EP1335792A1 - Katalysatorträger, dessen herstellung und verwendung zur olefinpolymerisation - Google Patents

Katalysatorträger, dessen herstellung und verwendung zur olefinpolymerisation

Info

Publication number
EP1335792A1
EP1335792A1 EP01980446A EP01980446A EP1335792A1 EP 1335792 A1 EP1335792 A1 EP 1335792A1 EP 01980446 A EP01980446 A EP 01980446A EP 01980446 A EP01980446 A EP 01980446A EP 1335792 A1 EP1335792 A1 EP 1335792A1
Authority
EP
European Patent Office
Prior art keywords
compound
range
bis
support
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01980446A
Other languages
English (en)
French (fr)
Inventor
Thomas Eberle
Dieter Lubda
Karin KÖHLER
Jens Eichhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10052600A external-priority patent/DE10052600A1/de
Priority claimed from DE10052603A external-priority patent/DE10052603A1/de
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP1335792A1 publication Critical patent/EP1335792A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Definitions

  • the present invention relates to a new support for catalysts, a production process for heterogeneous catalysts which contain this support, 5 and the use of these catalysts for olefin polymerization or a polymerization process using the catalysts.
  • Metallocene-catalyzed polymerization has experienced an enormous boom since the early 1980s.
  • the carrier substances usually described are based on inorganic compounds such as silicon (e.g. US 4,808,561, US 5,939,347, WO 96/34898) or aluminum oxides (e.g. M. Kaminaka, K. Soga, Macromol. 30 Rapid Commun. 1991, 12 , 367.) or layered silicates (e.g. US 5,830,820; DE-A-19727257; EP-A-849 288), zeolites (e.g. LK Van Looveren, DE De Vos, KA Vercruysse, DF Geysen, B. Janssen, PA Jacobs, Cat Lett.
  • inorganic compounds such as silicon (e.g. US 4,808,561, US 5,939,347, WO 96/34898) or aluminum oxides (e.g. M. Kaminaka, K. Soga, Macromol. 30 Rapid Commun. 1991, 12 , 367.) or layered silicates (e.g
  • a first object of the present invention is a support for catalysts which has a physisorbed water content of at least 2.5% by weight.
  • the present invention further provides a process for the preparation of a heterogeneous catalyst suitable for the synthesis of polyolefins, in which a) a support with a physisorbed water content of at least 2.5% by weight with at least one organometallic
  • the content of physisorbed water is the water content of the carrier according to the invention, which in the case of a Karl Fischer analysis is determined.
  • the carriers preferably have water contents in the range from 3 to 8% by weight.
  • these high water contents are advantageous for a high loading of the support with catalysts and in particular cocatalysts.
  • the uptake of the frequently used cocatalyst methylaluminoxane is supported by a high water content of the support. This also increases the catalytic activity of the loaded carriers.
  • the carrier according to the invention is preferably an oxidic material which is preferably selected from the oxides of the elements of the 3rd and 4th main group and the 3rd to 8th subgroup of the periodic table. It is particularly preferably an aluminum, silicon, boron, germanium, titanium, zirconium or iron oxide or a mixed oxide or an oxide mixture of the compounds mentioned.
  • the carrier is a mixed aluminum-silicon oxide.
  • aluminum-silicon oxide is to be understood in such a way that it can be a preferably finely divided, physical mixture of silicon dioxide and aluminum oxide as well as a real mixed oxide in which Si-O-Al bridges are present ,
  • a particularly preferred carrier is obtainable by a process in which a) first separate gels of aluminum (hydr) oxide and silicon (hydr) oxide are produced, b) the two gels are subsequently mixed and homogenized, c) the homogenized mixture is spray dried.
  • amorphous halo amorphous halo
  • the particles of the support material according to the invention allow loading with catalyst by customary methods, the particle size increasing slightly as a result of the catalyst applied to the surface, but the particle shape is largely retained.
  • the particularly uniform distribution of aluminum and silicon in the support material can also achieve a particularly uniform coating with the catalyst.
  • the particle shape of the polymer particles can be influenced by a suitable choice of shape of the carrier particles. Due to the special particle properties obtainable by the described production process, the carrier material particles break during the polymerization and thus make the catalyst centers bound to their inner surface available, which leads to an increase in the catalyst activity compared to stable carrier particles. Another advantage of breaking is that there are only tiny carrier particles encased in the resulting polymer in the resulting polymer not significantly affect the application-related physical and chemical properties of the polymer.
  • This preferred catalyst support is made in a multi-step process.
  • the two silicon and aluminum components are initially provided separately: aluminum (hydr) oxide is obtained, for example, by alkaline precipitation from aluminum salts, such as from aluminum sulfate, acetate or oxalate.
  • aluminum hydroxides can be obtained by a comparable procedure from silicic acid or hydrolyzable molecular precursors, such as silicon tetrachloride or ortho-silicic acid esters of lower alcohols, such as preferably tetraethoxysilane.
  • the two (hydr) oxides obtained as gels are homogenized after setting the desired silicon / aluminum ratio and then spray-dried. The amorphous structural units are retained through the spray drying process. Finally, the material can be washed and classified salt-free.
  • aluminum oxide or silicon (hydr) oxide denotes intermediate stages which have a polymeric structure, but which still differ significantly from the 3-dimensional spatial network structure of the oxides and, as a result of the oxides, have a significantly increased reactivity due to the higher proportion of hydroxyl groups.
  • the ratios of Si0 2 to Al 2 O 3 in the carrier are usually in the range from 100: 1 to 1: 2, with ratios greater than 1: 1 and in particular greater than 2: 1 being preferred. It can be in the sense of simultaneous Optimization of hydroxyl group density (active surface) and available surface (according to BET) it should be particularly preferred to set a ratio of SiO 2 to Al 2 O 3 in the range from 20: 1 to 5: 1.
  • spherical particles are obtained.
  • Spherical means that the particles in scanning electron microscope images give the impression of spheres.
  • "Spherical" can be quantified in the sense that the mean values of the 3 mutually perpendicular diameters of the particles deviate from each other by a maximum of 50% of the length. That all ratios of the three mutually perpendicular diameters are in the range 1.5: 1 to 1: 1.5.
  • the ratios of the 3 mean diameters are all in the range 1.3, 1 to 1: 1, 3, i.e. the diameters differ by a maximum of 30%.
  • the carrier material according to the invention usually has average particle sizes in the range from 1 to 100 ⁇ m, preferably in the range from 3 to 50 ⁇ m.
  • the grain size distribution can be controlled by classification, for example by wind classification.
  • the surface of the particles - determined by the BET method (S. Brunnauer, PH Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309) - is usually in the range from 50 to 500 m 2 / g , surfaces in the range from 150 to 450 m 2 / g being preferred.
  • the pore volume is typically in the range from 0.5 to 4.5 ml / g, the pore volume preferably above 0.8 ml / g and particularly preferably in the range from 1.5 to 4 , 0 ml / g.
  • the pH of the carrier material according to the invention is preferably at pH values less than or equal to 7.
  • the supports according to the invention are suitable as supports for a wide variety of catalysts. In principle, all homogeneous catalysts can be immobilized using these supports. In a particularly important embodiment of the present invention, the supports are used as supports for catalysts for olefin polymerization.
  • Usual catalyst systems for the polymerization of olefins consist of a compound of a transition metal from the 3rd to 8th subgroup of the periodic table and a cocatalyst which is usually an organometallic compound of a (semi-) metal of the 3rd or 4th main group of the periodic table.
  • Another object of the present invention is therefore a heterogeneous catalyst, the at least one support, as described above, at least one compound of a transition metal from the 3rd to 8th subgroup of the periodic table and at least one organometallic compound of a (semi-) metal contains the 3 or 4th main group of the periodic table, the two metal compounds being absorbed on the support and together forming the catalytically active species.
  • the compound of a transition metal from subgroup 3 to 8 of the periodic table which is also referred to below as "catalyst" is preferably a complex compound, particularly preferably a metallocene compound. In principle, it can be any metallocene. Bridged (ansa-) and unbridged metallocene complexes with (substituted) ⁇ ligands such as cyclopentadienyl, indenyl or fluorenyl ligands are conceivable, with symmetrical or unsymmetrical complexes with central metals from the 3rd to 8th group.
  • the elements titanium, zirconium, hafnium, vanadium, palladium, nickel, cobalt, iron and chromium are preferably used as the central metal, with titanium and in particular zirconium being particularly preferred.
  • Suitable zirconium compounds are, for example: bis (cyclopentadienyl) zirconium monochloride monohydride, bis (cyclopentadienyl) zirconium monobromide monohydride, bis (cyclopentadienyl) methylzirconium hydride, Bis (cyclopentadienyl) ethylzirconium hydride,
  • Ethylenebis (indenyl) zirconium dibromide Ethylene b s (4,5,6,7-tetrahydro-1-indenyl) dimethyl zirconium, ethylene b s (4,5,6,7-tetrahydro-1-indenyl) methyl zirconium monochloride, ethylene b s (4,5,6, 7-tetrahydro-1-indenyl) zirconium dichloride, ethylene b s (4,5,6,7-tetrahydro-1-indenyl) zirconium dibromide, ethylene b s (4-methyl-1-indenyl) zirconium dichloride, ethylene b s (5-methyl-1-indenyl) zirconium dichloride, ethylene base (6-methyl-1-indenyl) zirconium dichloride, ethylene base (7-methyl-1-indenyl) zirconium dichloride, ethylene base (5-methoxy- 1-inden
  • Suitable titanium compounds are, for example: bis (cyclopentadienyl) titanium monochloride monohydride, bis (cyclopentadienyl) methyltitanium hydride, bis (cyclopentadienyl) phenyltitanium chloride, bis (cyclopentadienyl) benzyltitanium chloride, bis (cyclopentadienyl) titanium dichloride, bis (cyclopentadienyl) ) dibenzyl-titanium, Bis (cyclopentadienyl) ethoxytitanium chloride,
  • Suitable hafnium compounds include:
  • Ethylene bis (4,5,6,7-tetrahydro-1-indenyl) hafnium dichloride and dimethylsilylenebis (4,5,6,7-tetrahydro-1-indenyl) hafnium dichloride.
  • Suitable iron compounds are, for example:
  • nickel compounds are, for example: (2,3-bis (2,6-diisopropylphenylimino) butane) nickel dibromide, 1,4-bis (2,6-diisopropylphenyl) acenaphthenediimine nickel dichloride, 1,4-bis (2,6 -diisopropylphenyl) acenaphthendiiminnickel dibromide.
  • Suitable palladium compounds are, for example: (2,3-bis (2,6-diisopropylphenylimino) butane) palladium dichloride and (2,3-bis (2,6-diisopropylphenylimino) butane) dimethyl palladium.
  • zirconium compounds are particularly preferred, the compounds bis (cyclopentadienyl) zirconium dichloride, bis (n-butylcyclopentadienyl) zirconium dichloride, ethylene bis (4,5,6,7-tetrahydro-1-indenyl) - Zirconium dichloride, bis (methylcyclopentadienyl) zirconium dichloride and bis (1,3-dimethylcyclopentadienyl) zirconium dichloride are particularly preferred.
  • a transition metal from subgroup 3 to 8 When a transition metal from subgroup 3 to 8 is joined, however, it can also be a classic Ziegler-Natta compound, such as titanium tetrachloride, tetraalkoxytitanium, alkoxytitanium chlorides, vanadium halides, vanadium oxide halides and alkoxyvanadium compounds in which the alkyl radicals 1 to 20 C -Atoms, act.
  • a classic Ziegler-Natta compound such as titanium tetrachloride, tetraalkoxytitanium, alkoxytitanium chlorides, vanadium halides, vanadium oxide halides and alkoxyvanadium compounds in which the alkyl radicals 1 to 20 C -Atoms, act.
  • both pure transition metal compounds and mixtures of different transition metal compounds can be used, mixtures of metallocenes or Ziegler-Natta compounds with one another and mixtures of metallocenes with Ziegler-Natta compounds being advantageous.
  • the organometallic compound of a (semi-) metal of the 3rd or 4th main group of the periodic table which is also referred to below as "cocatalyst" is preferably a compound of the elements boron, aluminum, tin or silicon, preferably a compound of boron or aluminum. Halide-free compounds are preferred.
  • the organic residues of the compounds are preferably selected from the group comprising the residues Contains alkyl, alkenyl, aryl, alkaryl, aralkyl, alkoxy, aryloxy, alkaryloxy and aralkoxy or fluorine-substituted derivatives.
  • Preferred compounds are trialkyl aluminum compounds, such as trimethyl aluminum, triethyl aluminum, tripropyl aluminum and triisopropyl aluminum.
  • aluminoxanes with alkyl groups on aluminum such as methyl, ethyl, propyl, isobutyl, phenyl or benzylaluminoxane, methylaluminoxane, which is often referred to by the abbreviation MAO, being particularly preferred.
  • the average particle size of the catalyst particles is usually in the range from 1 to 150 ⁇ m, preferably in the range from 3 to 75 ⁇ m.
  • the heterogeneous catalyst produced according to the invention allows the production of polymer particles with controllable particle size and shape.
  • the grain size can be set in the range from approximately 50 ⁇ m to approximately 3 mm.
  • a preferred grain shape is the spherical shape, which, as described above, can be adjusted by spherical carrier particles with a particularly uniform catalyst coating.
  • the present invention further provides a process for the preparation of the heterogeneous catalyst according to the invention suitable for the synthesis of polyolefins in which a) a support as described above with at least one organometallic compound of a (semi-) metal of 3 or 4. Main group of the periodic table and b) with at least one compound of a transition metal from the 3rd to 8th subgroup of the periodic table to the heterogeneous
  • Catalyst is implemented.
  • the heterogeneous catalyst can be produced using the support according to the invention by various processes, with particular attention to the order of reaction of the components with one another: in a preferred process the cocatalyst is first absorbed on the support and then the catalyst is added. In another likewise preferred method, a mixture of catalyst and cocatalyst is absorbed on the carrier. In certain cases it may also be preferred to first immobilize the catalyst on the support and then to react it with the cocatalyst.
  • the cocatalyst methylaluminoxane can also be generated in situ by reacting trimethylaluminum with a water-containing support material.
  • the direct chemical attachment of the metallocene catalyst to the support with the aid of a spacer or anchor group is also a possible step in the preparation of the heterogeneous catalyst.
  • the support has the water content essential to the invention during the reaction with the transition metal or organometallic compound. Therefore, in a process according to the invention for catalyst preparation which is preferred, the spray-dried support is no longer dried. However, it may also be preferred to dry the support according to the invention before the reaction with catalyst or cocatalyst. If drying is carried out, this drying takes place at temperatures below 400 ° C., preferably below 250 ° C. and particularly preferably at a maximum of 180 ° C.
  • the carrier is suspended in an inert solvent and the catalyst and cocatalyst are added as a solution or suspension. After the individual reaction steps, washing can be carried out with a suitable solvent for cleaning. All process steps of catalyst production are preferably carried out under protective gas, for example argon or nitrogen.
  • inert solvents examples include pentane, isopentane, hexane, heptane, octane, nonane, cyclopentane, cyclohexane, benzene, toluene, xylene, ethylbenzene and diethylbenzene.
  • the support is reacted with an aluminoxane, preferably commercially available methylaluminoxane.
  • the oxidic carrier z. B suspended in toluene and then reacted at temperatures between 0 and 140 ° C with the aluminum component for about 30 min. After washing several times, the heterogenized methylaluminoxane is obtained.
  • the supported cocatalyst is then brought into contact with a metallocene, preferably dicyclopentadienylzirconium dichloride, the catalyst / cocatalyst ratio being between 1 and 1: 100,000.
  • the mixing time is 5 minutes to 48 hours, preferably 5 to 60 minutes.
  • the actually catalytically active center of the heterogeneous catalyst according to the invention only forms when the support reacts with the catalyst and cocatalyst components.
  • the heterogeneous catalysts are preferably used for the production of polyolefins.
  • the present invention also relates to the use of a heterogeneous catalyst as described above for the production of polyolefins.
  • Polyolefins are generally understood to mean macromolecular compounds which can be obtained by polymerizing substituted or unsubstituted hydrocarbon compounds with at least one double bond in the monomer molecule.
  • Usable olefins are monoolefins, such as ethylene, propylene, but-1-ene, pent-1-ene, hex-1-ene, oct-1-ene, hexadec-1-ene, octadec-1-ene, 3- Methylbut-1-ene, 4-methylpent-1-ene, 4-methylhex-1-ene, diolefins such as 1, 3-butadiene, 1, 4-hexadiene, 1, 5-hexadiene, 1, 6-hexadiene, 1, 6-octadiene, 1, 4-dodecadiene, aromatic olefins, such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-tert-butylstyrene, m-chlorostyrene, p-chlorostyrene, indene, vinyl anthrac
  • olefins ethylene, propylene and generally further 1-olefins which are either homopolymerized or also copolymerized in mixtures with other monomers are particularly preferred.
  • the polymerization is carried out in a known manner in solution, suspension or gas phase polymerization, continuously or batchwise, with the gas phase and suspension polymerization being explicit are preferred.
  • Typical temperatures during the polymerization are in the range from 0 ° C. to 200 ° C., preferably in the range from 20 ° C. to 140 ° C.
  • the polymerization preferably takes place in pressure autoclaves. If necessary, hydrogen can be added as a mass regulator during the polymerization.
  • heterogeneous catalysts used according to the invention enable the production of homo-, co- and block copolymers.
  • the subject of the invention is therefore also the use of a heterogeneous catalyst according to the invention or a heterogeneous catalyst produced according to the invention for the production of polyolefins with a spherical particle structure.
  • the mixed oxide For the preparation of the mixed oxide, 90 kg of the 2% silicon hydroxide gel (from b) and 10 kg of the aluminum hydroxide gel (from a)) were mixed well by stirring for one hour and by a homogenizer (Lab 60, from APV Schröder ) crushed with approx. 300 bar. The freshly homogenized mixture was sprayed directly in a spray dryer (Niro C2, Niro) and the particles formed were captured in a cyclone. The material is washed salt-free and dried. A material with a narrow grain size distribution was obtained by classification using wind sifting (Alpine 100MZR, Alpine). The mixed oxide was also prepared in an analogous manner with Si0 2 / Al 2 ⁇ 3 ratios 7: 3 and 1: 1. The essential physical and chemical properties of the carriers are summarized in Table 1, in Figure 1 a scanning electron micrograph of the particles is shown.
  • the particle size was determined using a Mastersizer 2000 from Malvern Instruments in accordance with laser diffraction spectroscopy.
  • the pH of the carrier was determined on a 10% strength aqueous suspension with the aid of a 766 laboratory pH meter from Knick.
  • the carrier material produced according to Example 1 with a Si0 2 / Al 2 ⁇ 3 ratio of 9/1 was pretreated thermally as shown in Table 2. After cooling the sample in vacuo, the water content and OH group density were determined.
  • Karl Fischer water content determination was carried out on a Mettler DL18 using Karl Fischer solvent, pyridine-free (Karl Fischer Reagent S, Merck) and titrant (Karl Fischer solution Tritrierstoff U, Merck).
  • OH group determination of the carrier material was carried out by means of thermogravimetry / differential thermal analysis (TG / DTA).
  • the TG and DTA tests were carried out on a thermal scale type L 81 from Linseis, Selb.
  • TG and DTA tests were carried out on a thermal scale type L 81 from Linseis, Selb.
  • L 81 from Linseis, Selb.
  • For the calibration two platinum crucibles with equal amounts of Al 2 O 3 were weighed in and heated twice to 1000 ° C. The heating rate was 10 K per minute, working in an air atmosphere. Depending on the density of the material, 30-110 mg were weighed out for the analyzes so that the crucible was completely filled.
  • the concentration of the surface OH groups present was determined from the loss of mass in the temperature range from 200-1000 ° C.
  • the percentage mass values were converted into amounts of substance (equation (1)).
  • equation (2) the OH carrier group density can be determined in mol / m 2 if the surface is known:
  • thermal surface pore volume water- OH groups- example pretreatment 2 / contain e [° C] l aj L aj [wt .-%] [mmol / g]
  • Example 2a-2e 0.50 g of the support from Example 2a-2e was suspended in a 100 ml three-necked flask under argon in 35 ml of dry toluene, and 3.25 ml of a 10% solution of methylaluminoxane (MAO) in toluene (5.4 mmol) was added and stirred for 30 min. After the precipitate had settled, the mixture was filtered and washed twice with 5 ml of toluene each time.
  • MAO methylaluminoxane
  • the solid obtained was taken up in 35 ml of toluene and transferred to a 100 ml Büchi pressure reactor, after which 5 ml of a 0.855 10 "3 molar Cp 2 ZrCl 2 solution (4.3 ⁇ mol) was added and the mixture was stirred for 10 minutes.
  • Example 3a - 3e The catalyst suspension from Example 3a - 3e was saturated in a 100 ml book autoclave with 2.5 bar ethene (purity level 4.5; Messer Griesheim company) and stirred at room temperature (27.5 ° C.) for 1 hour. The polymerization was terminated by adding 40 ml of acified methanol solution. It was then washed for several hours. After the polymer had been separated off, it was dried to constant mass in a vacuum.
  • 2.5 bar ethene purity level 4.5; Messer Griesheim company
  • the determined catalyst activities are shown in Table 3.
  • the molecular weight and melting point of the polymer particles obtained in Example 3a were determined.
  • the molecular weight determinations of the polyolefins was carried out by gel permeation chromatography under the conventionally used for polyolefins conditions (135 ° C, 1, 2,4-trichlorobenzene) than 3-fold determination to a high-temperature apparatus from Knauer (separation column: polystyrene gel 500, 10 4, 10 5 , 10 6 A; flow: 1 ml / min, concentration: approx. 0.5 - 1 mg / ml; sample amount: 400 ⁇ l).
  • the melting points of the polymers were determined on a DSC-821 Mettler Toledo.
  • the measurement of the occupancy of the carrier with the aluminum-containing compound MAO was carried out by means of a difference determination.
  • the Al content of the filtrate - washing solution of the non-heterogenized MAO - was determined by means of absorption spectrometry and then deducted from the original amount of aluminum used in the MAO.
  • the aluminum determinations were determined by means of absorption spectrometry with a Varian Spectra AA800. For this purpose, the samples were first digested with 5 ml of sulfuric acid, 0.5 ml of hydrofluoric acid and approx. 0.5 ml of hydrogen peroxide and made up with 25 ml of ultrapure water. Electrothermal atomic absorption spectrometry (graphite furnace) served as the determination method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Gegenstand der vorliegenden Erfindung ist ein Träger für Katalysatoren, der einen Gehalt an physisorbiertem Wasser von mindestens 2,5 Gew.-% aufweist. Anmeldungsgegenstand sind weiter ein Herstellverfahren für heterogene Katalysatoren, die diesen Träger enthalten, und die Verwendung dieser Katalysatoren zur Olefinpolymerisation bzw. ein Polymerisationsverfahren unter Verwendung der Katalysatoren.

Description

KATALYSATORTRÄGER, DESSEN HERSTELLUNG UND VERWENDUNG ZUR OLEFINPOLYMERISATION
Gegenstand der vorliegenden Erfindung sind ein neuer Träger für Katalysatoren, ein Herstellverfahren für heterogene Katalysatoren, die diesen Träger enthalten, 5 und die Verwendung dieser Katalysatoren zur Olefinpolymerisation bzw. ein Polymerisationsverfahren unter Verwendung der Katalysatoren.
Die Metallocen-katalysierte Polymerisation erlebt seit Anfang der 80er Jahre einen enormen Aufschwung. Zunächst als Modellsysteme für die Ziegler-Natta-
10 Katalyse gedacht, entwickelt sie sich immer mehr zu einem eigenständigen Verfahren mit einem enormen Potential für die (Co-) Polymerisation von Ethen sowie höheren 1-Olefinen. Maßgeblich für die rasante Entwicklung ist neben der aktivitätssteigemden Verwendung des Cokatalysators Methylaluminoxan anstelle einfacher Trialkylverbindungen die stetige Verbesserung der Aktivität sowie
15 Stereoselektivität bedingt durch systematische Katalysatorstruktur- Aktivitätsbeziehungen (G. G. Hlatky, Coord. Chem. Rev. 1999, 181, 243; R. Mülhaupt, Nachr. Chem. Tech. Lab. 1993, 41, 1341.).
Zum großtechnischen Einsatz in der üblicherweise verwendeten Gas- oder 20 Suspensionspolymerisationen eignen sich homogene Katalysatoren jedoch nur bedingt. Es tritt häufig eine Agglomeration der katalytisch aktiven Zentren auf mit der Folge, das Anbackungen an den Reaktorwänden etc. entstehen, das sogenannte "reactor fouling". Als Konsequenz wurden deswegen geträgerte Katalysatoren entwickelt. Der Katalysatorträger soll die genannten Probleme 25 vermeiden.
Die dabei üblicherweise beschriebenen Trägersubstanzen basieren auf anorganischen Verbindungen wie Silicium- (z. B. US 4,808,561, US 5,939,347, WO 96/34898) bzw. Aluminiumoxiden (z.B. M. Kaminaka, K. Soga, Macromol. 30 Rapid Commun. 1991 , 12, 367.) oder Schichtsilicaten (z.B. US 5,830,820; DE-A- 19727257; EP-A-849 288), Zeolithen (z.B. L. K. Van Looveren, D. E. De Vos, K. A. Vercruysse, D. F. Geysen, B. Janssen, P. A. Jacobs, Cat. Lett. 1998, 56(1), 53) oder auch auf Modellsystemen wie Cyclodextrinen (D.-H. Lee, K.-B. Yoon, Macromol. Rapid Commun. 1994, 15, 841 ; D. Lee, K. Yoon, Macromol. Symp. 1995, 97, 185.) oder Polysiloxan-Derivaten. (K. Soga, T. Arai, B. T. Hoang, T. Uozumi, Macromol. Rapid Commun. 1995, 16, 905.).
Bei Verwendung von Trägern tritt als neues Problem der im Vergleich zur homogenen Polymerisation einhergehende Rückgang von Aktivität und Selektivität des Katalysators auf. Im allgemeinen wird davon ausgegangen, dass die Trägermaterialien vor der Umsetzung mit dem Katalysator möglichst trocken sein sollen. Beispielsweise wird in der Europäischen Patentanmeldung EP-A-0 685 494 eine Trocknung des Trägers, der ein Aluminium-, Titan-, Zirconium- oder Siliciumoxid sein kann, bei 110 bis 800°C empfohlen.
Jetzt wurde überraschend gefunden, dass gerade ein hoher Wassergehalt auf der Trägeroberfläche für eine hohe Belegung mit Katalysator und damit eine hohe Aktivität der Katalysatoren von Vorteil ist.
Ein erster Gegenstand der vorliegenden Erfindung ist dementsprechend ein Träger für Katalysatoren, der einen Gehalt an physisorbiertem Wasser von mindestens 2,5 Gew.-% aufweist.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines heterogenen Katalysators geeignet zur Synthese von Polyolefinen bei dem a) ein Träger mit einem Gehalt an physisorbiertem Wasser von mindestens 2,5 Gew.-% mit mindestens einer Organometall-
Verbindung eines (Halb-)metalls der 3 oder 4. Hauptgruppe des Periodensystems und b) mit mindestens einer Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems zu dem heterogenen Katalysator umgesetzt wird.
Der Gehalt an physisorbiertem Wasser ist dabei im Sinne der vorliegenden Erfindung der Wassergehalt des erfindungsgemäßen Trägers, der bei einer Karl- Fischer-Analyse ermittelt wird. Erfindungsgemäß bevorzugt weisen die Träger Wassergehalte im Bereich von 3 bis 8 Gew.-% auf.
Wie sich gezeigt hat, sind diese hohen Wassergehalte von Vorteil für eine hohe Beladung des Trägers mit Katalysatoren und insbesondere Cokatalysatoren. Insbesondere die Aufnahme des häufig eingesetzten Cokatalysators Methylaluminoxan wird durch einen hohen Wassergehalt des Trägers unterstützt. Damit verbunden wird auch die katalytische Aktivität der beladenen Träger erhöht.
Bei dem erfindungsgemäßen Träger handelt es sich dabei vorzugsweise um ein oxidisches Material, das vorzugsweise ausgewählt ist aus den Oxiden der Elemente der 3. und 4. Hauptgruppe und der 3. bis 8. Nebengruppe des Periodensystems. Insbesondere bevorzugt handelt es sich um ein Aluminium-, Silicium-, Bor-, Germanium-, Titan-, Zirconium- oder Eisenoxid oder ein Mischoxid bzw. eine Oxid-Mischung der genannten Verbindungen.
In einer besonders bevorzugten Variante ist der Träger ein gemischtes Aluminium-Silicium-Oxid. Dabei ist die Bezeichnung "Aluminium-Silicium-Oxid" so zu verstehen, dass es sich sowohl um eine vorzugsweise fein verteilte, physikalische Mischung von Siliciumdioxid und Aluminiumoxid handeln kann als auch um ein echtes Mischoxid, in dem Si-O-Al-Brücken vorliegen.
Ein besonders bevorzugter Träger ist dabei erhältlich durch ein Verfahren, bei dem a) zuerst getrennte Gele von Aluminium(hydr)oxid und Silicium(hydr)oxid hergestellt werden, b) die beiden Gele anschließend miteinander gemischt und homogenisiert werden, c) die homogenisierte Mischung sprühgetrocknet wird.
Es hat sich gezeigt, dass diese bevorzugten Träger sich auch dann besonders gut als Träger für Katalysatoren eignen, wenn sie nicht den erfindungsgemäßen Wassergehalt aufweisen. Daher sind die so erhältlichen Mischoxide sowie das zugrunde liegende Herstellverfahren unabhängig vom Wassergehalt ein weiterer Gegenstand der vorliegenden Erfindung.
Diese bevorzugten Träger sind amorph, wobei amorph im Sinne von röntgenamorph zu verstehen ist. D.h. die erfindungsgemäßen Träger liefern bei der Röntgenbeugung keine scharfen Peaks, sondern lediglich den sehr breiten als "amorpher Halo" bezeichneten Reflex.
Eingehende Untersuchungen der Träger unter anderem mittels energiedispersiver Röntgenspektroskopie (EDX) zeigen, dass Aluminium und Silicium in den Trägerpartikeln homogen verteilt vorliegen. Es sind keine Domänen erkennbar in denen nur SiO2 oder nur Al203 vorliegt, wie es bei einem Material, das durch einfaches Mischen der Oxide hergestellt würde, zu erwarten wäre.
Ohne durch diese Theorie festgelegt zu sein, wird vermutet, dass diese besondere Struktur wesentlich für einen weiteren Vorteil der erfindungsgemäß bevorzugten Träger ist. Die Teilchen des erfindungsgemäßen Trägermaterials erlauben die Beladung mit Katalysator nach üblichen Methoden, wobei die Partikelgröße durch den auf die Oberfläche aufgebrachten Katalysator leicht zunimmt, die Partikelform jedoch weitgehend erhalten bleibt. Dabei kann durch die besonders gleichmäßige Verteilung von Aluminium und Silicium in dem Trägermaterial auch eine besonders gleichmäßige Belegung mit dem Katalysator erreicht werden. Dies erlaubt eine weitgehend morphologiekontrollierte Polymerisation, die Teilchenform der Polymerpartikel lässt sich durch geeignete Formwahl der Trägerpartikel beeinflussen. Aufgrund der besonderen, durch das beschriebene Herstellverfahren erhältlichen Partikelbeschaffenheit wird erreicht, dass die Trägermaterialteilchen während der Polymerisation zerbrechen und so die an ihrer inneren Oberfläche gebunden Katalysatorzentren verfügbar machen, was zu einer Zunahme der Katalysatoraktivität im Vergleich zu stabilen Trägerpartikeln führt. Ein weiterer Vorteil des Zerbrechens besteht darin, dass in dem resultierenden Polymer nur noch winzige Trägerpartikel umhüllt von Polymer vorliegen, welche die anwendungsrelevanten physikalischen und chemischen Eigenschaften des Polymeren nicht signifikant beeinflussen.
Bei diesen Trägern wird zum Einen durch die Homogenisierung eine besonders gleichmäßige Verteilung von Aluminium und Silicium erreicht und zum Anderen durch die schnelle Sprühtrocknung, die mit einer Schrumpfung der Teilchen um etwa Faktor 3 verbunden ist, eine besonders fragile Struktur erhalten. Wie bereits oben diskutiert wirken sich diese Parameter während der Polymerisation positiv aus.
Dieser bevorzugte Katalysatorträger wird in einem mehrstufigen Verfahren hergestellt. Dabei werden die beiden Silicium- und Aluminiumkomponenten zunächst auf getrenntem Wege bereitgestellt: Aluminum(hydr)oxid erhält man beispielsweise durch alkalische Fällung aus Aluminiumsalzen, wie beispielsweise aus Aluminiumsulfat, -acetat oder -oxalat. Möglich ist jedoch auch der direkte Einsatz käuflicher Aluminiumhydroxide. Silicium(hydr)oxid kann durch vergleichbare Vorgehensweise aus Kieselsäure oder hydrolysierbaren molekularen Vorstufen, wie Siliciumtetrachlorid oder ortho-Kieselsäureestem niederer Alkohole, wie vorzugsweise Tetraethoxysilan, erhalten werden. Die beiden als Gele erhaltenen (Hydr)oxide werden nach Einstellung des gewünschten Silicium-/Aluminiumverhältnisses homogenisiert und anschließend sprühgetrocknet. Durch den Sprühtrocknungsprozess bleiben die amorphen Struktureinheiten erhalten. Abschließend kann das Material salzfrei gewaschen und klassiert werden.
Die Bezeichnung Aluminum- bzw. Silicium(hydr)oxid kennzeichnet im Rahmen der vorliegenden Erfindung Zwischenstufen, die eine polymere Struktur aufweisen, sich jedoch noch deutlich von der 3-dimensionalen Raumnetzstrukur der Oxide unterscheiden und im Vergleich zu den Oxiden eine deutlich erhöhte Reaktivität, bedingt durch den höheren Anteil von Hydroxygruppen aufweisen.
Die Verhältnisse von Si02 zu AI2O3 in dem Träger liegen üblicherweise in dem Bereich von 100:1 bis 1:2, wobei Verhältnisse größer als 1 :1 und insbesondere größer als 2:1 bevorzugt sind. Dabei kann es im Sinne der gleichzeitigen Optimierung von Hydroxygruppendichte (aktiver Oberfläche) und vorhandener Oberfläche (nach BET) besonders bevorzugt sein ein Verhältnis von SiO2 zu AI2O3 in dem Bereich 20:1 bis 5:1 einzustellen.
In einer bevorzugten Ausführungsform der Erfindung werden sphärische Teilchen erhalten. Sphärisch bedeutet dabei, dass die Teilchen in rasterelektronen- mikroskopischen Aufnahmen den Eindruck von Kugeln erwecken. Quantifizierbar ist "sphärisch" in dem Sinne, dass die Mittelwerte der 3 aufeinander senkrecht stehenden Durchmesser der Teilchen maximal um 50% der Länge voneinander abweichen. D.h. alle Verhältnisse der drei aufeinander senkrecht stehende Durchmesser liegen jeweils im Bereich 1 ,5:1 bis 1 :1 ,5. Vorzugsweise liegen die Verhältnisse der 3 mittleren Durchmesser sogar alle im Bereich 1 ,3:1 bis 1 :1 ,3, d.h. die Durchmesser weichen um maximal 30% voneinander ab.
Das erfindungsgemäße Trägermaterial besitzt üblicherweise mittlere Partikelgrößen im Bereich von 1 bis 100 μm, vorzugsweise im Bereich von 3 bis 50 μm. Die Korngrößenverteilung kann dabei durch eine Klassierung, beispielsweise durch Windsichtung gesteuert werden. Die Oberfläche der Teilchen - bestimmt nach der BET-Methode (S. Brunnauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309) - liegt üblicherweise im Bereich von 50 bis 500 m2/g, wobei Oberflächen im Bereich von 150 bis 450 m2/g bevorzugt sind. Das Porenvolumen, ebenfalls gemessen nach der BET-Methode, liegt typisch im Bereich von 0,5 bis 4,5 mi/g, wobei das Porenvolumen vorzugsweise oberhalb von 0,8 ml/g und insbesondere bevorzugt im Bereich von 1 ,5 bis 4,0 ml/g liegt.
Der pH-Wert des erfindungsgemäßen Trägermaterials liegt vorzugsweise bei pH- Werten kleiner oder gleich 7.
Die erfindungsgemäßen Träger eignen sich als Träger für die verschiedensten Katalysatoren. Prinzipiell können alle homogenen Katalysatoren mit Hilfe dieser Träger immobilisiert werden. ln einer besonders bedeutenden Ausführungsform der vorliegenden Erfindung werden die Träger als Träger für Katalysatoren zur Olefinpolymerisation eingesetzt.
Übliche Katalysatorsysteme zur Polymerisation von Olefinen bestehen dabei aus einer Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems und einem Cokatalysator der üblicherweise eine Organometall- Verbindung eines (Halb-)metalls der 3 oder 4. Hauptgruppe des Periodensystems ist.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein heterogener Katalysator, der mindestens einen Träger, wie er oben beschrieben ist, mindestens eine Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems und mindestens eine Organometall- Verbindung eines (Halb-)metalls der 3 oder 4. Hauptgruppe des Periodensystems enthält, wobei die beiden Metallverbindungen auf dem Träger absorbiert sind und gemeinsam die katalytisch aktive Spezies bilden.
Bei der Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems, die im folgenden auch als "Katalysator" bezeichnet wird, handelt es sich vorzugsweise um eine Komplexverbindung, insbesondere bevorzugt um eine Metallocenverbindung. Prinzipiell kann es sich dabei um jedes Metallocen handeln. Denkbar sind dabei verbrückte (ansa-) wie unverbrückte Metallocenkomplexe mit (substituierten) π-Liganden wie Cyclopentadienyl-, Indenyl- oder Fluorenyl-Liganden, wobei sich symmetrische oder unsymmetrische Komplexe mit Zentral metallen aus der 3. bis 8. Gruppe ergeben. Vorzugsweise werden als Zentralmetall die Elemente Titan, Zirconium, Hafnium, Vanadium, Palladium, Nickel, Cobalt, Eisen und Chrom eingesetzt, wobei Titan und insbesondere Zirconium besonders bevorzugt sind.
Geeignete Zirconiumverbindungen sind beispielsweise: Bis(cyclopentadienyl)zirconium-monochlorid-monohydrid, Bis(cyclopentadienyl)zirconium-monobromid-monohydrid, Bis(cyclopentadienyl)methylzirconium-hydrid, Bis(cyclopentadienyl)ethylzirconium-hydrid,
Bis(cyclopentadienyl)cyclohexylzirconium-hydrid,
Bis(cyclopentadienyl)phenylzirconium-hydrid,
Bis(cyclopentadienyl)benzylzircronium-hydrid, Bis(cyclopentadienyl)neopentylzirconium-hydrid,
Bis(methylcycIopentadienyl)zirconium-monochlorid-monohydrid,
Bis(indenyl)zirconium-monochlorid-monohydrid,
Bis(cyclopentadienyl)zirconium-dichlorid,
Bis(cyclopentadienyl)zirconium-dibromid, Bis(cyclopentadienyl)methylzirconium-monochlorid,
Bis(cyclopentadienyl)ethylzirconium-monochlorid,
Bis(cyclopentadienyl)cyclohexylzirconium-monochlorid,
Bis(cyclopentadienyl)phenylzirconium-monochlorid,
Bis(cyclopentadienyl)benzylzirconium-monochlorid, Bis(methylcyclopentadienyl)zirconium-dichlorid,
Bis-(1 ,3-dimethylcyclopentadienyl)zirconium-dichlorid,
Bis(n-butylcyclopentadienyl)zirconium-dichlorid,
Bis(n-propylcyclopentadienyl)zirconium-dichlorid,
Bis(iso-butylcyclopentadienyl)zirconium-dichlorid, Bis(cyclopentylcylopentadienyl)zirconium-dichlorid,
Bis(octadecylcyclopentadienyl)zirconium-dichlorid,
Bis(indenyl)zirconium-dichlorid,
Bis(indenyl)zirconium-dibromid,
Bis(indenyl)zirconium-dimethyl, Bis(4,5,6,7-tetrahydro-1 -indenyl)dimethylzirconium,
Bis(cyclopentadienyl)diphenyl-zirconium,
Bis(cyclopentadienyl)dibenzylzirconium,
Bis(cyclopentadienyl)methoxyzirconium-chlorid,
Bis(cyclopentadienyl)ethoxyzirconium-chlorid, Bis(cyclopentadienyl)butoxyzirconium-chlorid,
Bis(cyclopentadienyl)2-ethylhexoxyzirconium-chlorid,
Bis(cyclopentadienyl)methylzirconium-ethoxid,
Bis(cyclopentadienyl)methylzirconium-butoxid,
Bis(cyclopentadienyl)ethylzirconium-ethoxid, Bis(cyclopentadienyl)phenylzirconium-ethoxid,
Bis(cyclopentadienyl)benzylzirconium-ethoxid,
Bis(methylcyclopentadienyl)ethoxyzirconium-chlorid,
Bis(indenyl)ethoxyzirconium-chlorid, Bis(cyclopentadienyl)ethoxyzirconium,
Bis(cyclopentadienyl)butoxyzirconium,
Bis(cyclopentadienyl)2-ethylhexoxyzirconium,
Bis(cyclopentadienyl)phenoxyzirconium-monochlorid,
Bis(cyclopentadienyl)cyclohexoxyzirconium-chlorid, Bis(cyclopentadienyl)phenylmethoxyzirconium-chlorid
Bis(cyclopentadienyl)methylzirconium-phenylmethoxid
Bis(cyclopentadiphenyl)trimethylsiloxyzirconium-chlorid,
Bis(cyclopentadienyl)triphenylsiloxyzirconium-chlorid,
Bis(cyclopentadienyl)thiophenylzirconium-chlorid, Bis(cyclopentadienyl)neoethylzirconium-chlorid,
Bis(cyclopentadienyl)bis(dimethylamide)zirconium,
Bis(cyclopentadienyl)diethylamidezirconium-chlorid,
Dimethylsilylenbis(4,5,6,7-tetrahydro-1-indenyl)zirconium-dichlorid,
Dimethylsilylenbis(4, 5,6, 7-tetrahydro-1 -indenyl )dimethylzirconium, Dimethylsilylenbis(2-methyl-4,5-benzoindenyl)zirconium-dichlorid,
Dimethylsilylenbis(4-tert-butyl-2-methylcyclopentadienyl)zirconium-dichlorid,
Dimethylensilylbis(4-tert-butyl-2-methylcyclopentadienyl)dimethylzirconium,
Ethylenbis(indenyl)ethoxyzirconium-chlorid,
Ethylenbis(4,5,6,7-tetrahydro-1-indenyl)ethoxyzirconium-chlorid, Ethylenbis(indenyl)dimethylzirconium,
Ethylenbis(indenyl)diethylzirconium,
Ethylenbis(indenyl)diphenylzirconium,
Ethylenbis(indenyl)dibenzylzirconium,
Ethylenbis(indenyl)methylzirconium-monobromid, Ethylenbis(indenyl)ethylzirconium-monochlorid,
Ethylenbis(indenyl)benzylzirconium-monochlorid,
Ethylenbis(indenyl)methylzirconium-monochlorid,
Ethylenbis(indenyl)zirconium-dichlorid,
Ethylenbis(indenyl)zirconium-dibromid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)-dimethylzirconium, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)methylzirconium-monochlorid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)zirconium-dichlorid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)zirconium-dibromid, Ethylenb s(4-methyl-1-indenyl)zirconium-dichlorid, Ethylenb s(5-methyl-1-indenyl)zirconium-dichlorid, Ethylenb s(6-methyl-1-indenyl)zirconium-dichlorid, Ethylenb s(7-methyl-1-indenyl)zirconium-dichlorid, Ethylenb s(5-methoxy-1-indenyl)zirconium-dichlorid, Ethylenb s(2,3-dimethyl-1-indenyl)zirconium-dichlorid, Ethylenb s(4,7-dimethyl-1-indenyl)zirconium-dichlorid, Ethylenb s(4,7-dimethoxy-1-indenyl)zirconium-dichlorid, Ethylenb s(indenyl)zirconium-dimethoxid, Ethylenb s(indenyl)zirconium-diethoxid, Ethylenb s(indenyl)methoxyzirconium-chlorid, Ethylenb s(indenyl)ethoxyzirconium-chlorid, Ethylenb s(indenyl)methylzirconium-ethoxid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)zirconium-dimethoxid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)zirconium-diethoxid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)methoxyzirconium-chlorid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)ethoxyzirconium-chlorid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)methylzirconium-ethoxid, Ethylenb s(4,5,6,7-tetrahydro-1-indenyl)dimethylzirconium, lsopropylen(cyclopentadienyl)(1-fluorenyl)zirconium-dichlorid, Diphenylmethylen(cyclopentadienyl)(1-fluorenyl)zirconium-dichlorid.
Geeignete Titanverbindungen sind beispielsweise: Bis(cyclopentadienyl)titan-monochlorid-monohydrid, Bis(cyclopentadienyl)methyltitan-hydrid, Bis(cyclopentadienyl)phenyltitan-chlorid, Bis(cyclopentadienyl)benzyltitan-chlorid, Bis(cyclopentadienyl)titan-dichlorid, Bis(cyclopentadienyl)dibenzyl-titan, Bis(cyclopentadienyl)ethoxytitan-chlorid,
Bis(cyclopentadienyl)butoxytitan-chlorid,
Bis(cyclopentadienyl)methyltitan-ethoxid,
Bis(cyclopentadienyl)phenoxytitan-chlorid, Bis(cyclopentadienyl)trimethylsiloxytitan-chlorid,
Bis(cyclopentadienyl)thiophenyltitan-chlorid,
Bis(cyclopentadienyl)bis(dimethylamide)titan,
Bis(cyclopentadienyl)ethoxytitan,
Bis(n-butylcyclopentadienyl)titan-dichlorid, Bis(cyclopentylcylopentadienyl)titan-dichlorid,
Bis(indenyl)titan-dichlorid,
Ethylenbis(indenyl)titan-dichlorid
Ethylenbis(4,5,6,7-tetrahydro-1-indenyl)titan-dichlorid und
Dimethylsilylen(tetramethylcyclopentadienyl)(tert-butylamid)titan-dichlorid.
Geeignete Hafniumverbindungen sind beispielsweise:
Bis(Cyclopentadienyl)hafnium-monochlorid-monohydrid,
Bis(cyclopentadienyl)ethylhafnium-hydrid,
Bis(cyclopentadienyl)phenylhafnium-chlorid, Bis(cyclopentadienyl)hafnium-dichlorid,
Bis(cyclopentadienyl)benzyl-hafnium,
Bis(cyclopentadienyl)ethoxyhafnium-chlorid,
Bis(cyclopentadienyl)butoxyhafnium-chlorid,
Bis(cyclopentadienyl)methylhafnium-ethoxid, Bis(cyclopentadienyl)phenoxyhafnium-chlorid,
Bis(cyclopentadienyl)thiophenylhafnium-chlorid,
Bis(cyclopentadienyl)bis(diethylamid)hafnium,
Ethylenbis(indenyl)hafnium-dichlorid,
Ethylenbis(4,5,6,7-tetrahydro-1-indenyl)hafnium-dichlorid und Dimethylsilylenbis(4,5,6,7-tetrahydro-1-indenyl)hafnium-dichlorid.
Geeignete Eisenverbindungen sind beispielsweise:
2,6-[1-(2,6-diisopropylphenylimino)ethyl]pyridineisen-dichlorid,
2,6-[1-(2,6-dimethylphenylimino)ethyl]pyridineisen-dichlorid Geeignete Nickelverbindungen sind beispielsweise: (2,3-Bis-(2,6-diisopropylphenylimino)butan)nickel-dibromid, 1 ,4-Bis(2,6-diisopropylphenyl)acenaphthendiiminnickel-dichlorid, 1 ,4-Bis(2,6-diisopropylphenyl)acenaphthendiiminnickel-dibromid.
Geeignete Palladiumverbindungen sind beispielsweise: (2,3-Bis-(2,6-diisopropylphenylimino)butan)palladium-dichlorid und (2,3-Bis-(2,6-diisopropylphenylimino)butan)dimethylpalladium.
Besonders bevorzugt ist dabei der Einsatz von Zirconium-Verbindungen, wobei die Verbindungen Bis(cyclopentadienyl)zirconium-dichlorid, Bis(n-butylcyclo- pentadienyl)zirconium-dichlorid, Ethylenbis(4,5,6,7-tetrahydro-1-indenyl)- zirconium-dichlorid, Bis(methylcyclopentadienyl)zirconium-dichlorid und Bis-(1 ,3- dimethylcyclopentadienyl)zirconium-dichlorid besonders bevorzugt sind.
Bei der Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe kann es sich erfindungsgemäß jedoch auch um eine klassische Ziegler-Natta- Verbindung, wie Titantetrachlorid, Tetraalkoxytitan, Alkoxytitanchloride, Vanadiumhalogenide, Vanadiumoxidhalogenide und Alkoxyvanadium- verbindungen in denen die Alkylreste 1 bis 20 C-Atome aufweisen, handeln.
Erfindungsgemäß können sowohl reine Übergangsmetallverbindungen als auch Mischungen verschiedener Übergangsmetallverbindungen eingesetzt werden, wobei sowohl Mischungen von Metallocenen oder Ziegler-Natta-Verbindungen untereinander als auch Mischungen von Metallocenen mit Ziegler-Natta- Verbindungen vorteilhaft sein können.
Bei der Organometall-Verbindung eines (Halb-)metalls der 3 oder 4. Hauptgruppe des Periodensystems, die im folgenden auch als "Cokatalysator" bezeichnet wird, handelt es sich vorzugsweise um eine Verbindung der Elemente Bor, Aluminium, Zinn oder Silicium, vorzugsweise um eine Verbindung von Bor oder Aluminium. Dabei sind halogenidfreie Verbindungen bevorzugt. Die organischen Reste der Verbindungen sind vorzugsweise ausgewählt aus der Gruppe, die die Reste Alkyl-, Alkenyl-, Aryl-, Alkaryl-, Aralkyl-, Alkoxy-, Aryloxy-, Alkaryloxy- und Aralkoxy- bzw. fluorsubstituierte Derivate enthält.
Bevorzugte Verbindungen sind Trialkylaluminiumverbindungen, wie Trimethyl- aluminium, Triethylaluminium, Tripropylaluminium und Triisopropylaluminium.
Insbesondere bevorzugt sind dabei auch Aluminoxane mit Alkylgruppen am Aluminium, wie Methyl, Ethyl-, Propyl-, Isobutyl-, Phenyl- oder Benzylaluminoxan, wobei Methylaluminoxan, das häufig mit der Abkürzung MAO bezeichnet wird, besonders bevorzugt ist.
Die mittlere Partikelgröße der Katalysatorteilchen liegt üblicherweise im Bereich von 1 bis 150 μm, vorzugsweise im Bereich von 3 bis 75 μm.
In einer bevorzugten Ausführungsform der Erfindung erlaubt der erfindungsgemäß hergestellte heterogene Katalysator die Herstellung von Polymerpartikeln mit steuerbarer Korngröße und -form. Die Korngröße kann dabei im Bereich von etwa 50 μm bis etwa 3 mm eingestellt werden. Eine bevorzugte Kornform ist die Kugelform, die, wie oben beschrieben, durch sphärische Trägerteilchen mit einer besonders gleichmäßigen Katalysatorbelegung eingestellt werden kann.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung des erfindungsgemäßen heterogenen Katalysators geeignet zur Synthese von Polyolefinen bei dem a) ein Träger, wie er oben beschrieben ist, mit mindestens einer Organometall-Verbindung eines (Halb-)metalls der 3 oder 4. Hauptgruppe des Periodensystems und b) mit mindestens einer Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems zu dem heterogenen
Katalysator umgesetzt wird. Die Herstellung des heterogenen Katalysators unter Einsatz des erfindungsgemäßen Trägers kann nach verschiedenen Verfahren unter besonderer Berücksichtigung der Reihenfolge der Umsetzung der Komponenten miteinander erfolgen: In einem bevorzugten Verfahren wird zuerst der Cokatalysators auf dem Träger absorbiert und anschließend der Katalysator zugegeben. In einem anderen ebenfalls bevorzugten Verfahren wird eine Mischung aus Katalysator und Cokatalysator auf dem Träger absorbiert. In bestimmten Fällen kann es auch bevorzugt sein, zuerst den Katalysator auf dem Träger zu immobilisieren und anschließend mit dem Cokatalysator umzusetzen.
Alternativ kann beispielsweise auch der Cokatalysator Methylaluminoxan in situ durch Reaktion von Trimethylaluminium mit einem wasserhaltigem Trägermaterial erzeugt werden. Auch die direkte chemische Anbindung des Metallocen-Katalysators am Träger mit Hilfe einer Spacer- bzw. Ankergruppe ist ein möglicher Schritt bei der Herstellung des heterogenen Katalysators.
Wesentlich für die Herstellung der erfindungsgemäßen Katalysatoren ist es, dass der Träger bei der Umsetzung mit der Übergangsmetall- bzw. der Organometallverbindung den erfindungswesentlichen Wassergehalt aufweist. Daher findet in einem erfindungsgemäß bevorzugten Verfahren zur Katalysatorherstellung keine weitere Trocknung des sprühgetrockneten Trägers mehr statt. Allerdings kann es auch bevorzugt sein den erfindungsgemäßen Träger vor der Umsetzung mit Katalysator oder Cokatalysator zu trocknen. Wenn eine Trocknung durchgeführt wird, so findet diese Trocknung bei Temperaturen unterhalb 400°C, vorzugsweise unterhalb von 250°C und insbesondere bevorzugt bei maximal 180°C statt.
Üblicherweise wird der Träger in einem inerten Lösungsmittel suspendiert, und Katalysator und Cokatalysator werden als Lösung oder Suspension zugegeben. Nach den einzelnen Umsetzungsschritten kann zur Reinigung mit einem geeigneten Lösungsmittel gewaschen werden. Dabei werden alle Verfahrensschritte der Katalysatorherstellung vorzugsweise unter Schutzgas, beispielsweise Argon oder Stickstoff, durchgeführt.
Als inerte Lösungsmittel eignen sich beispielsweise Pentan, Isopentan, Hexan, Heptan, Octan, Nonan, Cyclopentan, Cyclohexan, Benzol, Toluol, Xylol, Ethylbenzol und Diethylbenzol.
In einer insbesondere bevorzugten Variante des erfindungsgemäßen Verfahrens wird der Träger mit einem Aluminoxan, vorzugsweise handelsüblichem Methylaluminoxan umgesetzt. Dabei wird der oxidische Träger z. B. in Toluol suspendiert und anschließend bei Temperaturen zwischen 0 und 140°C mit der Aluminiumkomponente ca. 30 min umgesetzt. Nach mehrmaligem Waschen wird das heterogenisierte Methylaluminoxan erhalten. Der geträgerte Cokatalysator wird anschließend mit einem Metallocen, vorzugsweise Dicyclopentadienylzirconiumdichlorid in Kontakt gebracht, wobei das Katalysator/Cokatalysator-Verhältnis zwischen 1 und 1 :100 000 liegt. Die Mischzeit beträgt 5 min bis 48 h, vorzugsweise 5 bis 60 Minuten.
Das eigentlich katalytisch aktive Zentrum des erfindungsgemäßen heterogenen Katalysators bildet sich erst bei der Reaktion des Trägers mit den Komponenten Katalysator und Cokatalysator.
Erfindungsgemäß bevorzugt werden die heterogenen Katalysatoren zur Herstellung von Polyolefinen eingesetzt.
Ein Gegenstand der vorliegenden Erfindung ist dementsprechend auch die Verwendung eines heterogenen Katalysators wie er oben beschrieben ist zur Herstellung von Polyolefinen.
Unter Polyolefinen werden dabei ganz allgemein makromolekulare Verbindungen verstanden, die durch Polymerisation von substituierten oder unsubstituierten Kohlenwasserstoffverbindungen mit mindestens einer Doppelbindung im Monomer-Molekül erhalten werden können. Olefin-Monomere weisen dabei vorzugsweise eine Struktur gemäß der Formel R1CH=CHR2 auf, wobei R1 und R2 gleich oder verschieden sein können und ausgewählt sind aus der Gruppe, die Wasserstoff und die cyclischen und acyclischen Alkyl- und Aryl- bzw. Alkylarylreste mit 1 bis 20 C-Atomen enthält.
Einsetzbare Olefine sind Monoolefine, wie zum Beispiel Ethylen, Propylen, But-1- en, Pent-1-en, Hex-1-en, Oct-1-en, Hexadec-1-en, Octadec-1-en, 3-Methylbut-1- en, 4-Methylpent-1-en, 4-Methylhex-1-en, Diolefine wie z.B. 1 ,3-Butadien, 1 ,4- Hexadien, 1 ,5-Hexadien, 1 ,6-Hexadien, 1 ,6-Octadien, 1 ,4-Dodecadien, aromatische Olefine, wie Styren, o-Methylstyren, m-Methylstyren, p-Methylstyren, p-tert.-Butylstyren, m-Chlorostyren, p-Chlorostyren, Inden, Vinylanthracen, Vinylpyren, 4-Vinylbiphenyl, Dimethano-octahydro-naphthalen, Acenaphthalen, Vinylfluoren, Vinylchrysen, cyclische Olefine und Diolefine, wie zum Beispiel Cyclopenten, 3-Vinylcyclohexen, Dicyclopentadien, Norbornen, 5-Vinyl-2- norbornen, tert.-Ethyliden-2-norbomen, 7-Octenyl-9-borabicyclo-(3,3,1)nonan, 4- Vinylbenocyclobutan, Tetracyclododecen und weiterhin zum Beispiel Acrylsäure, Methacrylsäure, Methylmethacrylat, Ethylacrylat, Acrylnitril, 2-Ethylhexylacrylat, Methacrylnitril, Maleimid, N-Phenyl-maleimid, Vinylsilan, Trimethylallyisilan, Vinylchlorid, Vinylidenchlorid, Isobutylen.
Insbesondere bevorzugt sind die Olefine Ethylen, Propylen und im allgemeinen weitere 1 -Olefine, die entweder homopolymerisiert werden oder auch in Mischungen mit anderen Monomeren copolymerisiert werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist dementsprechend ein Verfahren zur Herstellung von Polyolefinen bei dem ein heterogener Katalysator wie er oben beschrieben wurde und ein Olefin gemäß der Formel R1CH=CHR2 eingesetzt werden, wobei R1 und R2 gleich oder verschieden sein können und ausgewählt sind aus der Gruppe, die Wasserstoff und die cyclischen und acyclischen Alkyl- und Aryl- bzw. Alkylarylreste mit 1 bis 20 C-Atomen enthält.
Die Polymerisation wird in bekannter Weise in Lösungs-, Suspensions- oder Gasphasenpolymerisation kontinuierlich oder diskontinuierlich durchgeführt, wobei die Gasphasen- und die Suspensionspolymerisation ausdrücklich bevorzugt sind. Typische Temperaturen bei der Polymerisation liegen im Bereich von 0°C bis 200°C, vorzugsweise im Bereich von 20°C bis 140°C.
Dabei findet die Polymerisation vorzugsweise in Druckautoklaven statt. Als Massenregler kann falls erforderlich Wasserstoff während der Polymerisation zugegeben werden.
Die erfindungsgemäß verwendeten heterogenen Katalysatoren ermöglichen die Herstellung von Homo-, Co- und Blockcopolymeren.
Wie oben beschrieben, können durch geeignete Trägerauswahl nahezu kugelförmige Polymerpartikel mit steuerbarer Korngröße erhalten werden.
Erfindungsgegenstand ist daher auch die Verwendung eines erfindungsgemäßen heterogenen Katalysators oder eines erfindungsgemäß hergestellten heterogenen Katalysators zur Herstellung von Polyolefinen mit sphärischer Partikelstruktur.
Beispiele
Beispiel 1 :
Herstellung des Trägers: a) Herstellung von Aluminiumhydroxid
14,5 kg Aluminiumsulfat wurden in 45 1 Wasser gelöst und nach guter Durchmischung schnell zu einer 40°C warmen 15%igen Ammoniaklösung gegeben. Das ausgefällte Aluminiumhydroxid wurde zur Alterung noch 48 h am Rückfluss gekocht und abkühlen gelassen. Das Aluminiumhydroxid-Gel wurde durch viermaliges abdekantieren des Überstandes vom größten Teil des restlichen Ammoniaks befreit. Das Gel wurde anschließend durch Mischung mit Wasser auf ca. 2% Gehalt an Aluminiumhydroxid verdünnt und bereitgestellt.
b) Herstellung von Siliciumhydroxid (Polykieselsäure) Es wurden in einen Rührreaktor 300 I Wasser vorgelegt und gleichzeitig unter ständigem Rühren eine Mischung aus 35 kg Wasser mit 4 kg konz. Schwefelsäure und 32 kg Wasser und 31 kg Wasserglas so zugegeben, das die Mischung im Reaktionsgefäß bei pH 5 gehalten wurde. Nach Zugabe der Reaktionspartner wurde die Mischung ohne Rührung für 5 h bei 90°C gehalten. Das resultierende Siliciumhydroxid-Gel enthielt ca. 2% Feststoff.
c) Herstellung des Mischoxides (Verhältnis Si02/AI2θ3 = 9:1 )
Es wurden für die Herstellung des Mischoxides 90 kg des 2%igen Siliciumhydroxid-Gels (aus b)) und 10 kg des Aluminiumhydroxid-Gels (aus a)) durch einstündiges Rühren gut vermischt und durch einen Homogenisator (Lab 60, Fa. APV Schröder) mit ca. 300 bar zerkleinert. Das frisch homogenisierte Gemisch wurde direkt in einem Sprühtrockner (Niro C2, Fa. Niro) versprüht und die entstehenden Teilchen in einem Zyklon abgefangen. Das Material wird salzfrei gewaschen und getrocknet. Durch eine Klassierung mit Hilfe der Windsichtung (Alpine 100MZR, Fa. Alpine) wurde ein Material mit enger Korngrößenverteilung erhalten. In analoger Weise wurde das Mischoxid auch mit Si02/AI2θ3-Verhältnissen 7:3 und 1 :1 hergestellt. Die wesentlichen physikalischen und chemischen Eigenschaften der Träger sind in Tabelle 1 zusammengefasst, in Figur 1 ist eine rasterelektronenmikroskopische Aufnahme der Partikel wiedergegeben.
Tabelle 1 : Physikalische und chemische Eigenschaften der Träger:
Die Partikelgrößenbestimmung erfolgte mit einem Mastersizer 2000 der Firma Malvern Instruments gemäß Laserbeugungsspektroskopie.
Oberfläche und Porenvolumen wurden nach der BET-Methode an einem ASAP
2400 der Firma Micrometics bestimmt.
Rasterelektronenmikrospkopische Aufnahmen wurden an einem Leo 1530
Gemini durchgeführt. Der pH-Wert des Trägers wurde an einer 10%igen wäßrigen Suspension mit Hilfe eines Labor-pH-Meters 766 der Firma Knick bestimmt.
Beispiel 2: Trocknung des Trägermaterials
Das gemäß Beispiel 1 hergestellte Trägermaterial mit einem Verhältnis Si02/Al2θ3 von 9/1 wurde wie in Tabelle 2 dargestellt thermisch vorbehandelt. Nach Abkühlen der Probe im Vakuum wurden Wassergehalt und OH- Gruppendichte bestimmt.
Die Wassergehaltsbestimmung nach Karl-Fischer wurde an einem Mettler DL18 mit Hilfe von Karl-Fischer-Lösungsmittel, pyridinfrei (Karl-Fischer-Reagenz S, Fa. Merck) und Titriermittel (Karl-Fischer-Lösung Tritriermittel U, Fa. Merck) durchgeführt.
OH-Gruppenbestimmnung des Trägermaterials erfolgte mittels Thermo- gravimetrie / Differentielle Thermoanalyse (TG/DTA). Die TG- und DTA-Versuche wurden an einer Thermowaage des Typs L 81 der Fa. Linseis, Selb, durchgeführt. Zur Kalibrierung wurden zwei Platintiegel mit gleichen Mengen an AI2O3 eingewogen und zweimal bis 1000°C erhitzt. Die Heizrate betrug 10 K pro Minute, wobei unter Luftatmosphäre gearbeitet wurde. Je nach Dichte des Materials wurden 30-110 mg für die Analysen eingewogen, so dass der Tiegel vollständig gefüllt war.
Aus dem Masseverlust im Temperaturbereich von 200-1000°C wurde die Konzentration der vorhandenen Oberfläche-OH-Gruppen ermittelt. Zur Berechnung der OH-Gruppenendichte [μmol/g] wurden die prozentualen Massenwerte in Stoffmengen umgerechnet (Gleichung (1 )). Gemäß Gleichung (2) läßt sich die OH-Trägergruppendichte bei Kenntnis der Oberfläche in mol/m2 bestimmen:
2 -m(H2O)[g] - 106 n(Träger - OH)[ mol] = Gleichung (1 ) 18,015[g/mol]
n(Träger - OH)[/tmol] αOH[ mol/m2] = Gleichung (2) (as(BET)[mVg] - m(Träger)[g])
Tabelle 2: Thermische Behandlung des Trägers
thermische 0berfläche Porenvoiumen Wasser- OH-Gruppen- Bsp. Vorbehandlung 2/ , gehalt Dich e [°C] l aj L aj [Gew.-%] [mmol/g]
2a - 351 1 ,1 4,3 4,5
2b 200 356 1 ,1 1 ,0 4.4
2c 400 367 1 ,1 0,9 3,2
600 nicht
2d nicht bestimmt 0,8 1.5 bestimmt
2e 800 355 1 ,1 0,8 0.5
Mit zunehmender Vorbehandlungstemperatur sinkt neben der OH-Gruppen- Dichte vor allem der Gehalt an physisorbiertem Wasser. Oberfläche und Porenvolumen, die mittels BET-Analyse bestimmt wurden, bleiben dabei nahezu unverändert.
Beispiel 3: Herstellung des Trägerkatalysators
0,50 g des Trägers aus Beispiel 2a - 2e wurde in einem 100 ml Dreihalskolben unter Argon in 35 ml trockenen Toluol suspendiert und mit 3,25 ml einer 10%igen Lösung von Methylaluminoxan (MAO) in Toluol (5,4 mmol) versetzt und 30 min gerührt. Nach Absitzen des Niederschlags wurde filtriert und zweimal mit je 5 ml Toluol nachgewaschen.
Anschließend wurde die Belegung des Katalysators mit MAO ermittelt (Tabelle 3). Die Belegung korreliert sowohl mit dem Gehalt physisorbiertem Wasser als auch mit der OH-Gruppen-Dichte.
Der erhaltene Feststoff wurde in 35 ml Toluol aufgenommen und in einen 100 ml Büchi-Druckreaktor überführt, wonach 5 ml einer 0.855 10"3 molaren Cp2ZrCI2- Lösung (4.3 μmol) zugegeben und 10 min gerührt wurde.
Beispiel 4: Polymerisation
Die Katalysatorsuspension aus Beispiel 3a - 3e wurde im 100 ml Büchi- Autoklaven mit 2.5 bar Ethen gesättigt (Reinheitsstufe 4.5; Firma Messer Griesheim) und bei Raumtemperatur (27,5°C) 1 h gerührt. Die Polymerisation wurde durch Zugabe von 40 ml acifizierter Methanollösung beendet. Anschließend wurde mehrere Stunden gewaschen. Nach Abtrennung des Polymers wurde es bis zur Massenkonstanz im Vakuum getrocknet.
Die ermittelten Katalysatoraktivitäten sind in Tabelle 3 wiedergegeben. An erhaltenen Polymerpartikeln im Beispiel 3a wurden Molekulargewicht und Schmelzpunkt bestimmt. Erhalten wurde ein hochmolekulares Polyethen (Mw = 523000 g/mol, Mn = 241000 g/mol, Mw/Mn = 2,2) mit einem Schmelzpunkt von TM = 138 °C. Die Molekulargewichtsbestimmungen der Polyolefine erfolgte dabei mit Hilfe der Gelpermeationschromatographie unter der für Polyolefinen üblichen Bedingungen (135°C, 1 ,2,4-Trichlorbenzol) als 3-fach-Bestimmung an einem Hochtemperaturgerät der Firma Knauer (Trennsäulen: Polystyrolgel 500, 104, 105, 106 A; Fluß: 1 ml/min, Konzentration: ca. 0.5 - 1 mg/ml; Probenmenge: 400 μl). Die Bestimmung der Schmelzpunkte der Polymere erfolgte an einem DSC-821 Mettler Toledo.
Tabelle 3: Eigenschaften der Katalysatoren
Beispiel Wasser- OH-Gruppen- Belegung mit Polymerisationsgehalt Dichte Cokatalysator MAO aktivität [Gew.-%] [mmol/g] [mmol] /g Träger [kgpε/(barEt en molκat Ü2
3a 4,3 4,7 10.7 276
3b 1,0 4.4 6.4 202
3c 0,9 3,2 3.8 90
3d 0,8 1.5 2.4 126
3e 0,8 0.5 0.4 54
Die Messung der Belegung des Trägers mit der aluminiumhaltigen Verbindung MAO erfolgte über eine Differenzbestimmung. Der AI-Gehalt des Filtrats - Waschlösung des nicht heterogenisierten MAO - wurde mittels Absorptionsspektrometrie bestimmt und anschließend von der ursprünglich eingesetzten Aluminiumausgangsmenge des MAO abgezogen. Die Aluminuimbestimmungen wurden mittels Absorptionsspektrometrie mit einem Varian Spectra AA800 bestimmt. Dazu wurden die Proben zunächst mit 5 ml Schwefelsäure, 0,5 ml Flußsäure und ca. 0,5 ml Wasserstoffperoxid aufgeschlossen und mit 25 ml Reinstwassser aufgefüllt. Als Bestimmungs- methode diente die elektrothermale Atomabsorptionsspektrometrie (Graphitofen).

Claims

Patentansprüche
1. Träger für Katalysatoren, dadurch gekennzeichnet, dass er einen Gehalt an physisorbiertem Wasser von mindestens 2,5 Gew.-% aufweist.
2. Träger für Katalysatoren nach Anspruch 1 , dadurch gekennzeichnet, dass er einen Wassergehalt im Bereich von 3 bis 8 Gew.-% aufweist und es sich bei dem Träger um ein oxidisches Material handelt, das vorzugsweise ausgewählt ist aus den Oxiden der Elemente der 3. und 4. Hauptgruppe und der 3. bis 8.
Nebengruppe des Periodensystems, wobei es sich insbesondere bevorzugt um ein Aluminium-, Silicium-, Bor-, Germanium-, Titan-, Zirconium- oder Eisenoxid oder ein Mischoxid bzw. eine Oxid-Mischung der genannten Verbindungen handelt.
3. Träger für Katalysatoren nach mindestens einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass es sich um ein gemischtes Aluminium-Silicium- Oxid handelt, das vorzugsweise erhältlich ist durch ein Verfahren, bei dem a) zuerst getrennte Gele von Aluminium(hydr)oxid und Silicium(hydr)oxid hergestellt werden, b) die beiden Gele anschließend miteinander gemischt und homogenisiert werden, c) die homogenisierte Mischung sprühgetrocknet wird.
4. Träger nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Träger eine Teilchenoberfläche - bestimmt nach der BET-Methode - im Bereich von 50 bis 500 m2/g, vorzugsweise im Bereich von 150 bis 450 m2/g aufweist und ein Porenvolumen, ebenfalls gemessen nach der BET-Methode, im Bereich von 0,5 bis 4,5 ml/g aufweist, wobei das Porenvolumen vorzugsweise oberhalb von 0,8 ml/g und insbesondere bevorzugt im Bereich von 1 ,5 bis 4,0 ml/g liegt und das Verhältnis von Si02 zu AI2θ3 in dem Bereich von 100:1 bis 1 :2, vorzugsweise in dem Bereich 20:1 bis 5:1 liegt.
5. Träger nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er aus sphärischen Teilchen besteht, bei denen alle Verhältnisse der Mittelwerte der drei aufeinander senkrecht stehende Durchmesser jeweils im Bereich 1 ,5:1 bis 1 :1 ,5 liegen und die mittlere Partikelgröße der Katalysatorteilchen im Bereich von 1 bis 100 μm, vorzugsweise im Bereich von 3 bis 50 μm liegt.
6. Heterogener Katalysator geeignet zur Synthese von Polyolefinen, enthaltend, a) mindestens einen Träger gemäß mindestens einem der Ansprüche 1 bis 5 b) mindestens eine Verbindung eines Übergangsmetalles aus der 3. bis 8.
Nebengruppe des Periodensystems und c) mindestens eine Organometall-Verbindung eines (Halb-)metalls der 3 oder
4. Hauptgruppe des Periodensystems, wobei die Komponenten b) und c) auf dem Träger a) absorbiert sind und gemeinsam die katalytisch aktive Spezies bilden.
7. Heterogener Katalysator gemäß Anspruch 6, dadurch gekennzeichnet, dass es sich bei der Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems um eine Komplexverbindung, insbesondere bevorzugt um eine Metallocenverbindung handelt, wobei das
Zentralmetall vorzugsweise ausgewählt ist aus den Elementen Titan, Zirconium, Hafnium, Vanadium, Palladium, Nickel, Cobalt, Eisen und Chrom, wobei Titan und insbesondere Zirconium besonders bevorzugte Zentralatome sind, und es sich bei der Organometall-Verbindung eines (Halb-)metalls der 3. oder 4. Hauptgruppe des Periodensystems um eine Verbindung der Elemente
Bor, Aluminium, Zinn oder Silicium, vorzugsweise um eine Verbindung von Bor oder Aluminum handelt, wobei es sich insbesondere bevorzugt um ein Aluminoxan, insbesondere Methylaluminoxan handelt.
8. Heterogener Katalysator gemäß mindestens einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass er aus Teilchen besteht, die eine mittlere Partikelgröße im Bereich von 1 bis 150 μm, vorzugsweise im Bereich von 3 bis 75 μm aufweisen.
. Verfahren zur Herstellung eines heterogenen Katalysators geeignet zur Synthese von Polyolefinen, dadurch gekennzeichnet, dass a) ein Träger nach mindestens einem der Ansprüche 1 bis 5 mit mindestens einer Organometall-Verbindung eines (Halb-)metalls der 3. oder 4. Hauptgruppe des Periodensystems und b) mit mindestens einer Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems zu dem heterogenen Katalysator umgesetzt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass zuerst der Cokatalysators auf dem Träger absorbiert wird und anschließend der Katalysator zugegeben wird.
11.Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass eine Mischung aus Katalysator und Cokatalysator auf dem Träger absorbiert wird.
12. Verfahren nach mindestens einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass als Verbindung eines Übergangsmetalles aus der 3. bis 8. Nebengruppe des Periodensystems eine Komplexverbindung, insbesondere bevorzugt eine Metallocenverbindung eingesetzt wird, wobei das Zentralmetall vorzugsweise ausgewählt ist aus den Elementen Titan, Zirconium, Hafnium, Vanadium, Palladium, Nickel, Cobalt, Eisen und Chrom, wobei Titan und insbesondere Zirconium besonders bevorzugte Zentralatome sind, und als Organometall-Verbindung eines (Halb-)metalls der 3. oder 4.
Hauptgruppe des Periodensystems eine Verbindung der Elemente Bor, Aluminium, Zinn oder Silicium, vorzugsweise eine Verbindung von Bor oder Aluminium eingesetzt wird, wobei insbesondere bevorzugt ein Aluminoxan, insbesondere Methylaluminoxan eingesetzt wird.
13. Verfahren nach mindestens einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass vor der Umsetzung des Trägers mit dem (Co)Katalysator außer der Sprühtrocknung entweder keine weitere Trocknung des Trägers stattfindet, oder die Trocknung bei Temperaturen unterhalb 400°C, vorzugsweise unterhalb von 250°C und insbesondere bevorzugt bei maximal 180°C durchgeführt wird.
14. Verfahren zur Herstellung eines Trägers für Katalysatoren, dadurch gekennzeichnet, dass a) zuerst getrennte Gele von Aluminium(hydr)oxid und Silicium(hydr)oxid hergestellt werden, b) die beiden Gele anschließend miteinander gemischt und homogenisiert werden, c) die homogenisierte Mischung sprühgetrocknet wird.
15. Verwendung eines heterogenen Katalysators nach mindestens einem der Ansprüche 6 bis 8 oder eines heterogenen Katalysators hergestellt nach einem Verfahren gemäß einem der Ansprüche 9 bis 13 zur Herstellung von Polyolefinen.
16. Verfahren zur Herstellung von Polyolefinen, dadurch gekennzeichnet, dass ein heterogener Katalysator nach mindestens einem der Ansprüche 6 bis 8 oder ein heterogener Katalysator hergestellt nach einem Verfahren gemäß einem der Ansprüche 9 bis 13 und ein Olefin gemäß der Formel R1CH=CHR2 eingesetzt werden, wobei R1 und R2 gleich oder verschieden sein können und ausgewählt sind aus der Gruppe, die Wasserstoff und die cyclischen und acyclischen Alkylreste mit 1 bis 20 C-Atomen enthält.
17. Verfahren zur Herstellung von Polyolefinen nach Anspruch 16, dadurch gekennzeichnet, dass die Polymerisation als Gasphasen- oder Suspensionspolymerisation durchgeführt wird.
18. Verwendung eines heterogenen Katalysators nach mindestens einem der Ansprüche 6 bis 8 oder eines heterogenen Katalysators hergestellt nach einem Verfahren gemäß einem der Ansprüche 9 bis 13 zur Herstellung von Polyolefinen mit sphärischer Partikelstruktur.
EP01980446A 2000-10-24 2001-09-27 Katalysatorträger, dessen herstellung und verwendung zur olefinpolymerisation Withdrawn EP1335792A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10052600A DE10052600A1 (de) 2000-10-24 2000-10-24 Katalysatorträger
DE10052603A DE10052603A1 (de) 2000-10-24 2000-10-24 Katalysatorträger
DE10052600 2000-10-24
DE10052603 2000-10-24
PCT/EP2001/011202 WO2002034386A1 (de) 2000-10-24 2001-09-27 Katalysatorträger, dessen herstellung und verwendung zur olefinpolymerisation

Publications (1)

Publication Number Publication Date
EP1335792A1 true EP1335792A1 (de) 2003-08-20

Family

ID=26007472

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01980446A Withdrawn EP1335792A1 (de) 2000-10-24 2001-09-27 Katalysatorträger, dessen herstellung und verwendung zur olefinpolymerisation

Country Status (5)

Country Link
US (1) US20040014917A1 (de)
EP (1) EP1335792A1 (de)
JP (1) JP2004512166A (de)
AU (1) AU2002212287A1 (de)
WO (1) WO2002034386A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160328A1 (de) * 2001-12-07 2003-06-18 Merck Patent Gmbh Mikropartikuläres Material
JP2005526175A (ja) * 2002-06-03 2005-09-02 ユニベーション・テクノロジーズ・エルエルシー 固体粒状で不均質の噴霧乾燥された触媒組成物
RU2372291C2 (ru) * 2004-09-23 2009-11-10 Сёва Дэнко К.К. Способ получения тетрафторида марганца
TW200932681A (en) * 2007-12-11 2009-08-01 Solvay Fluor Gmbh Method for preparing manganese tetrafluoride
WO2011073364A1 (en) * 2009-12-18 2011-06-23 Total Petrochemicals Research Feluy Process for the preparation of a particulate bimodal polyethylene product
FR3102069B1 (fr) * 2019-10-22 2021-12-31 Ifp Energies Now Procede de preparation d’un support de catalyseur

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US374381A (en) * 1887-12-06 waddell
US440713A (en) * 1890-11-18 Charles william krohne and henry frederick sesemann
US1007644A (en) * 1910-03-05 1911-10-31 William I Cocke Respirator.
US1671010A (en) * 1925-01-12 1928-05-22 Joseph F Hindes Mask
US1695170A (en) * 1925-08-19 1928-12-11 Burdick Charles Laurence Respirator
US1998327A (en) * 1933-04-10 1935-04-16 Mcguire Clarence Vane Inhalant device
US2164330A (en) * 1937-07-10 1939-07-04 Sidney H Katz Fully molded gas mask facepiece
NL65665C (de) * 1941-10-04
US2381568A (en) * 1942-10-19 1945-08-07 Mark Cooney Gas mask
GB586945A (en) * 1944-12-27 1947-04-08 Shell Dev Catalytic processes
US2848994A (en) * 1955-11-07 1958-08-26 Aguado Edward Disposable breather mask
US2985169A (en) * 1957-09-09 1961-05-23 Scott Aviation Corp Exhalation-valve unit for a breathing mask
US2931356A (en) * 1958-08-25 1960-04-05 Puritan Compressed Gas Corp Oxygen mask having detachable face seal cushion
US3182659A (en) * 1962-01-15 1965-05-11 Gordon D Mcmaude Oxygen and inhalant mask
US3232292A (en) * 1962-10-12 1966-02-01 Arizona Nucleonics Inc Ionized aerosols
US3490452A (en) * 1967-06-20 1970-01-20 Samuel L Greenfield Therapeutic face mask
US4356294A (en) * 1980-10-24 1982-10-26 National Petro Chemicals Corp. Production of polyolefins having improved ESCR
US4470412A (en) * 1982-03-19 1984-09-11 Trutek Research, Inc. Inhalation valve
US4637387A (en) * 1982-08-02 1987-01-20 Hall Lester B Breathing apparatus
US4573463A (en) * 1982-08-02 1986-03-04 Hall Lester B Breathing mask
US4809692A (en) * 1986-01-31 1989-03-07 Trudell Medical Pediatric asthmatic medication inhaler
US4850346A (en) * 1986-10-20 1989-07-25 Wgm Safety Corp. Respirator
US4770169A (en) * 1987-02-13 1988-09-13 Mdt Diagnostic Company Anaesthetic mask
US4832015A (en) * 1988-05-19 1989-05-23 Trudell Medical Pediatric asthmatic inhaler
US4865027A (en) * 1988-09-27 1989-09-12 The University Of Michigan Non-rebreathing collapsible chamber continuous aerosol delivery system with infusion port
US5109839A (en) * 1988-11-14 1992-05-05 Blasdell Richard J Inhalation apparatus
US4938209A (en) * 1989-01-12 1990-07-03 Fry William J Mask for a nebulizer
US5012804A (en) * 1989-03-06 1991-05-07 Trudell Medical Medication inhaler with adult mask
US5954049A (en) * 1991-10-15 1999-09-21 Trudell Medical Limited Equine mask with MDI adapter
NZ250105A (en) * 1992-11-09 1996-07-26 Monaghan Canadian Ltd Inhalator mask; one-way valve opens upon exhalation
US5604170A (en) * 1993-02-23 1997-02-18 Nippon Oil Company, Limited Solid catalyst components for olefin polemerization and use thereof
CA2116259A1 (en) * 1993-02-23 1994-08-24 Akira Sano Solid catalyst components for olefin polymerization and use thereof
US5629253A (en) * 1994-04-26 1997-05-13 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0234386A1 *

Also Published As

Publication number Publication date
JP2004512166A (ja) 2004-04-22
AU2002212287A1 (en) 2002-05-06
US20040014917A1 (en) 2004-01-22
WO2002034386A1 (de) 2002-05-02

Similar Documents

Publication Publication Date Title
DE60128385T2 (de) Bimetallkatalysator zur ethylenpolymerisation mit bimodaler molekulargewichtsverteilung, dessen herstellung und verwendung
DE69839198T2 (de) Ein Ethylen-alpha-Olefin Copolymer und daraus hergestellter Film
EP0685494B1 (de) Katalysatorträger, geträgerte Metallocenkatalysatoren und deren Verwendung für die Herstellung von Polyolefinen
DE69831410T2 (de) Mehrstufiges polymerisationsverfahren unter verwendung eines katalysators mit mehreren katalytisch aktiven stellen
AT403919B (de) Verfahren zur herstellung von katalysatorträgern und geträgerter polyolefin-katalysatoren sowie deren verwendung für die herstellung von polyolefinen
DE69405658T3 (de) Geträgerte Katalysatoren für die Polymerisation von Olefinen
DE69033368T3 (de) Ionische Metallocenkatalysatoren auf Träger für Olefinpolymerisation
DE69923207T2 (de) Verbindung enthaltend ein übergangsmetall-kation und ein aluminoxat-anion und deren verwendung als katalysatorkomponente
DE69908649T2 (de) Mehrstufenverfahren zur darstellung von polyolefinen mit hoher schmelzfestigkeit
WO1998038228A1 (de) Katalysatorzusammensetzung
EP0942938A1 (de) Geträgertes katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
DE69829644T2 (de) Katalysatorzusammensetzung für die olefinpolymerisation mit erhöhter aktivität
DE60318594T2 (de) Verfahren zur herstellung eines teilchenförmigen metallocenkatalysators mit modifiziertem aluminoxan und verwendung zur polymerisierung von olefinen
DE60004686T2 (de) Metallocenverbindungen und ihre verwendung bei der polymerisation von olefinen
WO2000044799A1 (de) Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung
DE19531044B4 (de) Katalysator für die Olefinpolymerisation und Verfahren zur Herstellung von Polyolefinen unter Verwendung dieses Katalysators
EP0523416B1 (de) Katalysator und Verfahren zur Herstellung von hochmolekularen Polyolefinen
US20020058766A1 (en) Catalyst compounds, catalyst systems thereof and their use in a polymerization process
DE60010689T2 (de) Bimetallischer katalysator für die (co)polymerisation von olefinen
EP1335792A1 (de) Katalysatorträger, dessen herstellung und verwendung zur olefinpolymerisation
WO2003047753A1 (de) Mikropartikuläres material
DE69924293T2 (de) Katalysatorsystem und verfahren zur dessen herstellung und dessen verwendung in einem polymerisationsverfahren
DE10052603A1 (de) Katalysatorträger
DE10052600A1 (de) Katalysatorträger
WO2001040324A1 (en) Catalyst compounds, catalyst systems thereof and their use in a polymerization process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030312

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EICHHORN, JENS

Inventor name: KOEHLER, KATRIN

Inventor name: LUBDA, DIETER

Inventor name: EBERLE, THOMAS

17Q First examination report despatched

Effective date: 20050218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050629