EP1307781A1 - Filtre optique accordable a insertion-extraction assiste par grille en fonctionnement codirectionnel - Google Patents

Filtre optique accordable a insertion-extraction assiste par grille en fonctionnement codirectionnel

Info

Publication number
EP1307781A1
EP1307781A1 EP01943152A EP01943152A EP1307781A1 EP 1307781 A1 EP1307781 A1 EP 1307781A1 EP 01943152 A EP01943152 A EP 01943152A EP 01943152 A EP01943152 A EP 01943152A EP 1307781 A1 EP1307781 A1 EP 1307781A1
Authority
EP
European Patent Office
Prior art keywords
add
optical
changing
drop filter
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01943152A
Other languages
German (de)
English (en)
Inventor
Norbert Grote
Georges Przyrembel
Huihai Yao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1307781A1 publication Critical patent/EP1307781A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/302Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating grating coupler
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Definitions

  • the invention relates to an optically tunable grating-supported add / drop filter in codirectional mode of operation, comprising a structure of a directional coupler filter with at least two closely adjacent waveguides with different refractive indices, one of which has a grating.
  • add / drop filters are key components in so-called WDM (Wavelength Division Multiplexing) systems, in which several wavelengths are guided on a fiber link. These add / drop filters allow one or more wavelengths to be inserted and removed from the fiber. It is known to design add / drop filters in the structure of a directional coupler filter. In such a filter, at least two closely adjacent waveguides with different refractive indices are arranged, of which at least one waveguide has a grating, this grating is preferably applied to the waveguide with the larger refractive index.
  • Such an add / drop filter is, for example, in IEEE Phot.Technol. Lett., Vol. 4, No. December 12, 1992, pp. 1386-1389.
  • Tunable filters in the form of ordinary Mach-Zehnder interferometers are known from the prior art, which have a not very selective sin 2 filter curve.
  • the tunability of such filters can be achieved, for example, by means of heating electrodes applied separately to the waveguide (s), utilizing the thermo-optical effect.
  • Comparable filters are known in InP technology which can be detuned thermo-optically or electro-optically.
  • a thermo-optically detunable filter in Proc. of the 10 th Int. Conf. on InP and Rel. Mat, (IPRM'98), Tsukuba, Japan, (1998) pp.7 - Post-deadline paper.
  • the filter shown is implemented in materials of one class (III-V connections), namely GalnAsP / lnP, as an asymmetrical, lateral grating-supported codirectional directional coupler filter with two waveguides, a weakly leading and a strongly leading, the grating on the strongly leading Waveguide is arranged and leads to a wavelength-selective behavior of the component.
  • III-V connections namely GalnAsP / lnP
  • thermo-optical coupler switch has two SiO 2 waveguides guided in parallel which a polymer waveguide is arranged so that it intersects the two underlying SiO 2 waveguides and the polymer waveguide has a heating electrode at the intersection with the underlying SiO 2 waveguides.
  • planar SiO 2 waveguide is considered optical transmissive layer and the polymer waveguide used for the switching function.
  • the object of the invention is to provide a tunable add / drop filter with a spectral bandwidth of the filter pass curve in the range of greater than 50 GHz, which has a high resolution and a simpler and less expensive technological production and higher dimensional tolerances in general. to add / drop filters based on Ill-V materials.
  • bandwidth range from 50 GHz to 400 GHz is particularly interesting for current and future applications in the field of communication technology.
  • an add / drop filter of the type mentioned at the outset in that the material of the two waveguides is formed from two different classes of material with different optical parameters, the thermal refractive index coefficient dn / dT and / or electro-optical coefficient dn / dE and / or differentiate dn / d ⁇ of the two materials in such a way that when the same technical means for changing the temperature and / or electric field and / or wavelength act on the two waveguides, effects of different strength occur and means for changing these optical parameters are provided.
  • an add / drop filter based on a directional coupler structure in which two parallel waveguides are separated by a gap over a certain length, the two waveguides are dimensioned differently due to manufacturing tolerances and targeted adjustment (e.g. width, Height, refractive index). Associated with this are different propagation constants in the waveguides, ie the component is asymmetrical. At this Asymmetry means that a complete exchange of energy between the two waveguides is no longer possible. Symmetry can be found again if a grating is applied to a waveguide. The associated high frequency selectivity is used for the filter function.
  • the waveguides of an add / drop filter formed according to the invention from two different material classes, in which, as mentioned, the optical parameters differ from one another, enable the filter to be specifically tuned using simple technical means.
  • One embodiment of the add / drop filter according to the invention provides that one waveguide made of silica and the other waveguide made of a polymer material, in particular of a polymer material having non-linear optical properties.
  • Another embodiment of the invention provides that the waveguide with the larger refractive index has a grating.
  • the two waveguides are arranged vertically or horizontally to one another.
  • the implementation of the two waveguides in a layered planar microtechnology allows the entire filter to be produced in a simple and inexpensive manner.
  • the thermal refractive index coefficient dn / dT of the two waveguides formed from two material classes differs in such a way that when the temperature changes the same, the two waveguides react differently with respect to a change in the refractive index
  • the mean for changing the thermal refractive index dn / dT is one Device for changing the temperature, which acts on the entire surface of the chip, in particular from below.
  • this device can be identical to a device that is usually used for temperature stabilization of known add / drop filters, for example a Peltier element.
  • This Embodiment does not require an additional step for the production of specific heating electrodes and the associated control means and, with a homogeneous temperature change of the entire component in the two waveguides, enables changes in their refractive indices of different magnitudes, as a result of which an effective thermal tuning of the component can be achieved without the application of local heating electrodes.
  • both the temperature stabilization and temperature trimming to compensate for manufacturing tolerances and the desired wavelength tuning of the filter can be achieved with the solution according to the invention.
  • the means for changing the thermal refractive index coefficient dn / dT can be a heating electrode which is arranged on the waveguide, the coefficient of which has a greater temperature dependence.
  • Electrodes for generating an electric field E are provided as means for changing the optical parameter dn / dE, at least one electrode being arranged on the waveguide with the larger refractive index. If an electric field is applied to this waveguide, it is known that the refractive index of the polymer ( ⁇ n ⁇ E) changes due to the Pockels effect.
  • the person skilled in the art will carry out the special arrangement of the electrodes for generating an electric field, which influences the refractive index of the waveguide underneath, depending on the desired direction of the electric field and the acting electro-optical coefficient for a defined influence on the mode coupling.
  • a vertical electric field E is generated by means of an electrode arranged directly on the NLO polymer waveguide.
  • the electro-optical coefficient r 33 for TM polarization used.
  • a horizontal electric field E is generated by means of electrodes which are arranged on both sides of the polymer waveguide.
  • the electro-optical coefficient ri 3 is used here.
  • Polymers with a large electro-optical coefficient dn / dE can be used for tuning in the ps range. It can therefore be implemented more quickly than by means of a temperature change and effect via the thermo-optical effect in comparable arrangements. This applies in particular to the nonlinear optical polymer materials already mentioned.
  • the difference between the refractive indices of the two waveguides is chosen large enough that a grating known from the prior art can be used.
  • the grating period takes on large values if the refractive index difference becomes too small.
  • the filter has to be built very long (for example 100 mm), which is disadvantageous.
  • Increasing the grating stroke (grating amplitude) allows the grating length to be shortened, but care must be taken to ensure that the radiation losses remain negligible.
  • the dispersion dn / d ⁇ can be changed during the manufacture of the filter according to the invention by a different choice of material for the implementation of the waveguides.
  • the add / drop filter according to the invention can be tuned individually or in combination with one another by changing the optical parameters.
  • the geometrical sizes are approximately three times larger than when implemented in InP (III-V) with refractive indices of approximately 3. 3, which makes the manufacturing technology easier and cheaper, since higher dimensional tolerances are permitted.
  • the adaptation to optical glass fibers, which establish the connection to the four ports (input / output), can be significantly less attenuation (per length unit) without tapering than with add / drop filters based on InP.
  • a wavelength shift above the temperature of approximately 3 nm / K is expected for the tunability of the filter produced according to the invention in polymer / silica.
  • a lower sensitivity of 0.37nm / K is reported in the publications on comparable filters in InP.
  • Fig. 1 shows the shift of the filter curve with a uniformly acting on the chip having the inventive add / drop filter
  • the two waveguides are separated from one another by silicon with a thickness of 4 ⁇ m, which has a refractive index of 1, 444, and are arranged vertically to one another.
  • the waveguide formed from a polymer has a thickness of 2 ⁇ m, that of doped Si0 2 4 ⁇ m.
  • the waveguide with the larger refractive index has a grating, since the known masses are more efficient there and the length of the components can thus be shorter.
  • the grating stroke is 0.2 ⁇ m
  • the grating period is 64 ⁇ m
  • the total length of the waveguide is 10,600 ⁇ m.
  • the grating causes an energy transfer to be applied per grating period. After a certain number of grating periods, the light signal completely passes from one waveguide to the other.
  • a change in temperature affects the molecular chains of the polymer, which results in a change in the local refractive index and thus affects the filter characteristics.
  • FIG. 1 shows the shift in the filter curve when the temperature of the chip having the add / drop filter according to the invention is increased by 10 K.
  • the tuning behavior depending on the temperature was calculated. With a temperature increase of 10 K (from 20 ° C to 30 ° C) the refractive index of the polymer waveguide changes from 1.49 to 1.489. The shift in frequency to lower wavelengths when the temperature rises can be clearly seen.
  • the filter curves shown have a sinc characteristic.
  • a Gaussian filter curve can be realized by apodosing the grating. In this case, the grating stroke starts at 0 over the length of the waveguide structure up to a maximum value and then decays again to 0. Because of the low Lattice effectiveness increases the total length of the waveguide structure by about a factor of 3.
  • the dispersion values of the nonlinear optical polymers change from - 0.02 / ⁇ m to - 0.05 / ⁇ m.
  • gate 1 is the entrance, gate 2 'the exit, as shown here in the inserted picture.
  • the 3 dB bandwidth for the hybrid add / drop filter according to the invention is 4.1 nm with a dispersion value of - 0.012 / ⁇ m for SiO 2 and - 0.01 / ⁇ m for linear or passive polymers.
  • This bandwidth changes to 2 .5 nm for a nonlinear optical polymer with a dispersion of - 0.03 / ⁇ m. If the dispersion is increased to - 0.05 / ⁇ m, the 3dB bandwidth narrows further to 1.7 nm.

Abstract

L'invention concerne un filtre optique accordable à insertion-extraction assisté par grille en fonctionnement codirectionnel, qui présente la structure d'un filtre à coupleur directif pourvu d'au moins deux guides d'ondes très proches ayant des indices de réfraction différents. Le filtre selon l'invention doit présenter une largeur de bande spectrale de la courbe de bande passante de filtre située dans la plage allant de 50 GHz à 400 GHz pour une haute résolution, doit être accordable et doit pouvoir être produit plus simplement et plus économiquement avec des tolérances dimensionnelles plus élevées par rapport aux filtres à insertion-extraction à base InP. A cet effet, le matériau des deux guides d'ondes est constitué de deux classes de matériau différentes ayant des paramètres optiques différents. Le coefficient d'indice de réfraction thermique dn/dT, le coefficient électro-optique dn/dE ou la dispersion dn/d lambda des deux matériaux se distinguent de telle façon que, en cas d'action avec les mêmes moyens techniques sur les deux guides d'ondes pour modifier la température, le champ électrique ou la longueur d'onde, des effets d'intensité différente apparaissent. Des moyens sont prévus pour la modification de ces paramètres optiques. On utilise un polymère et de la silice comme matériaux pour les guides d'ondes disposés verticalement ou horizontalement l'un par rapport à l'autre. Concernant la modification du paramètre optique dn/dT, un dispositif servant à modifier la température agit sur toute la surface d'une puce comprenant le filtre, ce dispositif pouvant être identique à un dispositif servant à stabiliser la température de la puce.
EP01943152A 2000-05-18 2001-05-18 Filtre optique accordable a insertion-extraction assiste par grille en fonctionnement codirectionnel Withdrawn EP1307781A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10025307A DE10025307B4 (de) 2000-05-18 2000-05-18 Optisches gitterunterstütztes Add/Drop-Filter
DE10025307 2000-05-18
PCT/DE2001/001993 WO2001088608A1 (fr) 2000-05-18 2001-05-18 Filtre optique accordable a insertion-extraction assiste par grille en fonctionnement codirectionnel

Publications (1)

Publication Number Publication Date
EP1307781A1 true EP1307781A1 (fr) 2003-05-07

Family

ID=7643121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943152A Withdrawn EP1307781A1 (fr) 2000-05-18 2001-05-18 Filtre optique accordable a insertion-extraction assiste par grille en fonctionnement codirectionnel

Country Status (5)

Country Link
US (1) US6810182B2 (fr)
EP (1) EP1307781A1 (fr)
JP (1) JP2003533737A (fr)
DE (1) DE10025307B4 (fr)
WO (1) WO2001088608A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003298103A1 (en) * 2003-11-05 2005-06-08 Pirelli And C. S.P.A. Tuneable grating assisted directional optical coupler
JP2008102009A (ja) * 2006-10-19 2008-05-01 Sumitomo Electric Ind Ltd 光学測定装置および光学的測定方法
WO2014023804A2 (fr) 2012-08-08 2014-02-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Coupleur directionnel et guide d'onde optique
EP2696227B1 (fr) 2012-08-08 2019-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coupleur directionnel et guide d'ondes optiques
US9390016B2 (en) * 2012-10-31 2016-07-12 Oracle International Corporation Accessing an off-chip cache via silicon photonic waveguides
DE102013204606A1 (de) 2013-03-15 2014-09-18 Leibniz-Institut für Festkörper- und Werkstoffforschung e.V. Wellenleiter-Resonator-Bauelement und Verfahren zu seiner Herstellung
US10197818B2 (en) * 2016-10-24 2019-02-05 Electronics & Telecommunications Research Institute Thermo-optic optical switch

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9324456D0 (en) * 1993-11-29 1994-01-12 Univ Southampton Waveguide coupler
JPH11511568A (ja) * 1995-08-29 1999-10-05 アロヨ・オプティクス・インコーポレイテッド 波長選択回折格子利用型光学カプラ
JP3654383B2 (ja) * 1995-12-07 2005-06-02 Kddi株式会社 光アド/ドロップ多重素子
US6084050A (en) * 1997-01-09 2000-07-04 Nippon Telegraph And Telephone Corporation Thermo-optic devices
US5970186A (en) * 1997-03-11 1999-10-19 Lightwave Microsystems Corporation Hybrid digital electro-optic switch
WO1999009440A1 (fr) * 1997-08-13 1999-02-25 Foster-Miller, Inc. Composants optiques commutables
US6122416A (en) * 1997-09-26 2000-09-19 Nippon Telegraph And Telephone Corporation Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
SE520951C2 (sv) * 1998-06-17 2003-09-16 Ericsson Telefon Ab L M Multivåglängdsselektiv switch för switchning och omdirigering av optiska våglängder
DE19849862C1 (de) * 1998-10-29 2000-04-06 Alcatel Sa Thermooptischer Schalter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0188608A1 *

Also Published As

Publication number Publication date
DE10025307B4 (de) 2005-09-08
JP2003533737A (ja) 2003-11-11
US6810182B2 (en) 2004-10-26
US20030133490A1 (en) 2003-07-17
DE10025307A1 (de) 2001-11-29
WO2001088608A1 (fr) 2001-11-22

Similar Documents

Publication Publication Date Title
DE69825401T2 (de) Optischer Pulskompressor für optische Kommunikationssysteme
DE19509447C2 (de) Optischer Wellenleiter-Multiplexer/Demultiplexer und zugehöriges Verfahren
DE4029626C2 (de) Optische Logikvorrichtungen
DE60314829T2 (de) Optischer Multiplex/Demultiplex-Schaltkreis mit einem Phasengenerator
DE60010053T2 (de) Elektrisch verstellbares beugungsgitter
DE19549245C2 (de) Thermo-optischer Schalter
EP0152991A2 (fr) Multiplexeur/démultiplexeur de longueur d'onde optiquement intégré pour un système monomode de communication et sa mise en oeuvre
DE112004000461T5 (de) Elektrooptische Modulatoren und Wellenleitervorrichtungen, welche diese enthalten
DE10393739T5 (de) Wellenleitervorrichtungen mit Kerreffekt basierend auf optischen Funktionsmedien
EP2478400A2 (fr) Filtres de modes transversaux pour guide d'onde
DE10025307B4 (de) Optisches gitterunterstütztes Add/Drop-Filter
DE69730384T2 (de) Optisches Bauelement
EP0902910B1 (fr) Commutateur optique numerique
DE60127146T2 (de) Optische vorrichtung
DE19809887A1 (de) Optisches Signalübertragungssystem
DE10246547B4 (de) Brechungsindexgitter und Modenkoppler mit einem Brechungsindexgitter
EP1341032A1 (fr) Modulateur optique à base de cristaux photoniques
DE19915139A1 (de) Verfahren zur Dispersionskompensation gemeinsam übertragener optischer Signale mit unterschiedlichen Wellenlängen
DE10322110B4 (de) Anordnung zur Erzeugung von optischen Mehrwellensignalen und Mehrsignal-Quelle
DE10001014B4 (de) Einrichtung zur digitalen Phasen- und/oder Amplitudenmodulation einer Lichtwelle
DE60127045T2 (de) Optische Schwellwert- und Vergleichsvorrichtung und -verfahren
DE4318752A1 (de) Resonatorvorrichtung
DE60204531T2 (de) Optischer Koppler und Gitter aus nebeneinanderliegenden Wellenleitern (AWG) mit diesem Koppler
DE4335428A1 (de) Optische Frequenzweiche
WO2002071109A2 (fr) Adaptateur de niveau optique reglable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021213

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

RBV Designated contracting states (corrected)

Designated state(s): DE FR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061201