepared above was fed into a stirring autoclave having an internal volume of 1.0 L which had been sufficiently purged with nitrogen. Further, heptane was added to give a total volume of 500 ml and the resultant mixture was maintained at 30°C.
- the analytical data of this polymer were as follows: isotactic triad fraction: 99.5%; MFR: 11.30 g/10 min; weight-average molecular weight by GPC: 224500; Mw/Mn: 3.27; melting temperature: 158.5°C; CXS: 0.40% by weight; and ME: 1.36.
- the analytical data of this polymer were as follows: isotactic triad fraction: 99.3%; MFR: 4.64 g/10 min; weight-average molecular weight by GPC: 303300; Mw/Mn: 3.69; melting temperature Tm: 157.5°C; CXS: 0.45% by weight; and ME: 1.49.
- the analytical data of this polymer were as follows: isotactic triad fraction: 99.4%; MFR: 6.07 g/10 min; weight-average molecular weight by GPC: 255500; Mw/Mn: 3.17; melting temperature Tm: 149.2°C; ethylene content: 1.22% by weight; CXS: 0.50% by weight; and ME: 1.44.
- a PP homopolymer (MA3UQ manufactured by Nippon Polychem) prepared by using the Ziegler-Natta catalyst was subjected to the same analysis and measurement of physical properties.
- the analytical data of this polymer were as follows: isotactic triad fraction: 97.8%; MFR: 7.80 g/10 min; weight-average molecular weight by GPC: 310000; Q value: 4.5; melting temperature Tm: 164.0°C; CXS: 1.8% by weight; and ME: 1.33.
- the mixture was heated to 65°C to thereby initiate polymerization and then maintained at this temperature for 3 hours. Then 100 ml of ethanol was injected to thereby cease the reaction. After purging the remaining gases, the polymer was dried. Thus, 7.0 kg of the polymer was obtained.
- 2-Fluoro-4-bromobiphenyl (4.63 g, 18.5 mmol) was dissolved in a solvent mixture of diethyl ether (40 mL) and hexane (40 mL). Thenapentane solution of n-butyllithium (22.8 mL, 36.9 mmol, 1.62 N) was dropped thereinto at -78°C and the resultant mixture was stirred at -5°C for 2 hours.
- the racemic/meso mixture (1.1 g) obtained above was suspended in dichloromethane (30 mL) and irradiated with a high-pressure mercury lamp (100W) for 30 minutes. Then the solution was distilled under reduced pressure. The solid thus obtained was suspended by adding dichloromethane (40 mL) and filtered. After washing with hexane (3 mL) and dried under reduced pressure, the racemic compound (577 mg, 52%) was obtained.
- liquefied propylene, hydrogen and TIBA were continuously fed.
- the liquefied propylene and TIBA were fed respectively at rates of 90 kg/h and 21.2 g/h, while hydrogen was fed to give amolar concentration [H 2 ] of 30 ppm.
- the solid catalyst component (A) obtained above was fed thereinto so as to give a concentration of the solid component contained in (A) of 1.36 g/h.
- the polymerization tank was cooled to thereby adjust the polymerization temperature to 65°C.
- the slurry polymerized in this polymerization tank was withdrawn by using a slurry pump.
- the slurry was withdrawn at such a rate as to give the concentration of the polypropylene particles contained in the slurry of about 10.8 kg/h.
- the average residence time of the polypropylene particles in the liquid phase polymerization tank was 2 hours.
- the average particle diameter (Dp50) of the polypropylene particles was 436 ⁇ m, the average CE thereof was 7900/g, the polymer MFR was 2.3 g/10 min, the CXS was 0.26% by weight, the Q value was 4.5 and the ME was 1.54.
- the catalytic efficiency (CE) is defined as the yield (g) of polypropylene per gram of the solid component contained in the solid catalyst component (A).
- Example 4 The procedure of Example 4 was followed but maintaining the hydrogen concentration [H 2 ] at 200 ppm, feeding 1.63 g of the catalyst and controlling the average residence time to 1.5 h.
- the average particle diameter (Dp50) of the obtained polymer was 457, the average CE thereof was 10300/g, the polymer MFR was 63/10 min, the CXS was 0.20% by weight, the Q value was 4.0 and the ME was 1.23.
- the analytical data of this polymer were as follows: isotactic triad fraction: 99.5%; MFR: 2.0 g/10 min; weight-average molecular weight by GPC: 358000; Mw/Mn: 4.39; melting temperature: 160.0°C; CXS: 1.30% by weight; and ME: 1.27.
- Polymerization was carried out by feeding 7.0 NL of hydrogen at the early stage but feeding no more hydrogen thereafter.
- 22.5 kg of a polymer having an isotactic triad fraction of 99.5%, an MFR of 3.0g/10min, a weight-average molecular weight by GPC of 251000, an Mw/Mn of 7.8 and an ME of 1.30 was obtained.
- propylene polymers which are not only excellent in rigidity and heat resistance but also have much high-molecular weight components and favorable molding processability.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/145,737 US6756463B2 (en) | 2002-05-16 | 2002-05-16 | Propylene polymer |
AT02011675T ATE361325T1 (de) | 2002-05-16 | 2002-05-31 | Propylenpolymer |
DE2002619891 DE60219891T2 (de) | 2002-05-31 | 2002-05-31 | Propylenpolymer |
EP02011675A EP1367068B1 (fr) | 2002-05-16 | 2002-05-31 | Polymère de propylène |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/145,737 US6756463B2 (en) | 2002-05-16 | 2002-05-16 | Propylene polymer |
EP02011675A EP1367068B1 (fr) | 2002-05-16 | 2002-05-31 | Polymère de propylène |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1367068A1 true EP1367068A1 (fr) | 2003-12-03 |
EP1367068B1 EP1367068B1 (fr) | 2007-05-02 |
Family
ID=31995514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02011675A Expired - Lifetime EP1367068B1 (fr) | 2002-05-16 | 2002-05-31 | Polymère de propylène |
Country Status (3)
Country | Link |
---|---|
US (1) | US6756463B2 (fr) |
EP (1) | EP1367068B1 (fr) |
AT (1) | ATE361325T1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008006532A2 (fr) * | 2006-07-10 | 2008-01-17 | Borealis Technology Oy | Film de polypropylène biaxialement orienté |
EP2177544A1 (fr) * | 2007-08-06 | 2010-04-21 | Japan Polypropylene Corporation | Polymère de propylène, son procédé de fabrication, composition le contenant et son utilisation |
US7799841B2 (en) | 2006-08-25 | 2010-09-21 | Borealis Technology Oy | Polypropylene foam |
US7914899B2 (en) | 2006-07-10 | 2011-03-29 | Borealis Technology Oy | Electrical insulation film |
US7915367B2 (en) | 2006-12-28 | 2011-03-29 | Borealis Technology Oy | Process for the manufacture of branched polypropylene |
US8142902B2 (en) | 2006-08-25 | 2012-03-27 | Borealis Technology Oy | Extrusion coated substrate |
US8247052B2 (en) | 2006-09-25 | 2012-08-21 | Borealis Technology Oy | Coaxial cable |
WO2013030188A1 (fr) * | 2011-08-30 | 2013-03-07 | Total Research & Technology Feluy | Fibres et non tissés comprenant un copolymère aléatoire de propylène et procédé de production des fibres |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7700707B2 (en) | 2002-10-15 | 2010-04-20 | Exxonmobil Chemical Patents Inc. | Polyolefin adhesive compositions and articles made therefrom |
EP2261292B1 (fr) | 2002-10-15 | 2014-07-23 | ExxonMobil Chemical Patents Inc. | Compositions à base d'adhesifs polyolefiniques |
US7563836B2 (en) * | 2003-10-07 | 2009-07-21 | Dow Global Technologies, Inc. | Polypropylene composition for air quenched blown films |
US20050170727A1 (en) * | 2004-01-27 | 2005-08-04 | Melik David H. | Soft extensible nonwoven webs containing fibers with high melt flow rates |
CN101248132A (zh) * | 2005-08-22 | 2008-08-20 | 三井化学株式会社 | 丙烯类树脂组合物 |
EP1847555A1 (fr) | 2006-04-18 | 2007-10-24 | Borealis Technology Oy | Polypropylène à ramifications multiples |
EP2810883A1 (fr) * | 2013-06-06 | 2014-12-10 | Basell Poliolefine Italia S.r.l. | Terpolymère à base de propylène pour contenants |
EP2810884A1 (fr) * | 2013-06-06 | 2014-12-10 | Basell Poliolefine Italia S.r.l. | Terpolymère à base de propylène pour contenants |
JP6750239B2 (ja) * | 2015-04-07 | 2020-09-02 | 日本ポリプロ株式会社 | 固体酸、オレフィン重合用触媒及びオレフィン重合体の製造方法 |
US10883197B2 (en) | 2016-01-12 | 2021-01-05 | Chevron Phillips Chemical Company Lp | High melt flow polypropylene homopolymers for fiber applications |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0657477A2 (fr) * | 1993-12-07 | 1995-06-14 | Sumitomo Chemical Company, Limited | Procédé de préparation de polyoléfines, catalyseur pour la polymérisation d'oléfines et polypropylène pour film biaxialement orienté obtenu au moyen de ce catalyseur |
EP0821012A2 (fr) * | 1994-05-12 | 1998-01-28 | Showa Denko Kabushiki Kaisha | Polymère à base de propylène, son procédé de production et sa composition |
EP0854155A1 (fr) * | 1996-07-31 | 1998-07-22 | Japan Polyolefins Co., Ltd. | Polypropylene a forte cristallinite |
WO1999048935A1 (fr) * | 1998-03-24 | 1999-09-30 | Japan Polychem Corporation | Film de resine propylenique |
EP0963996A2 (fr) * | 1998-06-08 | 1999-12-15 | Japan Polychem Corporation | Composé à base d'un métal de transition, composant d'un catalyseur pour la polymérisation d'oléfines, et un procédé pour la préparation d'alpha- oléfines |
EP1002814A1 (fr) * | 1998-06-05 | 2000-05-24 | Japan Polychem Corporation | Copolymere sequence de propylene et composition de resine propylene |
EP1160261A1 (fr) * | 2000-05-29 | 2001-12-05 | Japan Polychem Corporation | Catalyseur pour la polymérisation d'oléfine, méthode pour la production de polymère d'oléfine à l'aide de ce catalysateur |
EP1160263A1 (fr) * | 1999-09-08 | 2001-12-05 | Japan Polychem Corporation | Procede de fabrication d'un polymere d'alpha-olefine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0962474B1 (fr) * | 1998-06-04 | 2004-04-07 | Japan Polychem Corporation | Copolymère à bloc de polypropylène et composition de résine |
JP4644886B2 (ja) | 1998-06-05 | 2011-03-09 | 三菱化学株式会社 | 遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 |
JP4045059B2 (ja) | 1999-12-27 | 2008-02-13 | 日本ポリプロ株式会社 | プロピレン系重合体 |
JP2001288220A (ja) | 2000-04-03 | 2001-10-16 | Japan Polychem Corp | プロピレン系重合体およびその製造方法 |
-
2002
- 2002-05-16 US US10/145,737 patent/US6756463B2/en not_active Expired - Lifetime
- 2002-05-31 EP EP02011675A patent/EP1367068B1/fr not_active Expired - Lifetime
- 2002-05-31 AT AT02011675T patent/ATE361325T1/de not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0657477A2 (fr) * | 1993-12-07 | 1995-06-14 | Sumitomo Chemical Company, Limited | Procédé de préparation de polyoléfines, catalyseur pour la polymérisation d'oléfines et polypropylène pour film biaxialement orienté obtenu au moyen de ce catalyseur |
EP0821012A2 (fr) * | 1994-05-12 | 1998-01-28 | Showa Denko Kabushiki Kaisha | Polymère à base de propylène, son procédé de production et sa composition |
EP0854155A1 (fr) * | 1996-07-31 | 1998-07-22 | Japan Polyolefins Co., Ltd. | Polypropylene a forte cristallinite |
WO1999048935A1 (fr) * | 1998-03-24 | 1999-09-30 | Japan Polychem Corporation | Film de resine propylenique |
EP1002814A1 (fr) * | 1998-06-05 | 2000-05-24 | Japan Polychem Corporation | Copolymere sequence de propylene et composition de resine propylene |
EP0963996A2 (fr) * | 1998-06-08 | 1999-12-15 | Japan Polychem Corporation | Composé à base d'un métal de transition, composant d'un catalyseur pour la polymérisation d'oléfines, et un procédé pour la préparation d'alpha- oléfines |
EP1160263A1 (fr) * | 1999-09-08 | 2001-12-05 | Japan Polychem Corporation | Procede de fabrication d'un polymere d'alpha-olefine |
EP1160261A1 (fr) * | 2000-05-29 | 2001-12-05 | Japan Polychem Corporation | Catalyseur pour la polymérisation d'oléfine, méthode pour la production de polymère d'oléfine à l'aide de ce catalysateur |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 199953, Derwent World Patents Index; AN 1999-572176, XP002219242 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA016807B1 (ru) * | 2006-07-10 | 2012-07-30 | Бореалис Текнолоджи Ой | Двухосно-ориентированная полипропиленовая пленка и способ ее получения |
US7914899B2 (en) | 2006-07-10 | 2011-03-29 | Borealis Technology Oy | Electrical insulation film |
WO2008006532A3 (fr) * | 2006-07-10 | 2008-03-20 | Borealis Tech Oy | Film de polypropylène biaxialement orienté |
US8378047B2 (en) | 2006-07-10 | 2013-02-19 | Borealis Technology Oy | Biaxially oriented polypropylene film |
EP2208749A1 (fr) * | 2006-07-10 | 2010-07-21 | Borealis Technology Oy | Film de polypropylène orienté biaxialement |
EP1886806A2 (fr) * | 2006-07-10 | 2008-02-13 | Borealis Technology Oy | Film de polypropylène orienté biaxialement |
EP1886806A3 (fr) * | 2006-07-10 | 2008-03-12 | Borealis Technology Oy | Film de polypropylène orienté biaxialement |
WO2008006532A2 (fr) * | 2006-07-10 | 2008-01-17 | Borealis Technology Oy | Film de polypropylène biaxialement orienté |
US8142902B2 (en) | 2006-08-25 | 2012-03-27 | Borealis Technology Oy | Extrusion coated substrate |
US7799841B2 (en) | 2006-08-25 | 2010-09-21 | Borealis Technology Oy | Polypropylene foam |
US8247052B2 (en) | 2006-09-25 | 2012-08-21 | Borealis Technology Oy | Coaxial cable |
US7915367B2 (en) | 2006-12-28 | 2011-03-29 | Borealis Technology Oy | Process for the manufacture of branched polypropylene |
EP2177544A4 (fr) * | 2007-08-06 | 2011-01-26 | Japan Polypropylene Corp | Polymère de propylène, son procédé de fabrication, composition le contenant et son utilisation |
EP2177544A1 (fr) * | 2007-08-06 | 2010-04-21 | Japan Polypropylene Corporation | Polymère de propylène, son procédé de fabrication, composition le contenant et son utilisation |
US8080624B2 (en) | 2007-08-06 | 2011-12-20 | Japan Polypropylene Corporation | Propylene-based polymer, production method therefor, composition using the same, and application thereof |
WO2013030188A1 (fr) * | 2011-08-30 | 2013-03-07 | Total Research & Technology Feluy | Fibres et non tissés comprenant un copolymère aléatoire de propylène et procédé de production des fibres |
EA026322B1 (ru) * | 2011-08-30 | 2017-03-31 | Тотал Ресерч & Технолоджи Фелай | Нетканые материалы, содержащие статистический сополимер пропилена |
Also Published As
Publication number | Publication date |
---|---|
US20030216527A1 (en) | 2003-11-20 |
US6756463B2 (en) | 2004-06-29 |
ATE361325T1 (de) | 2007-05-15 |
EP1367068B1 (fr) | 2007-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1367068B1 (fr) | Polymère de propylène | |
EP1454931B1 (fr) | Copolymere sequence de propylene | |
JP4558066B2 (ja) | 溶融物性が改良されたプロピレン系重合体の製造方法 | |
DE10125356A1 (de) | Metallocen-Verbindung, Olefin-Polymerisationskatalysator, der die Verbindung enthält und Verfahren zur Erzeugung eines Olefin-Polymers unter Verwendung des Katalysators | |
JP5140625B2 (ja) | プロピレン系樹脂組成物及びそれを用いた食品容器、医療部材 | |
EP1012192B1 (fr) | Composite polymere charge homogene | |
EP0979247B1 (fr) | Procede de production de polypropylenes isotactiques en phase condensee, a l'aide de titanocenes | |
EP0729984A1 (fr) | Copolymères atactiques du propylène avec de l'éthylène | |
JP4171880B2 (ja) | メタロセン化合物、それを含む触媒を用いたオレフィン重合体の製造方法、および、該製造方法により製造されたオレフィン重合体 | |
JP2008266654A (ja) | メタロセン化合物、それを含む触媒を用いたオレフィン重合体の製造方法、および、該製造方法により製造されたオレフィン重合体 | |
JP4705698B2 (ja) | プロピレン系ブロック共重合体 | |
JP3942227B2 (ja) | プロピレン重合体 | |
JP2003073426A (ja) | プロピレンランダム共重合体 | |
JP3830370B2 (ja) | プロピレン系重合体 | |
JP2001288220A (ja) | プロピレン系重合体およびその製造方法 | |
JP2006249167A (ja) | プロピレン系重合体 | |
JP5285893B2 (ja) | 溶融物性が改良されたプロピレン系重合体の製造方法 | |
JP5271518B2 (ja) | 溶融物性が改良されたプロピレン系重合体の製造方法 | |
CN100392010C (zh) | 聚烯烃树脂改性剂,聚烯烃树脂组合物和取向聚烯烃膜 | |
JP5232709B2 (ja) | プロピレン/エチレン−α−オレフィン系ブロック共重合体用重合触媒及びそれを用いるプロピレン系ブロック共重合体の製造方法 | |
JP4865301B2 (ja) | プロピレン−α−オレフィンブロック共重合体の製造方法 | |
US20080097052A1 (en) | Syndiotactic polypropylene and methods of preparing same | |
US20010034298A1 (en) | Catalyst for polymerization of ethylene and method for producing ethylene polymers | |
DE60219891T2 (de) | Propylenpolymer | |
JP3689208B2 (ja) | エチレン−α−オレフィン共重合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040401 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20040728 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: JAPAN POLYCHEM CORPORATION |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: JAPAN POLYPROPYLENE CORPORATION |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60219891 Country of ref document: DE Date of ref document: 20070614 Kind code of ref document: P |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: JAPAN POLYPROPYLENE CORPORATION Effective date: 20070509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070813 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071002 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080205 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070502 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210412 Year of fee payment: 20 Ref country code: DE Payment date: 20210505 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60219891 Country of ref document: DE |