WO2024014495A1 - 熱交換器、冷媒サイクル装置、給湯器 - Google Patents

熱交換器、冷媒サイクル装置、給湯器 Download PDF

Info

Publication number
WO2024014495A1
WO2024014495A1 PCT/JP2023/025800 JP2023025800W WO2024014495A1 WO 2024014495 A1 WO2024014495 A1 WO 2024014495A1 JP 2023025800 W JP2023025800 W JP 2023025800W WO 2024014495 A1 WO2024014495 A1 WO 2024014495A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heat exchanger
heat transfer
heat
flow
Prior art date
Application number
PCT/JP2023/025800
Other languages
English (en)
French (fr)
Inventor
知恵 江村
智己 廣川
航 寺井
大介 馬場
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024014495A1 publication Critical patent/WO2024014495A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • a plurality of heat transfer plates are stacked at predetermined intervals to alternately form passages through which the first fluid flows and passages through which the second fluid flows in the stacking direction to perform heat exchange between the two fluids.
  • Plate heat exchangers are known.
  • Patent Document 1 Japanese Patent Application Publication No. 2012-512382 mainly includes a heat transfer area in which two circulation ports that allow one fluid to flow in or out, and a plurality of grooves that heat exchange the fluid that flows in, A heat transfer plate (heat exchange plate) having a connection part (distribution area) formed with a groove connecting a circulation port and a heat transfer area, and a pair of through holes through which the other fluid passes, and heat exchange using the same.
  • the device is disclosed.
  • the present disclosure provides a heat exchanger that can ensure heat exchange performance even when there is a difference in pressure between two fluids at the time of inflow, and a refrigerant cycle device and water heater using the same.
  • the heat exchanger of the first aspect includes a first heat transfer plate and a second heat transfer plate that are stacked on each other.
  • the first heat transfer plate has a first communication port, a first through hole, a first heat transfer region, and a first connection portion.
  • the first flow port introduces or leads out the first fluid.
  • a second fluid having a lower boiling point than the first fluid passes through the first through hole in the thickness direction.
  • the first heat transfer region is a region through which the first fluid flowing from the first flow port exchanges heat with the second fluid.
  • the first connection portion has one end connected to the first flow port and the other end connected to the first heat transfer region.
  • the second heat transfer plate has a second flow port, a second through hole, a second heat transfer region, and a second connection portion.
  • the second flow port communicates with the first through hole and introduces or leads out the second fluid.
  • the first fluid passes through the second through hole in the thickness direction.
  • the second heat transfer region is a region through which the second fluid flowing from the second flow port exchanges heat with the first fluid.
  • the second connection portion has one end connected to the second flow port and the other end connected to the second heat transfer region.
  • the second flow port is formed at a position opposite to the second heat transfer region with the second through hole in between.
  • the second connection portion is formed so as to go around the outside of the second through hole, and is provided with a second protrusion.
  • the second connection portion is formed so as to go around the outside of the second through hole.
  • the length of the flow path of the first connection portion through which the first fluid passes is formed to be shorter than the flow path length of the second connection portion through which the second fluid having a lower boiling point than the first fluid passes. Therefore, the pressure loss that occurs in the first fluid when it passes through the first connection can be made smaller than the pressure loss that occurs in the second fluid when it passes through the second connection. This suppresses the pressure of the first fluid from decreasing at a large rate. Therefore, according to the heat exchanger, heat exchange performance can be ensured even if there is a difference in pressure between the two fluids when they flow in.
  • the heat exchanger of the second aspect is the heat exchanger of the first aspect, and the second protrusion is linear in plan view.
  • the heat exchanger of the third aspect is the heat exchanger of the first aspect or the second aspect, and the second connection part is linear in plan view.
  • the heat exchanger according to the fourth aspect is the heat exchanger according to the first aspect, and the second protrusion has a circular shape in plan view.
  • the heat exchanger according to the fifth aspect is the heat exchanger according to the first aspect, in which the second protrusion has a triangular shape in plan view.
  • the heat exchanger according to the sixth aspect is the heat exchanger according to the first aspect, in which the second protrusion has a rectangular shape in plan view.
  • the heat exchanger according to the seventh aspect is the heat exchanger according to the first aspect, in which the second protrusion has a teardrop shape in plan view.
  • the heat exchanger according to the eighth aspect is the heat exchanger according to the first aspect, in which the first connection part is formed such that the flow passage cross-sectional area increases from the first flow port toward the first heat transfer region. ing.
  • the pressure loss that occurs in the first fluid passing through the first connection is further reduced, so that the pressure of the first fluid is further suppressed from decreasing at a large rate, and the heat exchanger can be heated more effectively. Replacement performance can be ensured.
  • the heat exchanger according to the ninth aspect is the heat exchanger according to the eighth aspect, in which the first connection portion is provided with a first protrusion, and the first protrusion is linear in plan view.
  • the heat exchanger according to the tenth aspect is the heat exchanger according to the eighth aspect, in which the first connection portion is provided with a first protrusion, and the first protrusion has a circular shape in a plan view.
  • the heat exchanger according to the eleventh aspect is the heat exchanger according to the eighth aspect, in which the first connection portion is provided with a first protrusion, and the first protrusion has a triangular shape in plan view.
  • the heat exchanger according to the twelfth aspect is the heat exchanger according to the eighth aspect, in which the first connection portion is provided with a first protrusion, and the first protrusion has a rectangular shape in plan view.
  • the heat exchanger according to the thirteenth aspect is the heat exchanger according to the eighth aspect, in which the first connection part is provided with a first protrusion, and the first protrusion has a teardrop shape in plan view. .
  • the heat exchanger according to the fourteenth aspect is the heat exchanger according to any one of the first to thirteenth aspects, and includes a partition wall.
  • the partition wall is a plate-like member laminated between the first heat transfer plate and the second heat transfer plate.
  • the first connecting portion has a contact length La1 between the first separating portion that separates the adjacent first connecting portions from each other and the partition wall. If the interval is P1, 0.005 ⁇ La1/P1 ⁇ 0.15 It is formed to satisfy the following relationship.
  • the force that the partition wall receives from the first fluid passing through the first connecting portion is suppressed from exceeding the pressure resistance strength.
  • the heat exchanger according to the fifteenth aspect is the heat exchanger according to the fourteenth aspect, in which the first connection part is 0.005 ⁇ La1/P1 ⁇ 0.05 It is formed to satisfy the following relationship.
  • this heat exchanger by forming the first connection part so as to satisfy the above relationship, it is more effective that the force received by the partition wall from the first fluid passing through the first connection part exceeds the pressure resistance. is suppressed.
  • the heat exchanger according to the sixteenth aspect is the heat exchanger according to any one of the first to fifteenth aspects, and includes a partition wall.
  • the second connecting portion In the cross section perpendicular to the flow direction of the second fluid, the second connecting portion has a contact length between the second separation portion or the protrusion that separates the adjacent second connecting portions from each other and the partition wall, and La2, If the interval between the two separating parts or the second protruding part is P2, 0.005 ⁇ L2/P2 ⁇ 0.15 It is formed to satisfy the following relationship.
  • the heat exchanger according to the seventeenth aspect is the heat exchanger according to the sixteenth aspect, in which the second connection part is 0.02 ⁇ L2/P2 ⁇ 0.15 It is formed to satisfy the following relationship.
  • this heat exchanger by forming the second connection part to satisfy the above relationship, it is more effective that the force received by the partition wall from the second fluid passing through the second connection part exceeds the pressure resistance. is suppressed.
  • the refrigerant cycle device includes any of the heat exchangers according to the first to seventeenth aspects, a first fluid circuit in which the first fluid circulates, and a second fluid circuit in which the second fluid circulates.
  • the water heater according to the nineteenth aspect includes any of the heat exchangers according to the first to seventeenth aspects, a first fluid circuit in which the first fluid circulates, and a second fluid circuit in which the second fluid circulates.
  • FIG. 1 is a schematic configuration diagram showing a refrigerant cycle device 1 including a first heat exchanger 100.
  • FIG. FIG. 2 is an exploded perspective view of the first heat exchanger 100.
  • FIG. 3 is a plan view of the first heat transfer plate 110.
  • FIG. FIG. 3 is an enlarged view of the upper end portion of the first heat transfer plate 110.
  • FIG. 5 is a sectional view taken along line A-A' in FIG. 4.
  • FIG. 3 is a plan view of the second heat transfer plate 120.
  • FIG. FIG. 3 is an enlarged view of the upper end portion of the second heat transfer plate 120.
  • FIG. 8 is a sectional view taken along line B-B' in FIG. 7.
  • FIG. 3 is an enlarged view of the upper end portion and periphery of the second heat transfer plate 120 of the first heat exchanger 100 according to modification A.
  • FIG. It is an enlarged view of the upper end part periphery of the 2nd heat transfer plate 120 of the 1st heat exchanger 100 based on another example of modification A. It is an enlarged view of the upper end part periphery of the 2nd heat transfer plate 120 of the 1st heat exchanger 100 based on another example of modification A. It is an enlarged view of the upper end part periphery of the 2nd heat transfer plate 120 of the 1st heat exchanger 100 based on another example of modification A.
  • FIG. 7 is an enlarged view of the upper end portion and the vicinity of the first heat transfer plate 110 of the first heat exchanger 100 according to modification B.
  • FIG. FIG. 3 is an enlarged view of the upper end portion and periphery of the first heat transfer plate 110 of the first heat exchanger 100 according to modification example F.
  • FIG. FIG. 3 is an enlarged view of the upper end portion and periphery of the first heat transfer plate 110 of the first heat exchanger 100 according to modification example G. It is an enlarged view of the upper edge part periphery of the 1st heat transfer plate 110 of the 1st heat exchanger 100 based on another example of the modification G.
  • 1 is a schematic configuration diagram showing a water heater 2 including a first heat exchanger 100.
  • the refrigerant cycle device 1 is a dual refrigerant cycle device that performs heating and cooling operation of an air-conditioned space (not shown) such as an indoor room of a building by executing a vapor compression cycle.
  • the refrigerant cycle device 1 heats or cools water, and uses this water to perform heating and cooling operations in a target space (not shown).
  • the refrigerant cycle device 1 includes a first heat exchanger 100, a second heat exchanger 300, a first fluid circuit 10, a second fluid circuit 20, a water circuit 30, and a control section 40.
  • a first fluid circulates in the first fluid circuit 10
  • a second fluid having a lower boiling point than the first fluid circulates in the second fluid circuit 20
  • water circulates in the water circuit 30 Although not limited to this, in this embodiment, the water circuit 30 is installed indoors, and the second fluid circuit 20 is installed outdoors.
  • the first fluid circuit 10 may be installed either indoors or outdoors, or a portion thereof may be installed either indoors or outdoors.
  • First heat exchanger 100 The first heat exchanger 100 exchanges heat between the first fluid circulating in the first fluid circuit 10 and the second fluid circulating in the second fluid circuit 20.
  • the first heat exchanger 100 has first flow pipes 141a, 141b, second flow pipes 142a, 142b, a first flow path 220, and a second flow path 230.
  • the first flow path 220 is a flow path through which the first fluid flows.
  • the first flow path 220 is provided between the first flow pipe 1410a and the first flow pipe 141b.
  • the second flow path 230 is a flow path through which the second fluid flows.
  • the second flow path 230 is formed between the second flow pipe 142a and the second flow pipe 142b.
  • the first fluid flowing through the first flow path 220 exchanges heat with the second fluid flowing through the second flow path 230 .
  • the detailed structure of the first heat exchanger 100 will be described later.
  • the second heat exchanger 300 exchanges heat between the first fluid circulating in the first fluid circuit 10 and the water circulating in the water circuit 30.
  • the second heat exchanger 300 has first flow pipes 341a, 341b, second flow pipes 342a, 342b, a first flow path 420, and a second flow path 430.
  • the first flow path 420 is a flow path through which the first fluid flows.
  • the first flow path 420 is provided between the first flow pipe 341a and the first flow pipe 341b.
  • the second channel 430 is a channel through which water flows.
  • the second flow path 430 is formed between the second flow pipe 342a and the second flow pipe 342b. The first fluid flowing through the first flow path 420 exchanges heat with water passing through the second flow path 430 .
  • the first fluid circuit 10 In the first fluid circuit 10, the first fluid is heated or cooled.
  • the first fluid circuit 10 includes a compressor 11, a four-way switching valve 12, an expansion valve 13, a first flow path 220 of the first heat exchanger 100, and a first flow path 420 of the second heat exchanger 300. It is composed of The compressor 11, the four-way switching valve 12, the expansion valve 13, the first flow path 220 of the first heat exchanger 100, and the first flow path 420 of the second heat exchanger 300 are connected by piping, and the inside is 1 fluid circulates.
  • the first fluid is R1234ze.
  • the compressor 11 sucks the low-pressure first fluid in the first fluid circuit 10 from the suction part 11a, compresses it, and discharges it as a high-pressure first fluid from the discharge part 11b.
  • the four-way switching valve 12 has a first port 12a, a second port 12b, a third port 12c, and a fourth port 12d. Based on instructions from the control unit 40, the four-way switching valve 12 operates between a first state and a second state in which the communication states of the first port 12a, second port 12b, third port 12c, and fourth port 12d are different. to switch. In the first state, the first port 12a and the second port 12b communicate with each other, and the third port 12c and the fourth port 12d communicate with each other. In the second state, the first port 12a and the fourth port 12d communicate with each other, and the second port 12b and the third port 12c communicate with each other.
  • the first port 12a is connected to the discharge part 11b of the compressor 11.
  • the second port 12b is connected to the first flow pipe 341b of the second heat exchanger 300.
  • the third port 12c is connected to the suction portion 11a of the compressor 11.
  • the fourth port 12d is connected to the first flow pipe 141a of the first heat exchanger 100.
  • the expansion valve 13 functions as a pressure reducing device that adjusts the flow rate of the first fluid circulating in the first fluid circuit 10 and reduces the pressure of the first fluid.
  • One end of the expansion valve 13 is connected to the first flow pipe 141b of the first heat exchanger 100.
  • the other end of the expansion valve 13 is connected to the first flow pipe 341a of the second heat exchanger 300.
  • the second fluid circuit 20 In the second fluid circuit 20, the second fluid is heated or cooled.
  • the second fluid circuit 20 includes a compressor 21 , a four-way switching valve 22 , an expansion valve 23 , a heat source heat exchanger 24 , and a second flow path 230 of the first heat exchanger 100 .
  • the compressor 21, the four-way switching valve 22, the expansion valve 23, the heat source heat exchanger 24, and the second flow path 230 of the first heat exchanger 100 are connected by piping, and the second fluid circulates inside.
  • the second fluid is carbon dioxide.
  • the compressor 21 sucks the low-pressure second fluid in the second fluid circuit 20 from the suction part 21a, compresses it, and discharges it as a high-pressure second fluid from the discharge part 21b.
  • the four-way switching valve 22 has a first port 22a, a second port 22b, a third port 22c, and a fourth port 22d.
  • the four-way switching valve 22 operates between a first state and a second state in which the communication states of the first port 22a, second port 22b, third port 22c, and fourth port 22d are different based on instructions from the control unit 40. to switch.
  • the first state the first port 22a and the second port 22b communicate with each other, and the third port 22c and the fourth port 22d communicate with each other.
  • the first port 22a and the fourth port 22d communicate with each other, and the second port 22b and the third port 22c communicate with each other.
  • the first port 22a is connected to the discharge part 21b of the compressor 21.
  • the second port 22b is connected to the second flow pipe 142b of the first heat exchanger 100.
  • the third port 22c is connected to the suction section 21a of the compressor 21.
  • the fourth port 22d is connected to one end of the heat source heat exchanger 24.
  • the expansion valve 23 functions as a pressure reducing device that adjusts the flow rate of the second fluid circulating in the second fluid circuit 20 and reduces the pressure of the second fluid.
  • One end of the expansion valve 23 is connected to the second flow pipe 142a of the first heat exchanger 100.
  • the other end of the expansion valve 23 is connected to the other end of the heat source heat exchanger 24 .
  • the heat source heat exchanger 24 exchanges heat between the second fluid circulating in the second fluid circuit 20 and a heat source (for example, outdoor air).
  • a heat source for example, outdoor air
  • the water circuit 30 In the water circuit 30, water that has undergone heat exchange with the first fluid circulates.
  • the water circuit 30 includes a water circulation pump 31, a water storage tank 32, and a second flow path 430 of the second heat exchanger 300.
  • the water circulation pump 31, the water storage tank 32, and the second flow path 430 of the second heat exchanger 300 are connected by piping, and water circulates inside.
  • the water circulation pump 31 circulates water inside the water circuit 30.
  • the water circulation pump 31 sucks water inside the water circuit 30 from the suction part 31a and discharges it from the discharge part 31b.
  • the suction part 31a is connected to the second flow pipe 342b of the second heat exchanger 300.
  • the water storage tank 32 heats or cools indoor air (in other words, heats or cools it) by storing water heated or cooled by the second heat exchanger 300.
  • the water storage tank 32 has a water intake part 32a that takes in water circulating through the water circuit 30, and a drainage part 32b that discharges the stored water.
  • the water intake section 32a is connected to the discharge section 31b of the water circulation pump 31.
  • the drainage section 32b is connected to the second flow pipe 342b of the second heat exchanger 300.
  • Control unit 40 controls the compressors 11 and 21, the four-way switching valves 12 and 22, the expansion valves 13 and 23, and the water circulation pump 31. Although not shown, the control unit 40 is electrically connected to the compressors 11 and 21, the four-way switching valves 12 and 22, the expansion valves 13 and 23, and the water circulation pump 31 so as to be able to send and receive control signals. There is.
  • the heating operation is an operation in which the refrigerant cycle device 1 heats the water in the water circuit 30.
  • the control unit 40 puts the four-way switching valves 12 and 22 in the first state, drives the compressors 11 and 21 and the water circulation pump 31, and controls the opening degrees of the expansion valves 13 and 23.
  • Second fluid circuit 20 The compressor 21 sucks in the second fluid in the low pressure gas phase in the second fluid circuit 20 from the suction part 21a, and discharges it as the second fluid in the high pressure gas phase from the discharge part 21b.
  • the second fluid in the high-pressure gas phase passes through the four-way switching valve 22 through the first port 22a and the second port 22b in this order, and reaches the second flow path 230 from the second flow pipe 142a of the first heat exchanger 100. .
  • the second fluid in the high pressure gas phase is condensed to become the second fluid in the high pressure liquid phase. At this time, the second fluid releases heat to the first fluid passing through the first flow path 220.
  • the second fluid in the high pressure liquid phase reaches the expansion valve 23 .
  • the low-pressure gas-liquid two-phase second fluid is evaporated in the heat source heat exchanger 24 to become a low-pressure gas-phase second fluid.
  • the second fluid absorbs heat from the heat source.
  • the second fluid in the low-pressure gas phase passes through the four-way switching valve 22 through the fourth port 22d and the third port 22c in this order, and is then sucked into the compressor 21 from the suction portion 21a.
  • First fluid circuit 10 The compressor 11 sucks in the first fluid in the low pressure gas phase in the first fluid circuit 10 from the suction part 11a, and discharges it as the first fluid in the high pressure gas phase from the discharge part 11b.
  • the first fluid in the high-pressure gas phase passes through the four-way switching valve 12 through the first port 12a and the second port 12b, and reaches the first flow path 420 from the first flow pipe 341a of the second heat exchanger 300. .
  • the first fluid in the high pressure gas phase is condensed to become the first fluid in the high pressure liquid phase. At this time, the first fluid releases heat to the water passing through the second flow path 430.
  • the first fluid in the high pressure liquid phase reaches the expansion valve 13 .
  • the expansion valve 13 which is set to an appropriate opening degree, reduces the pressure of the high-pressure liquid-phase first fluid and converts it into a low-pressure gas-liquid two-phase first fluid.
  • the low-pressure gas-liquid two-phase first fluid passes through the first flow pipe 141a of the first heat exchanger 100, and then evaporates in the first channel 220 to become a low-pressure gas-phase first fluid.
  • the first fluid absorbs heat from the second fluid passing through the second flow path 230.
  • the first fluid in the low-pressure gas phase passes through the four-way switching valve 12 through the fourth port 12d and the third port 12c in this order, and is then sucked into the compressor 11 from the suction portion 11a.
  • the water circulation pump 31 sucks water circulating through the water circuit 30 through a suction section 31a and discharges it through a discharge section 31b.
  • the discharged water passes through the water intake section 32a and is stored in the water storage tank 32.
  • the water stored in the water storage tank 32 emits heat to the indoor air. In other words, the water stored in the water storage tank 32 heats the indoor air.
  • the water stored in the water storage tank 32 passes through the drainage section 32b, and then passes through the second flow pipe 342a of the second heat exchanger 300 to reach the second flow path 430.
  • the water that reaches the second flow path 430 of the second heat exchanger 300 absorbs heat from the first fluid passing through the first flow path 420.
  • the water that has absorbed heat is sucked into the water circulation pump 31 from the suction section 31a.
  • the cooling operation is an operation in which the refrigerant cycle device 1 cools the water in the water circuit 30.
  • the control unit 40 sets the four-way switching valves 12 and 22 to the second state, drives the compressors 11 and 21 and the water circulation pump 31, and controls the opening degrees of the expansion valves 13 and 23.
  • Second fluid circuit 20 The compressor 21 sucks in the second fluid in the low pressure gas phase in the second fluid circuit 20 from the suction part 21a, and discharges it as the second fluid in the high pressure gas phase from the discharge part 21b.
  • the second fluid in the high-pressure gas phase passes through the four-way switching valve 22 through the first port 22a and the fourth port 22d in this order, and reaches the heat source heat exchanger 24.
  • the heat source heat exchanger 24 the high-pressure gas-phase second fluid is condensed to become a high-pressure liquid-phase second fluid. At this time, the second fluid emits heat to the heat source.
  • the second fluid in the high pressure liquid phase reaches the expansion valve 23 .
  • the expansion valve 23 which has been set to an appropriate opening degree, reduces the pressure of the high-pressure liquid phase second fluid and converts it into a low-pressure gas-liquid two-phase second fluid.
  • the low-pressure gas-liquid two-phase second fluid passes through the second flow pipe 142b of the first heat exchanger 100, and then evaporates in the second flow path 230 to become a low-pressure gas-phase second fluid.
  • the second fluid absorbs heat from the first fluid passing through the second flow path 230.
  • the second fluid in the low-pressure gas phase passes through the four-way switching valve 22 through the second port 22b and the third port 22c in this order, and is then sucked into the compressor 21 from the suction portion 21a.
  • First fluid circuit 10 The compressor 11 sucks in the first fluid in the low pressure gas phase in the first fluid circuit 10 from the suction part 11a, and discharges it as the first fluid in the high pressure gas phase from the discharge part 11b.
  • the first fluid in the high-pressure gas phase passes through the four-way switching valve 12 through the first port 12a and the fourth port 12d, and reaches the first flow path 220 from the first flow pipe 141b of the first heat exchanger 100. .
  • the first fluid in the high pressure gas phase is condensed to become the first fluid in the high pressure liquid phase. At this time, the first fluid releases heat to the second fluid passing through the second flow path 230.
  • the first fluid in the high pressure liquid phase reaches the expansion valve 13 .
  • the expansion valve 13 which has been set to an appropriate opening degree, reduces the pressure of the high-pressure liquid phase first fluid and converts it into a low-pressure gas-liquid two-phase first fluid.
  • the low-pressure gas-liquid two-phase first fluid passes through the first flow pipe 341b of the second heat exchanger 300, and then evaporates in the first flow path 420 to become a low-pressure gas-phase first fluid.
  • the first fluid absorbs heat from the second fluid passing through the second flow path 430.
  • the first fluid in the low-pressure gas phase passes through the four-way switching valve 12 through the second port 12b and the third port 12c in this order, and is then sucked into the compressor 11 from the suction portion 11a.
  • the water circulation pump 31 sucks water circulating through the water circuit 30 through a suction section 31a and discharges it through a discharge section 31b.
  • the discharged water passes through the water intake section 32a and is stored in the water storage tank 32.
  • the water stored in the water storage tank 32 absorbs heat from the indoor air. In other words, the water stored in the water storage tank 32 cools the indoor air.
  • the water stored in the water storage tank 32 passes through the drainage section 32b and then passes through the second flow pipe 342a of the second heat exchanger 300 to reach the second flow path 430.
  • the water that has reached the second flow path 430 of the second heat exchanger 300 releases heat to the first fluid passing through the first flow path 420 .
  • the water that has released heat is sucked into the water circulation pump 31 from the suction section 31a.
  • the first heat exchanger 100 includes a plurality of first heat transfer plates 110, a plurality of second heat transfer plates 120, a plurality of partition walls 130, and a first frame. 140 and a second frame 150.
  • the first heat exchanger 100 is provided with a first flow path 220 and a second flow path 230 inside.
  • the first heat transfer plate 110, the second heat transfer plate 120, and the partition wall 130 are metal plate members having the same rectangular outer shape.
  • the outer shape of the first heat transfer plate 110, the second heat transfer plate 120, the partition wall 130, the first frame 140, and the second frame 150 is a long strip in the first direction. is formed.
  • the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120 are alternately stacked between the first frame 140 and the second frame 150 with the partition wall 130 in between.
  • the number of each of the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120 is not particularly limited, and is appropriately set according to the required performance.
  • the first frame 140, the first heat transfer plate 110, the partition wall 130, the second heat transfer plate 120, and the second frame 150 are integrally joined, for example, by brazing, but not limited thereto.
  • the first direction may be referred to as the longitudinal direction DL for convenience.
  • the width direction of the first heat transfer plate 110, the partition wall 130, and the second heat transfer plate 120 may be referred to as the width direction DW.
  • the thickness direction (in other words, the stacking direction) of the first heat transfer plate 110, the partition wall 130, and the second heat transfer plate 120 may be referred to as the thickness direction DT (both of which are shown in some of the figures). (see arrow).
  • the up and down directions referred to in the following description correspond to "up” and "down” shown in some of the figures.
  • First heat transfer plate 110 forms a first flow path 220 together with the partition wall 130 stacked adjacent thereto.
  • the first heat transfer plate 110 has first communication ports 111a and 111b, first through holes 112a and 112b, a first heat transfer region 113, and a plurality of first connection portions 115a and 115b.
  • the first flow ports 111a and 111b are holes that introduce or lead out the first fluid into the first flow path 220.
  • the first flow ports 111a and 111b are formed to penetrate the first heat transfer plate 110 along the thickness direction DT.
  • the first flow ports 111a and 111b are formed in a circular shape when the first heat transfer plate 110 is viewed from above.
  • the first flow ports 111a, 111b are formed at positions a predetermined distance away from both ends of the first heat transfer region 113 in the longitudinal direction DL along the longitudinal direction DL, and their centers are located at the center in the width direction DW. .
  • the first communication port 111a is formed above the first heat transfer region 113, and the first communication port 111b is formed below the first heat transfer region 113.
  • the first through holes 112a and 112b are holes through which the second fluid passes along the thickness direction DT.
  • the first through holes 112a and 112b are formed to penetrate the first heat transfer plate 110 along the thickness direction DT.
  • the first through holes 112a and 112b are formed in a circular shape when the first heat transfer plate 110 is viewed from above.
  • the first through holes 112a, 112b are located at a predetermined distance along the longitudinal direction DL from the first communication ports 111a, 111b toward the end of the first heat transfer plate 110 in the longitudinal direction DL, and are centered in the width direction. It is formed to be located at the center in DW.
  • the first through holes 112a and 112b are formed at positions opposite to the first heat transfer region 113 with the first communication ports 111a and 111b in between in the longitudinal direction DL.
  • the first through hole 112a is formed above the first communication port 111a, and the first through hole 112b is formed below the first communication port 111b.
  • the first heat transfer region 113 is a region through which the first fluid flowing in from the first flow ports 111a and 111b exchanges heat with the second fluid.
  • the first heat transfer area 113 is a rectangular area with approximately the same width as the first heat transfer plate 110.
  • the first heat transfer region 113 is formed from the center in the longitudinal direction DL of the first heat transfer plate 110 toward both ends to the ends of the first connection portions 115a and 115b on the first heat transfer region 113 side.
  • first heat transfer channels 114 are formed, which are groove-shaped channels through which the first fluid flowing in from the first flow ports 111a and 111b passes.
  • the first heat transfer channel 114 is a groove formed along the longitudinal direction DL.
  • the plurality of first heat transfer channels 114 are formed at predetermined intervals along the width direction DW of the first heat transfer plate 110.
  • the first connecting portion 115a is a groove-shaped flow path that has one end connected to the first flow port 111a and the other end connected to the upper end of the first heat transfer region 113 in the longitudinal direction DL.
  • the first connecting portion 115b is a groove-shaped flow path that has one end connected to the first flow port 111b and the other end connected to the lower end of the first heat transfer region 113 in the longitudinal direction DL.
  • Adjacent first connecting portions 115a are divided into first separating portions 116a.
  • Adjacent first connecting portions 115b are separated by a first separating portion 116b.
  • the first flow path 220 is configured by the first heat transfer region 113 (first heat transfer flow path 114) and first connection portions 115a and 115b connected to both ends of the first heat transfer region 113. Therefore, the first heat exchanger 100 has the same number of first flow paths 220 as the number of first heat transfer plates 110.
  • first connecting portions 115a and 115b are formed in a straight line, as shown in FIG.
  • the first connecting portions 115a, 115b are formed so that the cross-sectional area of the flow path increases from the first flow ports 111a, 111b toward the first heat transfer region 113.
  • 18 first connection parts 115a, 115b are connected to one first flow port 111a, 111b.
  • the first connecting portions 115a, 115b have first separating portions 116a, 116b that separate the adjacent first connecting portions 115a, 115b from each other in a cross section perpendicular to the flow direction of the first fluid, preferably according to the following (Equation 1). It may be formed to satisfy the relationship of (Formula 2). 0.005 ⁇ La1/P1 ⁇ 0.15 (Formula 1) 0.005 ⁇ La1/P1 ⁇ 0.05 (Formula 2)
  • La1 is the length at which the first separating portions 116a, 116b and the partition wall 130 come into contact.
  • P1 is the interval between adjacent first separation parts 116a and 116b.
  • the first heat transfer region 113 (first heat transfer channel 114) and first connection portions 115a and 115b are formed on one surface of the first heat transfer plate 110.
  • the first flow ports 111a, 111b, the first through holes 112a, 112b, the first heat transfer region 113, and the first connection portions 115a, 115b are formed by, for example, press processing, but are not limited thereto. Ru.
  • the second heat transfer plate 120 forms a second flow path 230 together with the partition wall 130 stacked adjacent thereto.
  • the second heat transfer plate 120 includes second communication ports 121a, 121b, second through holes 122a, 122b, a second heat transfer region 123, a plurality of second connection portions 125a, 125b, and a second protrusion 127a. , 127b.
  • the second flow ports 121a and 121b are holes that introduce or lead out the second fluid into the second flow path 111.
  • the second flow ports 121a and 121b are formed to penetrate the second heat transfer plate 120 along the thickness direction DT.
  • the second flow ports 121a and 121b are formed in a circular shape when the second heat transfer plate 120 is viewed from above.
  • the second communication ports 121a, 121b are located at positions a predetermined distance apart along the longitudinal direction DL from the second through holes 122a, 122b toward the ends of the second heat transfer plate 120 in the longitudinal direction DL, and are centered in the width direction. It is formed to be located at the center in DW.
  • the second flow ports 121a, 121b are formed at positions opposite to the second heat transfer region 123 with the second through holes 122a, 122b in between.
  • the second flow port 121a is formed below the second heat transfer region 123, and the second flow port 121b is formed above the second heat transfer region 123.
  • the second flow port 121a and the first through hole 112a have the same shape, and are formed at positions where they overlap in a plan view when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the second flow port 121b and the first through hole 112b have the same shape, and are formed at positions where they overlap in a plan view when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked. .
  • the second through holes 122a and 122b are holes through which the second fluid passes along the thickness direction.
  • the second through holes 122a and 122b are formed to penetrate the second heat transfer plate 120 along the thickness direction.
  • the second through holes 122a and 122b are formed in a circular shape when the second heat transfer plate 120 is viewed from above.
  • the second through-holes 122a, 122b are formed at positions a predetermined distance apart along the longitudinal direction DL from both ends of the second heat transfer region 123 in the longitudinal direction DL, so that their centers are located at the center in the width direction DW. .
  • the second through hole 122a is formed below the second communication port 121a, and the second through hole 122b is formed above the second communication port 121b.
  • the second through hole 122a and the first communication port 111a have the same shape, and are formed at positions where they overlap in a plan view when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the second through hole 122b and the first communication port 111b have the same shape, and are formed at positions where they overlap in a plan view when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked. .
  • the second heat transfer region 123 is a region through which the second fluid flowing from the second flow ports 121a and 121b exchanges heat with the first fluid.
  • the second heat transfer area 123 is a rectangular area with approximately the same width as the second heat transfer plate 120.
  • the second heat transfer region 123 is formed from the center of the second heat transfer plate 120 in the longitudinal direction DL toward both ends to the ends of the second connection portions 125a, 125b on the second heat transfer region 123 side.
  • a plurality of second heat transfer channels 124 are formed, which are groove-shaped channels through which the second fluid flowing in from the second flow ports 121a and 121b passes.
  • the second heat transfer channel 124 is a groove formed along the longitudinal direction DL.
  • the plurality of second heat transfer channels 124 are formed at predetermined intervals along the width direction DW of the second heat transfer plate 120.
  • the second heat transfer region 123 and the first heat transfer region 113 have the same shape, and are formed at overlapping positions in a plan view when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked. ing.
  • the plurality of second heat transfer channels 124 and the plurality of first heat transfer channels 114 have the same shape, and overlap in plan view when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked. formed in position.
  • the second connecting portion 125a is a groove-shaped flow path that has one end connected to the second flow port 121a and the other end connected to the lower end of the second heat transfer region 123 in the longitudinal direction DL.
  • the second connection portion 125b is a groove-shaped flow path that has one end connected to the second flow port 121b and the other end connected to the upper end of the second heat transfer region 123 in the longitudinal direction DL.
  • the second connecting portions 125a, 125b are formed so as to go around the outside of the second through holes 122a, 122b from the second communication ports 121a, 121b toward the second heat transfer region 123.
  • Adjacent second connection parts 125a are separated by a second separation part 126a.
  • Adjacent second connecting portions 125b are separated by a second separating portion 126b.
  • the second flow path 230 is configured by the second heat transfer region 123 (second heat transfer flow path 124) and second connection portions 125a and 125b connected to both ends of the second heat transfer region 123. Therefore, the first heat exchanger 100 has the same number of second flow paths 230 as the number of second heat transfer plates 120.
  • the second connecting portions 125a and 125b are formed in a curved shape, as shown in FIG.
  • the second connecting portions 125a, 125b are formed so that the cross-sectional area of the flow path increases from the second flow ports 121a, 121b toward the second heat transfer region 123.
  • twelve second connecting portions 125a, 125b are connected to one first flow port 111a, 111b. More specifically, as shown in FIGS. 6 and 7, each of the second connection parts 125a and 125b connected to one first flow port 111a and 111b is divided into two parts in the width direction DW, six each. It is formed so as to go around the outside of the two through holes 122a and 122b.
  • the second protrusions 127a and 127b are provided on the second connection parts 125a and 125b.
  • the second projections 127a, 127b partition the second connection parts 125a, 125b, and limit the force (pressure) that the partition 130 receives from the second fluid.
  • the second protrusion 127a is formed in a linear shape that protrudes over a predetermined length from the second heat transfer region 123 toward the second connection portion 125a in plan view.
  • the second protrusion 127b is formed in a linear shape that protrudes over a predetermined length from the second heat transfer region 123 toward the second connection portion 125b in plan view.
  • the second protrusions 127a, 127b are formed in four inner sides of the six second connecting parts 125a, 125b divided into two halves, although the present invention is not limited thereto.
  • the plurality of second connection parts 125a, 125b are second separation parts 126a, 126b or second protrusion parts 127a, 127b that separate adjacent second connection parts 125a, 125b in a cross section perpendicular to the flow direction of the second fluid.
  • Equation 3 preferably (Equation 4).
  • Equation 4 0.005 ⁇ La2/P2 ⁇ 0.15
  • La2 is the length at which the second separating portions 126a, 126b or the second projections 127a, 127b and the partition wall 130 are joined.
  • P2 is the distance between adjacent second separation parts 126a, 126b or second protrusion parts 127a, 127b.
  • the second heat transfer region 123 (second heat transfer channel 124) and second connection portions 125a and 125b are formed on one surface of the second heat transfer plate 120.
  • the second flow ports 121a, 121b, the second through holes 122a, 122b, the second heat transfer region 123, the second connection parts 125a, 125b, and the second protrusions 127a, 127b are not limited. is formed, for example, by press working.
  • Partition wall 130 is a flat plate that separates the first heat transfer plate 110 and the second heat transfer plate 120 in the thickness direction DT.
  • the partition wall 130 has two first communication holes 131a, 131b and two second communication holes 132a, 132b.
  • the first communication holes 131a and 131b are holes through which the first fluid passes along the thickness direction DT.
  • the first communication holes 131a and 131b are formed to penetrate the partition wall 130 along the thickness direction DT.
  • the first communication holes 131a and 131b are formed in a circular shape when the partition wall 130 is viewed from above.
  • the first communication hole 131a, the first communication port 111a, and the second through hole 122b have the same shape, and when the partition wall 130, the first heat transfer plate 110, and the second heat transfer plate 120 are stacked, they are flat. They are formed at positions that overlap in the visual sense.
  • the first communication hole 131b, the first communication port 111b, and the second through hole 122a have the same shape, and when the partition wall 130, the first heat transfer plate 110, and the second heat transfer plate 120 are stacked, they are flat. They are formed at positions that overlap in the visual sense.
  • the second communication holes 132a and 132b are holes through which the second fluid passes along the thickness direction.
  • the second communication holes 132a and 132b are formed to penetrate the partition wall 130 along the thickness direction.
  • the second communication holes 132a and 132b are formed in a circular shape when the partition wall 130 is viewed from above.
  • the second communication hole 132a, the second communication port 121b, and the first through hole 112a have the same shape, and when the partition wall 130, the first heat transfer plate 110, and the second heat transfer plate 120 are stacked, they are flat. They are formed at positions that overlap in the visual sense.
  • the second communication hole 132b, the second communication port 121a, and the first through hole 112b have the same shape, and when the partition wall 130, the first heat transfer plate 110, and the second heat transfer plate 120 are stacked, they are flat. They are formed at positions that overlap in the visual sense.
  • First communicating passages 211a, 211b and second communicating passages 212a, 212b By stacking the plurality of first heat transfer plates 110, the plurality of second heat transfer plates 120, and the plurality of partition walls 130, the first communication holes 131a, the first communication ports 111a, and the second through holes 122b are formed. communicate with each other.
  • the first communication hole 131a, the first communication port 111a, and the second through hole 122b that communicate with each other constitute a first communication path 211a that extends along the thickness direction DT.
  • the first communication path 211a communicates with the first flow path 220 via the first communication port 111a.
  • the first communication holes 131b, the first communication ports 111b, and the second through holes 122a are formed. communicate with each other.
  • the first communication hole 131b, the first communication port 111b, and the second through hole 122a that communicate with each other constitute a first communication path 211b that extends along the thickness direction DT.
  • the first communication path 211b communicates with the first flow path 220 via the first communication port 111b.
  • the second communication holes 132b, the second communication ports 121a, and the first through holes 112b are formed. communicate with each other.
  • the second communication hole 132b, the second communication port 121a, and the first through hole 112b, which communicate with each other, constitute a second communication path 212a extending along the thickness direction DT.
  • the second communication path 212a communicates with the second flow path 230 via the second flow port 121a.
  • the second communication holes 132a, the second communication ports 121b, and the first through holes 112a are formed. communicate with each other.
  • the second communication hole 132a, the second communication port 121b, and the first through hole 112a, which communicate with each other, constitute a second communication path 212b extending along the thickness direction DT.
  • the second communication path 212b communicates with the second flow path 230 via the second flow port 121b.
  • First frame 140 and second frame 150 are made of metal and sandwich the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120, which are alternately stacked with the partition walls 130 in between, at both ends in the thickness direction DT. This is a plate-like member.
  • the first frame 140 has a first flow pipe 141a, a first flow pipe 141b, a second flow pipe 142a, and a second flow pipe 142b.
  • the first flow pipe 141a passes through the first frame 140 and communicates with the first communication path 211a.
  • the first flow pipe 141b passes through the first frame 140 and communicates with the first communication path 211b.
  • the second flow pipe 142a passes through the first frame 140 and communicates with the second communication path 212a.
  • the second flow pipe 142b passes through the first frame 140 and communicates with the second communication path 212b.
  • the low-pressure gas-liquid two-phase first fluid introduced from the first flow pipe 141a of the first heat exchanger 100 is It passes through the first communication path 211a and flows into the first flow path 220 from the first flow port 111a.
  • the gas-liquid two-phase first fluid that has flowed into the first channel 220 passes through the first connection section 115a, the first heat transfer region 113 (first heat transfer channel 114), and the first connection section 115b in this order. .
  • the first fluid flowing through the first heat transfer region 113 exchanges heat with the second fluid in the adjacent second flow path 230 via the partition wall 130, evaporates, and absorbs heat from the second fluid.
  • the first heat exchanger 100 functions as an evaporator for the first fluid.
  • the evaporated first fluid becomes a low-pressure gas-phase first fluid, passes through the first communication port 111b and the first communication path 211b, and is led out from the first communication pipe 141b.
  • the second fluid in the high pressure gas phase introduced from the second flow pipe 142a of the first heat exchanger 100 passes through the second communication path 212a and flows into the second flow path 230 from the second flow port 121a. .
  • the second fluid in the high-pressure gas phase that has flowed into the second flow path 230 passes through the second connection portion 125a, the second heat transfer region 123 (second heat transfer flow path 124), and the second connection portion 125b in this order.
  • the second fluid flowing through the second heat transfer region 123 exchanges heat with the first fluid in the adjacent first channel 220 via the partition wall 130, condenses, and radiates heat.
  • the first heat exchanger 100 functions as a condenser for the second fluid.
  • the condensed second fluid becomes a high-pressure liquid phase second fluid, passes through the second communication port 121b and the second communication path 212b, and is led out from the second communication pipe 142b.
  • the first fluid in the high-pressure gas phase introduced from the first flow pipe 141b of the first heat exchanger 100 passes through the first communication path 211b and passes through the first flow port 111b to the first flow pipe 141b. 1 flow path 220 .
  • the first fluid in the high-pressure gas phase that has flowed into the first flow path 220 passes through the first connection portion 115b, the first heat transfer region 113 (first heat transfer flow path 114), and the first connection portion 115a in this order.
  • the first fluid flowing through the first heat transfer region 113 exchanges heat with the second fluid in the adjacent second flow path 230 via the partition wall 130, condenses, and radiates heat to the second fluid.
  • the first heat exchanger 100 functions as a radiator for the first fluid.
  • the condensed first fluid becomes a high-pressure liquid phase first fluid, passes through the first communication port 111a and the first communication path 211a, and is led out from the first communication pipe 141a.
  • the low-pressure gas-liquid two-phase second fluid introduced from the second flow pipe 142b of the first heat exchanger 100 passes through the second communication path 212b and enters the second flow path 230 from the second flow port 121b. Inflow.
  • the low-pressure gas-liquid two-phase second fluid that has flowed into the second flow path 230 passes through the second connection portion 125b, the second heat transfer region 123 (second heat transfer flow path 124), and the second connection portion 125a in this order. do.
  • the second fluid flowing through the second heat transfer region 123 exchanges heat with the first fluid in the adjacent first channel 220 via the partition wall 130, evaporates, and absorbs heat from the first fluid.
  • the first heat exchanger 100 functions as an evaporator for the second fluid.
  • the evaporated second fluid becomes a second fluid in a low-pressure gas phase, passes through the second communication port 121a and the second communication path 212a, and is led out from the second communication pipe 142a.
  • the first heat exchanger 100 includes a first heat transfer plate 110 and a second heat transfer plate 120 that are stacked on each other.
  • the first heat transfer plate 110 has first communication ports 111a and 111b, first through holes 112a and 112b, a first heat transfer region 113, and first connection portions 115a and 115b.
  • the first flow ports 111a and 111b introduce or lead out the first fluid.
  • a second fluid having a lower boiling point than the first fluid passes through the first through holes 112a and 112b in the thickness direction.
  • the first heat transfer region 113 is a region through which the first fluid flowing from the first flow ports 111a and 111b exchanges heat with the second fluid.
  • the first connecting portions 115a and 115b have one end connected to the first flow ports 111a and 111b, and the other end connected to the first heat transfer region 113.
  • the second heat transfer plate 120 has second flow ports 121a, 121b, second through holes 122a, 122b, a second heat transfer region 123, and second connection portions 125a, 125b.
  • the second flow ports 121a, 121b communicate with the first through holes 112a, 112b, and introduce or lead out the second fluid.
  • the first fluid passes through the second through holes 122a and 122b in the thickness direction.
  • the second heat transfer region 123 is a region through which the second fluid flowing from the second flow ports 121a and 121b exchanges heat with the first fluid.
  • the second connecting portions 125a, 125b have one end connected to the second flow ports 121a, 121b, and the other end connected to the second heat transfer region 123.
  • the second flow ports 121a and 121b are formed at positions opposite to the second heat transfer region 123 with the second through holes 122a and 122b in between.
  • the second connecting portions 125a, 125b are formed so as to extend around the outside of the second through holes 122a, 122b, and are provided with second projections 127a, 127b.
  • the second connecting portions 125a and 125b are formed to extend around the outside of the second through holes 122a and 122b.
  • the length of the flow path of the first connection parts 115a, 115b through which the first fluid passes is longer than the flow path length of the second connection parts 125a, 125b through which the second fluid having a lower boiling point than the first fluid passes. is also formed short. Therefore, the pressure loss that occurs in the first fluid when it passes through the first connection parts 115a, 115b can be made smaller than the pressure loss that occurs in the second fluid when it passes through the second connection parts 125a, 125b. This suppresses the pressure of the first fluid from decreasing at a large rate. Therefore, according to the first heat exchanger 100, even if there is a difference in pressure between the two fluids when they flow in, heat exchange performance can be ensured.
  • the second projections 127a and 127b are linear in plan view.
  • the second connecting portions 125a and 125b are linear in plan view.
  • the first connecting portions 115a, 115b are formed so that the cross-sectional area of the flow path increases from the first flow ports 111a, 111b toward the first heat transfer region 113.
  • the first heat exchanger 100 can ensure heat exchange performance more effectively.
  • the first heat exchanger 100 includes a partition wall 130.
  • the partition wall 130 is a plate-like member laminated between the first heat transfer plate 110 and the second heat transfer plate 120.
  • the first connecting portions 115a, 115b have a length such that the partition wall 130 contacts the first separating portions 116a, 116b that separate the adjacent first connecting portions 115a, 115b in a cross section perpendicular to the flow direction of the first fluid. Assuming that La is La1 and the interval between adjacent first separation parts is P1, 0.005 ⁇ La1/P1 ⁇ 0.15 is formed to satisfy the relationship.
  • the force (pressure) that the partition wall 130 receives from the first fluid passing through the first connecting portions 115a and 115b is limited, and the pressure resistance strength is increased. Exceeding is suppressed.
  • first connecting portions 115a and 115b are 0.005 ⁇ La1/P1 ⁇ 0.05 is formed to satisfy the relationship.
  • the force (pressure) that the partition wall 130 receives from the first fluid passing through the first connecting portions 115a and 115b is limited, and the pressure resistance strength is increased. Exceeding is suppressed.
  • the second connecting portions 125a, 125b include second separating portions 126a, 126b or second protruding portions 127a, 127b that separate adjacent second connecting portions 125a, 125b in a cross section perpendicular to the flow direction of the second fluid; Assuming that the length of contact with the partition wall 130 is La2, and the interval between adjacent second separation parts 126a, 126b or second projections 127a, 127b is P2, 0.005 ⁇ L2/P2 ⁇ 0.15 is formed to satisfy the relationship.
  • the force (pressure) that the partition wall 130 receives from the second fluid passing through the second connecting portions 125a and 125b is limited, and the pressure resistance strength is increased. Exceeding is suppressed.
  • the second connecting portions 125a and 125b are 0.02 ⁇ L2/P2 ⁇ 0.15 is formed to satisfy the relationship.
  • the force (pressure) that the partition wall 130 receives from the second fluid passing through the second connecting portions 125a and 125b is limited, and the pressure resistance strength is increased. Exceeding is suppressed.
  • the second connecting portions 125a, 125b are not limited to the above embodiment as long as they are formed so as to go around the outside of the second through holes 122a, 122b and are partitioned by protrusions.
  • the second connection portion 125b of the first heat exchanger 100 has a planar area (hatched in FIG. 9) provided outside the second through hole 122b.
  • a plurality of second protrusions 128b are provided which are circular in plan view.
  • the second protrusions 128b are formed, for example, with a radius of 1 mm in plan view, a height of 0.5 mm in the thickness direction DT, and are arranged side by side in the longitudinal direction DL and width direction DW with an interval of 1 mm.
  • the second protrusion 128b is formed by, for example, but not limited to, pressing or etching.
  • the second connecting portion 125a provided below the second heat transfer plate 120 is also formed in a similar shape, and is provided with a plurality of second protrusions 128a.
  • the shape of the second projections 128a and 128b is not limited to a circular shape.
  • the shape of the second projections 128a, 128b may be any one of a triangular shape (see FIG. 10), a quadrangular shape (see FIG. 11), and a teardrop shape (see FIG. 12) in plan view.
  • the plurality of second protrusions 128a and 128b of the second connecting portion 125b may have different shapes from each other.
  • the first connecting portions 115a and 115b may be formed in a curved shape.
  • the first connection portion 115a of the first heat exchanger 100 according to modification B is formed in a curved shape, as shown in FIG. 13. Although not shown, the first connection portion 115b provided below the first heat transfer plate 110 is also formed in a similar shape.
  • R1234ze was exemplified as the first fluid
  • carbon dioxide was exemplified as the second fluid
  • first fluid for example, R32, an HFO-based refrigerant, a mixed refrigerant of R32 and HFO-based first fluid, carbon dioxide, ammonia, propane, etc.
  • second fluid may be any fluid with a lower boiling point than the first fluid, such as R-32, HFO refrigerant, mixed refrigerant of HFC-32 and HFO refrigerant, carbon dioxide, ammonia, propane, etc. , water, antifreeze, etc. can be used.
  • the first heat exchanger 100 is formed such that the first fluid flowing through the first flow path 220 and the second fluid flowing through the second flow path 230 flow in opposite directions.
  • the exchanger 100 may be formed such that the first fluid flowing through the first channel 220 and the second fluid flowing through the second channel 230 flow in parallel.
  • the first flow pipe 141a, the first flow pipe 141b, the second flow pipe 142a, and the second flow pipe 142b are all formed in the first frame 140. At least a portion of the first flow pipe 141b, the second flow pipe 142a, and the second flow pipe 142b may be formed on the second frame 150.
  • the first connecting portions 115a and 115b are not limited to the above-mentioned embodiment as long as one end is connected to the first flow port 111a and the other end is connected to the first heat transfer region 113.
  • the first connecting portion 115a may further include a first protrusion 117a.
  • the first connecting portion 115b may further include a first protrusion 117b.
  • the first protrusion 117a defines the first connection portion 115a and limits the force (pressure) that the partition wall 130 receives from the first fluid.
  • the first protrusion 117a is formed in a linear shape that protrudes over a predetermined length from the first heat transfer region 113 toward the first connection portion 115a in plan view.
  • the first connecting portion 115b provided below the first heat transfer plate 110 is also formed in a similar shape, and is provided with a plurality of first protrusions 117b.
  • the first connection portion 115a of the first heat exchanger 100 according to modification G is a planar area provided outside the first flow port 111a, and has a circular shape in plan view.
  • a plurality of first protrusions 117a each having a shape are provided.
  • the first heat transfer plate 110 is provided with a first connection portion 115a over a predetermined width between the upper end portion and the first connection portion 115a in a plan view.
  • a gap 119a which is a band-shaped area where the area is not covered.
  • the first projections 117a are, for example, formed to have a radius of 1 mm in plan view, a height of 0.5 mm in the thickness direction DT, and are arranged side by side in the longitudinal direction DL and width direction DW with an interval of 1 mm.
  • the first protrusion 117a is formed by, for example, but not limited to, pressing or etching.
  • the first connecting portion 115b provided below the first heat transfer plate 110 is also formed in a similar shape, and is provided with a plurality of first protrusions 117b.
  • the shape of the first projections 117a and 117b is not limited to a circular shape.
  • the shape of the first projections 117a, 117b may be any one of the triangular, square, and teardrop shapes shown as an example of the second projection 128b in FIGS. 10 to 13 in plan view.
  • the plurality of first projections 117a, 117b of the first connection parts 115a, 115b may have different shapes from each other.
  • the shape of the planar first connection portion 115a may be a trapezoid whose width increases from the first flow port 111a toward the first heat transfer region 113, as shown in FIG.
  • the first connection portion 115b provided below the first heat transfer plate 110 is also formed in the same manner.
  • Water heater 2 A water heater 2 including a first heat exchanger 100 according to a second embodiment of the present disclosure will be described with reference to FIG. 12. The water heater 2 heats water supplied from the outside. Note that, in the following description, features similar to or corresponding to those in the first embodiment are given the same reference numerals, and the description thereof will be omitted.
  • the water heater 2 includes a first heat exchanger 100, a water circuit 50, a heat source side circuit 60, and a hot water tank 70.
  • the water circuit 50 is a circuit that circulates water.
  • the heat source side circuit 60 is a circuit that circulates carbon dioxide, which is a fluid with a lower boiling point than water. Heat exchange between water and carbon dioxide takes place in the first heat exchanger 100.
  • the water circuit 50 is installed indoors, and the heat source side circuit 60 is installed outdoors.
  • Water is an example of the first fluid.
  • Carbon dioxide is an example of the second fluid.
  • the water circuit 50 is an example of a first fluid circuit.
  • the heat source side circuit 60 is an example of a second fluid circuit.
  • the water circuit 50 includes a water circulation pump 51, a user-side heat exchanger 52, and a first flow path 220 of the first heat exchanger 100.
  • the water circulation pump 51 circulates water inside the water circuit 50.
  • the water circulation pump 51 sucks water inside the water circuit 50 from the suction part 51a and discharges it from the discharge part 51b.
  • the suction section 51a is connected to the first flow pipe 141b of the first heat exchanger 100.
  • the user-side heat exchanger 52 exchanges heat between the water circulating in the water circuit 50 and the water stored inside the hot water tank 70.
  • the user-side heat exchanger 52 is arranged inside the hot water supply tank 70 so that the water passing therethrough can exchange heat with the water stored in the hot water supply tank 70.
  • One end of the user-side heat exchanger 52 is connected to the discharge part 51b of the water circulation pump 51.
  • the other end of the user-side heat exchanger 52 is connected to the first flow pipe 141a of the first heat exchanger 100.
  • the heat source side circuit 60 includes a heat source side compressor 61, a heat source side expansion valve 62, a heat source side heat exchanger 63, and a second flow path 230 of the first heat exchanger 100.
  • the heat source side compressor 61 sucks in low-pressure gaseous carbon dioxide in the heat source side circuit 60 from the suction part 61a, compresses it, and discharges it as high-pressure gaseous carbon dioxide from the discharge part 61b.
  • the discharge part 61b is connected to the second flow pipe 142a of the first heat exchanger 100.
  • the heat source side expansion valve 62 functions as a pressure reducing device that adjusts the flow rate of carbon dioxide circulating through the heat source side circuit 60 and reduces the pressure of carbon dioxide.
  • One end of the heat source side expansion valve 62 is connected to the second flow pipe 142b of the first heat exchanger 100.
  • the other end of the heat source side expansion valve 62 is connected to one end of the heat source side heat exchanger 63.
  • the heat source side heat exchanger 63 functions as an evaporator and exchanges heat between carbon dioxide and a heat source (for example, outside air).
  • the other end of the heat source side heat exchanger 63 is connected to the suction part 61a of the heat source side compressor 61.
  • Hot water tank 70 stores water supplied from the outside. The stored water exchanges heat with the water passing through the utilization side heat exchanger 42. The hot water tank 70 takes in water supplied from the outside from the water inlet part 70b and stores it therein. The stored water is discharged from the water outlet 70a.
  • a control unit (not shown) drives the water circulation pump 51 and the heat source side compressor 61, and adjusts the opening degree of the heat source side expansion valve 62 according to the target temperature of water discharged from the hot water tank 70. and set it to an appropriate opening.
  • the heat source side compressor 61 sucks carbon dioxide in the low pressure gas phase in the heat source side circuit 60 from the suction part 61a, and converts it into high pressure gas phase carbon dioxide from the discharge part 61b. Exhale.
  • the high-pressure gas phase carbon dioxide passes through the second flow pipe 142a of the first heat exchanger 100 and enters the second flow path 230.
  • the first heat exchanger 100 radiates heat from high-pressure gaseous carbon dioxide to condense it into high-pressure liquid carbon dioxide. At this time, carbon dioxide releases heat to the water passing through the first flow path 220 of the first heat exchanger 100 (in other words, heats the water).
  • the high-pressure liquid carbon dioxide passes through the second flow pipe 142b, exits the second flow path 230, and reaches the heat source side expansion valve 62.
  • the heat source side expansion valve 62 which is set to an appropriate opening degree, reduces the pressure of high-pressure liquid carbon dioxide and converts it into low-pressure gas-liquid two-phase carbon dioxide.
  • the low-pressure gas-liquid two-phase carbon dioxide reaches the heat source side heat exchanger 63.
  • the heat source side heat exchanger 63 evaporates low-pressure gas-liquid two-phase carbon dioxide into low-pressure gas-phase carbon dioxide. At this time, carbon dioxide absorbs heat from the heat source (outside air).
  • the low-pressure gas phase carbon dioxide exits the heat source side heat exchanger 63 and is sucked into the heat source side compressor 61 from the suction part 61a.
  • the first heat exchanger 100 provides the same effects as when used in the refrigerant cycle device 1. Specifically, the pressure loss that occurs in water when passing through the first connecting portions 115a, 115b can be smaller than the pressure loss that occurs in carbon dioxide when passing through the second connecting portions 125a, 125b. This prevents the water pressure from decreasing at a large rate. Therefore, according to the first heat exchanger 100, even if there is a difference in pressure between the two fluids when they flow in, heat exchange performance can be ensured.
  • Refrigerant cycle device Water heater 10 First fluid circuit 20 Second fluid circuit 30 Water circuit (refrigerant cycle device) 40 Control unit 50 Water circuit (water heater) 60 Heat source side circuit 100 First heat exchanger 110 First heat transfer plate 111a, 111b First distribution port 112a, 112b First through hole 113 First heat transfer area 115a, 115b First connection part 116a, 116b First separation part 117a, 117b First projection 120 Second heat transfer plate 121a, 121b Second communication port 122a, 122b Second through hole 123 Second heat transfer area 125a, 125b Second connection portion 126a, 126b Second separation portion 127a, 127b Second protrusion 128b Second protrusion (circular shape) 130 Partition wall DL Longitudinal direction DT Thickness direction DW Width direction

Abstract

2つの流体の流入時のおける圧力に差がある場合でも、熱交換性能を確保できる熱交換器、並びにこれを用いた冷媒サイクル装置及び給湯器を提供する。第1熱交換器(100)は、第1伝熱プレート(110)と、第2伝熱プレート(120)とを備える。第2伝熱プレートは、第2流通口(121a、121b)と、第2貫通孔(122a、122b)と、第2伝熱領域(123)と、第2接続部(125a、125b)とを有する。第2流通口は、第1流体よりも低沸点である第2流体を導入・導出する。第2貫通孔は、第1流体が厚み方向に通過する。第2伝熱領域では、第2流体が通過しながら第1流体と熱交換をする。第2接続部は、一端が第2流通口に、他端が第2伝熱領域に接続される。第2流通口は、第2貫通孔を挟んで第2伝熱領域と反対の位置に形成される。第2接続部は、第2貫通孔の外方を回り込むように形成され、第2突起部(127a、127b)が設けられる。

Description

熱交換器、冷媒サイクル装置、給湯器
 熱交換器、冷媒サイクル装置、給湯器に関する。
 複数の伝熱プレートを所定の間隔で積層して第1流体が流れる流路と第2流体が流れる流路とを積層方向に交互に形成し、2つの流体の間での熱交換を行わせるプレート式熱交換器が知られている。
 特許文献1(特表2012-512382号公報)は、主に、一方の流体を流入又は流出させる2つの流通ポートと、流入した流体を熱交換させる複数の溝が形成された熱伝達領域と、流通ポートと熱伝達領域とをつなぐ溝の形成された接続部(分配領域)と、他方の流体を通過させる一対の貫通孔とを有する伝熱プレート(熱交換プレート)及びこれを用いた熱交換器を開示している。
 特許文献1の熱交換器では、第1流体が流れる流路の長さと第2流体が流れる流路の長さとが同じである。このため、2つの流体には、熱交換器の内部において同程度の圧力損失が生じる。このようにして生じる圧力損失に起因する圧力の減少割合を比較した場合、2つの流体の内、流入時の圧力が低い流体ほど相対的に大きな割合で圧力が減少する。この結果、熱交換器が熱交換性能を十分に発揮できないという課題がある。
 本開示は、2つの流体の流入時のおける圧力に差がある場合でも、熱交換性能を確保できる熱交換器、並びにこれを用いた冷媒サイクル装置及び給湯器を提供する。
 第1観点の熱交換器は、互いに積層された、第1伝熱プレート及び第2伝熱プレートを備える。
 第1伝熱プレートは、第1流通口、と、第1貫通孔と、第1伝熱領域と、第1接続部とを有する。
 第1流通口は、第1流体を導入又は導出する。第1貫通孔は、第1流体よりも低沸点である第2流体が厚み方向に通過する。第1伝熱領域は、第1流通口から流入した第1流体が通過しながら第2流体と熱交換をする領域である。第1接続部は、一端が第1流通口に接続され、他端が第1伝熱領域に接続される。
 第2伝熱プレートは、第2流通口と、第2貫通孔と、第2伝熱領域と、第2接続部とを有する。
 第2流通口は、第1貫通孔と連通し、第2流体を導入又は導出する。第2貫通孔は、第1流体が厚み方向に通過する。第2伝熱領域は、第2流通口から流入した第2流体が通過しながら第1流体と熱交換をする領域である。第2接続部は、一端が第2流通口に接続され、他端が第2伝熱領域に接続される。
 第2流通口は、第2貫通孔を挟んで第2伝熱領域と反対の位置に形成される。第2接続部は、第2貫通孔の外方を回り込むように形成され、第2突起部が設けられている。
 本熱交換器では、第2接続部が、第2貫通孔の外方を回り込むように形成されている。言い換えると、第1流体が通過する第1接続部の流路の長さが、第1流体よりも低沸点の第2流体が通過する第2接続部の流路長さよりも短く形成される。したがって、第1接続部を通過する際に第1流体に生じる圧力損失を、第2接続部を通過する際に第2流体に生じる圧力損失よりも少なくできる。これにより、第1流体の圧力が大きな割合で減少することが抑制される。したがって、本熱交換器によれば、2つの流体の流入時のおける圧力に差がある場合でも、熱交換性能を確保できる。
 第2観点の熱交換器は、第1観点の熱交換器であって、第2突起部が、平面視において線状である。
 第3観点の熱交換器は、第1観点又は第2観点の熱交換器であって、第2接続部が、平面視において線状である。
 第4観点の熱交換器は、第1観点の熱交換器であって、第2突起部が、平面視において円形状である。
 第5観点の熱交換器は、第1観点の熱交換器であって、第2突起部が、平面視において三角形状である。
 第6観点の熱交換器は、第1観点の熱交換器であって、第2突起部が、平面視において四角形状である。
 第7観点の熱交換器は、第1観点の熱交換器であって、第2突起部が、平面視において涙滴形状である。
 第8観点の熱交換器は、第1観点の熱交換器であって、第1接続部が、第1流通口から第1伝熱領域に向かって、流路断面積が拡がるように形成されている。
 本熱交換器によれば、第1接続部を通過する第1流体に生じる圧力損失がさらに低減するため、第1流体の圧力が大きな割合で減少することがさらに抑制され、より効果的に熱交換性能を確保できる。
 第9観点の熱交換器は、第8観点の熱交換器であって、第1接続部は、第1突起部が設けられており、第1突起部は、平面視において線状である。
 第10観点の熱交換器は、第8観点の熱交換器であって、第1接続部は、第1突起部が設けられており、第1突起部は、平面視において円形状である。
 第11観点の熱交換器は、第8観点の熱交換器であって、第1接続部は、第1突起部が設けられており、第1突起部は、平面視において三角形状である。
 第12観点の熱交換器は、第8観点の熱交換器であって、第1接続部は、第1突起部が設けられており、第1突起部は、平面視において四角形状である。
 第13観点の熱交換器は、第8観点の熱交換器であって、第1接続部は、第1突起部が設けられており、第1突起部は、平面視において涙滴形状である。
 第14観点の熱交換器は、第1観点から第13観点のいずれかの熱交換器であって、隔壁を備える。隔壁は、第1伝熱プレートと第2伝熱プレートとの間に積層された板状部材である。第1接続部は、第1流体の流れ方向に直交する断面において、隣り合う第1接続部どうしを分ける第1分離部と、隔壁とが接触する長さをLa1、隣り合う第1分離部の間隔をP1とすると、
 0.005<La1/P1<0.15
の関係を満たすように形成されている。
 第1接続部が上記の関係を満たすように形成されることで、隔壁が第1接続部を通過する第1流体から受ける力が耐圧強度を超えることが抑制される。
 第15観点の熱交換器は、第14観点の熱交換器であって、第1接続部が、
 0.005<La1/P1<0.05
の関係を満たすように形成されている。
 本熱交換器によれば、第1接続部が上記の関係を満たすように形成されることで、隔壁が第1接続部を通過する第1流体から受ける力が耐圧強度を超えることがより効果的に抑制される。
 第16観点の熱交換器は、第1観点から第15観点のいずれかの熱交換器であって、隔壁を備える。第2接続部は、第2流体の流れ方向に直交する断面において、隣り合う第2接続部どうしを分ける第2分離部、又は突起部と、隔壁とが接触する長さをLa2、隣り合う第2分離部又は第2突起部の間隔をP2とすると、
 0.005<L2/P2<0.15
の関係を満たすように形成されている。
 本熱交換器によれば、第2接続部が上記の関係を満たすように形成されることで、隔壁が第2接続部を通過する第2流体から受ける力が耐圧強度を超えることが抑制される。
 第17観点の熱交換器は、第16観点の熱交換器であって、第2接続部が、
 0.02<L2/P2<0.15
の関係を満たすように形成されている。
 本熱交換器によれば、第2接続部が上記の関係を満たすように形成されることで、隔壁が第2接続部を通過する第2流体から受ける力が耐圧強度を超えることがより効果的に抑制される。
 第18観点の冷媒サイクル装置は、第1観点から第17観点の熱交換器のいずれかと、第1流体が循環する第1流体回路と、第2流体が循環する第2流体回路とを備える。
 第19観点の給湯器は、第1観点から第17観点の熱交換器のいずれかと、第1流体が循環する第1流体回路と、第2流体が循環する第2流体回路とを備える。
第1熱交換器100を備える冷媒サイクル装置1を示す概略構成図である。 第1熱交換器100の分解斜視図である。 第1伝熱プレート110の平面図である。 第1伝熱プレート110の上側端部周辺の拡大図である。 図4におけるA-A’線で切断した箇所の断面図である。 第2伝熱プレート120の平面図である。 第2伝熱プレート120の上側端部周辺の拡大図である。 図7におけるB-B’線で切断した箇所の断面図である。 変形例Aに係る第1熱交換器100の第2伝熱プレート120の上側端部周辺の拡大図である。 変形例Aの他の例に係る第1熱交換器100の第2伝熱プレート120の上側端部周辺の拡大図である。 変形例Aの他の例に係る第1熱交換器100の第2伝熱プレート120の上側端部周辺の拡大図である。 変形例Aの他の例に係る第1熱交換器100の第2伝熱プレート120の上側端部周辺の拡大図である。 変形例Bに係る第1熱交換器100の第1伝熱プレート110の上側端部周辺の拡大図である。 変形例Fに係る第1熱交換器100の第1伝熱プレート110の上側端部周辺の拡大図である。 変形例Gに係る第1熱交換器100の第1伝熱プレート110の上側端部周辺の拡大図である。 変形例Gの他の例に係る第1熱交換器100の第1伝熱プレート110の上側端部周辺の拡大図である。 第1熱交換器100を備える給湯器2を示す概略構成図である。
 <第1実施形態>
 (1)冷媒サイクル装置1
 はじめに、本開示の第1実施形態に係る第1熱交換器100を備える冷媒サイクル装置1について説明する。冷媒サイクル装置1は、蒸気圧縮式のサイクルを実行することで、建物の室内等の空調対象空間(図示省略)の冷暖房運転を行う二元冷媒サイクル装置である。
 冷媒サイクル装置1は、水を加熱又は冷却し、この水を用いて対象空間(図示省略)の暖房運転及び冷房運転を行う。冷媒サイクル装置1は、第1熱交換器100と、第2熱交換器300と、第1流体回路10と、第2流体回路20と、水回路30と、制御部40とを有する。詳細は後述するが、第1流体回路10では第1流体が循環し、第2流体回路20では第1流体よりも低沸点の第2流体が循環し、水回路30では水が循環する。限定するものではないが、本実施形態では、水回路30は屋内に設置され、第2流体回路20は屋外に設置される。第1流体回路10は、屋内・屋外のどちらへ設置されてもよく、一部が屋内・屋外のいずれかに設置されてもよい。
 (1-1)第1熱交換器100
 第1熱交換器100は、第1流体回路10を循環する第1流体と第2流体回路20を循環する第2流体との間で熱交換をさせる。第1熱交換器100は、第1流通管141a、141bと、第2流通管142a、142bと、第1流路220と、第2流路230とを有する。
 第1流路220は、第1流体が流れる流路である。第1流路220は、第1流通管1410aと第1流通管141bとの間に設けられている。第2流路230は、第2流体が流れる流路である。第2流路230は、第2流通管142aと第2流通管142bとの間に形成される。第1流路220を流れる第1流体は、第2流路230を通る第2流体との間で熱交換をする。第1熱交換器100の詳細な構造については、後述する。
 (1-2)第2熱交換器300
 第2熱交換器300は、第1流体回路10を循環する第1流体と水回路30を循環する水との間で熱交換をさせる。第2熱交換器300は、第1流通管341a、341bと、第2流通管342a、342bと、第1流路420と、第2流路430とを有する。
 第1流路420は、第1流体が流れる流路である。第1流路420は、第1流通管341aと第1流通管341bとの間に設けられている。第2流路430は、水が流れる流路である。第2流路430は、第2流通管342aと第2流通管342bとの間に形成される。第1流路420を流れる第1流体は、第2流路430を通る水との間で熱交換をする。
 (1-3)第1流体回路10
 第1流体回路10では、第1流体が加熱又は冷却される。第1流体回路10は、圧縮機11と、四路切換弁12と、膨張弁13と、第1熱交換器100の第1流路220と、第2熱交換器300の第1流路420とにより構成される。圧縮機11、四路切換弁12、膨張弁13、第1熱交換器100の第1流路220、及び第2熱交換器300の第1流路420は、配管で接続され、内部を第1流体が循環する。本実施形態では、第1流体は、R1234zeである。
 圧縮機11は、第1流体回路10における低圧の第1流体を吸入部11aから吸入し、それを圧縮して、高圧の第1流体として吐出部11bから吐出する。
 四路切換弁12は、第1ポート12aと、第2ポート12bと、第3ポート12cと、第4ポート12dとを有する。四路切換弁12は、制御部40の指示に基づいて、第1ポート12a、第2ポート12b、第3ポート12c、第4ポート12dの連通状態が異なる第1状態と第2状態との間で切り換わる。第1状態では、第1ポート12aと第2ポート12bとが連通し、第3ポート12cと第4ポート12dとが連通する。第2状態では、第1ポート12aと第4ポート12dとが連通し、第2ポート12bと第3ポート12cとが連通する。
 第1ポート12aは、圧縮機11の吐出部11bに接続されている。第2ポート12bは、第2熱交換器300の第1流通管341bに接続されている。第3ポート12cは、圧縮機11の吸入部11aに接続されている。第4ポート12dは、第1熱交換器100の第1流通管141aに接続されている。
 膨張弁13は、第1流体回路10を循環する第1流体の流量を調節し、第1流体を減圧させる減圧装置として機能する。
 膨張弁13の一端は、第1熱交換器100の第1流通管141bに接続されている。膨張弁13の他端は、第2熱交換器300の第1流通管341aに接続されている。
 (1-4)第2流体回路20
 第2流体回路20では、第2流体が加熱又は冷却される。第2流体回路20は、圧縮機21と、四路切換弁22と、膨張弁23と、熱源熱交換器24と、第1熱交換器100の第2流路230とにより構成される。圧縮機21、四路切換弁22、膨張弁23、熱源熱交換器24、及び第1熱交換器100の第2流路230は、配管で接続され、内部を第2流体が循環する。本実施形態では、第2流体は、二酸化炭素である。
 圧縮機21は、第2流体回路20における低圧の第2流体を吸入部21aから吸入し、それを圧縮して、高圧の第2流体として吐出部21bから吐出する。
 四路切換弁22は、第1ポート22aと、第2ポート22bと、第3ポート22cと、第4ポート22dとを有する。四路切換弁22は、制御部40の指示に基づいて、第1ポート22a、第2ポート22b、第3ポート22c、第4ポート22dの連通状態が異なる第1状態と第2状態との間で切り換わる。第1状態では、第1ポート22aと第2ポート22bとが連通し、第3ポート22cと第4ポート22dとが連通する。第2状態では、第1ポート22aと第4ポート22dとが連通し、第2ポート22bと第3ポート22cとが連通する。
 第1ポート22aは、圧縮機21の吐出部21bに接続されている。第2ポート22bは、第1熱交換器100の第2流通管142bに接続されている。第3ポート22cは、圧縮機21の吸入部21aに接続されている。第4ポート22dは、熱源熱交換器24の一端に接続されている。
 膨張弁23は、第2流体回路20を循環する第2流体の流量を調節し、第2流体を減圧させる減圧装置として機能する。
 膨張弁23の一端は、第1熱交換器100の第2流通管142aに接続されている。膨張弁23の他端は、熱源熱交換器24の他端に接続されている。
 熱源熱交換器24は、第2流体回路20を循環する第2流体と熱源(例えば、屋外の空気)との間で熱交換をさせる。
 (1-5)水回路30
 水回路30では、第1流体との間で熱交換した水が循環する。水回路30は、水循環ポンプ31と、貯水タンク32と、第2熱交換器300の第2流路430とにより構成される。水循環ポンプ31、貯水タンク32、及び第2熱交換器300の第2流路430は、配管で接続され、内部を水が循環する。
 水循環ポンプ31は、水回路30の内部において水を循環させる。水循環ポンプ31は、水回路30の内部の水を吸入部31aから吸入し、吐出部31bから吐出する。
 吸入部31aは、第2熱交換器300の第2流通管342bに接続されている。
 貯水タンク32は、第2熱交換器300で加熱又は冷却された水を貯留することで、屋内の空気の加熱又は冷却(言い換えると、暖房又は冷房)を行う。貯水タンク32は、水回路30を循環する水を取り入れる取水部32aと、貯留された水を排出する排水部32bとを有する。
 取水部32aは、水循環ポンプ31の吐出部31bに接続されている。排水部32bは、第2熱交換器300の第2流通管342bに接続されている。
 (1-6)制御部40
 制御部40は、圧縮機11、21、四路切換弁12、22、膨張弁13、23、及び水循環ポンプ31を制御する。図示は省略するが、制御部40は、圧縮機11、21、四路切換弁12、22、膨張弁13、23、及び水循環ポンプ31に制御信号を送受信可能なように電気的に接続されている。
 (1-7)冷媒サイクル装置1の動作
 冷媒サイクル装置1は、暖房運転及び冷房運転を行う。
 (1-7-1)暖房運転
 暖房運転は、冷媒サイクル装置1が、水回路30の水を加熱する運転である。暖房運転では、制御部40は、四路切換弁12、22を第1状態とし、圧縮機11、21、及び水循環ポンプ31を駆動し、膨張弁13、23の開度を制御する。
 (1-7-1-1)第2流体回路20
 圧縮機21は、第2流体回路20における低圧気相の第2流体を吸入部21aから吸入し、高圧気相の第2流体として吐出部21bから吐出する。高圧気相である第2流体は、四路切換弁22を第1ポート22a、第2ポート22bの順に通って第1熱交換器100の第2流通管142aから第2流路230へ到達する。第1熱交換器100の第2流路230で、高圧気相の第2流体は凝縮して高圧液相の第2流体となる。このとき、第2流体は、第1流路220を通る第1流体へ熱を放出する。高圧液相の第2流体は、膨張弁23へ到達する。適切な開度に設定された膨張弁23は、高圧液相の第2流体を減圧し低圧気液二相の第2流体とする。低圧気液二相の第2流体は、熱源熱交換器24で蒸発して低圧気相の第2流体となる。このとき、第2流体は、熱源から熱を吸収する。低圧気相の第2流体は、四路切換弁22を第4ポート22d、第3ポート22cの順に通った後、吸入部21aから圧縮機21に吸入される。
 (1-7-1-2)第1流体回路10
 圧縮機11は、第1流体回路10における低圧気相の第1流体を吸入部11aから吸入し、高圧気相の第1流体として吐出部11bから吐出する。高圧気相である第1流体は、四路切換弁12を第1ポート12a、第2ポート12bの順に通って第2熱交換器300の第1流通管341aから第1流路420へ到達する。第2熱交換器300の第1流路420で、高圧気相の第1流体は凝縮して高圧液相の第1流体となる。このとき、第1流体は、第2流路430を通る水へ熱を放出する。高圧液相の第1流体は、膨張弁13へ到達する。適切な開度に設定された膨張弁13は、高圧液相の第1流体を減圧し低圧気液二相の第1流体とする。低圧気液二相の第1流体は、第1熱交換器100の第1流通管141aを通った後、第1流路220で蒸発して低圧気相の第1流体となる。このとき、第1流体は、第2流路230を通る第2流体から熱を吸収する。低圧気相の第1流体は、四路切換弁12を第4ポート12d、第3ポート12cの順に通った後、吸入部11aから圧縮機11に吸入される。
 (1-7-1-3)水回路30
 水循環ポンプ31は、水回路30を循環する水を吸入部31aから吸入し吐出部31bから吐出する。吐出された水は、取水部32aを通って貯水タンク32へ貯留される。貯水タンク32に貯留された水は、屋内の空気へ熱を放出する。言い換えると、貯水タンク32に貯留された水は、屋内の空気を加熱する。貯水タンク32に貯留された水は、排水部32bを通った後、第2熱交換器300の第2流通管342aを通って第2流路430へ到達する。第2熱交換器300の第2流路430へ到達した水は、第1流路420を通る第1流体から熱を吸収する。熱を吸収した水は、吸入部31aから水循環ポンプ31に吸入される。
 (1-7-2)冷房運転
 冷房運転は、冷媒サイクル装置1が、水回路30の水を冷却する運転である。冷房運転では、制御部40は、四路切換弁12、22を第2状態とし、圧縮機11、21、及び水循環ポンプ31を駆動し、膨張弁13、23の開度を制御する。
 (1-7-2-1)第2流体回路20
 圧縮機21は、第2流体回路20における低圧気相の第2流体を吸入部21aから吸入し、高圧気相の第2流体として吐出部21bから吐出する。高圧気相である第2流体は、四路切換弁22を第1ポート22a、第4ポート22dの順に通って熱源熱交換器24へ到達する。熱源熱交換器24で、高圧気相の第2流体は凝縮して高圧液相の第2流体となる。このとき、第2流体は、熱源へ熱を放出する。高圧液相の第2流体は、膨張弁23へ到達する。適切な開度を設定された膨張弁23は、高圧液相の第2流体を減圧し低圧気液二相の第2流体とする。低圧気液二相の第2流体は、第1熱交換器100の第2流通管142bを通った後、第2流路230で蒸発して低圧気相の第2流体となる。このとき、第2流体は、第2流路230を通る第1流体から熱を吸収する。低圧気相の第2流体は、四路切換弁22を第2ポート22b、第3ポート22cの順に通った後、吸入部21aから圧縮機21に吸入される。
 (1-7-2-2)第1流体回路10
 圧縮機11は、第1流体回路10における低圧気相の第1流体を吸入部11aから吸入し、高圧気相の第1流体として吐出部11bから吐出する。高圧気相である第1流体は、四路切換弁12を第1ポート12a、第4ポート12dの順に通って第1熱交換器100の第1流通管141bから第1流路220へ到達する。第1熱交換器100の第1流路220で、高圧気相の第1流体は凝縮して高圧液相の第1流体となる。このとき、第1流体は、第2流路230を通る第2流体へ熱を放出する。高圧液相の第1流体は、膨張弁13へ到達する。適切な開度を設定された膨張弁13は、高圧液相の第1流体を減圧し低圧気液二相の第1流体とする。低圧気液二相の第1流体は、第2熱交換器300の第1流通管341bを通った後、第1流路420で蒸発して低圧気相の第1流体となる。このとき、第1流体は、第2流路430を通る第2流体から熱を吸収する。低圧気相の第1流体は、四路切換弁12を第2ポート12b、第3ポート12cの順に通った後、吸入部11aから圧縮機11に吸入される。
 (1-7-2-3)水回路30
 水循環ポンプ31は、水回路30を循環する水を吸入部31aから吸入し吐出部31bから吐出する。吐出された水は、取水部32aを通って貯水タンク32へ貯留される。貯水タンク32に貯留された水は、屋内の空気から熱を吸収する。言い換えると、貯水タンク32に貯留された水は、屋内の空気を冷却する。貯水タンク32に貯留された水は、排水部32bを通った後、第2熱交換器300の第2流通管342aを通って第2流路430へ到達する。第2熱交換器300の第2流路430へ到達した水は、第1流路420を通る第1流体に熱を放出する。熱を放出した水は、吸入部31aから水循環ポンプ31に吸入される。
 (2)熱交換器
 (2-1)全体構成
 第1熱交換器100は、複数の第1伝熱プレート110と、複数の第2伝熱プレート120と、複数の隔壁130と、第1フレーム140と、第2フレーム150とを備えるプレート式の熱交換器である。第1熱交換器100は、内部に、第1流路220と、第2流路230が設けられている。
 第1伝熱プレート110、第2伝熱プレート120、及び隔壁130は、外形が同じ矩形状に形成された金属製の板状部材である。本実施形態では、図2に示されるように、第1伝熱プレート110、第2伝熱プレート120、隔壁130、第1フレーム140、及び第2フレーム150の外形は、第1方向に長い帯状に形成されている。
 複数の第1伝熱プレート110と複数の第2伝熱プレート120とは、第1フレーム140と第2フレーム150との間において、隔壁130を挟んで交互に積層される。複数の第1伝熱プレート110及び複数の第2伝熱プレート120のそれぞれの枚数は、特に限定されず、要求される性能に応じて適宜設定される。第1フレーム140、第1伝熱プレート110、隔壁130、第2伝熱プレート120、及び第2フレーム150は、限定するものではないが、例えば、ろう付けにより、一体的に接合されている。
 以下の説明では、便宜上、第1方向を長手方向DLと呼ぶことがある。また、第1伝熱プレート110、隔壁130、及び第2伝熱プレート120の幅方向を幅方向DWと呼ぶことがある。さらに、第1伝熱プレート110、隔壁130、及び第2伝熱プレート120の厚み方向(言い換えると、積層方向)を厚み方向DTと呼ぶことがある(いずれも、一部の図に示された矢印参照)。また、以下の説明で言及する上下の各方向は、一部の図に示される「上」、「下」に対応する。
 (2-2)詳細構成
 (2-2-1)第1伝熱プレート110
 第1伝熱プレート110は、隣接して積層される隔壁130とともに第1流路220を形成する。第1伝熱プレート110は、第1流通口111a、111bと、第1貫通孔112a、112bと、第1伝熱領域113と、複数の第1接続部115a、115bとを有する。
 第1流通口111a、111bは、第1流路220に第1流体を導入又は導出する孔である。第1流通口111a、111bは、第1伝熱プレート110を厚み方向DTに沿って貫通するように形成されている。本実施形態では、第1流通口111a、111bは、第1伝熱プレート110の平面視において円形に形成されている。第1流通口111a、111bは、第1伝熱領域113の長手方向DLにおける両端から長手方向DLに沿って所定距離離れた位置に、中心が幅方向DWにおける中央に位置するように形成される。第1流通口111aは第1伝熱領域113の上方に形成され、第1流通口111bは第1伝熱領域113の下方に形成される。
 第1貫通孔112a、112bは、厚み方向DTに沿って第2流体が通過する孔である。第1貫通孔112a、112bは、第1伝熱プレート110を厚み方向DTに沿って貫通するように形成されている。本実施形態では、第1貫通孔112a、112bは、第1伝熱プレート110の平面視において円形に形成されている。第1貫通孔112a、112bは、第1流通口111a、111bから第1伝熱プレート110の長手方向DLの端部に向かって長手方向DLに沿って所定距離離れた位置に、中心が幅方向DWにおける中央に位置するように形成される。言い換えると、第1貫通孔112a、112bは、長手方向DLにおいて、第1流通口111a、111bを挟んで第1伝熱領域113と反対の位置に形成されている。第1貫通孔112aは第1流通口111aの上方に形成され、第1貫通孔112bは第1流通口111bの下方に形成される。
 第1伝熱領域113は、第1流通口111a、111bから流入した第1流体が通過しながら第2流体と熱交換をする領域である。第1伝熱領域113は、第1伝熱プレート110と略同じ幅の矩形の領域である。第1伝熱領域113は、第1伝熱プレート110の長手方向DLにおける中央から両端に向かって、第1接続部115a、115bの第1伝熱領域113側の端部まで形成されている。
 第1伝熱領域113は、第1流通口111a、111bから流入した第1流体が通過する溝状の流路である第1伝熱流路114が複数形成されている。第1伝熱流路114は、長手方向DLに沿って形成された溝である。複数の第1伝熱流路114は、第1伝熱プレート110の幅方向DWに沿って所定の間隔で形成されている。
 第1接続部115aは、一端が第1流通口111aに接続され、他端が第1伝熱領域113の長手方向DLにおける上方の端部に接続された溝状の流路である。第1接続部115bは、一端が第1流通口111bに接続され、他端が第1伝熱領域113の長手方向DLにおける下方の端部に接続された溝状の流路である。隣り合う第1接続部115aどうしは、第1分離部116aに分けられている。隣り合う第1接続部115bどうしは、第1分離部116bにより分けられている。
 第1流路220は、第1伝熱領域113(第1伝熱流路114)と、第1伝熱領域113の両端に接続された第1接続部115a、115bとにより構成される。したがって、第1熱交換器100は、第1伝熱プレート110の数と同じ数の第1流路220を有する。
 本実施形態では、第1接続部115a、115bは、図4に示されるように、直線状に形成されている。第1接続部115a、115bは、第1流通口111a、111bから第1伝熱領域113に向かって、流路断面積が拡がるように形成されている。限定するものではないが、本実施形態では、1つの第1流通口111a、111bに対して18本の第1接続部115a、115bが接続されている。
 第1接続部115a、115bは、第1流体の流れ方向に直交する断面において、隣り合う第1接続部115a、115bどうしを分ける第1分離部116a、116bが次の(式1)、好ましくは(式2)の関係を満たすように形成されてもよい。
 0.005<La1/P1<0.15 ・・・(式1)
 0.005<La1/P1<0.05 ・・・(式2)
 図5に示されるように、La1は、第1分離部116a、116bと、隔壁130とが接触する長さである。P1は、隣り合う第1分離部116a、116bの間隔である。P1は、隔壁130と第1接続部115a、115bとが接触する長さであるLb1にLa1を加える(P1=Lb1+La1)ことにより求められる。
 第1伝熱領域113(第1伝熱流路114)と、第1接続部115a、115bとは、第1伝熱プレート110の一方の面に形成される。第1流通口111a、111bと、第1貫通孔112a、112bと、第1伝熱領域113と、第1接続部115a、115bとは、限定するものではないが、例えば、プレス加工により形成される。
 (2-2-2)第2伝熱プレート120
 第2伝熱プレート120は、隣接して積層される隔壁130とともに第2流路230を形成する。第2伝熱プレート120は、第2流通口121a、121bと、第2貫通孔122a、122bと、第2伝熱領域123と、複数の第2接続部125a、125bと、第2突起部127a、127bとを有する。
 第2流通口121a、121bは、第2流路111に第2流体を導入又は導出する孔である。第2流通口121a、121bは、第2伝熱プレート120を厚み方向DTに沿って貫通するように形成されている。本実施形態では、第2流通口121a、121bは、第2伝熱プレート120の平面視において円形に形成されている。第2流通口121a、121bは、第2貫通孔122a、122bから第2伝熱プレート120の長手方向DLの端部に向かって長手方向DLに沿って所定距離離れた位置に、中心が幅方向DWにおける中央に位置するように形成される。言い換えると、第2流通口121a、121bは、第2貫通孔122a、122bを挟んで第2伝熱領域123と反対の位置に形成されている。第2流通口121aは第2伝熱領域123の下方に形成され、第2流通口121bは第2伝熱領域123の上方に形成される。
 第2流通口121aと第1貫通孔112aとは、同じ形状であって、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。第2流通口121bと第1貫通孔112bとは、同じ形状であって、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。
 第2貫通孔122a、122bは、厚み方向に沿って第2流体が通過する孔である。第2貫通孔122a、122bは、第2伝熱プレート120を厚み方向に沿って貫通するように形成されている。本実施形態では、第2貫通孔122a、122bは、第2伝熱プレート120の平面視において円形に形成されている。第2貫通孔122a、122bは、第2伝熱領域123の長手方向DLにおける両端から長手方向DLに沿って所定距離離れた位置に、中心が幅方向DWにおける中央に位置するように形成される。第2貫通孔122aは第2流通口121aの下方に形成され、第2貫通孔122bは第2流通口121bの上方に形成される。
 第2貫通孔122aと第1流通口111aとは、同じ形状であって、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。第2貫通孔122bと第1流通口111bとは、同じ形状であって、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。
 第2伝熱領域123は、第2流通口121a、121bから流入した第2流体が通過しながら第1流体と熱交換をする領域である。第2伝熱領域123は、第2伝熱プレート120と略同じ幅の矩形の領域である。第2伝熱領域123は、第2伝熱プレート120の長手方向DLにおける中央から両端に向かって、第2接続部125a、125bの第2伝熱領域123側の端部まで形成されている。
 第2伝熱領域123は、第2流通口121a、121bから流入した第2流体が通過する溝状の流路である第2伝熱流路124が複数形成されている。第2伝熱流路124は、長手方向DLに沿って形成された溝である。複数の第2伝熱流路124は、第2伝熱プレート120の幅方向DWに沿って所定の間隔で形成されている。
 第2伝熱領域123と第1伝熱領域113とは、同じ形状であって、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。複数の第2伝熱流路124と複数の第1伝熱流路114とは、同じ形状であって、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。
 第2接続部125aは、一端が第2流通口121aに接続され、他端が第2伝熱領域123の長手方向DLにおける下方の端部に接続された溝状の流路である。第2接続部125bは、一端が第2流通口121bに接続され、他端が第2伝熱領域123の長手方向DLにおける上方の端部に接続された溝状の流路である。第2接続部125a、125bのは、第2流通口121a、121bから第2伝熱領域123に向かって、第2貫通孔122a、122bの外方を回り込むように形成されている。隣り合う第2接続部125aどうしは、第2分離部126aにより分けられている。隣り合う第2接続部125bどうしは、第2分離部126bにより分けられている。
 第2流路230は、第2伝熱領域123(第2伝熱流路124)と、第2伝熱領域123の両端に接続された第2接続部125a、125bとにより構成される。したがって、第1熱交換器100は、第2伝熱プレート120の数と同じ数の第2流路230を有する。
 本実施形態では、第2接続部125a、125bは、図7に示されるように、曲線状に形成されている。第2接続部125a、125bは、第2流通口121a、121bから第2伝熱領域123に向かって、流路断面積が拡がるように形成されている。限定するものではないが、本実施形態では、1つの第1流通口111a、111bに対して12本の第2接続部125a、125bが接続されている。より詳細には、図6、図7に示されるように、1つの第1流通口111a、111bに接続された第2接続部125a、125bは、6本ずつ幅方向DWにおいて二手に分かれて第2貫通孔122a、122bの外方を回り込むように形成されている。
 第2突起部127a、127bは、第2接続部125a、125bに設けられる。第2突起部127a、127bは、第2接続部125a、125bを区画して、隔壁130が第2流体から受ける力(圧力)を制限する。第2突起部127aは、平面視において第2伝熱領域123から第2接続部125aに向かって所定の長さにわたり突出する線状に形成されている。第2突起部127bは、平面視において第2伝熱領域123から第2接続部125bに向かって所定の長さにわたり突出する線状に形成されている。本実施形態では、限定するものではないが第2突起部127a、127bは、二手に分かれた6本の第2接続部125a、125bの内、内側に位置する4つに形成されている。
 複数の第2接続部125a、125bは、第2流体の流れ方向に直交する断面において、隣り合う第2接続部125a、125bどうしを分ける第2分離部126a、126b又は第2突起部127a、127bが次の(式3)好ましくは(式4)の関係を満たすように形成されてもよい。
 0.005<La2/P2<0.15 ・・・(式3)
 0.02<La2/P2<0.05 ・・・(式4)
 図8に示されるように、La2は、第2分離部126a、126b又は第2突起部127a、127bと、隔壁130とが接合する長さである。P2は、隣り合う第2分離部126a、126b又は第2突起部127a、127bの間隔である。P2は、隔壁130と第1接続部115a、115bとが接触する長さであるLb2にLa2を加える(P2=Lb1+Lb2)ことにより求められる。
 第2伝熱領域123(第2伝熱流路124)と、第2接続部125a、125bとは、第2伝熱プレート120の一方の面に形成される。第2流通口121a、121bと、第2貫通孔122a、122bと、第2伝熱領域123と、第2接続部125a、125bと、第2突起部127a、127bとは、限定するものではないが、例えば、プレス加工により形成される。
 (2-2-3)隔壁130
 隔壁130は、第1伝熱プレート110と第2伝熱プレート120とを厚み方向DTにおいて隔てる平板である。隔壁130は、2つの第1流通孔131a、131bと、2つの第2流通孔132a、132bとを有する。
 第1流通孔131a、131bは、厚み方向DTに沿って第1流体が通過する孔である。第1流通孔131a、131bは、隔壁130を厚み方向DTに沿って貫通するように形成されている。本実施形態では、第1流通孔131a、131bは、隔壁130の平面視において円形に形成されている。
 第1流通孔131aと第1流通口111a及び第2貫通孔122bとは、同じ形状であって、隔壁130と第1伝熱プレート110及び第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。第1流通孔131bと第1流通口111b及び第2貫通孔122aとは、同じ形状であって、隔壁130と第1伝熱プレート110及び第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。
 第2流通孔132a、132bは、厚み方向に沿って第2流体が通過する孔である。第2流通孔132a、132bは、隔壁130を厚み方向に沿って貫通するように形成されている。本実施形態では、第2流通孔132a、132bは、隔壁130の平面視において円形に形成されている。
 第2流通孔132aと第2流通口121b及び第1貫通孔112aとは、同じ形状であって、隔壁130と第1伝熱プレート110及び第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。第2流通孔132bと第2流通口121a及び第1貫通孔112bとは、同じ形状であって、隔壁130と第1伝熱プレート110及び第2伝熱プレート120とを積層した場合に、平面視において重なり合う位置に形成されている。
 (2-2-4)第1連通路211a、211b及び第2連通路212a、212b
 複数の第1伝熱プレート110、複数の第2伝熱プレート120、及び複数の隔壁130が積層されることで、第1流通孔131aと、第1流通口111aと、第2貫通孔122bとは、互いに連通する。互いに連通した第1流通孔131aと、第1流通口111aと、第2貫通孔122bとは、厚み方向DTに沿って延びる第1連通路211aを構成する。第1連通路211aは、第1流通口111aを介して第1流路220と連通する。
 複数の第1伝熱プレート110、複数の第2伝熱プレート120、及び複数の隔壁130が積層されることで、第1流通孔131bと、第1流通口111bと、第2貫通孔122aとは、互いに連通する。互いに連通した第1流通孔131bと、第1流通口111bと、第2貫通孔122aとは、厚み方向DTに沿って延びる第1連通路211bを構成する。第1連通路211bは、第1流通口111bを介して第1流路220と連通する。
 複数の第1伝熱プレート110、複数の第2伝熱プレート120、及び複数の隔壁130が積層されることで、第2流通孔132bと、第2流通口121aと、第1貫通孔112bとは、互いに連通する。互いに連通した第2流通孔132bと、第2流通口121aと、第1貫通孔112bとは、厚み方向DTに沿って延びる第2連通路212aを構成する。第2連通路212aは、第2流通口121aを介して第2流路230と連通する。
 複数の第1伝熱プレート110、複数の第2伝熱プレート120、及び複数の隔壁130が積層されることで、第2流通孔132aと、第2流通口121bと、第1貫通孔112aとは、互いに連通しする。互いに連通した第2流通孔132aと、第2流通口121bと、第1貫通孔112aとは、厚み方向DTに沿って延びる第2連通路212bを構成する。第2連通路212bは、第2流通口121bを介して第2流路230と連通する。
 (2-2-5)第1フレーム140及び第2フレーム150
 第1フレーム140と第2フレーム150とは、隔壁130を挟んで交互に積層された複数の第1伝熱プレート110及び複数の第2伝熱プレート120を、厚み方向DTにおける両端で挟む金属製の板状部材である。
 第1フレーム140は、第1流通管141aと、第1流通管141bと、第2流通管142aと、第2流通管142bとを有する。
 第1流通管141aは、第1フレーム140を貫通し、第1連通路211aに連通している。
 第1流通管141bは、第1フレーム140を貫通し、第1連通路211bに連通している。
 第2流通管142aは、第1フレーム140を貫通し、第2連通路212aに連通している。
 第2流通管142bは、第1フレーム140を貫通し、第2連通路212bに連通している。
 (2-3)第1流体及び第2流体の流れ
 (2-3-1)暖房運転
 第1熱交換器100の第1流通管141aから導入された低圧気液二相の第1流体は、第1連通路211aを通過し、第1流通口111aから第1流路220に流入する。第1流路220に流入した気液二相の第1流体は、第1接続部115a、第1伝熱領域113(第1伝熱流路114)、第1接続部115bをこの順で通過する。第1伝熱領域113を流れる第1流体は、隔壁130を介して隣り合う第2流路230の第2流体と熱交換を行って蒸発し、第2流体から熱を吸収する。言い換えると、第1熱交換器100は第1流体の蒸発器として機能する。蒸発した第1流体は、低圧気相の第1流体となり、第1流通口111b及び第1連通路211bを通過して第1流通管141bから導出される。
 一方、第1熱交換器100の第2流通管142aから導入された高圧気相の第2流体は、第2連通路212aを通過し、第2流通口121aから第2流路230に流入する。第2流路230に流入した高圧気相の第2流体は、第2接続部125a、第2伝熱領域123(第2伝熱流路124)、第2接続部125bをこの順で通過する。第2伝熱領域123を流れる第2流体は、隔壁130を介して隣り合う第1流路220の第1流体と熱交換を行って凝縮し、放熱する。言い換えると、第1熱交換器100は第2流体の凝縮器として機能する。凝縮した第2流体は、高圧液相の第2流体となり、第2流通口121b及び第2連通路212bを通過して第2流通管142bから導出される。
 (2-3-2)冷房運転
 第1熱交換器100の第1流通管141bから導入された高圧気相の第1流体は、第1連通路211bを通過し、第1流通口111bから第1流路220に流入する。第1流路220に流入した高圧気相の第1流体は、第1接続部115b、第1伝熱領域113(第1伝熱流路114)、第1接続部115aをこの順で通過する。第1伝熱領域113を流れる第1流体は、隔壁130を介して隣り合う第2流路230の第2流体と熱交換を行って凝縮し、第2流体に放熱する。言い換えると、第1熱交換器100は第1流体の放熱器として機能する。凝縮した第1流体は、高圧液相の第1流体となり、第1流通口111a及び第1連通路211aを通過して第1流通管141aから導出される。
 一方、第1熱交換器100の第2流通管142bから導入された低圧気液二相の第2流体は、第2連通路212bを通過し、第2流通口121bから第2流路230に流入する。第2流路230に流入した低圧気液二相の第2流体は、第2接続部125b、第2伝熱領域123(第2伝熱流路124)、第2接続部125aをこの順で通過する。第2伝熱領域123を流れる第2流体は、隔壁130を介して隣り合う第1流路220の第1流体と熱交換を行って蒸発し、第1流体から熱を吸収する。言い換えると、第1熱交換器100は第2流体の蒸発器として機能する。蒸発した第2流体は、低圧気相の第2流体となり、第2流通口121a及び第2連通路212aを通過して第2流通管142aから導出される。
 (3)特徴
 (3-1)
 第1熱交換器100は、互いに積層された、第1伝熱プレート110及び第2伝熱プレート120を備える。
 第1伝熱プレート110は、第1流通口111a、111bと、第1貫通孔112a、112bと、第1伝熱領域113と、第1接続部115a、115bとを有する。
 第1流通口111a、111bは、第1流体を導入又は導出する。第1貫通孔112a、112bは、第1流体よりも低沸点である第2流体が厚み方向に通過する。第1伝熱領域113は、第1流通口111a、111bから流入した第1流体が通過しながら第2流体と熱交換をする領域である。第1接続部115a、115bは、一端が第1流通口111a、111bに接続され、他端が第1伝熱領域113に接続される。
 第2伝熱プレート120は、第2流通口121a、121bと、第2貫通孔122a、122bと、第2伝熱領域123と、第2接続部125a、125bとを有する。
 第2流通口121a、121bは、第1貫通孔112a、112bと連通し、第2流体を導入又は導出する。第2貫通孔122a、122bは、第1流体が厚み方向に通過する。第2伝熱領域123は、第2流通口121a、121bから流入した第2流体が通過しながら第1流体と熱交換をする領域である。第2接続部125a、125bは、一端が第2流通口121a、121bに接続され、他端が第2伝熱領域123に接続される。
 第2流通口121a、121bは、第2貫通孔122a、122bを挟んで第2伝熱領域123と反対の位置に形成される。第2接続部125a、125bは、第2貫通孔122a、122bの外方を回り込むように形成され、第2突起部127a、127bが設けられている。
 2つの伝熱プレートを備える熱交換器において、第1流体が流れる流路の長さと第2流体が流れる流路の長さとが同じに形成されると、2つの流体には、同程度の圧力損失が生じる。このようにして生じる圧力損失に起因する圧力の減少割合を比較した場合、2つの流体の内、流入時の圧力が低い流体ほど大きな割合で圧力が減少する。この結果、熱交換器が、熱交換性能を十分に発揮できないという課題がある。
 第1熱交換器100では、第2接続部125a、125bが、第2貫通孔122a、122bの外方を回り込むように形成されている。言い換えると、第1流体が通過する第1接続部115a、115bの流路の長さが、第1流体よりも低沸点の第2流体が通過する第2接続部125a、125bの流路長さよりも短く形成される。したがって、第1接続部115a、115bを通過する際に第1流体に生じる圧力損失を、第2接続部125a、125bを通過する際に第2流体に生じる圧力損失よりも少なくできる。これにより、第1流体の圧力が大きな割合で減少することが抑制される。したがって、第1熱交換器100によれば、2つの流体の流入時のおける圧力に差がある場合でも、熱交換性能を確保できる。
 (3-2)
 第2突起部127a、127bは、平面視において線状である。
 (3-3)
 第2接続部125a、125bは、平面視において線状である。
 (3-4)
 第1接続部115a、115bは、第1流通口111a、111bから第1伝熱領域113に向かって、流路断面積が拡がるように形成されている。
 これにより、第1接続部115a、115bを通過する第1流体に生じる圧力損失がさらに低減するため、第1流体の圧力が大きな割合で減少することがさらに抑制される。このため、第1熱交換器100により、より効果的に熱交換性能を確保できる。
 (3-5)
 第1熱交換器100は、隔壁130を備える。隔壁130は、第1伝熱プレート110と第2伝熱プレート120との間に積層された板状部材である。第1接続部115a、115bは、第1流体の流れ方向に直交する断面において、隣り合う第1接続部115a、115bどうしを分ける第1分離部116a、116bと、隔壁130とが接触する長さをLa1、隣り合う第1分離部の間隔をP1とすると、
 0.005<La1/P1<0.15
の関係を満たすように形成される。
 第1接続部115a、115bが上記の関係を満たすように形成されることで、隔壁130が第1接続部115a、115bを通過する第1流体から受ける力(圧力)が制限され、耐圧強度を超えることが抑制される。
 (3-6)
 さらに、第1接続部115a、115bは、
 0.005<La1/P1<0.05
の関係を満たすように形成される。
 第1接続部115a、115bが上記の関係を満たすように形成されることで、隔壁130が第1接続部115a、115bを通過する第1流体から受ける力(圧力)が制限され、耐圧強度を超えることが抑制される。
 (3-7)
 第2接続部125a、125bは、第2流体の流れ方向に直交する断面において、隣り合う第2接続部125a、125bどうしを分ける第2分離部126a、126b又は第2突起部127a、127bと、隔壁130とが接触する長さをLa2、隣り合う第2分離部126a、126b又は第2突起部127a、127bの間隔をP2とすると、
 0.005<L2/P2<0.15
の関係を満たすように形成される。
 第2接続部125a、125bが上記の関係を満たすように形成されることで、隔壁130が第2接続部125a、125bを通過する第2流体から受ける力(圧力)が制限され、耐圧強度を超えることが抑制される。
 (3-8)
 さらに、第2接続部125a、125bは、
 0.02<L2/P2<0.15
の関係を満たすように形成される。
 第2接続部125a、125bが上記の関係を満たすように形成されることで、隔壁130が第2接続部125a、125bを通過する第2流体から受ける力(圧力)が制限され、耐圧強度を超えることが抑制される。
 (4)変形例
 (4-1)変形例A
 第2接続部125a、125bは、第2貫通孔122a、122bの外方を回り込むように形成され、突起部により区画されていれば、上記の態様に限定されない。
 変形例Aに係る第1熱交換器100の第2接続部125bは、図9に示されるように、第2貫通孔122bの外方に設けられた面状の領域(図9のハッチングを付した領域)であり、平面視において円形状に形成された複数の第2突起部128bが設けられている。第2突起部128bは、例えば、平面視における半径が1mm、厚み方向DTにおける高さが0.5mmに形成され、1mmの間隔を空けて長手方向DL及び幅方向DWに並べて配置される。第2突起部128bは、限定するものではないが、例えば、プレス加工又はエッチングにより形成される。図示は省略するが、第2伝熱プレート120の下方に設けられた第2接続部125aも同様の形状に形成され、複数の第2突起部128aが設けられる。
 第2突起部128a、128bの形状は、円形状に限定されない。第2突起部128a、128bの形状は、平面視において、三角形状(図10参照)、四角形状(図11参照)、涙滴形状(図12参照)のいずれかであってもよい。また、第2接続部125bの複数の第2突起部128a、128bは、互いに形状が異なっていてもよい。
 (4-2)変形例B
 第1接続部115a、115bは、曲線状に形成されてもよい。
 変形例Bに係る第1熱交換器100が有する第1接続部115aは、図13に示されるように、曲線状に形成される。図示は省略するが、第1伝熱プレート110の下方に設けられた第1接続部115bも同様の形状に形成される。
 (4-3)変形例C
 上記実施形態では、第1流体としてR1234zeが例示され、第2流体として二酸化炭素が例示されたが、これに限定されない。第1流体としては、例えば、R32、HFO系冷媒、R32とHFO系第1流体の混合冷媒、二酸化炭素、アンモニア、プロパン等を用いることができる。第2流体としては、第1流体よりも低沸点の流体であればよく、例えば、R-32、HFO系冷媒、HFC-32とHFO系冷媒の混合冷媒、二酸化炭素、アンモニア、プロパン等の冷媒、水、不凍液等を用いることができる。
 (4-4)変形例D
 上記実施形態では、第1流路220を流れる第1流体と第2流路230を流れる第2流体とが対向流となるように第1熱交換器100が形成されているが、第1熱交換器100は、第1流路220を流れる第1流体と第2流路230を流れる第2流体とが並行流となるように形成されてもよい。
 (4-5)変形例E
 上記実施形態では、第1流通管141a、第1流通管141b、第2流通管142a、及び第2流通管142bの全てが第1フレーム140に形成されているが、第1流通管141a、第1流通管141b、第2流通管142a、及び第2流通管142bの少なくとも一部は、第2フレーム150に形成されてもよい。
 (4-6)変形例F
 第1接続部115a、115bは、一端が第1流通口111aに接続され、他端が第1伝熱領域113に接続されていれば、上記の態様に限定されない。第1接続部115a、は、第1突起部117aがさらに設けられてもよい。また、第1接続部115bは、第1突起部117bがさらに設けられてもよい。
 図14に示されるように、第1突起部117aは、第1接続部115aを区画して、隔壁130が第1流体から受ける力(圧力)を制限する。第1突起部117aは、平面視において第1伝熱領域113から第1接続部115aに向かって所定の長さにわたり突出する線状に形成されている。図示は省略するが、第1伝熱プレート110の下方に設けられた第1接続部115bも同様の形状に形成され、複数の第1突起部117bが設けられる。
 (4-7)変形例G
 変形例Gに係る第1熱交換器100の第1接続部115aは、図15に示されるように、第1流通口111aの外方に設けられた面状の領域であり、平面視において円形状に形成された複数の第1突起部117aが設けられている。
 変形例Gに係る第1熱交換器100では、第1伝熱プレート110は、平面視において、上側端部と第1接続部115aとの間に、所定幅にわたって第1接続部115aが設けられていない帯状領域である隙間119aを有する。隙間119aを有することにより、第1流体が通過する第1接続部115aは、第2流体が通過する第2接続部125aよりも流路長さが長くなることが抑制される。
 第1突起部117aは、例えば、平面視における半径が1mm、厚み方向DTにおける高さが0.5mmに形成され、1mmの間隔を空けて長手方向DL及び幅方向DWに並べて配置される。第1突起部117aは、限定するものではないが、例えば、プレス加工又はエッチングにより形成される。図示は省略するが、第1伝熱プレート110の下方に設けられた第1接続部115bも同様の形状に形成され、複数の第1突起部117bが設けられる。
 第1突起部117a、117bの形状は、円形状に限定されない。第1突起部117a、117bの形状は、平面視において、図10から図13において第2突起部128bの例として示した、三角形状、四角形状、涙滴形状のいずれかであってもよい。また、第1接続部115a、115bの複数の第1突起部117a、117bは、互いに形状が異なっていてもよい。
 面状の第1接続部115aの形状は、図16に示されるように、第1流通口111aから第1伝熱領域113に向かって、幅が拡がる台形状であってもよい。図示は省略するが、第1伝熱プレート110の下方に設けられた第1接続部115bも同様に形成される。
 <第2実施形態>
 (1)給湯器2
 本開示の第2実施形態に係る第1熱交換器100を備える給湯器2について、図12を参照して説明する。給湯器2は、外部から供給された水を加熱する。なお、以下の説明では、第1実施形態と同様又は対応する特徴については、同じ符号を付して説明を省略する。
 給湯器2は、第1熱交換器100と、水回路50と、熱源側回路60と、給湯タンク70とを有する。水回路50は、水を循環させる回路である。熱源側回路60は、水よりも低沸点の流体である二酸化炭素を循環させる回路である。水と二酸化炭素との間での熱交換は、第1熱交換器100において行われる。本実施形態では、水回路50は、屋内に設置され、熱源側回路60は、屋外に設置される。
 水は、第1流体の一例である。二酸化炭素は、第2流体の一例である。水回路50は、第1流体回路の一例である。熱源側回路60は、第2流体回路の一例である。
 (1-1)水回路50
 水回路50は、水循環ポンプ51と、利用側熱交換器52と、及び第1熱交換器100の第1流路220とにより構成される。
 水循環ポンプ51は、水回路50の内部において水を循環させる。水循環ポンプ51は、水回路50の内部の水を吸入部51aから吸入し、吐出部51bから吐出する。
 吸入部51aは、第1熱交換器100の第1流通管141bに接続されている。
 利用側熱交換器52は、水回路50を循環する水と給湯タンク70の内部に貯留された水との間で熱交換をさせる。利用側熱交換器52は、内部を通る水が給湯タンク70に貯留された水と熱交換できるように、給湯タンク70の内部に配置される。
 利用側熱交換器52の一端は、水循環ポンプ51の吐出部51bに接続されている。利用側熱交換器52の他端は、第1熱交換器100の第1流通管141aに接続されている。
 (1-2)熱源側回路60
 熱源側回路60は、熱源側圧縮機61と、熱源側膨張弁62と、熱源側熱交換器63と、第1熱交換器100の第2流路230とにより構成される。
 熱源側圧縮機61は、熱源側回路60における低圧気相の二酸化炭素を吸入部61aから吸入し、それを圧縮して、高圧気相の二酸化炭素として吐出部61bから吐出する。
 吐出部61bは、第1熱交換器100の第2流通管142aに接続される。
 熱源側膨張弁62は、熱源側回路60を循環する二酸化炭素の流量を調節し、二酸化炭素を減圧させる減圧装置として機能する。
 熱源側膨張弁62の一端は、第1熱交換器100の第2流通管142bに接続される。熱源側膨張弁62の他端は、熱源側熱交換器63の一端に接続される。
 熱源側熱交換器63は、蒸発機として機能し、二酸化炭素と熱源(例えば、外気)との間で熱交換を行わせる。
 熱源側熱交換器63の他端は、熱源側圧縮機61の吸入部61aに接続される。
 (1-3)給湯タンク70
 給湯タンク70は、外部から供給される水を貯留する。貯留された水は、利用側熱交換器42を通る水との間で熱交換をする。給湯タンク70は、外部から供給される水を入水部70bから取り入れ貯留する。貯留された水は、出水部70aから排出される。
 (1-4)動作
 給湯器2の運転中における、各部の動作を説明する。給湯器2が運転を開始すると、図示しない制御部が、水循環ポンプ51及び熱源側圧縮機61を駆動し、熱源側膨張弁62の開度を給湯タンク70から排出される水の目標温度に応じた適切な開度に設定する。
 (1-4-1)水回路30の動作
 水循環ポンプ51が駆動すると、吸入部51aから吸入された水は、吐出部51bから吐出される。吐出された水は、利用側熱交換器52で給湯タンク70に貯留された水と熱交換をする。熱交換をした水回路30を循環する水は、第1熱交換器100の第1流通管141aを通過して第1流路220へ入る。第1流路220を通過する水は、第2流路230を通る二酸化炭素から熱を吸収する(言い換えると、二酸化炭素により加熱される)。熱を吸収した水回路30を循環する水は、第1流通管141bを通過して第1流路220を出る。水循環ポンプ51は、第1流路220を出た水を吸入部51aから吸入し、吐出部51bから吐出する。
 (1-4-2)熱源側回路60の動作
 熱源側圧縮機61は、熱源側回路60における低圧気相の二酸化炭素を吸入部61aから吸入し、高圧気相の二酸化炭素として吐出部61bから吐出する。高圧気相の二酸化炭素は、第1熱交換器100の第2流通管142aを通過して第2流路230へ入る。第1熱交換器100は、高圧気相の二酸化炭素を放熱させることにより凝縮させ高圧液相の二酸化炭素とする。このとき、二酸化炭素は、第1熱交換器100の第1流路220を通る水へ熱を放出する(言い換えると、水を加熱する)。高圧液相の二酸化炭素は、第2流通管142bを通過して第2流路230を出て、熱源側膨張弁62へ到達する。適切な開度を設定された熱源側膨張弁62は、高圧液相の二酸化炭素を減圧し低圧気液二相の二酸化炭素とする。低圧気液二相の二酸化炭素は、熱源側熱交換器63へ到達する。熱源側熱交換器63は、低圧気液二相の二酸化炭素を蒸発させ低圧気相の二酸化炭素とする。このとき、二酸化炭素は、熱源(外気)から熱を吸収する。低圧気相の二酸化炭素は、熱源側熱交換器63を出て、吸入部61aから熱源側圧縮機61に吸入される。
 (2)特徴
 給湯器2においても、第1熱交換器100は、冷媒サイクル装置1に用いられた場合と同様の効果を奏する。具体的には、第1接続部115a、115bを通過する際に水に生じる圧力損失を、第2接続部125a、125bを通過する際に二酸化炭素に生じる圧力損失よりも少なくできる。これにより、水の圧力が大きな割合で減少することが抑制される。したがって、第1熱交換器100によれば、2つの流体の流入時のおける圧力に差がある場合でも、熱交換性能を確保できる。
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 1  冷媒サイクル装置
 2  給湯器
 10  第1流体回路
 20  第2流体回路
 30  水回路(冷媒サイクル装置)
 40  制御部
 50  水回路(給湯器)
 60  熱源側回路
 100  第1熱交換器
 110  第1伝熱プレート
 111a、111b  第1流通口
 112a、112b  第1貫通孔
 113  第1伝熱領域
 115a、115b  第1接続部
 116a、116b  第1分離部
 117a、117b  第1突起部
 120  第2伝熱プレート
 121a、121b  第2流通口
 122a、122b  第2貫通孔
 123  第2伝熱領域
 125a、125b  第2接続部
 126a、126b  第2分離部
 127a、127b  第2突起部
 128b  第2突起部(円形状)
 130  隔壁
 DL  長手方向
 DT  厚み方向
 DW  幅方向
特表2012-512382号公報

Claims (19)

  1.  互いに積層された、第1伝熱プレート(110)及び第2伝熱プレート(120)を備え、
     前記第1伝熱プレートは、
      第1流体を導入又は導出する2つの第1流通口(111a、111b)と、
      前記第1流体よりも低沸点である第2流体が厚み方向(DT)に通過する2つの第1貫通孔(112a、112b)と、
      前記第1流通口から流入した前記第1流体が通過しながら前記第2流体と熱交換をする第1伝熱領域(113)と、
      一端が前記第1流通口に接続され、他端が前記第1伝熱領域に接続された第1接続部(115a、115b)とを有し、
     前記第2伝熱プレート(120)は、
      前記第1貫通孔と連通し、前記第2流体を導入又は導出する第2流通口(121a、121b)と、
      前記第1流体が厚み方向に通過する2つの第2貫通孔(122a、122b)と、
      前記第2流通口から流入した前記第2流体が通過しながら前記第1流体と熱交換をする第2伝熱領域(123)と、
      一端が前記第2流通口に接続され、他端が前記第2伝熱領域に接続された第2接続部(125a、125b)とを有し、
     前記第2流通口は、
      前記第2貫通孔を挟んで前記第2伝熱領域と反対の位置に形成され、
     前記第2接続部は、
      前記第2貫通孔の外方を回り込むように形成され、
      第2突起部(127a、127b、128a、128b)が設けられている、熱交換器。
  2.  前記第2突起部は、
      平面視において線状である、
    請求項1に記載の熱交換器。
  3.  前記第2接続部は、
      平面視において線状である、
    請求項1又は2に記載の熱交換器。
  4.  前記第2突起部は、
      平面視において円形状(128b)である、
    請求項1に記載の熱交換器。
  5.  前記第2突起部は、
      平面視において三角形状である、
    請求項1に記載の熱交換器。
  6.  前記第2突起部は、
      平面視において四角形状である、
    請求項1に記載の熱交換器。
  7.  前記第2突起部は、
      平面視において涙滴形状である、
    請求項1に記載の熱交換器。
  8.  前記第1接続部は、
     前記第1流通口から前記第1伝熱領域に向かって、
    流路断面積が拡がるように形成されている、
    請求項1に記載の熱交換器。
  9.  前記第1接続部は、
      第1突起部(117a、117b)が設けられており、
     前記第1突起部は、
      平面視において線状である、
    請求項8に記載の熱交換器。
  10.  前記第1接続部は、
      第1突起部が設けられており、
     前記第1突起部は、
      平面視において円形状である、
    請求項8に記載の熱交換器。
  11.  前記第1接続部は、
      第1突起部が設けられており、
     前記第1突起部は、
      平面視において三角形状である、
    請求項8に記載の熱交換器。
  12.  前記第1接続部は、
      第1突起部が設けられており、
     前記第1突起部は、
      平面視において四角形状である、
    請求項8に記載の熱交換器。
  13.  前記第1接続部は、
      第1突起部が設けられており、
     前記第1突起部は、
      平面視において涙滴形状である、
    請求項8に記載の熱交換器。
  14.  前記第1伝熱プレートと前記第2伝熱プレートとの間に積層された板状部材である隔壁(130)を備え、
     前記第1接続部は、
      前記第1流体の流れ方向に直交する断面において、
      隣り合う前記第1接続部どうしを分ける第1分離部(116a、116b)と前記隔壁とが接触する長さをLa1、
      隣り合う前記第1分離部の間隔をP1
    とすると、
     0.005<La1/P1<0.15
     の関係を満たすように形成されている、
    請求項1から13のいずれか1項に記載の熱交換器。
  15.  前記第1接続部は、
     0.005<La1/P1<0.05
     の関係を満たすように形成されている、
    請求項14に記載の熱交換器。
  16.  前記第1伝熱プレートと前記第2伝熱プレートとの間に積層された板状部材である隔壁を備え、
     前記第2接続部は、
      前記第2流体の流れ方向に直交する断面において、
      隣り合う前記第2接続部どうしを分ける第2分離部(126a、126b)又は前記第2突起部と、前記隔壁とが接触する長さをLa2、
      隣り合う前記第2分離部又は前記第2突起部の間隔をP2
    とすると、
     0.005<L2/P2<0.15
     の関係を満たすように形成されている、
    請求項1から15のいずれか1項に記載の熱交換器。
  17.  複数の前記第2接続部は、
     0.02<L2/P2<0.15
     の関係を満たすように形成されている、
    請求項16に記載の熱交換器。
  18.  請求項1から17のいずれか1項に記載の熱交換器と、
     前記第1流体が循環する第1流体回路(10)と、
     前記第2流体が循環する第2流体回路(20)と
    を備える、
    冷媒サイクル装置。
  19.  請求項1から17のいずれか1項に記載の熱交換器と、
     前記第1流体が循環する第1流体回路(50)と、
     前記第2流体が循環する第2流体回路(60)と
    を備える、
    給湯器。
PCT/JP2023/025800 2022-07-13 2023-07-12 熱交換器、冷媒サイクル装置、給湯器 WO2024014495A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112679 2022-07-13
JP2022112679 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014495A1 true WO2024014495A1 (ja) 2024-01-18

Family

ID=89536760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025800 WO2024014495A1 (ja) 2022-07-13 2023-07-12 熱交換器、冷媒サイクル装置、給湯器

Country Status (2)

Country Link
JP (1) JP2024012151A (ja)
WO (1) WO2024014495A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280764A (ja) * 1996-04-17 1997-10-31 Hitachi Ltd プレ−ト式熱交換器
JPH10339590A (ja) * 1997-06-10 1998-12-22 Daikin Ind Ltd プレート式熱交換器
JP2004504584A (ja) * 2000-07-21 2004-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 熱伝達装置
WO2017138322A1 (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム
WO2021157514A1 (ja) * 2020-02-05 2021-08-12 株式会社日阪製作所 プレート式熱交換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280764A (ja) * 1996-04-17 1997-10-31 Hitachi Ltd プレ−ト式熱交換器
JPH10339590A (ja) * 1997-06-10 1998-12-22 Daikin Ind Ltd プレート式熱交換器
JP2004504584A (ja) * 2000-07-21 2004-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 熱伝達装置
WO2017138322A1 (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム
WO2021157514A1 (ja) * 2020-02-05 2021-08-12 株式会社日阪製作所 プレート式熱交換器

Also Published As

Publication number Publication date
JP2024012151A (ja) 2024-01-25

Similar Documents

Publication Publication Date Title
US11519673B2 (en) Plate heat exchanger and heat pump device including the same
US10648742B2 (en) Finless heat exchanger, outdoor unit of an air-conditioning apparatus including the finless heat exchanger, and indoor unit of an air-conditioning apparatus including the finless heat exchanger
CN110651164B (zh) 板式热交换器及热泵式供热水系统
CN112997045B (zh) 板式热交换器、热泵装置及热泵式制冷制热热水供给系统
JP6116683B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP2003090690A (ja) 積層型熱交換器及び冷凍サイクル
CN109564067B (zh) 热交换器和使用它的制冷系统
EP3875878B1 (en) Heat exchanger and refrigeration cycle device
CN114174753A (zh) 热交换器和热泵装置
JP6177459B1 (ja) プレート式熱交換器および冷凍サイクル装置
JP5661205B2 (ja) 積層型熱交換器及びそれを搭載したヒートポンプシステム、並びに積層型熱交換器の製造方法
WO2024014495A1 (ja) 熱交換器、冷媒サイクル装置、給湯器
EP2918958B1 (en) Plate heat exchanger and refrigeration cycle device provided with plate heat exchanger
CN109564075B (zh) 热交换器和使用它的制冷系统
CN110285603B (zh) 热交换器和使用其的制冷系统
JP2009079779A (ja) プレート式熱交換器及びこのプレート式熱交換器を用いた空気調和装置
WO2019150864A1 (ja) 冷凍装置
WO2021140611A1 (ja) プレート式熱交換器、プレート式熱交換器を備えたヒートポンプ装置、および、ヒートポンプ装置を備えたヒートポンプ式暖房システム
WO2023054353A1 (ja) 熱交換器
WO2024024465A1 (ja) プレート積層型熱交換器
WO2020136863A1 (ja) プレート式熱交換器およびヒートポンプ装置
JP2024013036A (ja) 熱交換器、及び冷媒サイクル装置
JP2014126237A (ja) 熱交換器
JP2018138847A (ja) 積層型熱交換器
JP2015068621A (ja) 水熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839667

Country of ref document: EP

Kind code of ref document: A1