WO2002008680A1 - Vorrichtung zur wärmeübertragung - Google Patents

Vorrichtung zur wärmeübertragung Download PDF

Info

Publication number
WO2002008680A1
WO2002008680A1 PCT/DE2001/002162 DE0102162W WO0208680A1 WO 2002008680 A1 WO2002008680 A1 WO 2002008680A1 DE 0102162 W DE0102162 W DE 0102162W WO 0208680 A1 WO0208680 A1 WO 0208680A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
fluid
support element
heat
channels
Prior art date
Application number
PCT/DE2001/002162
Other languages
English (en)
French (fr)
Inventor
Stephan Leuthner
Petra Beil
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2002514326A priority Critical patent/JP2004504584A/ja
Priority to DE50107511T priority patent/DE50107511D1/de
Priority to KR1020027003652A priority patent/KR20020032602A/ko
Priority to BR0106982-9A priority patent/BR0106982A/pt
Priority to EP01951364A priority patent/EP1305561B1/de
Priority to US10/088,285 priority patent/US7040387B2/en
Publication of WO2002008680A1 publication Critical patent/WO2002008680A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/08Reinforcing means for header boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/906Reinforcement

Definitions

  • the invention relates to a device for heat transfer from a first fluid to a second fluid separated from the first fluid with a stack-like or shell-like structure comprising at least two layers, in particular plates, according to the preamble of claim 1.
  • heat exchangers with a first channel through which a high-pressure refrigerant flows and a second channel through which low-pressure refrigerant flows and separated from the first channel are provided in a C0 2 vehicle air conditioning system.
  • a so-called internal or internal heat exchanger is provided.
  • the internal heat exchanger is flowed through by the refrigerant (C0 2 ) in the counterflow principle or in the cocurrent principle.
  • the fluids flow through the heat exchanger once on the way from the gas cooler to the evaporator and the second time between the evaporator and the compressor.
  • the main task of the internal heat exchanger is to additionally cool the refrigerant before expansion.
  • the heat is transferred from the high pressure side to the gas cooler Low pressure side delivered after the evaporator (before entering the compressor).
  • the partially still liquid refrigerant evaporates completely before it reaches the compressor.
  • Heat exchangers are already known which are manufactured in a comparatively compact manner in order to reduce mass and volume.
  • so-called micro heat exchangers are provided, for example. These consist in particular of structured plates that are stacked on top of one another and either soldered, screwed or connected accordingly. Correspondingly provided channels of the heat exchanger are also sealed at the same time. The fluids, which come into thermal contact with one another in the heat exchanger, are conducted via the channels between the plates.
  • the fluids are led into the individual layers through inlet openings or outlet openings, so that a heat-absorbing and a heat-emitting fluid flows alternately in different layers.
  • the distribution or the merging of the fluids to or from the individual channels takes place in the entry or exit area.
  • the respective fluid flow splits or collects in these areas.
  • the large pressurized area in the area of the free cross-section leads to large material stresses, which leads to material deformation, e.g. B. flow, or failure of the component.
  • the object of the invention is to propose a device for heat transfer which, with a small volume, realizes a comparatively large heat-transfer surface and thereby ensures trouble-free operation even at large different pressure levels of the two fluids.
  • a device is characterized in that the entry and / or exit area comprises at least one support element.
  • the resulting free cross-section and in particular the bending moment that occurs in the entry or exit area are substantially reduced as a result. This ensures that the surface under pressure, in particular on the side operated with comparatively low pressure, is supported and is therefore disadvantageous Deformation of the plate is prevented.
  • a support element according to the invention provided on each plate can transmit corresponding pressure forces from plate to plate until a comparatively massive cover plate absorbs the pressure forces, so that deformation of the plates or failure of the entire component is effectively prevented.
  • numerous support elements are provided both in the entry and in the exit area, so that both the resulting free cross sections and the bending stresses that occur are further reduced.
  • this advantageously has a comparatively large number of support elements on the side facing the heat transfer area.
  • comparatively few support elements are provided on the side of the entry area facing the entry opening. The corresponding is advantageously transferred to the exit area.
  • the heat exchanger according to the invention can have much thinner-walled plates in comparison to the prior art with the same pressure differences between the two fluids, which can preferably lead to a significant reduction in mass and volume of the entire heat exchanger, given the heat output to be transferred.
  • the support elements advantageously increase the heat-transferring surface, so that the heat transfer of the heat exchanger according to the invention is additionally improved. This means that, given the heat output to be transferred, the volume of a heat exchanger according to the invention can be additionally reduced.
  • the length of the support element is designed as a multiple of its width. This ensures that the support element, for example with a comparable flow resistance, has a substantially greater support effect and heat-transferring surface.
  • the heat exchanger can hereby advantageously be subjected to a greater pressure difference between the two fluid streams without disadvantageous material deformation or failure of the heat exchanger.
  • the support element is advantageously designed as a fluid guide element. This enables an improved fluid flow to be generated by means of the support elements according to the invention.
  • the fluid is distributed uniformly over the channels of the heat transfer region by means of support elements according to the invention or is merged from the channels in a flow-favorable manner and passed on to a corresponding collecting channel. With this, a more evenly distributed loading of the channel structure of the heat transfer area can be implemented, which in turn leads to an improved heat transfer of the heat exchanger.
  • two adjacent support elements with an angle of less than 20 °, preferably between 10 ° and 15 °, are arranged relative to one another.
  • the opening angle of the fluid flow the so-called In contrast, the diffuser angle according to the prior art is frequently over 50 °.
  • a comparatively small opening angle according to the invention between two adjacent support elements prevents, for example, separation of the fluid flow in the entry or exit area, so that disadvantageous energy losses are minimized and, at the same time, uneven loading of the channel structure of the heat transfer area can be prevented.
  • the Reynolds number which is dependent on the prevailing flow conditions and is dependent on the opening angle, the fluid pressure and the arrangement or configuration of the support elements or the channels of the heat transfer area, is also of crucial importance.
  • the side wall of the support element is straight and / or curved.
  • the design of a support element as a polygon is also conceivable.
  • the support elements are preferably constructed in terms of materials and geometry in such a way that they achieve the greatest possible support effect and a very good flow distribution with a comparatively low loss of flow pressure. If appropriate, elongated support elements can advantageously have widened sections to improve the support effect and the flow guidance.
  • At least one support element is designed as an extension of a partition between two channels of the heat transfer area. This makes it possible, for example, to implement the channels of the heat transfer region in a much more uniform manner.
  • a further improvement of the flow control can be implemented.
  • a Support element formed as an extension of the channel partition a curved transition from the support element to the channel partition is preferably provided.
  • a curved transition can lead to an advantageous fluid flow, so that disadvantageous pressure losses can be minimized.
  • the support element have a curved side wall, but the channel partition wall can also have a curved side wall, at least in the edge region, so that a more favorable fluid flow can be generated.
  • a transition with a slight bend, which has a comparatively small kink, can also be realized here.
  • the various layers of the stack-like or shell-shaped device are preferably designed as flat or curved plates or as cylindrical components which can be stacked one inside the other due to different diameters, so that advantageous production of the heat exchanger according to the invention can be realized.
  • cover plates closing the heat exchanger are preferably provided.
  • the design and arrangement of the support elements are adapted to the channels of the heat transfer area.
  • the channels and the support elements are produced on or in the layers by means of a removal or coating manufacturing process, so that the support elements and the channels can be produced comparatively small.
  • Corresponding recesses in the plates are preferably produced by means of a photolithographic structuring process with a subsequent etching process, so that, if appropriate, all process steps both for producing the channels of the heat transfer region and for producing the support elements in the entry and exit regions in each case one step can be implemented.
  • the heat exchanger is formed by plates stacked one on top of the other and soldered to one another, in which at least some of the corresponding recesses are provided, for example for forming the channels or support elements. At least one solder layer can be provided between the plates for a soldering process.
  • the soldering process is advantageously carried out in a vacuum or in an inert gas atmosphere.
  • the plates are preferably stacked one above the other with at least one intermediate solder layer in the later arrangement of the component and pressed in particular in the cold state, even before the soldering process. By pressing the plates before the actual soldering process, the plates are not pressed firmly at comparatively high temperatures. This eliminates the need for comparatively complex pressing tools that would have to withstand the high soldering temperatures.
  • FIG. 1 shows a schematic representation of the structural and flow conditions of a heat exchanger according to the prior art
  • FIG. 2 shows a schematically illustrated free cross section by overlapping two layers according to the prior art
  • FIG. 3 shows a schematically illustrated, reduced free cross section according to the invention with straight support elements
  • Figure 4 is a schematically illustrated entry or exit area according to the invention with reinforced support elements and
  • FIG. 5 shows a schematically illustrated further entry or exit area with curved support elements.
  • FIG. 1 A heat exchanger according to the prior art is shown in FIG.
  • the heat exchanger comprises individual plates 1, 2, 3 for heat transmission, which are soldered or welded together, packed between two cover plates 8, 9 and provided with small channels 11, 12, 13 and flow openings 4, 5, 6, 7.
  • C0 2 low pressure (arrow FEI) flows into an inlet opening 15 of the cover plate 8, through the channels 11 of the Heat transfer plate 1 from bottom to top, further through the flow opening 5 of the heat transfer plate 2 through to the heat transfer plate 3 and there also through its small channels from bottom to top and through the corresponding flow openings 7 of the heat transfer plates 3, 2, 1 and then through the outlet opening 17 Cover plate 8 off (arrow FA1).
  • the heat exchanger shown is flowed through by the high-pressure side refrigerant (black arrows) in a first direction and in countercurrent by the low-pressure side refrigerant (hatched arrows).
  • the heat exchanger shown in Figure 1 has only three heat transfer plates 1, 2, 3, due to a more advantageous representation. This consists of individual layers defined by the heat transfer plates 1, 2, 3, which are in counterflow from the C0 2 , which is on one side at high pressure (up to approximately 150 bar) at high temperature and on the other side at low pressure ( up to approximately 60 bar) and at a low temperature.
  • the heat transfer coefficient on the low pressure side is generally much smaller than that on the high pressure side.
  • the basic aim should therefore be that the product of the heat transfer coefficient and the heat transfer surface on the high pressure side be the product
  • Heat transfer coefficient and heat transfer area on the low pressure side is adjusted.
  • the compact heat exchanger shown which consists of individual profiles, ie the heat transfer plates 1, 2, 3, into which the small channels 11, 12, 13 are incorporated, by appropriate adjustment of the hydraulic diameter of the small channels 11, 12, 13.
  • a heat exchanger according to the invention can advantageously be produced from copper and copper alloy, stainless steel, aluminum and other materials.
  • a heat exchanger according to the invention can advantageously be used as the inner heat exchanger of a C0 2 -lima system in vehicles, in particular motor vehicles.
  • the first (high pressure) flow channel marked by black arrows in FIG. 1 lies in a first flow path from a gas cooler to an evaporator and the second (low pressure) flow channel marked by hatched arrows in the figure lies in a second flow path from the evaporator to one Vehicle air conditioning compressor.
  • a high pressure up to approximately 150 bar and a high temperature can prevail in the first flow path and a low pressure up to approximately 60 bar and a relatively low temperature in the second flow path.
  • FIG. 2 schematically shows a free cross section 24, which arises, for example, by overlapping the inlet area E1 of the fluid I with the outlet area A2 of the fluid II according to the prior art.
  • the free cross section 24 has a comparatively large area under pressure and therefore has to absorb comparatively large material stresses, which can lead to deformations, in particular of the plates 2, 3, and to failure of the heat exchanger.
  • FIG. 3 shows a section of the two plates 2, 3 corresponding to the section of FIG. 2.
  • the entry or exit area of the plates 2, 3 according to the invention has support elements 18 according to the invention.
  • the support elements 18 according to FIG. 3 are designed as rectilinear support elements 18.
  • some support elements 18 ' are formed as an extension of a duct partition 19.
  • an opening angle ⁇ which is formed from two adjacent support elements 18, is substantially smaller than an opening angle ⁇ without support elements 18 according to the prior art according to the invention.
  • the structuring by means of the support elements 18 thus distributes the flow of the fluids more evenly over the channels of the heat transfer area and the opening angle is reduced, for example, from approximately 50 ° to approximately 10 ° to 15 °.
  • this has the result that a detachment of the fluid flow, which entails energy losses and an uneven loading of the channel structure 11, 12, 13, is largely prevented.
  • the prevention of detachment and thus the reduction of energy losses essentially depends on the Reynolds number. This in turn depends, among other things, on the opening angle and also on the set pressures of the fluids.
  • FIG. 3 illustrates that the reduced free cross section 23 compared to the free cross section 24 of FIG. 2 significantly reduces the pressurized pressure Represents area and thus significantly reduces the bending stresses that occur. This largely prevents deformation of the plates 1, 2, 3 or failure of the heat exchanger.
  • FIG. 4 shows, in particular, support elements 18 which have local reinforcements 20 to reinforce the support effect according to the invention.
  • FIG. 5 shows support elements 18 which have a curved side wall.
  • This inventive design of the support elements 18 leads in particular to an advantageous flow guidance and distribution of the fluids to the channels 11, 12, 13.
  • the curved support elements 18 shown in FIG. 5 have an angular transition 21.
  • a curved transition 21, not shown in more detail, can lead to a further improvement in the flow guidance.
  • a curved end region of the channel partition walls 19 can also be advantageous.
  • the support elements 18 according to the invention distributed the occurring load much better, so that they have an additional load-bearing function. According to the prior art, inter alia, the occurring load had to be taken over predominantly from the edge regions of the plates 1, 2, 3, so that material can be advantageously saved in the edge regions, for example, with the aid of the support elements 18 according to the invention.
  • the plates 1, 2, 3 are alternately flowed through by a heat-absorbing and a heat-emitting fluid in the countercurrent or in the cocurrent principle.
  • a heat-absorbing and a heat-emitting fluid in the countercurrent or in the cocurrent principle.
  • several, for. B. two adjacent plates 1, 2 are flowed through by the same fluid and only the subsequent plate 3 or several adjacent plates are flowed through by the other fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

Es wird eine Vorrichtung zur Wärmeübertragung von einem ersten Fluid auf ein vom ersten Fluid getrenntes zweites Fluid mit einem wenigstens zwei Lagen (1, 2, 3), insbesondere Platten (1, 2, 3), umfassenden stapelförmigen oder schalenförmigen Aufbau, wobei jede Lage (1, 2, 3) einen Wärmeübertragungsbereich, der zahlreiche Kanäle (11, 12, 13) aufweist, einen in Strömungsrichtung vor dem Wärmeübertragungsbereich angeordneten Eintrittsbereich sowie einen in Strömungsrichtung hinter dem Wärmeübertragungsbereich angeordneten Austrittsbereich umfasst, vorgeschlagen, die bei einem kleinen Volumen eine vergleichsweise grosse wärmeübertragende Fläche realisiert und hierbei einen störungsfreien Betrieb sogar bei grossem unterschiedlichen Druckniveau der beiden Fluide gewährleistet. Dies wird erfindungsgemäss dadurch erreicht, dass der Eintritts- und/oder Austrittsbereich wenigstens ein Stützelement (18) umfasst.

Description

"Vorrichtung zur Wärmeübertragung"
Die Erfindung betrifft eine Vorrichtung zur Wärmeübertragung von einem ersten Fluid auf ein vom ersten Fluid getrenntes zweites Fluid mit einem wenigstens zwei Lagen, insbesondere Platten, umfassenden stapelformigen oder schalenformigen Aufbau nach dem Oberbegriff des Anspruchs 1.
Stand der Technik
Bislang werden beispielsweise Wärmetauscher mit einem von einem hochdruckseitigen Kältemittel durchströmten ersten Kanal und einem von niederdruckseitigem Kältemittel durchströmten, vom ersten Kanal getrennten zweiten Kanal in einer C02-Fahrzeugklimaanlage vorgesehen.
Um die Leistung und Effizienz des C02-Prozesses zu erhöhen, wird ein sogenannter innerer oder interner Wärmetauscher vorgesehen. Der interne Wärmetauscher wird vom Kältemittel (C02) im Gegenstromprinzip oder im Gleichstromprinzip durchströmt . Die Fluide durchströmen hierbei den Wärmetauscher einmal auf dem Weg vom Gaskühler zum Verdampfer und das zweite Mal zwischen Verdampfer und Verdichter. Die Hauptaufgabe des internen Wärmetauschers ist hierbei, das Kältemittel vor der Expansion zusätzlich abzukühlen. Die Wärme wird von der Hochdruckseite dem Gaskühler an die Niederdruckseite nach dem Verdampfer (vor Eintritt in den Verdichter) abgegeben. Das teilweise noch flüssige Kältemittel verdampft komplett bevor es den Verdichter erreicht .
Mögliche Einsatzgebiete liegen für entsprechende Wärmetauscher bei Fahrzeugklimageräten, Wärmepumpen, transportablen Klimageräten kleiner Leistung, Luftentfeuchtungsgeräten, Trocknern, BrennstoffZellensystemen und ähnlichen Anwendungsmδglichkeiten.
Es sind bereits Wärmetauscher bekannt, die zur Massen- und Volumenreduzierung vergleichsweise kompakt hergestellt werden. Um in einer kleinen Bauweise große Wärmemengen zu übertragen, werden beispielsweise sogenannte MikroWärmetauscher vorgesehen. Diese bestehen insbesondere aus strukturierten Platten, die übereinander gestapelt und entweder miteinander verlötet, verschraubt oder entsprechend verbunden werden. Hierbei werden entsprechend vorgesehene Kanäle des Wärmetauschers gleichzeitig auch abgedichtet . Die Fluide, die im Wärmetauscher in thermischen Kontakt miteinander treten, werden über die Kanäle zwischen den Platten geführt.
Im Mikro-Wärmetauscher werden die Fluide durch Eintrittsöffnungen beziehungsweise Austrittsöffnungen in die einzelnen Lagen geleitet, so dass in verschiedenen Lagen abwechselnd ein wärmeaufnehmendes und ein wärmeabgebendes Fluid strömt. Die Verteilung beziehungsweise die Zusammenführung der Fluide auf die beziehungsweise von den einzelnen Kanälen findet hierbei im Eintritts- bzw. Austrittsbereich statt. In diesen Bereichen spaltet beziehungsweise sammelt sich der jeweilige Fluidstrom.
Hierbei ergibt die Überlappung des Eintrittsbereichs mit dem Austrittsbereich einen sogenannten freien Querschnitt . Aufgrund des großen Druckunterschieds der beiden Fluide müssen die einzelnen Lagen im Bereich des freien Querschnitts die stark unterschiedlichen Druckniveaus aushalten.
Die große druckbeaufschlagte Fläche im Bereich des freien Querschnitts führt dazu, dass große MaterialSpannungen auftreten, wobei es zu Materialverformungen, z. B. Fließen, beziehungsweise zum Versagen des Bauteils kommen kann.
Vorteile der Erfindung
Demgegenüber hat die Erfindung die Aufgabe, eine Vorrichtung zur Wärmeübertragung vorzuschlagen, die bei einem kleinen Volumen eine vergleichsweise große wärmeübertragende Fläche realisiert und hierbei einen störungsfreien Betrieb sogar bei großem unterschiedlichen Druckniveau der beiden Fluide gewährleistet .
Diese Aufgabe wird ausgehend von einem Stand der Technik der einleitend genannten Art durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
Durch die in den Unteransprüchen genannten Maßnahmen sind vorteilhafte Ausführungen und Weiterbildungen der Erfindung möglich.
Dementsprechend zeichnet sich eine erfindungsgemäße Vorrichtung dadurch aus, dass der Eintritts- und/oder Austrittsbereich wenigstens ein Stützelement umfasst. Erfindungsgemäß wird hierdurch der resultierende freie Querschnitt und insbesondere das auftretende Biegemoment im Eintritts- bzw. Austrittsbereich wesentlich verringert. So wird gewährleistet, dass die druckbeaufschlagte Fläche, insbesondere auf der mit vergleichsweise niederem Druck betriebenen Seite, abgestützt und somit ein nachteiliges Verformen der Platte unterbunden wird.
Darüber hinaus kann bei einer vorteilhaften Anordnung der Stützelemente ein auf jeder Platte vorgesehenes erfindungsgemäßes Stützelement entsprechende Druckkräfte von Platte zu Platte weiterleiten bis gegebenenfalls eine vergleichsweise massive Deckelplatte die Druckkräfte aufnimmt, so dass ein Verformen der Platten beziehungsweise ein Versagen des gesamten Bauteils wirkungsvoll verhindert wird.
Vorzugsweise sind sowohl im Eintritts- als auch im Austrittsbereich zahlreiche Stützelemente vorgesehen, so dass sowohl die resultierenden freien Querschnitte als auch die auftretenden Biegespannungen weiter verringert werden.
Entsprechend der Verbreiterung des Eintrittsbereichs weist dieser auf der zum Wärmeübertragungsbereich weisenden Seite in vorteilhafter Weise vergleichsweise viele Stützelemente auf. Auf der zur Eintrittsöffnung weisenden Seite des Eintrittsbereichs sind jedoch vergleichsweise wenige Stützelemente vorgesehen. Entsprechendes wird in vorteilhafter Weise auf den Austrittsbereich übertragen.
Vorzugweise kann durch die Verringerung der
MaterialSpannungen beispielsweise gegenüber einer dem Stand der Technik entsprechenden Konstruktion und Bauart der erfindungsgemäße Wärmetauscher mit größeren Druckdifferenzen beaufschlagt werden. Alternativ hierzu kann der erfindungsgemäße Wärmetauscher im Vergleich zum Stand der Technik bei gleichen Druckdifferenzen zwischen den beiden Fluiden wesentlich dünnwandigere Platten aufweisen, was vorzugsweise bei gegebener zu übertragender Wärmeleistung insbesondere zu einer deutlichen Massen- und Volumenreduzierung des gesamten Wärmetauschers führen kann. In vorteilhafter Weise erhöhen die Stützelemente die wärmeübertragende Fläche, so dass die Wärmeübertragung des erfindungsgemäßen Wärmetauschers zusätzlich verbessert wird. Dies führt dazu, dass bei gegebener zu übertragender Wärmeleistung in vorteilhafter Weise das Volumen eines erfindungsgemäßen Wärmetauschers zusätzlich verringert werden kann.
In einer besonderen Weiterbildung der Erfindung ist die Länge des Stützelementes als ein Vielfaches seiner Breite ausgebildet. Hierdurch wird gewährleistet, dass das Stützelement beispielsweise bei vergleichbarem Strömungswiderstand eine wesentlich größere Stützwirkung sowie wärmeübertragende Fläche auf eist . Erfindungsgemäß kann hierdurch der Wärmetauscher in vorteilhafter Weise mit einer größeren Druckdifferenz zwischen den beiden Fluidströmen beaufschlagt werden, ohne dass eine nachteilige Materialverformung oder ein Versagen des Wärmetauschers entstehen könnte.
Vorteilhafterweise ist das Stützelement als Fluid-Leitelement ausgebildet. Hierdurch wird ermöglicht, dass eine verbesserte Fluid-Strömung mittels der erfindungsgemäßen Stützelemente erzeugt werden kann. Vorzugsweise wird mittels erfindungsgemäßer Stützelemente das Fluid gleichmäßig auf die Kanäle des Wärmeübertragungsbereichs verteilt beziehungsweise strömungsgünstig aus den Kanälen zusammengeführt und zu einem entsprechenden Sammelkanal weitergeleitet. Hiermit kann eine gleichmäßiger verteilte Beaufschlagung der Kanalstruktur des Wärmeübertragungsbereichs umgesetzt werden, was wiederum zu einer verbesserten Wärmeübertragung des Wärmetauschers führt .
In einer besonderen Ausführungsform der Erfindung sind zwei benachbarte Stützelemente mit einem Winkel kleiner 20°, vorzugsweise zwischen 10° und 15°, zueinander angeordnet. Der Öffnungswinkel der Fluid-Strömung, der sogenannte Diffusorwinkel, gemäß dem Stand der Technik beträgt demgegenüber häufig über 50°. Ein erfindungsgemäßer vergleichsweise kleiner Öffnungswinkel zwischen zwei benachbarten Stützelementen verhindert beispielsweise eine Ablösung der Fluid-Strömung im Eintritts- bzw. Austrittsbereich, so dass nachteilige Energieverluste minimiert und gleichzeitig eine ungleichmäßige Beaufschlagung der Kanalstruktur des Wärmeübertragungsbereiches verhindert werden kann. Von entscheidender Bedeutung ist hierbei auch die von den herrschenden Strömungsverhältnissen abhängige Reynoldszahl, die beispielsweise vom Öffnungswinkel, vom Fluiddruck sowie der Anordnung beziehungsweise Ausgestaltung der Stützelemente beziehungsweise der Kanäle des Wärmeübertragungsbereichs abhängig ist .
Insbesondere zur Verbesserung der Strδmungsverhältnisse ist die Seitenwand des Stützelementes geradlinig und/oder kurvenförmig ausgebildet. Hierbei ist die Ausgestaltung eines Stützelementes als Polygonzug ebenfalls denkbar. Vorzugsweise sind die Stützelemente materialtechnisch und geometrisch derart ausgebildet, dass sie größtmögliche Stützwirkung und eine sehr gute Strömungsverteilung bei vergleichsweise geringem Strδmungsdruckverlust erreichen. Gegebenenfalls können längliche Stützelemente vorteilhaft verbreiterte Abschnitte zur Verbesserung der Stützwirkung sowie der Strömungsführung aufweisen.
In einer besonderen Weiterbildung der Erfindung ist wenigstens ein Stützelement als Verlängerung einer Trennwand zwischen zwei Kanälen des Wärmeübertragungsbereichs ausgebildet. Hierdurch wird beispielsweise eine wesentlich gleichmäßigere Beaufschlagung der Kanäle des Wärmeübertragungsbereichs realisierbar.
Mit einer entsprechenden Anordnung der Stützelemente ist eine weitere Verbesserung der Strδmungsführung umsetzbar. Ist ein Stützelement als Verlängerung der Kanaltrennwand ausgebildet, so wird vorzugsweise ein kurvenförmiger Übergang vom Stützelement zur Kanaltrennwand vorgesehen. Ein kurvenförmiger Übergang kann zu einer vorteilhaften Fluid- Strömung führen, so dass nachteilige Druckverluste minimierbar sind. Hierbei kann beispielsweise nicht nur das Stützelement eine kurvenförmige Seitenwand aufweisen, sondern auch die Kanaltrennwand kann eine wenigstens im Randbereich aufweisende kurvenförmige Seitenwand aufweisen, so dass eine günstigere Fluid-Strömung erzeugt werden kann. Auch ist hierbei ein Übergang mit einer leichten Abkantung, die einen vergleichsweise kleinen Knick aufweist, realisierbar.
Vorzugsweise sind die verschiedenen Lagen der stapeiförmigen oder schalenformigen Vorrichtung als ebene oder gewölbte Platten oder als zylinderförmige, aufgrund unterschiedlicher Durchmesser ineinander stapelbare Bauelemente ausgebildet, so dass eine vorteilhafte Fertigung des erfindungsgemäßen Wärmetauschers realisierbar ist . Bei der Variante mit ebenen Platten werden vorzugsweise den Wärmetauscher abschließende Deckelplatten vorgesehen.
Grundsätzlich wird die Ausgestaltung und Anordnung der Stützelemente den Kanälen des Wärmeübertragungsbereichs angepasst. Beispielsweise werden die Kanäle sowie die Stützelemente auf beziehungsweise in den Lagen mittels eines abtragenden oder auftragenden Fertigungsverfahrens hergestellt, so dass die Stützelemente sowie die Kanäle vergleichsweise klein herstellbar sind.
Vorzugsweise werden entsprechende Ausnehmungen der Platten durch einen photolithographischen Strukturierungsprozess mit nachfolgendem Ätzprozess gefertigt, so dass gegebenenfalls alle Verfahrensschritte sowohl zur Herstellung der Kanäle des Wärmeübertragungsbereichs als auch zur Herstellung der Stützelemente im Eintritts- bzw. Austrittsbereich in jeweils einem Arbeitsschritt realisierbar sind.
In einer bestimmten Ausführungsform wird der Wärmetauscher durch übereinander gestapelte und miteinander verlötete Platten gebildet, in denen wenigstens teilweise die entsprechenden Ausnehmungen, beispielsweise zur Ausbildung der Kanäle beziehungsweise Stützelemente, vorgesehen sind. Hierbei kann zwischen den Platten für einen Lotprozess wenigstens eine Lδtschicht vorgesehen werden. Der Lotprozess wird vorteilhafterweise im Vakuum oder in Innertgas- Atmosphäre ausgeführt . Vorzugsweise werden die Platten mit wenigstens einer dazwischen liegenden Lötschicht in der späteren Anordnung des Bauteils übereinander gestapelt und insbesondere im kalten Zustand, noch vor dem Lotprozess, verpresst. Durch das Verpressen der Platten vor dem eigentlichen Lotprozess wird auf ein starkes Verpressen der Platten unter vergleichsweise hohen Temperaturen verzichtet. Hierdurch werden vergleichsweise aufwendige Presswerkzeuge entbehrlich, die den hohen Löttemperaturen standhalten müssten.
Ausführungsbeispiel
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird anhand der Figuren nachfolgend näher erläutert .
Im einzelnen zeigen
Figur 1 in schematischer Darstellung die Struktur- und Strömungsbedingungen eines Wärmetauschers gemäß dem Stand der Technik, Figur 2 ein schematisch dargestellter freier Querschnitt durch Überlappung zweier Lagen gemäß dem Stand der Technik,
Figur 3 ein schematisch dargestellter erfindungsgemäßer, reduzierter freier Querschnitt mit geradlinigen Stützelementen,
Figur 4 ein schematische dargestellter erfindungsgemäßer Eintritts- bzw. Austrittsbereich mit verstärkten Stützelementen und
Figur 5 ein schematische dargestellter weiterer Eintritts- bzw. Austrittsbereich mit kurvenförmigen Stützelementen.
In Figur 1 ist ein Wärmetauscher gemäß dem Stand der Technik dargestellt. Der Wärmetauscher umfasst einzelne Platten 1, 2, 3 zur Wärmeübertragung, die miteinander verlötet oder verschweißt, zwischen zwei Deckelplatten 8, 9 gepackt sind und mit kleinen Kanälen 11, 12, 13 sowie Strömungsöffnungen 4, 5 ,6, 7 versehen sind. An einer Eintrittsöffnung 14 der Deckelplatte 8 einströmendes C02 hohen Drucks (Pfeil FE2) strömt durch die Strömungsδffnung 4 der Wärmeübertragungsplatte 1 hindurch zur mittleren Wärmeübertragungsplatte 2, durch dessen Kanäle 12 in Pfeilrichtung nach untern und strömt von dort weiter durch die Strömungsδffnung 6 der Wärmeübertragungsplatte 1 und durch die Austrittsö fnung 16 der Deckelplatte 8 aus (Pfeil FA2) . Weiterhin strömt, wie die schraffierten Pfeile angeben, C02 niederen Drucks (Pfeil FEI) in eine Eintrittsöffnung 15 der Deckelplatte 8, durch die Kanäle 11 der Wärmeübertragungsplatte 1 von unten nach oben, weiterhin durch die Strömungsöffnung 5 der Wärmeübertragungsplatte 2 hindurch zur Wärmeübertragungsplatte 3 und dort ebenfalls durch dessen kleine Kanäle von unten nach oben und durch die entsprechenden Strömungsöffnungen 7 der Wärmeübertragungsplatten 3, 2, 1 und dann durch die Austrittsöffnung 17 der Deckelplatte 8 aus (Pfeil FA1) .
Auf diese Weise wird der dargestellte Wärmetauscher vom hochdruckseitigen Kältemittel (schwarze Pfeile) in einer ersten Richtung und im Gegenstrom vom niederdruckseitigem Kältemittel (schraffierte Pfeile) durchströmt.
Der in Figur 1 dargestellte Wärmetauscher weist aufgrund einer vorteilhafteren Darstellungsweise lediglich drei Wärmeübertragungsplatten 1, 2, 3, auf. Dieser besteht aus einzelnen, durch die Wärmeübertragungsplatten 1, 2, 3 definierte Lagen, die im Gegenstrom vom C02, das sich auf der einen Seite auf hohem Druck (bis annähernd 150 bar) bei hoher Temperatur und auf der anderen Seite bei niedrigem Druck (bis annähernd 60 bar) und niedriger Temperatur befindet, durchströmt werden.
Um den Wärmetauscher ideal an die auftretenden Wärmeübertragungsbedingungen anzupassen, ist zu berücksichtigen, dass der Wärmeübergang durch die Stoffeigenschaften des Fluids und den Strömungszustand bestimmt werden. Der Wärmeübergangskoeffizient auf der Niederdruckseite ist jedoch im allgemeinen wesentlich kleiner als derjenige auf der Hochruckseite. Um das Volumen des Wärmetauschers am effizientesten zu nutzen, ist daher grundsätzlich anzustreben, dass das Produkt aus Wärmeübergangskoeffizient und wärmeübertragender Fläche auf der Hochdruckseite demjenigen Produkt aus
Wärmeübergangskoeffizient und wärmeübertragender Fläche auf der Niederdruckseite angepasst wird. Dies kann beispielsweise bei dem dargestellten kompakten Wärmetauscher, der aus einzelnen Profilen, d. h. den Wärmeübertragungsplatten 1, 2, 3 besteht, in die die kleinen Kanäle 11, 12, 13 eingearbeitet sind, durch entsprechende Anpassung des hydraulischen Durchmessers der kleine Kanäle 11, 12, 13 erfolgen.
Des weiteren besteht die Möglichkeit, die wärmeübertragende Fläche bzw. den Wärmeübergangskoeffizienten des Wärmeübertragungsbereichs durch eine entsprechende Strömungsführung der kleinen Kanäle 11, 12, 13, beispielsweise in Zickzackform, zu vergrößern.
Ein erfindungsgemäßer Wärmetauscher lasst sich vorteilhafterweise aus Kupfer- und Kupferlegierung, Edelstahl, Aluminium und weiteren Werkstoffen herstellen.
Ein erfindungsgemäßer Wärmetauscher lässt sich vorteilhaft als innerer Wärmetauscher einer C02- limaanlage in Fahrzeugen, insbesondere Kraftfahrzeugen, verwenden.
Beispielsweise liegt der erste in der Figur 1 durch schwarze Pfeile markierte (Hochdruck-) Strömungskanal in einem ersten Strömungsweg von einem Gaskühler zu einem Verdampfer und der zweite in der Figur durch schraffierte Pfeile markierte (Niederdruck-) Strömungskanal in einem zweiten Strömungsweg vom Verdampfer zu einem Verdichter der Fahrzeugklimaanlage.
Im ersten Strömungsweg kann ein hoher Druck bis annähernd 150 bar und hoher Temperatur sowie im zweiten Strömungsweg ein niedriger Druck bis annähernd 60 bar und relativ niedriger Temperatur herrschen.
In Figur 2 ist schematisch ein freier Querschnitt 24 dargestellt, der beispielsweise durch Überlappung des Eintrittbereichs El des Fluids I mit dem Austrittsbereich A2 des Fluids II gemäß dem Stand der Technik entsteht. Hierbei wird deutlich, dass der freie Querschnitt 24 eine vergleichsweise große druckbeaufschlagte Fläche aufweist und somit vergleichsweise große MaterialSpannungen aufnehmen muss, was zu Verformungen, insbesondere der Platten 2,3, sowie zum Versagen des Wärmetauscher führen kann.
In Figur 3 ist ein Ausschnitt der beiden Platten 2, 3 entsprechend dem Ausschnitt der Figur 2 dargestellt. Hierbei weist jedoch der erfindungsgemäße Eintritt- bzw. Austrittsbereich der Platten 2, 3 erfindungsgemäße Stützelemente 18 auf. Die Stützelemente 18 gemäß der Figur 3 sind als geradlinige Stützelemente 18 ausgebildet. Hierbei sind einige Stützelemente 18 ' als Verlängerung einer Kanaltrennwand 19 ausgebildet.
Weiterhin wird aus Figur 3 deutlich, dass ein Öffnungswinkel α, der aus zwei benachbarten Stützelementen 18 gebildet wird, wesentlich kleiner als ein Öffnungswinkel ß ohne erfindungsgemäße Stützelemente 18 gemäß dem Stand der Technik ist . So wird durch die Strukturierung mittels der Stützelemente 18 die Strömung der Fluide gleichmäßiger auf die Kanäle des Wärmeübertragungsbereichs verteilt und der Öffnungswinkel wird beispielsweise von ca. 50° auf ca. 10° bis 15° verkleinert. Dies führt insbesondere dazu, dass eine Ablösung der Fluidströmung, was Energieverluste und eine ungleichmäßige Beaufschlagung der Kanalstruktur 11, 12, 13 nach sich zieht, weitestgehend verhindert wird. Das Verhindern der Ablösung und somit die Verringerung der Energieverluste hängt im Wesentlichen von der herrschenden Reynoldszahl ab. Diese wiederum ist unter anderem vom Öffnungswinkel und auch von den eingestellten Drücken der Fluide abhängig.
Darüber hinaus verdeutlicht Figur 3, dass der reduzierte freie Querschnitt 23 gegenüber dem freien Querschnitt 24 der Figur 2 eine wesentliche Verringerung der druckbeaufschlagten Fläche darstellt und somit die auftretenden Biegespannungen wesentlich reduziert. Hierdurch wird eine Verformung der Platten 1, 2, 3 bzw. ein Versagen des Wärmetauschers weitestgehend verhindert .
In Figur 4 sind insbesondere Stützelemente 18 dargestellt, die zur Verstärkung der erfindungsgemäßen Stützwirkung örtliche Verstärkungen 20 aufweisen.
In Figur 5 sind Stützelemente 18 dargestellt, die eine kurvenförmige Seitenwand aufweisen. Diese erfindungsgemäße Ausgestaltung der Stützelemente 18 führt insbesondere zu einer vorteilhaften Strömungsführung sowie Verteilung der Fluide auf die Kanäle 11, 12, 13. Die in Figur 5 dargestellten kurvenförmigen Stützelemente 18 weisen einen eckigen Übergang 21 auf. Ein nicht näher dargestellter kurvenförmiger Übergang 21 kann hierbei zu einer weiteren Verbesserung der Strömungsführung führen. Bei einem kurvenförmigen Übergang 21 kann auch ein kurvenförmiger Endbereich der Kanaltrennwände 19 vorteilhaft sein.
Die erfindungsgemäßen Stützelemente 18 verteilten die auftretende Last wesentlich besser, so dass diese eine zusätzlich tragende Funktion aufweisen. Gemäß dem Stand der Technik musste unter anderem die auftretende Last überwiegend von den Randbereichen der Platten 1, 2, 3 übernommen werden, so dass mit Hilfe der erfindungsgemäßen Stützelemente 18 beispielsweise in den Randbereichen in vorteilhafter Weise Werkstoff eingespart werden kann.
Grundsätzlich werden die Platten 1, 2, 3 abwechselnd von einem wärmeaufnehmenden und einem wärmeabgebenden Fluid im Gegenstrom- oder im Gleichstromprinzip durchströmt. Hierbei können beispielsweise zur Vergrößerung der wärmeaufnehmenden bzw. wärmeabgebenden Fläche mehrere, z. B. zwei benachbarte Platten 1, 2 vom gleichen Fluid durchströmt werden und erst die darauffolgende Platte 3 bzw. auch mehrere benachbarte Platten werden vom anderen Fluid durchströmt .
Bezugszeichenliste :
1 Platte
2 Platte
3 Platte
4 Öffnung
5 Öffnung
6 Öffnung
7 Öffnung
8 Deckelplatte
9 Deckelplatte
11 Kanäle
12 Kanäle
13 Kanäle
14 Öffnung
15 Öffnung
16 Öffnung
17 Öffnung
18 Stützelement
19 Trennwand
20 Verstärkung
21 Übergang
23 Querschnitt
24 Querschnitt
FEI Eintritt Fluid I
FE2 Eintritt Fluid II
FA1 Austritt Fluid I
FA2 Austritt Fluid II α Winkel ß Winkel

Claims

Ansprüche;
1. Vorrichtung zur Wärmeübertragung von einem ersten Fluid auf ein vom ersten Fluid getrenntes zweites Fluid mit* einem wenigstens zwei Lagen (1, 2, 3) , insbesondere Platten (1, 2, 3) , umfassenden stapeiförmigen oder schalenformigen Aufbau, wobei jede Lage (1, 2, 3) einen Wärmeübertragungsbereich, der zahlreiche Kanäle (11, 12, 13) aufweist, einen in Strömungsrichtung vor dem Wärmeübertragungsbereich angeordneten Eintrittsbereich sowie einen in Strömungsrichtung hinter dem Warmeubertragungsbereich angeordneten Austrittsbereich umfasst, dadurch gekennzeichnet, dass der Eintritts- und/oder Austrittsbereich wenigstens ein Stützelement (18) umfasst.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Länge des Stützelementes als ein Vielfaches seiner Breite ausgebildet ist.
3. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Stützelement (18) als Fluidleitelement (18) ausgebildet ist.
4. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass zwei benachbarte Stützelemente
(18) mit einem Winkel (α) kleiner 20° zueinander angeordnet sind.
5. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Seitenwand des Stützelementes geradlinig und/oder kurvenförmig ausgebildet ist.
6. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Stützelement (18) als Verlängerung einer Trennwand (19) zwischen zwei Kanälen ausgebildet ist .
7. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass ein kurvenförmiger Übergang (21) vom Stützelement (18) zur Trennwand (19) vorgesehen ist.
8. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Lagen (1, 2, 3) als ebene oder gewölbte Platten (1, 2, 3) oder zylinderförmige, aufgrund unterschiedlichen Durchmessern in einander stapelbare Bauelemente (1, 2, 3) ausgebildet sind.
PCT/DE2001/002162 2000-07-21 2001-06-09 Vorrichtung zur wärmeübertragung WO2002008680A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002514326A JP2004504584A (ja) 2000-07-21 2001-06-09 熱伝達装置
DE50107511T DE50107511D1 (de) 2000-07-21 2001-06-09 Vorrichtung zur wärmeübertragung
KR1020027003652A KR20020032602A (ko) 2000-07-21 2001-06-09 열전달 장치
BR0106982-9A BR0106982A (pt) 2000-07-21 2001-06-09 Dispositivo para a transmissão de calor
EP01951364A EP1305561B1 (de) 2000-07-21 2001-06-09 Vorrichtung zur wärmeübertragung
US10/088,285 US7040387B2 (en) 2000-07-21 2001-06-09 Heat transfer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10035939A DE10035939A1 (de) 2000-07-21 2000-07-21 Vorrichtung zur Wärmeübertragung
DE10035939.6 2000-07-21

Publications (1)

Publication Number Publication Date
WO2002008680A1 true WO2002008680A1 (de) 2002-01-31

Family

ID=7649985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002162 WO2002008680A1 (de) 2000-07-21 2001-06-09 Vorrichtung zur wärmeübertragung

Country Status (8)

Country Link
US (1) US7040387B2 (de)
EP (1) EP1305561B1 (de)
JP (1) JP2004504584A (de)
KR (1) KR20020032602A (de)
BR (1) BR0106982A (de)
DE (2) DE10035939A1 (de)
ES (1) ES2248358T3 (de)
WO (1) WO2002008680A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510111A (ja) * 2003-11-04 2007-04-19 デグッサ・アクチェンゲゼルシャフト 電力供給ネットワーク用導管構成要素、その使用、極低温エネルギキャリヤを導管内で輸送するための方法、及びこれに適した装置
EP2068108A1 (de) * 2006-09-28 2009-06-10 Sanyo Electric Co., Ltd. Wärmetauscher und herstellungsverfahren dafür
EP3093602A1 (de) * 2015-05-11 2016-11-16 Alfa Laval Corporate AB Wärmetauscherplatte und plattenwärmetauscher
WO2017019141A1 (en) * 2015-07-24 2017-02-02 Exxonmobil Upstream Research Company Enhanced heat transfer in plate-fin heat exchangers

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003902200A0 (en) * 2003-05-06 2003-05-22 Meggitt (Uk) Ltd Heat exchanger core
WO2005012820A1 (de) * 2003-08-01 2005-02-10 Behr Gmbh & Co. Kg Wärmeübertrager sowie verfahren zu dessen herstellung
US7343965B2 (en) 2004-01-20 2008-03-18 Modine Manufacturing Company Brazed plate high pressure heat exchanger
SE526831C2 (sv) * 2004-03-12 2005-11-08 Alfa Laval Corp Ab Värmeväxlarplatta och plattpaket
SE533310C2 (sv) 2008-11-12 2010-08-24 Alfa Laval Corp Ab Värmeväxlarplatta och värmeväxlare innefattande värmeväxlarplattor
JP5106453B2 (ja) * 2009-03-18 2012-12-26 三菱電機株式会社 プレート式熱交換器及び冷凍空調装置
DE102009043828B4 (de) * 2009-08-21 2019-02-14 Ttz Thermo Technik Zeesen Gmbh & Co. Kg Plattenwärmeübertrager
US9752836B2 (en) * 2010-11-12 2017-09-05 Mitsubishi Electric Corporation Plate heat exchanger and heat pump apparatus
US8869398B2 (en) 2011-09-08 2014-10-28 Thermo-Pur Technologies, LLC System and method for manufacturing a heat exchanger
US9863710B2 (en) 2012-05-11 2018-01-09 Mitsubishi Electric Corporation Laminated total heat exchange element
CN103759474B (zh) * 2014-01-28 2018-01-02 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
EP3150952A1 (de) * 2015-10-02 2017-04-05 Alfa Laval Corporate AB Wärmetauschplatte und plattenwärmetauscher
US10914533B2 (en) * 2017-03-24 2021-02-09 Hanon Systems Intercooler for improved durability
RU177117U1 (ru) * 2017-06-26 2018-02-08 Общество с ограниченной ответственностью "Корпорация Акционерной Компании "Электросевкавмонтаж" Пластина теплообменника пластинчатого
EP3489604B1 (de) * 2017-11-24 2020-12-23 TitanX Holding AB Fahrzeugkondensator
US11486657B2 (en) * 2018-07-17 2022-11-01 Tranter, Inc. Heat exchanger heat transfer plate
EP3650795B1 (de) * 2018-11-07 2021-03-17 Alfa Laval Corporate AB Wärmeübertragungsplatte
KR102598408B1 (ko) * 2018-12-06 2023-11-07 한온시스템 주식회사 열교환기
US11808527B2 (en) * 2021-03-05 2023-11-07 Copeland Lp Plastic film heat exchanger for low pressure and corrosive fluids
JP7502700B2 (ja) 2022-07-13 2024-06-19 ダイキン工業株式会社 熱交換器、冷媒サイクル装置、給湯器
JP2024013036A (ja) * 2022-07-19 2024-01-31 ダイキン工業株式会社 熱交換器、及び冷媒サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2010517A1 (en) * 1968-06-06 1970-02-20 Delaney Gallay Ltd Heat exchanger
DE3152944C2 (de) * 1981-08-14 1987-05-07 Ostap Aleksandrov Korobchansky Platten-Wärmeübertrager
JPS62200191A (ja) * 1986-02-25 1987-09-03 Hisaka Works Ltd プレ−ト式熱交換器
EP0252275A2 (de) * 1986-07-03 1988-01-13 W. Schmidt GmbH & Co. KG Plattenwärmeaustauscher
WO1988009473A1 (en) * 1987-05-29 1988-12-01 Alfa-Laval Thermal Ab Permanently joined plate heat exchanger
JPH08110123A (ja) * 1994-10-13 1996-04-30 Nippondenso Co Ltd 冷媒蒸発器およびこれを用いた車両用空調装置
WO1996041995A1 (en) * 1995-06-13 1996-12-27 Tetra Laval Holdings & Finance S.A. Plate heat exchanger

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117624A (en) * 1959-06-22 1964-01-14 Separator Ab Plate heat exchanger
GB953894A (en) * 1961-02-24 1964-04-02 Apv Co Ltd A new or improved heat exchanger plate and heat exchangers including such plates
SE357055B (de) * 1971-10-11 1973-06-12 Alfa Laval Ab
SE411952B (sv) * 1978-07-10 1980-02-11 Alfa Laval Ab Vermevexlare innefattande ett flertal i ett stativ inspenda vermevexlingsplattor
SE418058B (sv) * 1978-11-08 1981-05-04 Reheat Ab Forfarande och anordning for pregling av vermevexlarplattor for plattvermevexlare
SE415928B (sv) * 1979-01-17 1980-11-10 Alfa Laval Ab Plattvermevexlare
JPS6218867Y2 (de) * 1981-03-20 1987-05-14
SE8106221L (sv) * 1981-10-21 1983-04-22 Reheat Ab Packningsspar hos plattelement for plattvermevexlare
DE3429491A1 (de) * 1984-08-10 1986-02-20 Gea Ahlborn Gmbh & Co Kg, 3203 Sarstedt Freistrom-plattenwaermeaustauscher
SE8504379D0 (sv) * 1985-09-23 1985-09-23 Alfa Laval Thermal Ab Plattvemevexlare
SE458806B (sv) * 1987-04-21 1989-05-08 Alfa Laval Thermal Ab Plattvaermevaexlare med olika stroemningsmotstaand foer medierna
US4966227A (en) * 1988-05-25 1990-10-30 Alfa-Laval Thermal Ab Plate evaporator
SE466871B (sv) * 1990-04-17 1992-04-13 Alfa Laval Thermal Ab Plattfoeraangare med korrugerade plattor daer moenstrets orientering varieras i stroemningsriktningen saa att stroemningsmotstaandet successivt minskar
SE466171B (sv) * 1990-05-08 1992-01-07 Alfa Laval Thermal Ab Plattfoeraangare daer aatminstone den ena plattan i en foeraangningspassage aer uppdelad i faelt anordnade bredvid varandra mellan plattans laangsidor, vilka faelt uppvisar sinsemellan olika korrugeringsmoenster saa att stroemningsmotstaandet successivt minskar fraan ena sidan till den andra
DE4037969A1 (de) * 1990-11-29 1992-06-04 Schmidt Bretten W Gmbh Plattenwaermeaustauscher
ATE127909T1 (de) * 1991-07-08 1995-09-15 Apv Baker As Wärmetauscher mit mehrschichtigen plattenelementen.
SE470339B (sv) * 1992-06-12 1994-01-24 Alfa Laval Thermal Plattvärmeväxlare för vätskor med olika flöden
JP3328329B2 (ja) * 1992-09-24 2002-09-24 株式会社日阪製作所 プレート式熱交換器用プレート
SE505225C2 (sv) * 1993-02-19 1997-07-21 Alfa Laval Thermal Ab Plattvärmeväxlare och platta härför
SE502779C2 (sv) * 1994-05-18 1996-01-08 Tetra Laval Holdings & Finance Svetsad plattvärmeväxlare och förfarande för svetsning av värmeöverföringsplattor till en plattvärmeväxlare
DE19506281A1 (de) * 1995-02-23 1996-08-29 Schmidt Bretten Gmbh Umfangsdichtung eines Plattenwärmeübertragers
SE504868C2 (sv) * 1995-10-23 1997-05-20 Swep International Ab Plattvärmeväxlare med ändplatta med pressat mönster
DE19540271C1 (de) * 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plattenwärmetauscher
JP3719453B2 (ja) * 1995-12-20 2005-11-24 株式会社デンソー 冷媒蒸発器
SE9700614D0 (sv) * 1997-02-21 1997-02-21 Alfa Laval Ab Plattvärmeväxlare för tre värmeväxlande fluider
DK174409B1 (da) * 1998-01-12 2003-02-17 Apv Heat Exchanger As Varmevekslerplade med forstærket kantudformning
JP3292128B2 (ja) * 1998-02-27 2002-06-17 ダイキン工業株式会社 プレート型熱交換器
JP3331950B2 (ja) * 1998-02-27 2002-10-07 ダイキン工業株式会社 プレート型熱交換器
SE514714C2 (sv) * 1999-08-27 2001-04-09 Alfa Laval Ab Lödd plattvärmeväxlare med dubbelväggiga plattor utan inre anliggning mittför lödförbindningarna
DE19948222C2 (de) * 1999-10-07 2002-11-07 Xcellsis Gmbh Plattenwärmetauscher
DE10021481A1 (de) * 2000-05-03 2001-11-08 Modine Mfg Co Plattenwärmetauscher
US6629561B2 (en) * 2001-06-08 2003-10-07 Visteon Global Technologies, Inc. Module for a heat exchanger having improved thermal characteristics
US6662561B1 (en) * 2002-07-30 2003-12-16 Robert Bosch Corporation Means to dampen the effect of pressure oscillations on a control valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2010517A1 (en) * 1968-06-06 1970-02-20 Delaney Gallay Ltd Heat exchanger
DE3152944C2 (de) * 1981-08-14 1987-05-07 Ostap Aleksandrov Korobchansky Platten-Wärmeübertrager
JPS62200191A (ja) * 1986-02-25 1987-09-03 Hisaka Works Ltd プレ−ト式熱交換器
EP0252275A2 (de) * 1986-07-03 1988-01-13 W. Schmidt GmbH & Co. KG Plattenwärmeaustauscher
WO1988009473A1 (en) * 1987-05-29 1988-12-01 Alfa-Laval Thermal Ab Permanently joined plate heat exchanger
JPH08110123A (ja) * 1994-10-13 1996-04-30 Nippondenso Co Ltd 冷媒蒸発器およびこれを用いた車両用空調装置
WO1996041995A1 (en) * 1995-06-13 1996-12-27 Tetra Laval Holdings & Finance S.A. Plate heat exchanger

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 055 (M - 669) 19 February 1988 (1988-02-19) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 08 30 August 1996 (1996-08-30) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510111A (ja) * 2003-11-04 2007-04-19 デグッサ・アクチェンゲゼルシャフト 電力供給ネットワーク用導管構成要素、その使用、極低温エネルギキャリヤを導管内で輸送するための方法、及びこれに適した装置
EP2068108A1 (de) * 2006-09-28 2009-06-10 Sanyo Electric Co., Ltd. Wärmetauscher und herstellungsverfahren dafür
EP2068108A4 (de) * 2006-09-28 2013-04-03 Sanyo Electric Co Wärmetauscher und herstellungsverfahren dafür
EP3093602A1 (de) * 2015-05-11 2016-11-16 Alfa Laval Corporate AB Wärmetauscherplatte und plattenwärmetauscher
WO2016180625A1 (en) * 2015-05-11 2016-11-17 Alfa Laval Corporate Ab A heat exchanger plate and a plate heat exchanger
TWI628404B (zh) * 2015-05-11 2018-07-01 阿爾法拉瓦公司 熱交換器板以及板式熱交換器
US10724801B2 (en) 2015-05-11 2020-07-28 Alfa Laval Corporate Ab Heat exchanger plate and a plate heat exchanger
WO2017019141A1 (en) * 2015-07-24 2017-02-02 Exxonmobil Upstream Research Company Enhanced heat transfer in plate-fin heat exchangers

Also Published As

Publication number Publication date
US20030094271A1 (en) 2003-05-22
ES2248358T3 (es) 2006-03-16
EP1305561B1 (de) 2005-09-21
BR0106982A (pt) 2002-05-14
EP1305561A1 (de) 2003-05-02
DE50107511D1 (de) 2005-10-27
KR20020032602A (ko) 2002-05-03
US7040387B2 (en) 2006-05-09
JP2004504584A (ja) 2004-02-12
DE10035939A1 (de) 2002-02-07

Similar Documents

Publication Publication Date Title
EP1305561B1 (de) Vorrichtung zur wärmeübertragung
EP1459026B1 (de) Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP3531055B1 (de) Plattenwärmetauscher und verfahren zu dessen herstellung
DE60310992T2 (de) Hochdruckwärmetauscher
EP2859296B1 (de) Wärmetauschersystem, verfahren zu dessen herstellung sowie fluidverteilungselement
EP2135025B1 (de) Wärmeübertrager zum verdampfen eines flüssigen teils eines mediums mit bypass für einen dampfförmigen teil des mediums
EP3648997A1 (de) Kälteanlage für ein fahrzeug mit einem einen wärmeübertrager aufweisenden kältemittelkreislauf sowie wärmeübertrager für eine solche kälteanlage
DE102005058153B4 (de) Wärmeübertrager mit Mehrkanalflachrohren
WO2012159958A1 (de) Lamellenwärmeübertrager
EP1892491A2 (de) Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
DE102009042613A1 (de) Fluidverteilungselement für einphasige oder mehrphasige Fluide, Verfahren zu dessen Herstellung und dessen Verwendung
EP2377596A1 (de) Kältetrockner, insbesondere Druckluftkältetrockner, sowie Wärmetauscher für einen Kältetrockner, insbesondere Druckluftkältetrockner
EP3096105A1 (de) Kraftfahrzeug-wärmeübertragersystem
EP1563239B1 (de) Wärmetauscher
DE10013437C1 (de) Folienpaket für einen aus Folien aufgebauten Verdampfer
EP1734324A2 (de) Verstellbarer innerer Wärmeübertrager
EP2994712B1 (de) Wärmeübertrager
EP3009780B1 (de) Wärmeübertrager
EP3239641A1 (de) Flachrohr für einen wärmeübertrager
WO2010000311A1 (de) Wärmetauscherblock, sowie ein verfahren zur herstellung eines wärmetauscherblocks
DE10110828A1 (de) Wärmeübertrager für eine CO2-Fahrzeugklimaanlage
WO2011154175A2 (de) Wärmetauscher, sowie lötverfahren zur herstellung eines wärmetauschers
DD235480A1 (de) Flachrohr-waermeuebertrager
DE102022202080A1 (de) Sammelkasten für einen Wärmeübertrager

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001951364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10088285

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027003652

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 514326

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027003652

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001951364

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001951364

Country of ref document: EP