EP1305561B1 - Vorrichtung zur wärmeübertragung - Google Patents

Vorrichtung zur wärmeübertragung Download PDF

Info

Publication number
EP1305561B1
EP1305561B1 EP01951364A EP01951364A EP1305561B1 EP 1305561 B1 EP1305561 B1 EP 1305561B1 EP 01951364 A EP01951364 A EP 01951364A EP 01951364 A EP01951364 A EP 01951364A EP 1305561 B1 EP1305561 B1 EP 1305561B1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat transfer
supporting element
abovementioned
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01951364A
Other languages
English (en)
French (fr)
Other versions
EP1305561A1 (de
Inventor
Stephan Leuthner
Petra Beil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1305561A1 publication Critical patent/EP1305561A1/de
Application granted granted Critical
Publication of EP1305561B1 publication Critical patent/EP1305561B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/08Reinforcing means for header boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/906Reinforcement

Definitions

  • the invention relates to a device for heat transfer from a first fluid to a second fluid separated from the first fluid with at least two layers, in particular plates, comprising a stack-shaped or shell-like structure according to the preamble of claim 1.
  • heat exchangers are provided with a flowed through by a high-pressure side refrigerant first channel and a low-pressure-side refrigerant, separated from the first channel second channel in a CO 2 vehicle air conditioning.
  • a so-called internal or internal heat exchanger is provided.
  • the internal heat exchanger is flowed through by the refrigerant (CO 2 ) in a countercurrent or DC principle.
  • the fluids flow through the heat exchanger once on the way from the gas cooler to the evaporator and the second time between evaporator and compressor.
  • the main task of the internal heat exchanger is to additionally cool the refrigerant before expansion.
  • the heat is from the high pressure side of the gas cooler to the Low pressure side after the evaporator (before entering the compressor) delivered.
  • the partially still liquid refrigerant evaporates completely before it reaches the compressor.
  • Possible applications are for corresponding heat exchangers in vehicle air conditioners, heat pumps, portable air conditioners low power, dehumidifiers, dryers, fuel cell systems and similar applications.
  • heat exchangers which are made comparatively compact for mass and volume reduction.
  • micro-heat exchangers are provided. These consist in particular of structured plates which are stacked one above the other and either soldered together, screwed or connected accordingly. In this case, correspondingly provided channels of the heat exchanger are also sealed at the same time. The fluids that make thermal contact with each other in the heat exchanger are passed through the channels between the plates.
  • the fluids are passed through inlet openings or outlet openings in the individual layers, so that in different layers alternately flows a heat-absorbing and a heat-emitting fluid.
  • the distribution or merging of the fluids to or from the individual channels takes place here in the entry or exit area. In these areas, the respective fluid flow splits or collects.
  • the large pressurized area in the region of the free cross-section causes large material stresses to occur, resulting in material deformations, eg. B. flow, or may come to failure of the component.
  • the invention has the object to provide a device for heat transfer, which realizes a comparatively large heat-transmitting surface with a small volume and thereby ensures trouble-free operation even at a large different pressure level of the two fluids.
  • a device is characterized in that the inlet and / or outlet region comprises at least one support element which, like the channels, is formed by means of an applied or abrasive manufacturing process on the relevant, preferably plate-shaped layers of the device.
  • the resultant free cross-section and in particular the bending moment occurring in the entry or exit area is thereby substantially reduced, with particularly small geometric dimensions being able to be realized by the machining or removal manufacturing process.
  • an etching method can preferably be used. This ensures that the pressurized surface, in particular on the side operated with a comparatively low pressure, is supported and thus an adverse deformation of the plate is prevented.
  • each plate inventive support element corresponding pressure forces from plate to plate forward to possibly a comparatively massive cover plate absorbs the compressive forces, so that deformation of the plates or a failure of the entire component is effectively prevented.
  • numerous support elements are provided both in the entry and in the exit area, so that both the resulting free cross sections and the bending stresses occurring are further reduced.
  • this advantageously has comparatively many support elements on the side facing the heat transfer region. However, comparatively few supporting elements are provided on the side of the entry region facing the inlet opening. The corresponding is advantageously transferred to the exit area.
  • the heat exchanger according to the invention compared to the prior art at the same pressure differences between the two fluids have much thinner plates, which can preferably lead to a given mass to be transferred heat and in particular to a significant mass and volume reduction of the entire heat exchanger.
  • the support elements increase the heat-transmitting surface, so that the heat transfer of the heat exchanger according to the invention is additionally improved.
  • the volume of a heat exchanger according to the invention can be additionally reduced in an advantageous manner for a given heat output to be transferred.
  • the length of the support element is designed as a multiple of its width. This ensures that the support element, for example, with a comparable flow resistance has a much greater support effect and heat-transferring surface.
  • the heat exchanger can hereby advantageously be subjected to a greater pressure difference between the two fluid streams without any disadvantageous material deformation or failure of the heat exchanger.
  • the support element is designed as a fluid guide element.
  • the fluid is uniformly distributed to the channels of the heat transfer area or streamlined from the channels and forwarded to a corresponding collection channel. This can be implemented a more uniform distribution of the channel structure of the heat transfer area, which in turn leads to improved heat transfer of the heat exchanger.
  • two adjacent support elements are arranged at an angle of less than 20 °, preferably between 10 ° and 15 ° to each other.
  • the opening angle of the fluid flow is often over 50 °.
  • a comparatively small opening angle between two adjacent support elements according to the invention prevents, for example, a detachment of the fluid flow in the entry or exit area, so that disadvantageous energy losses can be minimized and at the same time uneven loading of the channel structure of the heat transfer area can be prevented.
  • Reynolds number which is dependent for example on the opening angle, the fluid pressure and the arrangement or design of the support elements or the channels of the heat transfer area.
  • the side wall of the support element is rectilinear and / or curved.
  • the configuration of a support element as a polygon is also conceivable.
  • the support elements are material technically and geometrically designed such that they achieve the greatest possible support effect and a very good flow distribution with a comparatively low flow pressure loss.
  • elongate support members may advantageously have widened portions for improving the support effect and the flow guidance.
  • At least one support element is formed as an extension of a partition between two channels of the heat transfer area.
  • a Support member formed as an extension of the channel partition wall it is preferably provided a curved transition from the support member to the channel partition.
  • a curved transition can lead to an advantageous fluid flow, so that disadvantageous pressure losses can be minimized.
  • the support element may have a curved side wall, but also the channel partition wall may have a curvilinear side wall having at least in the edge region, so that a more favorable fluid flow can be generated.
  • this is a transition with a slight fold, which has a relatively small kink, feasible.
  • the various layers of the stack-shaped or cup-shaped device are formed as flat or curved plates or as cylindrical, stackable due to different diameter components, so that an advantageous production of the heat exchanger according to the invention can be realized.
  • the heat exchanger final cover plates are provided.
  • the design and arrangement of the support elements is adapted to the channels of the heat transfer area.
  • the channels and the support elements are produced on or in the layers by means of a removing or applying manufacturing process, so that the support elements and the channels are relatively small to produce.
  • corresponding recesses of the plates are produced by a photolithographic patterning process with a subsequent etching process, so that optionally all process steps both for the production of the channels of the heat transfer region as well as for the production of the support elements in the entry or exit area in each case a work step can be realized.
  • the heat exchanger is formed by plates stacked on top of one another and soldered together, in which at least partially the corresponding recesses, for example for the formation of the channels or support elements, are provided.
  • at least one soldering layer can be provided between the plates for a soldering process.
  • the soldering process is advantageously carried out in a vacuum or in an inert gas atmosphere.
  • the plates are stacked with at least one intermediate solder layer in the later arrangement of the component on each other and in particular in the cold state, even before the soldering process, pressed.
  • FIG. 1 shows a heat exchanger according to the prior art.
  • the heat exchanger comprises individual plates 1, 2, 3 for heat transfer, which are soldered or welded together, between two cover plates 8, 9 are packed and with small channels 11, 12, 13 and flow openings 4, 5, 6, 7 are provided.
  • incoming CO 2 high pressure (arrow FE2) flows through the flow opening 4 of the heat transfer plate 1 through the middle heat transfer plate 2, through the channels 12 in the direction of arrow down and flows from there through the flow opening 6 of the heat transfer plate first and through the outlet opening 16 of the cover plate 8 (arrow FA2).
  • CO 2 of low pressure (arrow FE 1) flows into an inlet opening 15 of the cover plate 8, through the channels 11 of the Heat transfer plate 1 from bottom to top, further through the flow opening 5 of the heat transfer plate 2 to the heat transfer plate 3 and there also through the small channels from bottom to top and through the corresponding flow openings 7 of the heat transfer plates 3, 2, 1 and then through the outlet opening 17 of the Cover plate 8 off (arrow FA1).
  • the illustrated heat exchanger is flowed through by the high-pressure side refrigerant (black arrows) in a first direction and in countercurrent to the low-pressure side refrigerant (hatched arrows).
  • the heat exchanger shown in Figure 1 due to a more advantageous representation, only three heat transfer plates 1, 2, 3, on. This consists of individual, defined by the heat transfer plates 1, 2, 3 layers in countercurrent to the CO 2 , which is on one side at high pressure (up to approximately 150 bar) at high temperature and on the other hand at low pressure ( flows up to approximately 60 bar) and low temperature.
  • the heat transfer coefficient on the low pressure side is generally much smaller than that on the high pressure side.
  • An inventive heat exchanger can be advantageously made of copper and copper alloy, stainless steel, aluminum and other materials.
  • An inventive heat exchanger can be used advantageously as an inner heat exchanger of a CO 2 air conditioning system in vehicles, in particular motor vehicles.
  • the first (high pressure) flow channel marked by black arrows in a first flow path from a gas cooler to an evaporator and the second (low pressure) flow channel marked by hatched arrows in the figure lie in a second flow path from the evaporator to one Compressor of the vehicle air conditioner.
  • FIG. 2 schematically shows a free cross-section 24 which arises, for example, as a result of overlapping the inlet region E1 of the fluid I with the outlet region A2 of the fluid II according to the prior art.
  • the free cross-section 24 has a comparatively large pressure-loaded surface and thus has to absorb comparatively large material stresses, which can lead to deformations, in particular of the plates 2, 3 and to the failure of the heat exchanger.
  • FIG. 3 shows a section of the two plates 2, 3 corresponding to the section of FIG. 2.
  • the entry or exit region of the plates 2, 3 according to the invention has support elements 18 according to the invention.
  • the support elements 18 according to FIG. 3 are designed as rectilinear support elements 18.
  • an opening angle ⁇ which is formed from two adjacent support elements 18, is substantially smaller than an opening angle ⁇ without support elements 18 according to the prior art according to the invention.
  • the flow of the fluids distributed more evenly on the channels of the heat transfer area and the opening angle is reduced, for example, from about 50 ° to about 10 ° to 15 °.
  • the prevention of detachment and thus the reduction of energy losses depends essentially on the prevailing Reynolds number. This in turn depends, among other things, on the opening angle and also on the set pressures of the fluids.
  • FIG. 3 illustrates that the reduced free cross-section 23, compared to the free cross-section 24 of FIG. 2, represents a substantial reduction in the pressure-applied Represent surface and thus significantly reduces the bending stresses occurring. As a result, deformation of the plates 1, 2, 3 or a failure of the heat exchanger is largely prevented.
  • supporting elements 18 are shown in FIG. 4, which have local reinforcements 20 for reinforcing the supporting effect according to the invention.
  • support elements 18 are shown having a curved side wall.
  • This inventive design of the support elements 18 leads in particular to an advantageous flow guidance and distribution of the fluids to the channels 11, 12, 13.
  • the curved support elements 18 shown in Figure 5 have a polygonal transition 21.
  • a not-shown curved transition 21 can lead to a further improvement of the flow guidance in this case.
  • a curved end region of the channel partition walls 19 may also be advantageous.
  • the support elements 18 according to the invention distributed the load occurring much better, so that they have an additional supporting function. According to the state of the art, among other things, the occurring load had to be taken over predominantly by the edge regions of the plates 1, 2, 3, so that material can advantageously be saved with the aid of the support elements 18 according to the invention, for example in the edge regions.
  • the plates 1, 2, 3 are alternately flowed through by a heat-absorbing and a heat-emitting fluid in a countercurrent or co-current principle.
  • a heat-absorbing and a heat-emitting fluid in a countercurrent or co-current principle.
  • two adjacent plates 1, 2 are flowed through by the same fluid and only the subsequent plate 3 and also several adjacent plates are flowed through by the other fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Wärmeübertragung von einem ersten Fluid auf ein vom ersten Fluid getrenntes zweites Fluid mit einem wenigstens zwei Lagen, insbesondere Platten, umfassenden stapelförmigen oder schalenförmigen Aufbau nach dem Oberbegriff des Anspruchs 1.
  • Stand der Technik
  • Bislang werden beispielsweise Wärmetauscher mit einem von einem hochdruckseitigen Kältemittel durchströmten ersten Kanal und einem von niederdruckseitigem Kältemittel durchströmten, vom ersten Kanal getrennten zweiten Kanal in einer CO2-Fahrzeugklimaanlage vorgesehen.
  • Um die Leistung und Effizienz des CO2-Prozesses zu erhöhen, wird ein sogenannter innerer oder interner Wärmetauscher vorgesehen. Der interne Wärmetauscher wird vom Kältemittel (CO2) im Gegenstromprinzip oder im Gleichstromprinzip durchströmt. Die Fluide durchströmen hierbei den Wärmetauscher einmal auf dem Weg vom Gaskühler zum Verdampfer und das zweite Mal zwischen Verdampfer und Verdichter. Die Hauptaufgabe des internen Wärmetauschers ist hierbei, das Kältemittel vor der Expansion zusätzlich abzukühlen. Die Wärme wird von der Hochdruckseite dem Gaskühler an die Niederdruckseite nach dem Verdampfer (vor Eintritt in den Verdichter) abgegeben. Das teilweise noch flüssige Kältemittel verdampft komplett bevor es den Verdichter erreicht.
  • Mögliche Einsatzgebiete liegen für entsprechende Wärmetauscher bei Fahrzeugklimageräten, Wärmepumpen, transportablen Klimageräten kleiner Leistung, Luftentfeuchtungsgeräten, Trocknern, Brennstoffzellensystemen und ähnlichen Anwendungsmöglichkeiten.
  • Es sind bereits Wärmetauscher bekannt, die zur Massen- und Volumenreduzierung vergleichsweise kompakt hergestellt werden. Um in einer kleinen Bauweise große Wärmemengen zu übertragen, werden beispielsweise sogenannte Mikro-Wärmetauscher vorgesehen. Diese bestehen insbesondere aus strukturierten Platten, die übereinander gestapelt und entweder miteinander verlötet, verschraubt oder entsprechend verbunden werden. Hierbei werden entsprechend vorgesehene Kanäle des Wärmetauschers gleichzeitig auch abgedichtet. Die Fluide, die im Wärmetauscher in thermischen Kontakt miteinander treten, werden über die Kanäle zwischen den Platten geführt.
  • Im Mikro-Wärmetauscher werden die Fluide durch Eintrittsöffnungen beziehungsweise Austrittsöffnungen in die einzelnen Lagen geleitet, so dass in verschiedenen Lagen abwechselnd ein wärmeaufnehmendes und ein wärmeabgebendes Fluid strömt. Die Verteilung beziehungsweise die Zusammenführung der Fluide auf die beziehungsweise von den einzelnen Kanälen findet hierbei im Eintritts- bzw. Austrittsbereich statt. In diesen Bereichen spaltet beziehungsweise sammelt sich der jeweilige Fluidstrom.
  • Hierbei ergibt die Überlappung des Eintrittsbereichs mit dem Austrittsbereich einen sogenannten freien Querschnitt.
  • Aufgrund des großen Druckunterschieds der beiden Fluide müssen die einzelnen Lagen im Bereich des freien Querschnitts die stark unterschiedlichen Druckniveaus aushalten.
  • Die große druckbeaufschlagte Fläche im Bereich des freien Querschnitts führt dazu, dass große Materialspannungen auftreten, wobei es zu Materialverformungen, z. B. Fließen, beziehungsweise zum Versagen des Bauteils kommen kann.
  • Aus dem Stand der Technik gehen die WO-A-88 09 473, die DE-C-31 52 944, die WO-A-96 41 995, die Zusammenfassung der japanischen Patentanmeldung JP-A-62 2001 91 und die EP-A-0 252 275 hervor. Diese beschreiben jedoch allesamt Wärmetauscher mit vergleichsweise großen Abmessungen, die aus Blechen aufgebaut sind, und an denen die erforderlichen Konturen durch Pressen oder Tiefziehverfahren in verformender Weise ausgebildet werden. Zwar sind daraus auch Ausführungsformen von Wärmetauschern zu entnehmen, die im Einlass- und/oder Auslassbereich Stützelemente aufweisen, aufgrund der verhältnisbedingt groben Strukturen ist eine Verwendung solcher Wärmetauscher als Mikrowärmetauscher im einleitend beschriebenen Sinne nicht möglich. Insbesondere deshalb, da aufgrund der hohen Druckunterschiede zwischen den wärmeaustauschenden Fluiden bei solch großflächigen Strukturen extrem hohe Kräfte auftreten, die von den Blechlagen und deren Verbindungen, wie sie in diesen fünf Druckschriften offenbart sind, nicht verkraftet werden können.
  • Vorteile der Erfindung
  • Demgemäß hat die Erfindung die Aufgabe, eine Vorrichtung zur Wärmeübertragung vorzuschlagen, die bei einem kleinen Volumen eine vergleichsweise große wärmeübertragende Fläche realisiert und hierbei einen störungsfreien Betrieb sogar bei großem unterschiedlichen Druckniveau der beiden Fluide gewährleistet.
  • Diese Aufgabe wird ausgehend von einem Stand der Technik der einleitend genannten Art durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Durch die in den Unteransprüchen genannten Maßnahmen sind vorteilhafte Ausführungen und Weiterbildungen der Erfindung möglich.
  • Dementsprechend zeichnet sich eine erfindungsgemäße Vorrichtung dadurch aus, dass der Eintritts- und/oder Austrittsbereich wenigstens ein Stützelement umfasst, welches, wie auch die Kanäle, mittels eines auftragenden oder abtragenden Fertigungsverfahrens an den betreffenden, vorzugsweise plattenförmig ausgebildeter Lagen der Vorrichtung ausgebildet ist. Erfindungsgemäß wird hierdurch der resultierende freie Querschnitt und insbesondere das auftretende Biegemoment im Eintritts- bzw. Austrittsbereich wesentlich verringert, wobei durch das auf- bzw. abtragende Fertigungsverfahren besonders kleine geometrische Abmessungen realisierbar sind. Bevorzugt kann dabei ein Ätzverfahren Anwendung finden. So wird gewährleistet, dass die druckbeaufschlagte Fläche, insbesondere auf der mit vergleichsweise niederem Druck betriebenen Seite, abgestützt und somit ein nachteiliges Verformen der Platte unterbunden wird.
  • Darüber hinaus kann bei einer vorteilhaften Anordnung der Stützelemente ein auf jeder Platte vorgesehenes erfindungsgemäßes Stützelement entsprechende Druckkräfte von Platte zu Platte weiterleiten bis gegebenenfalls eine vergleichsweise massive Deckelplatte die Druckkräfte aufnimmt, so dass ein Verformen der Platten beziehungsweise ein Versagen des gesamten Bauteils wirkungsvoll verhindert wird.
  • Vorzugsweise sind sowohl im Eintritts- als auch im Austrittsbereich zahlreiche Stützelemente vorgesehen, so dass sowohl die resultierenden freien Querschnitte als auch die auftretenden Biegespannungen weiter verringert werden.
  • Entsprechend der Verbreiterung des Eintrittsbereichs weist dieser auf der zum Wärmeübertragungsbereich weisenden Seite in vorteilhafter Weise vergleichsweise viele Stützelemente auf. Auf der zur Eintrittsöffnung weisenden Seite des Eintrittsbereichs sind jedoch vergleichsweise wenige Stützelemente vorgesehen. Entsprechendes wird in vorteilhafter Weise auf den Austrittsbereich übertragen.
  • Vorzugweise kann durch die Verringerung der Materialspannungen beispielsweise gegenüber einer dem Stand der Technik entsprechenden Konstruktion und Bauart der erfindungsgemäße Wärmetauscher mit größeren Druckdifferenzen beaufschlagt werden. Alternativ hierzu kann der erfindungsgemäße Wärmetauscher im Vergleich zum Stand der Technik bei gleichen Druckdifferenzen zwischen den beiden Fluiden wesentlich dünnwandigere Platten aufweisen, was vorzugsweise bei gegebener zu übertragender Wärmeleistung insbesondere zu einer deutlichen Massen- und Volumenreduzierung des gesamten Wärmetauschers führen kann.
  • In vorteilhafter Weise erhöhen die Stützelemente die wärmeübertragende Fläche, so dass die Wärmeübertragung des erfindungsgemäßen Wärmetauschers zusätzlich verbessert wird. Dies führt dazu, dass bei gegebener zu übertragender Wärmeleistung in vorteilhafter Weise das Volumen eines erfindungsgemäßen Wärmetauschers zusätzlich verringert werden kann.
  • In einer besonderen Weiterbildung der Erfindung ist die Länge des Stützelementes als ein Vielfaches seiner Breite ausgebildet. Hierdurch wird gewährleistet, dass das Stützelement beispielsweise bei vergleichbarem Strömungswiderstand eine wesentlich größere Stützwirkung sowie wärmeübertragende Fläche aufweist. Erfindungsgemäß kann hierdurch der Wärmetauscher in vorteilhafter Weise mit einer größeren Druckdifferenz zwischen den beiden Fluidströmen beaufschlagt werden, ohne dass eine nachteilige Materialverformung oder ein Versagen des Wärmetauschers entstehen könnte.
  • Vorteilhafterweise ist das Stützelement als Fluid-Leitelement ausgebildet. Hierdurch wird ermöglicht, dass eine verbesserte Fluid-Strömung mittels der erfindungsgemäßen Stützelemente erzeugt werden kann. Vorzugsweise wird mittels erfindungsgemäßer Stützelemente das Fluid gleichmäßig auf die Kanäle des Wärmeübertragungsbereichs verteilt beziehungsweise strömungsgünstig aus den Kanälen zusammengeführt und zu einem entsprechenden Sammelkanal weitergeleitet. Hiermit kann eine gleichmäßiger verteilte Beaufschlagung der Kanalstruktur des Wärmeübertragungsbereichs umgesetzt werden, was wiederum zu einer verbesserten Wärmeübertragung des Wärmetauschers führt.
  • In einer besonderen Ausführungsform der Erfindung sind zwei benachbarte Stützelemente mit einem Winkel kleiner 20°, vorzugsweise zwischen 10° und 15°, zueinander angeordnet. Der Öffnungswinkel der Fluid-Strömung, der sogenannte Diffusorwinkel, gemäß dem Stand der Technik beträgt demgegenüber häufig über 50°. Ein erfindungsgemäßer vergleichsweise kleiner Öffnungswinkel zwischen zwei benachbarten Stützelementen verhindert beispielsweise eine Ablösung der Fluid-Strömung im Eintritts- bzw. Austrittsbereich, so dass nachteilige Energieverluste minimiert und gleichzeitig eine ungleichmäßige Beaufschlagung der Kanalstruktur des Wärmeübertragungsbereiches verhindert werden kann. Von entscheidender Bedeutung ist hierbei auch die von den herrschenden Strömungsverhältnissen abhängige Reynoldszahl, die beispielsweise vom Öffnungswinkel, vom Fluiddruck sowie der Anordnung beziehungsweise Ausgestaltung der Stützelemente beziehungsweise der Kanäle des Wärmeübertragungsbereichs abhängig ist.
  • Insbesondere zur Verbesserung der Strömungsverhältnisse ist die Seitenwand des Stützelementes geradlinig und/oder kurvenförmig ausgebildet. Hierbei ist die Ausgestaltung eines Stützelementes als Polygonzug ebenfalls denkbar. Vorzugsweise sind die Stützelemente materialtechnisch und geometrisch derart ausgebildet, dass sie größtmögliche Stützwirkung und eine sehr gute Strömungsverteilung bei vergleichsweise geringem Strömungsdruckverlust erreichen. Gegebenenfalls können längliche Stützelemente vorteilhaft verbreiterte Abschnitte zur Verbesserung der Stützwirkung sowie der Strömungsführung aufweisen.
  • In einer besonderen Weiterbildung der Erfindung ist wenigstens ein Stützelement als Verlängerung einer Trennwand zwischen zwei Kanälen des Wärmeübertragungsbereichs ausgebildet. Hierdurch wird beispielsweise eine wesentlich gleichmäßigere Beaufschlagung der Kanäle des Wärmeübertragungsbereichs realisierbar.
  • Mit einer entsprechenden Anordnung der Stützelemente ist eine weitere Verbesserung der Strömungsführung umsetzbar. Ist ein Stützelement als Verlängerung der Kanaltrennwand ausgebildet, so wird vorzugsweise ein kurvenförmiger Übergang vom Stützelement zur Kanaltrennwand vorgesehen. Ein kurvenförmiger Übergang kann zu einer vorteilhaften Fluid-Strömung führen, so dass nachteilige Druckverluste minimierbar sind. Hierbei kann beispielsweise nicht nur das Stützelement eine kurvenförmige Seitenwand aufweisen, sondern auch die Kanaltrennwand kann eine wenigstens im Randbereich aufweisende kurvenförmige Seitenwand aufweisen, so dass eine günstigere Fluid-Strömung erzeugt werden kann. Auch ist hierbei ein Übergang mit einer leichten Abkantung, die einen vergleichsweise kleinen Knick aufweist, realisierbar.
  • Vorzugsweise sind die verschiedenen Lagen der stapelförmigen oder schalenförmigen Vorrichtung als ebene oder gewölbte Platten oder als zylinderförmige, aufgrund unterschiedlicher Durchmesser ineinander stapelbare Bauelemente ausgebildet, so dass eine vorteilhafte Fertigung des erfindungsgemäßen Wärmetauschers realisierbar ist. Bei der Variante mit ebenen Platten werden vorzugsweise den Wärmetauscher abschließende Deckelplatten vorgesehen.
  • Grundsätzlich wird die Ausgestaltung und Anordnung der Stützelemente den Kanälen des Wärmeübertragungsbereichs angepasst. Beispielsweise werden die Kanäle sowie die Stützelemente auf beziehungsweise in den Lagen mittels eines abtragenden oder auftragenden Fertigungsverfahrens hergestellt, so dass die Stützelemente sowie die Kanäle vergleichsweise klein herstellbar sind.
  • Vorzugsweise werden entsprechende Ausnehmungen der Platten durch einen photolithographischen Strukturierungsprozess mit nachfolgendem Ätzprozess gefertigt, so dass gegebenenfalls alle Verfahrensschritte sowohl zur Herstellung der Kanäle des Wärmeübertragungsbereichs als auch zur Herstellung der Stützelemente im Eintritts- bzw. Austrittsbereich in jeweils einem Arbeitsschritt realisierbar sind.
  • In einer bestimmten Ausführungsform wird der Wärmetauscher durch übereinander gestapelte und miteinander verlötete Platten gebildet, in denen wenigstens teilweise die entsprechenden Ausnehmungen, beispielsweise zur Ausbildung der Kanäle beziehungsweise Stützelemente, vorgesehen sind. Hierbei kann zwischen den Platten für einen Lötprozess wenigstens eine Lötschicht vorgesehen werden. Der Lötprozess wird vorteilhafterweise im Vakuum oder in Innertgas-Atmosphäre ausgeführt. Vorzugsweise werden die Platten mit wenigstens einer dazwischen liegenden Lötschicht in der späteren Anordnung des Bauteils übereinander gestapelt und insbesondere im kalten Zustand, noch vor dem Lötprozess, verpresst. Durch das Verpressen der Platten vor dem eigentlichen Lötprozess wird auf ein starkes Verpressen der Platten unter vergleichsweise hohen Temperaturen verzichtet. Hierdurch werden vergleichsweise aufwendige Presswerkzeuge entbehrlich, die den hohen Löttemperaturen standhalten müssten.
  • Ausführungsbeispiel
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird anhand der Figuren nachfolgend näher erläutert.
  • Im einzelnen zeigen
  • Figur 1
    in schematischer Darstellung die Struktur- und Strömungsbedingungen eines Wärmetauschers gemäß dem Stand der Technik,
    Figur 2
    ein schematisch dargestellter freier Querschnitt durch Überlappung zweier Lagen gemäß dem Stand der Technik,
    Figur 3
    ein schematisch dargestellter erfindungsgemäßer, reduzierter freier Querschnitt mit geradlinigen Stützelementen,
    Figur 4
    ein schematische dargestellter erfindungsgemäßer Eintritts- bzw. Austrittsbereich mit verstärkten Stützelementen und
    Figur 5
    ein schematische dargestellter weiterer Eintritts- bzw. Austrittsbereich mit kurvenförmigen Stützelementen.
  • In Figur 1 ist ein Wärmetauscher gemäß dem Stand der Technik dargestellt. Der Wärmetauscher umfasst einzelne Platten 1, 2, 3 zur Wärmeübertragung, die miteinander verlötet oder verschweißt, zwischen zwei Deckelplatten 8, 9 gepackt sind und mit kleinen Kanälen 11, 12, 13 sowie Strömungsöffnungen 4, 5 ,6, 7 versehen sind. An einer Eintrittsöffnung 14 der Deckelplatte 8 einströmendes CO2 hohen Drucks (Pfeil FE2) strömt durch die Strömungsöffnung 4 der Wärmeübertragungsplatte 1 hindurch zur mittleren Wärmeübertragungsplatte 2, durch dessen Kanäle 12 in Pfeilrichtung nach untern und strömt von dort weiter durch die Strömungsöffnung 6 der Wärmeübertragungsplatte 1 und durch die Austrittsöffnung 16 der Deckelplatte 8 aus (Pfeil FA2). Weiterhin strömt, wie die schraffierten Pfeile angeben, CO2 niederen Drucks (Pfeil FE1) in eine Eintrittsöffnung 15 der Deckelplatte 8, durch die Kanäle 11 der Wärmeübertragungsplatte 1 von unten nach oben, weiterhin durch die Strömungsöffnung 5 der Wärmeübertragungsplatte 2 hindurch zur Wärmeübertragungsplatte 3 und dort ebenfalls durch dessen kleine Kanäle von unten nach oben und durch die entsprechenden Strömungsöffnungen 7 der Wärmeübertragungsplatten 3, 2, 1 und dann durch die Austrittsöffnung 17 der Deckelplatte 8 aus (Pfeil FA1).
  • Auf diese Weise wird der dargestellte Wärmetauscher vom hochdruckseitigen Kältemittel (schwarze Pfeile) in einer ersten Richtung und im Gegenstrom vom niederdruckseitigem Kältemittel (schraffierte Pfeile) durchströmt.
  • Der in Figur 1 dargestellte Wärmetauscher weist aufgrund einer vorteilhafteren Darstellungsweise lediglich drei Wärmeübertragungsplatten 1, 2, 3, auf. Dieser besteht aus einzelnen, durch die Wärmeübertragungsplatten 1, 2, 3 definierte Lagen, die im Gegenstrom vom CO2, das sich auf der einen Seite auf hohem Druck (bis annähernd 150 bar) bei hoher Temperatur und auf der anderen Seite bei niedrigem Druck (bis annähernd 60 bar) und niedriger Temperatur befindet, durchströmt werden.
  • Um den Wärmetauscher ideal an die auftretenden Wärmeübertragungsbedingungen anzupassen, ist zu berücksichtigen, dass der Wärmeübergang durch die Stoffeigenschaften des Fluids und den Strömungszustand bestimmt werden. Der Wärmeübergangskoeffizient auf der Niederdruckseite ist jedoch im allgemeinen wesentlich kleiner als derjenige auf der Hochruckseite. Um das Volumen des Wärmetauschers am effizientesten zu nutzen, ist daher grundsätzlich anzustreben, dass das Produkt aus Wärmeübergangskoeffizient und wärmeübertragender Fläche auf der Hochdruckseite demjenigen Produkt aus Wärmeübergangskoeffizient und wärmeübertragender Fläche auf der Niederdruckseite angepasst wird. Dies kann beispielsweise bei dem dargestellten kompakten Wärmetauscher, der aus einzelnen Profilen, d. h. den Wärmeübertragungsplatten 1, 2, 3 besteht, in die die kleinen Kanäle 11, 12, 13 eingearbeitet sind, durch entsprechende Anpassung des hydraulischen Durchmessers der kleine Kanäle 11, 12, 13 erfolgen.
  • Des weiteren besteht die Möglichkeit, die wärmeübertragende Fläche bzw. den Wärmeübergangskoeffizienten des Wärmeübertragungsbereichs durch eine entsprechende Strömungsführung der kleinen Kanäle 11, 12, 13, beispielsweise in Zickzackform, zu vergrößern.
  • Ein erfindungsgemäßer Wärmetauscher lässt sich vorteilhafterweise aus Kupfer- und Kupferlegierung, Edelstahl, Aluminium und weiteren Werkstoffen herstellen.
  • Ein erfindungsgemäßer Wärmetauscher lässt sich vorteilhaft als innerer Wärmetauscher einer CO2-Klimaanlage in Fahrzeugen, insbesondere Kraftfahrzeugen, verwenden.
  • Beispielsweise liegt der erste in der Figur 1 durch schwarze Pfeile markierte (Hochdruck-) Strömungskanal in einem ersten Strömungsweg von einem Gaskühler zu einem Verdampfer und der zweite in der Figur durch schraffierte Pfeile markierte (Niederdruck-) Strömungskanal in einem zweiten Strömungsweg vom Verdampfer zu einem Verdichter der Fahrzeugklimaanlage.
  • Im ersten Strömungsweg kann ein hoher Druck bis annähernd 150 bar und hoher Temperatur sowie im zweiten Strömungsweg ein niedriger Druck bis annähernd 60 bar und relativ niedriger Temperatur herrschen.
  • In Figur 2 ist schematisch ein freier Querschnitt 24 dargestellt, der beispielsweise durch Überlappung des Eintrittbereichs E1 des Fluids I mit dem Austrittsbereich A2 des Fluids II gemäß dem Stand der Technik entsteht. Hierbei wird deutlich, dass der freie Querschnitt 24 eine vergleichsweise große druckbeaufschlagte Fläche aufweist und somit vergleichsweise große Materialspannungen aufnehmen muss, was zu Verformungen, insbesondere der Platten 2,3, sowie zum Versagen des Wärmetauscher führen kann.
  • In Figur 3 ist ein Ausschnitt der beiden Platten 2, 3 entsprechend dem Ausschnitt der Figur 2 dargestellt. Hierbei weist jedoch der erfindungsgemäße Eintritt- bzw. Austrittsbereich der Platten 2, 3 erfindungsgemäße Stützelemente 18 auf. Die Stützelemente 18 gemäß der Figur 3 sind als geradlinige Stützelemente 18 ausgebildet. Hierbei sind einige Stützelemente 18' als Verlängerung einer Kanaltrennwand 19 ausgebildet.
  • Weiterhin wird aus Figur 3 deutlich, dass ein Öffnungswinkel α, der aus zwei benachbarten Stützelementen 18 gebildet wird, wesentlich kleiner als ein Öffnungswinkel β ohne erfindungsgemäße Stützelemente 18 gemäß dem Stand der Technik ist. So wird durch die Strukturierung mittels der Stützelemente 18 die Strömung der Fluide gleichmäßiger auf die Kanäle des Wärmeübertragungsbereichs verteilt und der Öffnungswinkel wird beispielsweise von ca. 50° auf ca. 10° bis 15° verkleinert. Dies führt insbesondere dazu, dass eine Ablösung der Fluidströmung, was Energieverluste und eine ungleichmäßige Beaufschlagung der Kanalstruktur 11, 12, 13 nach sich zieht, weitestgehend verhindert wird. Das Verhindern der Ablösung und somit die Verringerung der Energieverluste hängt im Wesentlichen von der herrschenden Reynoldszahl ab. Diese wiederum ist unter anderem vom Öffnungswinkel und auch von den eingestellten Drücken der Fluide abhängig.
  • Darüber hinaus verdeutlicht Figur 3, dass der reduzierte freie Querschnitt 23 gegenüber dem freien Querschnitt 24 der Figur 2 eine wesentliche Verringerung der druckbeaufschlagten Fläche darstellt und somit die auftretenden Biegespannungen wesentlich reduziert. Hierdurch wird eine Verformung der Platten 1, 2, 3 bzw. ein Versagen des Wärmetauschers weitestgehend verhindert.
  • In Figur 4 sind insbesondere Stützelemente 18 dargestellt, die zur Verstärkung der erfindungsgemäßen Stützwirkung örtliche Verstärkungen 20 aufweisen.
  • In Figur 5 sind Stützelemente 18 dargestellt, die eine kurvenförmige Seitenwand aufweisen. Diese erfindungsgemäße Ausgestaltung der Stützelemente 18 führt insbesondere zu einer vorteilhaften Strömungsführung sowie Verteilung der Fluide auf die Kanäle 11, 12, 13. Die in Figur 5 dargestellten kurvenförmigen Stützelemente 18 weisen einen eckigen Übergang 21 auf. Ein nicht näher dargestellter kurvenförmiger Übergang 21 kann hierbei zu einer weiteren Verbesserung der Strömungsführung führen. Bei einem kurvenförmigen Übergang 21 kann auch ein kurvenförmiger Endbereich der Kanaltrennwände 19 vorteilhaft sein.
  • Die erfindungsgemäßen Stützelemente 18 verteilten die auftretende Last wesentlich besser, so dass diese eine zusätzlich tragende Funktion aufweisen. Gemäß dem Stand der Technik musste unter anderem die auftretende Last überwiegend von den Randbereichen der Platten 1, 2, 3 übernommen werden, so dass mit Hilfe der erfindungsgemäßen Stützelemente 18 beispielsweise in den Randbereichen in vorteilhafter Weise Werkstoff eingespart werden kann.
  • Grundsätzlich werden die Platten 1, 2, 3 abwechselnd von einem wärmeaufnehmenden und einem wärmeabgebenden Fluid im Gegenstrom- oder im Gleichstromprinzip durchströmt. Hierbei können beispielsweise zur Vergrößerung der wärmeaufnehmenden bzw. wärmeabgebenden Fläche mehrere, z. B. zwei benachbarte Platten 1, 2 vom gleichen Fluid durchströmt werden und erst die darauffolgende Platte 3 bzw. auch mehrere benachbarte Platten werden vom anderen Fluid durchströmt.
  • Bezugszeichenliste:
  • 1
    Platte
    2
    Platte
    3
    Platte
    4
    Öffnung
    5
    Öffnung
    6
    Öffnung
    7
    Öffnung
    8
    Deckelplatte
    9
    Deckelplatte
    11
    Kanäle
    12
    Kanäle
    13
    Kanäle
    14
    Öffnung
    15
    Öffnung
    16
    Öffnung
    17
    Öffnung
    18
    Stützelement
    19
    Trennwand
    20
    Verstärkung
    21
    Übergang
    23
    Querschnitt
    24
    Querschnitt
    FE1
    Eintritt Fluid I
    FE2
    Eintritt Fluid II
    FA1
    Austritt Fluid I
    FA2
    Austritt Fluid II
    α
    Winkel
    β
    Winkel

Claims (9)

  1. Vorrichtung zur Wärmeübertragung von einem ersten Fluid auf ein vom ersten Fluid getrenntes zweites Fluid mit einem wenigstens zwei Lagen (1, 2, 3), insbesondere Platten (1, 2, 3), umfassenden stapelförmigen oder schalenförmigen Aufbau, wobei jede Lage (1, 2, 3) einen Wärmeübertragungsbereich umfasst, der zahlreiche Kanäle (11, 12, 13) aufweist, einen in Strömungsrichtung vor dem Wärmeübertragungsbereich angeordneten Eintrittsbereich und einen in Strömungsrichtung hinter dem Wärmeübertragungsbereich angeordneten Austrittsbereich, wobei der Eintrittsbereich und/oder Austrittsbereich wenigstens ein Stützelement (18) umfasst, dadurch gekennzeichnet, dass die Kanäle (11, 12, 13) und/oder das Stützelement (18) mittels eines Material auftragenden und/oder abtragenden Fertigungsverfahrens ausgebildet sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das abtragende Verfahren ein Ätzverfahren ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Länge des Stützelements als ein Vielfaches seiner Breite ausgebildet ist.
  4. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Stützelement (18) als Fluidleitelement (18) ausgebildet ist.
  5. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass zwei benachbarte Stützelemente (18) mit einem Winkel (α) kleiner 20° zueinander angeordnet sind.
  6. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Seitenwand des Stützelementes geradlinig und/oder kurvenförmig ausgebildet ist.
  7. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Stützelement (18) als Verlängerung einer Trennwand (19) zwischen zwei Kanälen ausgebildet ist.
  8. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass ein kurvenförmiger Übergang (21) vom Stützelement (18) zur Trennwand (19) vorgesehen ist.
  9. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Lagen (1, 2, 3) als ebene oder gewölbte Platten (1, 2, 3) oder zylinderförmige, aufgrund unterschiedlichen Durchmessern in einander stapelbare Bauelemente (1, 2, 3) ausgebildet sind.
EP01951364A 2000-07-21 2001-06-09 Vorrichtung zur wärmeübertragung Expired - Lifetime EP1305561B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10035939A DE10035939A1 (de) 2000-07-21 2000-07-21 Vorrichtung zur Wärmeübertragung
DE10035939 2000-07-21
PCT/DE2001/002162 WO2002008680A1 (de) 2000-07-21 2001-06-09 Vorrichtung zur wärmeübertragung

Publications (2)

Publication Number Publication Date
EP1305561A1 EP1305561A1 (de) 2003-05-02
EP1305561B1 true EP1305561B1 (de) 2005-09-21

Family

ID=7649985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01951364A Expired - Lifetime EP1305561B1 (de) 2000-07-21 2001-06-09 Vorrichtung zur wärmeübertragung

Country Status (8)

Country Link
US (1) US7040387B2 (de)
EP (1) EP1305561B1 (de)
JP (1) JP2004504584A (de)
KR (1) KR20020032602A (de)
BR (1) BR0106982A (de)
DE (2) DE10035939A1 (de)
ES (1) ES2248358T3 (de)
WO (1) WO2002008680A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003902200A0 (en) * 2003-05-06 2003-05-22 Meggitt (Uk) Ltd Heat exchanger core
CN1833153B (zh) * 2003-08-01 2012-04-04 贝洱两合公司 热交换器及其制造方法
DE10352128A1 (de) * 2003-11-04 2005-06-09 Dylla, Anett, Dipl.-Ing. Multifunktionales Energienetz und Vorrichtungen hierfür
US7343965B2 (en) 2004-01-20 2008-03-18 Modine Manufacturing Company Brazed plate high pressure heat exchanger
SE526831C2 (sv) * 2004-03-12 2005-11-08 Alfa Laval Corp Ab Värmeväxlarplatta och plattpaket
JP4818044B2 (ja) * 2006-09-28 2011-11-16 三洋電機株式会社 熱交換器の製造方法
SE533310C2 (sv) 2008-11-12 2010-08-24 Alfa Laval Corp Ab Värmeväxlarplatta och värmeväxlare innefattande värmeväxlarplattor
JP5106453B2 (ja) * 2009-03-18 2012-12-26 三菱電機株式会社 プレート式熱交換器及び冷凍空調装置
DE102009043828B4 (de) * 2009-08-21 2019-02-14 Ttz Thermo Technik Zeesen Gmbh & Co. Kg Plattenwärmeübertrager
WO2012063355A1 (ja) * 2010-11-12 2012-05-18 三菱電機株式会社 プレート式熱交換器及びヒートポンプ装置
US8869398B2 (en) 2011-09-08 2014-10-28 Thermo-Pur Technologies, LLC System and method for manufacturing a heat exchanger
US9863710B2 (en) 2012-05-11 2018-01-09 Mitsubishi Electric Corporation Laminated total heat exchange element
CN103759474B (zh) * 2014-01-28 2018-01-02 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
EP3093602B1 (de) 2015-05-11 2020-04-15 Alfa Laval Corporate AB Wärmetauscherplatte und plattenwärmetauscher
WO2017019141A1 (en) * 2015-07-24 2017-02-02 Exxonmobil Upstream Research Company Enhanced heat transfer in plate-fin heat exchangers
EP3150952A1 (de) * 2015-10-02 2017-04-05 Alfa Laval Corporate AB Wärmetauschplatte und plattenwärmetauscher
US10914533B2 (en) * 2017-03-24 2021-02-09 Hanon Systems Intercooler for improved durability
RU177117U1 (ru) * 2017-06-26 2018-02-08 Общество с ограниченной ответственностью "Корпорация Акционерной Компании "Электросевкавмонтаж" Пластина теплообменника пластинчатого
EP3489604B1 (de) * 2017-11-24 2020-12-23 TitanX Holding AB Fahrzeugkondensator
US11486657B2 (en) * 2018-07-17 2022-11-01 Tranter, Inc. Heat exchanger heat transfer plate
PL3650795T3 (pl) * 2018-11-07 2021-07-05 Alfa Laval Corporate Ab Płyta wymiennika ciepła
KR102598408B1 (ko) * 2018-12-06 2023-11-07 한온시스템 주식회사 열교환기
US11808527B2 (en) * 2021-03-05 2023-11-07 Copeland Lp Plastic film heat exchanger for low pressure and corrosive fluids
JP2024012151A (ja) * 2022-07-13 2024-01-25 ダイキン工業株式会社 熱交換器、冷媒サイクル装置、給湯器
JP2024013036A (ja) * 2022-07-19 2024-01-31 ダイキン工業株式会社 熱交換器、及び冷媒サイクル装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117624A (en) * 1959-06-22 1964-01-14 Separator Ab Plate heat exchanger
GB953894A (en) * 1961-02-24 1964-04-02 Apv Co Ltd A new or improved heat exchanger plate and heat exchangers including such plates
DE1928146A1 (de) * 1968-06-06 1969-12-11 Delaney Gallay Ltd Waermeaustauscher
SE357055B (de) * 1971-10-11 1973-06-12 Alfa Laval Ab
SE411952B (sv) * 1978-07-10 1980-02-11 Alfa Laval Ab Vermevexlare innefattande ett flertal i ett stativ inspenda vermevexlingsplattor
SE418058B (sv) * 1978-11-08 1981-05-04 Reheat Ab Forfarande och anordning for pregling av vermevexlarplattor for plattvermevexlare
SE415928B (sv) * 1979-01-17 1980-11-10 Alfa Laval Ab Plattvermevexlare
JPS6218867Y2 (de) * 1981-03-20 1987-05-14
DE3152944C2 (de) 1981-08-14 1987-05-07 Ostap Aleksandrov Korobchansky Platten-Wärmeübertrager
SE8106221L (sv) * 1981-10-21 1983-04-22 Reheat Ab Packningsspar hos plattelement for plattvermevexlare
DE3429491A1 (de) * 1984-08-10 1986-02-20 Gea Ahlborn Gmbh & Co Kg, 3203 Sarstedt Freistrom-plattenwaermeaustauscher
SE8504379D0 (sv) * 1985-09-23 1985-09-23 Alfa Laval Thermal Ab Plattvemevexlare
JPS62200191A (ja) 1986-02-25 1987-09-03 Hisaka Works Ltd プレ−ト式熱交換器
DE3622316C1 (de) 1986-07-03 1988-01-28 Schmidt W Gmbh Co Kg Plattenwaermeaustauscher
SE458806B (sv) * 1987-04-21 1989-05-08 Alfa Laval Thermal Ab Plattvaermevaexlare med olika stroemningsmotstaand foer medierna
SE458884B (sv) * 1987-05-29 1989-05-16 Alfa Laval Thermal Ab Permanent sammanfogad plattvaermevaexlare med sammanhaallande organ vid portarna
EP0371122B1 (de) * 1988-05-25 1992-07-29 Alfa-Laval Thermal Ab Plattenverdampfer
SE466871B (sv) * 1990-04-17 1992-04-13 Alfa Laval Thermal Ab Plattfoeraangare med korrugerade plattor daer moenstrets orientering varieras i stroemningsriktningen saa att stroemningsmotstaandet successivt minskar
SE466171B (sv) * 1990-05-08 1992-01-07 Alfa Laval Thermal Ab Plattfoeraangare daer aatminstone den ena plattan i en foeraangningspassage aer uppdelad i faelt anordnade bredvid varandra mellan plattans laangsidor, vilka faelt uppvisar sinsemellan olika korrugeringsmoenster saa att stroemningsmotstaandet successivt minskar fraan ena sidan till den andra
DE4037969A1 (de) * 1990-11-29 1992-06-04 Schmidt Bretten W Gmbh Plattenwaermeaustauscher
DK0526679T3 (da) * 1991-07-08 1996-01-22 Apv Baker As Varmeveksler med flervæggede pladeelementer
SE470339B (sv) * 1992-06-12 1994-01-24 Alfa Laval Thermal Plattvärmeväxlare för vätskor med olika flöden
JP3328329B2 (ja) * 1992-09-24 2002-09-24 株式会社日阪製作所 プレート式熱交換器用プレート
SE505225C2 (sv) * 1993-02-19 1997-07-21 Alfa Laval Thermal Ab Plattvärmeväxlare och platta härför
SE502779C2 (sv) * 1994-05-18 1996-01-08 Tetra Laval Holdings & Finance Svetsad plattvärmeväxlare och förfarande för svetsning av värmeöverföringsplattor till en plattvärmeväxlare
JP3635691B2 (ja) * 1994-10-13 2005-04-06 株式会社デンソー 冷媒蒸発器およびこれを用いた車両用空調装置
DE19506281A1 (de) * 1995-02-23 1996-08-29 Schmidt Bretten Gmbh Umfangsdichtung eines Plattenwärmeübertragers
SE9502135D0 (sv) * 1995-06-13 1995-06-13 Tetra Laval Holdings & Finance Plattvärmeväxlare
SE504868C2 (sv) * 1995-10-23 1997-05-20 Swep International Ab Plattvärmeväxlare med ändplatta med pressat mönster
DE19540271C1 (de) * 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plattenwärmetauscher
JP3719453B2 (ja) * 1995-12-20 2005-11-24 株式会社デンソー 冷媒蒸発器
SE9700614D0 (sv) * 1997-02-21 1997-02-21 Alfa Laval Ab Plattvärmeväxlare för tre värmeväxlande fluider
DK174409B1 (da) * 1998-01-12 2003-02-17 Apv Heat Exchanger As Varmevekslerplade med forstærket kantudformning
JP3292128B2 (ja) * 1998-02-27 2002-06-17 ダイキン工業株式会社 プレート型熱交換器
JP3331950B2 (ja) * 1998-02-27 2002-10-07 ダイキン工業株式会社 プレート型熱交換器
SE514714C2 (sv) * 1999-08-27 2001-04-09 Alfa Laval Ab Lödd plattvärmeväxlare med dubbelväggiga plattor utan inre anliggning mittför lödförbindningarna
DE19948222C2 (de) * 1999-10-07 2002-11-07 Xcellsis Gmbh Plattenwärmetauscher
DE10021481A1 (de) * 2000-05-03 2001-11-08 Modine Mfg Co Plattenwärmetauscher
US6629561B2 (en) * 2001-06-08 2003-10-07 Visteon Global Technologies, Inc. Module for a heat exchanger having improved thermal characteristics
US6662561B1 (en) * 2002-07-30 2003-12-16 Robert Bosch Corporation Means to dampen the effect of pressure oscillations on a control valve

Also Published As

Publication number Publication date
EP1305561A1 (de) 2003-05-02
DE10035939A1 (de) 2002-02-07
JP2004504584A (ja) 2004-02-12
US7040387B2 (en) 2006-05-09
DE50107511D1 (de) 2005-10-27
ES2248358T3 (es) 2006-03-16
US20030094271A1 (en) 2003-05-22
WO2002008680A1 (de) 2002-01-31
BR0106982A (pt) 2002-05-14
KR20020032602A (ko) 2002-05-03

Similar Documents

Publication Publication Date Title
EP1305561B1 (de) Vorrichtung zur wärmeübertragung
EP3531055B1 (de) Plattenwärmetauscher und verfahren zu dessen herstellung
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP1816425B1 (de) Abgaswärmetauscher in einer abgasrückführungsanordnung
EP1400772B1 (de) Plattenwärmeübertrager
DE2250222A1 (de) Waermetauscher
DE60310992T2 (de) Hochdruckwärmetauscher
WO2004090454A1 (de) Wärmeübertrager, insbesondere ladeluftkühler für kraftfahrzeuge
DE102007031824A1 (de) Wärmetauscher
DE102005058153B4 (de) Wärmeübertrager mit Mehrkanalflachrohren
DE102006053702A1 (de) Wärmetauscher, insbesondere Gaskühler
EP1567819A1 (de) Wärmeüberträgereinheit, insbesondere für ein kraftfahrzeug, und verfahren zur herstellung
WO2013190105A1 (de) Thermoelektrisches modul mit wärmetauscher
WO2001069157A2 (de) Wärmeübertrager für eine co2-fahrzeugklimaanlage
DE10020763A1 (de) Starken Innendrücken widerstehendes längliches Sammlergehäuse für Wärmetauscher
WO2006105925A1 (de) Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP1892491A2 (de) Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
DE4432340C1 (de) Verfahren zur Herstellung eines Verdampfers für ein Kompressorkühlgerät
WO2020127097A1 (de) Temperierelement, batteriespeichervorrichtung, verfahren zum herstellen eines temperierelements und verfahren zum herstellen einer batteriespeichervorrichtung
EP1563239B1 (de) Wärmetauscher
DE102005028510A1 (de) Verstellbarer innerer Wärmeübertrager
EP1632742A2 (de) Wärmeübertrager, insbesondere für Klimaanlage
EP3009780B1 (de) Wärmeübertrager
DE10110828A1 (de) Wärmeübertrager für eine CO2-Fahrzeugklimaanlage
DE102021131552B3 (de) Verfahren zur Herstellung eines Flachrohrs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030221

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50107511

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051220

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2248358

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120705

Year of fee payment: 12

Ref country code: GB

Payment date: 20120621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120623

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120822

Year of fee payment: 12

Ref country code: ES

Payment date: 20120628

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130609

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107511

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130610