WO2024024465A1 - プレート積層型熱交換器 - Google Patents

プレート積層型熱交換器 Download PDF

Info

Publication number
WO2024024465A1
WO2024024465A1 PCT/JP2023/025393 JP2023025393W WO2024024465A1 WO 2024024465 A1 WO2024024465 A1 WO 2024024465A1 JP 2023025393 W JP2023025393 W JP 2023025393W WO 2024024465 A1 WO2024024465 A1 WO 2024024465A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
communication hole
heat exchanger
plate
inlet
Prior art date
Application number
PCT/JP2023/025393
Other languages
English (en)
French (fr)
Inventor
隆志 洲脇
周平 松坂
Original Assignee
株式会社ティラド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティラド filed Critical 株式会社ティラド
Publication of WO2024024465A1 publication Critical patent/WO2024024465A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present invention relates to a plate stacked heat exchanger, and particularly to a structure that suppresses uneven flow in each stage of a flow path through which fluid flows.
  • FIG. 5A shows the flow rate distribution in each stage of the first flow path of the heat exchanger of FIG. 5A.
  • FIG. 5B shows the flow rate distribution in each stage of the first flow path of the heat exchanger of FIG. 5A.
  • FIG. 6A shows the inlet and outlet of the first fluid at one end in the stacking direction of the plates (U-shaped inlet and outlet arrangement).
  • FIG. 6B shows the flow rate distribution of each stage of the first flow path of the heat exchanger of FIG. 6A.
  • an object of the present invention is to suppress the drift tendency between the stages in a plate stacked heat exchanger with an I-shaped entrance and exit arrangement.
  • a first invention for solving the above problem is that a large number of dish-shaped plates 1 and 2 are stacked, A first flow path 4 through which the first fluid 3 flows and a second flow path 5 through which the second fluid 6 flows are formed alternately every other plate in the stacking direction of the plates 1 and 2,
  • Each plate 1, 2 is provided with a first communication hole 7 and a second communication hole 8 spaced apart from each other,
  • An inlet 10 for the first fluid 3 is formed at one end in the stacking direction of the plates 1 and 2, and an outlet 11 for the first fluid 3 is formed at the other end.
  • the inlet 10 is connected to the first communication hole 7,
  • This is a plate stacked heat exchanger in which a bypass 12 from the second communication hole 8 at one end to the outlet 11 is formed through the inside or outside of the core 9.
  • a second invention for solving the above problem is that a large number of dish-shaped plates 1 and 2 are stacked, A first flow path 4 through which the first fluid 3 flows and a second flow path 5 through which the second fluid 6 flows are formed alternately every other plate in the stacking direction of the plates 1 and 2, Each plate 1, 2 is provided with a first communication hole 7 and a second communication hole 8 spaced apart from each other, In a plate stacked heat exchanger having a core 9 in which the first fluid 3 is guided from the second communication hole 8 to the first communication hole 7 via the first flow path 4, An inlet 10 for the first fluid 3 is formed at one end in the stacking direction of the plates 1 and 2, and an outlet 11 for the first fluid 3 is formed at the other end.
  • the inlet 10 is connected to a bypass 12;
  • a bypass 12 from the inlet 10 to the second communication hole 8 at the other end is formed through the inside or outside of the core 9,
  • This is a plate stacked heat exchanger in which an outlet 11 is connected to a first communication hole 7.
  • a third invention provides a plate stacked heat exchanger according to either the first invention or the second invention, comprising: This is a plate stacked heat exchanger in which the first fluid 3 is a liquid.
  • an inlet 10 for the first fluid 3 is formed at one end in the stacking direction of each plate 1, 2, an outlet 11 for the first fluid 3 is formed at the other end, and the inlet 10 is formed at the other end.
  • the inlet and the outlet are substantially provided at one end in the stacking direction (
  • the flow paths are similar to those in the case of the U-shaped entrance/exit arrangement, and the drift tendency is at least partially canceled out, so that the drift flow between the stacked flow paths is suppressed.
  • an inlet 10 for the first fluid 3 is formed at one end in the stacking direction of the plates 1 and 2, an outlet 11 for the first fluid 3 is formed at the other end, and the inlet 10 is formed at the other end.
  • the inlet and the outlet are substantially provided at one end in the stacking direction (
  • the flow paths are similar to those in the case of the U-shaped entrance/exit arrangement, and the drift tendency is at least partially canceled out, so that the drift flow between the stacked flow paths is suppressed.
  • the first fluid 3 is a liquid
  • FIG. 1 is a plan view of a plate stacked heat exchanger according to a first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing the flow state of the first fluid 3 in the core 9 of the plate stacked heat exchanger of the first embodiment.
  • FIG. 3 is an explanatory diagram showing the flow state of the first fluid 3 in the core 9 of a conventional plate stacked heat exchanger (I-shaped entrance/exit arrangement).
  • 2 is a graph showing the flow path distribution of each stage in the core 9 of the heat exchanger (conventional type).
  • FIG. 3 is a sectional view showing another example of the first embodiment of the present invention.
  • FIG. 2 is a sectional view showing a plate stacked heat exchanger according to a second embodiment of the present invention.
  • 1 is a schematic diagram of a conventional first plate stacked heat exchanger in which an inlet 10 and an outlet 11 are arranged separately above and below a core 9; A graph showing the flow path distribution of each stage in the core 9 of the heat exchanger.
  • FIG. 2 is a schematic diagram of a second conventional plate stacked heat exchanger in which an inlet 10 and an outlet 11 are arranged only on the upper end side of the core 9; A graph showing the flow path distribution of each stage in the core 9 of the heat exchanger.
  • a core 9 is formed by stacking a large number of plate-shaped plates 1 and 2 with raised outer edges.
  • First channels 4 through which the first fluid 3 flows and second channels 5 through which the second fluid 6 flows are alternately formed in every other plate in the stacking direction of the plates 1 and 2.
  • Each of the plates 1 and 2 is provided with a first communication hole 7 and a second communication hole 8 spaced apart from each other. The first communication hole 7 and the second communication hole 8 are connected to each stage of the first flow path 4 of the core 9 .
  • each plate 1, 2 has a rectangular planar shape (including one with rounded corners as shown in FIG. 1A), but this planar shape is not limited to a rectangular shape. Can take shape.
  • the first flow path 4 is hollow, and the inner fin 16 is arranged in the second flow path 5.
  • the flow resistance thereof is small, so that drifting between stages is generally likely to occur.
  • protrusions may be formed in the first flow path 4 to improve heat transfer, since the flow path resistance is relatively small in this case as well, there is generally a tendency for uneven flow to occur between stages.
  • the inner fins 16 are installed in a flow path like the second flow path 5, the flow resistance thereof is large, so there is little uneven flow between stages.
  • an inlet 10 for the first fluid 3 is formed at one end in the stacking direction of the plates 1 and 2, and an outlet 11 for the first fluid 3 is formed at the other end (I-shaped entrance/exit arrangement).
  • a cover plate 14 and a base plate 15 are arranged at both ends of the plates 1 and 2 in the stacking direction, as shown in FIGS. 1A, 1B, and 1C.
  • each plate 1, 2 is formed with an inner bypass portion 12a that passes through the plates 1, 2.
  • the inner bypass 12a is formed by joining the peripheral edges of holes drilled in the respective plates 1 and 2 at the positions where the inner bypass 12a is formed.
  • one end of the plates 1 and 2 in the stacking direction is the end on the side where the cover plate 14 is arranged, and the other end of the plates 1 and 2 in the stacking direction is the end on the side where the base plate 15 is disposed. This is the end on the side where it is placed.
  • the inlet 10 is connected to the first communication hole 7.
  • a bypass 12 consisting of a communication path 13 and an inner bypass 12a communicates with the outlet 11 from the second communication hole 8 at one end of the plates 1 and 2 in the stacking direction.
  • the communication path 13 connects the second communication hole 8 at one end in the stacking direction and the inner bypass 12a.
  • the outlet 11 of the first fluid 3 is connected to the inner bypass 12a.
  • the first fluid 3 flows in from the inlet 10, flows through each stage of the first flow path 4 from the first communication hole 7, and is guided to the second communication hole 8. Next, the first fluid 3 is guided from the second communication hole 8 to the bypass 12 via the communication path 13 . The first fluid 3 then flows out from the outlet 11.
  • FIG. 2A shows the flow state when a bypass 12 is provided in the core 9 of the plate stacked heat exchanger of the first embodiment
  • FIG. 2B shows each of the first flow paths 4 in the first embodiment.
  • the flow rate distribution of the first fluid 3 in the stage is shown.
  • FIG. 2C shows the flow state when the bypass 12 is not provided as a comparative example with the first embodiment
  • FIG. 2D shows the first fluid 3 in each stage of the first flow path 4 in the comparative example. shows the flow rate distribution.
  • the flow rate distribution in FIG. 2B suppresses the drift of the first fluid 3 in each stage of the first flow path 4 more than the flow rate distribution in FIG. 2D.
  • the flow path is substantially similar to the flow path in the case of the U-shaped entrance/exit arrangement as shown in FIG. 6A.
  • a heat exchanger having an inner bypass 12a is illustrated, but the bypass 12 is not limited to the inner bypass 12a.
  • the bypass 12 can also be formed outside the core 9 by forming an external bypass 12b using piping or the like. Even in this case, the same effects as in the first embodiment can be obtained.
  • FIG. 4 shows a second embodiment of the present invention, and this embodiment differs from the first embodiment in that the flow direction of the first fluid 3 is reversed.
  • one end of the plates 1 and 2 in the stacking direction is the side where the base plate 15 is arranged
  • the other end of the plates 1 and 2 in the stacking direction is the side where the cover plate 14 is arranged. It's on the side.
  • the flow path is substantially the same as the flow path in the case of the U-shaped entrance/exit arrangement as shown in FIG. 6A. The same effects as in the example can be obtained.
  • the present invention is widely applicable to plate stacked heat exchangers, and is particularly suitable for oil coolers for vehicles. It can also be applied to battery chillers for electric vehicles, evaporators for air conditioners, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】 I字型の出入り口配置のプレート積層型熱交換器における各段間の偏流傾向の抑制。 【解決手段】 各プレート1、2の積層方向の一方の端部に第1流体3の入口10が形成され、他方の端部に第1流体3の出口11が形成されている。入口10は第1連通孔7に連結されている。前記一方の端部の第2連通孔8から出口11へのバイパス12がコア9の内部または外部を通って形成されている。

Description

プレート積層型熱交換器
 本発明は、プレート積層型熱交換器に関し、特に流体が流通する流通路の各段の偏流を抑制する構造に関する。
 従来型のプレート積層型熱交換器として、プレートの積層方向の一枚おきに第1流体が流通する第1流路と、第2流体が流通する第2流路とが交互に形成されたものが存在する。
 図5A及び図6Aは、従来のプレート積層型熱交換器の一例であって、それぞれ第1流体の入口と出口の配置が異なる。
 図5Aの熱交換器は、プレートの積層方向の一方の端部に第1流体の入口が配置され、他方の端部に第1流体の出口が配置されている(I字型の出入り口配置)。
 図5Bは、図5Aの熱交換器の第1流路の各段の流量分布を示している。
 図6Aの熱交換器は、プレートの積層方向の一方の端部に、第1流体の入口及び出口が配置されている(U字型の出入り口配置)。
 図6Bは、図6Aの熱交換器の第1流路の各段の流量分布を示している。
 図5AのI字型の出入り口配置の場合、流体の慣性に起因して、図5Bに例示したように、各段間の流量分布に偏り(偏流)が生じる傾向がある。
 また、図6AのU字型の出入り口配置の場合、コア内部の流路長の影響が支配的な状態において、図6Bの例示したような偏流傾向が生じる。
 ただし、I字型の出入り口配置よりもU字型の出入り口配置の方が、段間の偏流は小さい。
 しかしながら、配管の都合により、図5Aに示すI字型の出入り口配置をとらざるを得ない場合が生じる。
 そこで本発明は、I字型の出入り口配置のプレート積層型熱交換器における各段間の偏流傾向を抑制することを課題とする。
 上記課題を解決するための第1の発明は、皿状の多数のプレート1、2が積層されて、
 プレート1、2の積層方向の一枚おきに第1流体3が流通する第1流路4と、第2流体6が流通する第2流路5とが交互に形成され、
 各プレート1、2には互いに離間して第1連通孔7と第2連通孔8とが設けられており、
 第1流体3が第1連通孔7から第1流路4を介して第2連通孔8に導かれるコア9を有するプレート積層型熱交換器において、
 プレート1、2の積層方向の一方の端部に第1流体3の入口10が形成され、他方の端部に第1流体3の出口11が形成され、
 入口10は第1連通孔7に連結され、
 前記一方の端部の第2連通孔8から出口11へのバイパス12がコア9の内部または外部を通って形成されたプレート積層型熱交換器である。
 上記課題を解決するための第2の発明は、皿状の多数のプレート1、2が積層されて、
 プレート1、2の積層方向の一枚おきに第1流体3が流通する第1流路4と、第2流体6が流通する第2流路5とが交互に形成され、
 各プレート1、2には互いに離間して第1連通孔7と第2連通孔8とが設けられており、
 第1流体3が第2連通孔8から第1流路4を介して第1連通孔7に導かれるコア9を有するプレート積層型熱交換器において、
 プレート1、2の積層方向の一方の端部に第1流体3の入口10が形成され、他方の端部に第1流体3の出口11が形成され、
 入口10はバイパス12に連結され、
 入口10から前記他方の端部の第2連通孔8へのバイパス12がコア9の内部または外部を通って形成され、
 第1連通孔7に出口11が連結されたプレート積層型熱交換器である。
 また、第3の発明は、第1の発明または第2の発明のいずれかに記載のプレート積層型熱交換器において、
 前記第1流体3が液体であるプレート積層型熱交換器である。
 上記第1の発明は、各プレート1、2の積層方向の一方の端部に第1流体3の入口10が形成され、他方の端部に第1流体3の出口11が形成され、入口10は第1連通孔7に連結され、前記一方の端部の第2連通孔8から出口11へのバイパス12がコア9の内部または外部を通って形成されたプレート積層型熱交換器である。
 プレート1、2の積層方向の一方の端部の第2連通孔8から出口11へのバイパス12を有する構成により、実質的に、前記積層方向の一方の端部に入口および出口を有する場合(U字型の出入り口配置の場合)と同様の流路を有することになり、偏流傾向が少なくとも一部相殺されるので、積層された各流路間の偏流が抑制される。
 上記第2の発明は、プレート1、2の積層方向の一方の端部に第1流体3の入口10が形成され、他方の端部に第1流体3の出口11が形成され、入口10はバイパス12に連結され、入口10から前記他方の端部の第2連通孔8へのバイパス12がコア9の内部または外部を通って形成され、第1連通孔7に出口11が連結されたプレート積層型熱交換器である。
 入口10からプレート1、2の積層方向の他方の端部の第2連通孔8へのバイパス12を有する構成により、実質的に、前記積層方向の一方の端部に入口および出口を有する場合(U字型の出入り口配置の場合)と同様の流路を有することになり、偏流傾向が少なくとも一部相殺されるので、積層された各流路間の偏流が抑制される。
 本願の第3の発明に記載のように、第1流体3を液体とした場合には、液体を媒体とするプレート積層型熱交換器における偏流を抑制することが可能となる。
本発明の第1の実施例のプレート積層型熱交換器の平面図。 図1AのB-B矢視断面図。 図1AのC-C矢視断面図。 同第1の実施例のプレート積層型熱交換器の第1流体3のコア9内の流通状態を示す説明図。 同熱交換器のコア9における各段の流路分布を示すグラフ。 従来型のプレート積層型熱交換器(I字型の出入り口配置)の第1流体3のコア9内の流通状態を示す説明図。 同熱交換器(従来型)のコア9における各段の流路分布を示すグラフ。 本発明の第1の実施例の他の例を示す断面図。 本発明の第2の実施例のプレート積層型熱交換器を示す断面図。 従来の第1のプレート積層型熱交換器であって、そのコア9の上下に分離して、入口10と出口11が配置された略図。 同熱交換器のコア9における各段の流路分布を示すグラフ。 従来の第2のプレート積層型熱交換器であって、そのコア9の上端側のみに、入口10と出口11が配置された略図。 同熱交換器のコア9における各段の流路分布を示すグラフ。
 次に、図面に基づいて本発明の各実施の形態につき説明する。
 第1の実施例及び第2の実施例のプレート積層型熱交換器で共通する構成は、次の通りである。
 外縁部が立ち上げられた多数の皿状のプレート1、2が積層されて、コア9を形成する。プレート1、2の積層方向の一枚置きに第1流体3が流通する第1流路4と、第2流体6が流通する第2流路5とが交互に形成されている。各プレート1,2には、互いに離間して第1連通孔7と第2連通孔8とが設けられている。第1連通孔7と第2連通孔8は、コア9の第1流路4の各段とつながっている。
 第1流路4を流通する第1流体3と、第2流路5を流通する第2流体6との間に熱交換が行われる。
 なお、例えば、第1流体3は水、冷媒等であり、第2流体6はオイル等である。
 この例では、各プレート1、2の平面形状は方形(図1Aに示す如く、角に丸みを帯びているものを含む)に形成されているが、この平面形状は方形に限らず、任意の形状を取ることができる。
 図1B、図1Cに示すように、第1流路4は、中空となっており、第2流路5には、インナフィン16が配置されている。この第1流路4のように流路が中空の場合、その流通抵抗は小さいので、一般的には段間の偏流が生じやすい。第1流路4には、熱伝達向上のために突起を形成しても良いが、その場合も流路抵抗は比較的小さいので、一般的には段間に偏流が生じる傾向がある。
 第2流路5のように流路にインナフィン16が設置されている場合は、その流通抵抗は大きいので、段間の偏流は少ない。
 各実施例において、プレート1、2の積層方向の一方の端部に第1流体3の入口10が形成され、他方の端部に第1流体3の出口11が形成されている(I字型の出入り口配置)。
 プレート1、2の積層方向の両端には、図1A、図1B、図1Cに記載のように、カバープレート14と、ベースプレート15が配置されている。
 また、各実施例では、各プレート1、2には、それらのプレート1、2を貫通する内バイパス部12aが形成されている。一例として、内バイパス12aは、各プレート1、2の内バイパス12aの形成位置に穿設された孔の周縁どうしが接合されて形成されている。
 第1の実施例において、プレート1、2の積層方向の一方の端部はカバープレート14が配置された側の端部であり、プレート1、2の積層方向の他方の端部はベースプレート15が配置された側の端部である。
 この例では、入口10は第1連通孔7に連結されている。
 また、連絡路13及び内バイパス12aからなるバイパス12が、プレート1、2の積層方向の一方の端部の第2連通孔8から出口11へ通じている。連絡路13は、積層方向の一方の端部の第2連通孔8と内バイパス12aとを連結する。
 図1Bに示す如く、内バイパス12aに第1流体3の出口11が連結されている。
 第1流体3は、入口10から流入し、第1連通孔7から第1流路4の各段を流通し、第2連通孔8に導かれる。
 次に、第1流体3は、第2連通孔8から連絡路13を介して、バイパス12に導かれる。そして、第1流体3は、出口11から流出する。
 図2Aは、第1の実施例のプレート積層型熱交換器のコア9にバイパス12を設けた場合の流通状態を示し、図2Bは、同第1の実施例における第1流路4の各段の第1流体3の流量分布を示している。
 図2Cは、第1の実施例との比較例として、バイパス12を設けない場合の流通状態を示しており、図2Dは、同比較例における第1流路4の各段の第1流体3の流量分布を示している。
 図2Bと図2Dとを比較すると、図2Bの流量分布の方が図2Dの流量分布よりも、第1流路4の各段の第1流体3の偏流が抑制されている。
 これは、図2Aにおいては、バイパス12を有する構成により、その流路が、実質的に図6AのようなU字型の出入り口配置の場合の流路と同様になっているためである。
 この例では、内バイパス12aを有する熱交換器を例示したが、バイパス12は内バイパス12aに限られるものではない。
 図3に示す如く、配管などを用いて外バイパス12bを形成し、コア9の外部にバイパス12を形成することもできる。この場合でも、第1の実施例と同様の効果が得られる。
 図4は本発明の第2の実施例であり、この例が第1の実施例と異なる点は、第1流体3の流れの向きが逆になっている点である。
 第2の実施例において、プレート1、2の積層方向の一方の端部はベースプレート15が配置された側であり、プレート1、2の積層方向の他方の端部はカバープレート14が配置された側である。
 第1流体3の流れの向きが逆であっても、その流路が、実質的に図6AのようなU字型の出入り口配置の場合の流路と同様になっているので、第1の実施例と同様の効果が得られる。
 本発明は、プレート積層型熱交換器に広く適用可能であり、特に、車両用のオイルクーラに好適である。また、電動車両の電池用チラーや、空調機の蒸発器等にも適用可能である。
 1 プレート
 2 プレート
 3 第1流体
 4 第1流路
 6 第2流体
 5 第2流路
 7 第1連通孔
 8 第2連通孔
 9 コア
 10 入口
 11 出口
 12 バイパス
 12a 内バイパス
 12b 外バイパス
 13 連絡路
 14 カバープレート
 15 ベースプレート
 16 インナフィン
 

Claims (3)

  1.  皿状の多数のプレート(1、2)が積層されて、
     プレート(1、2)の積層方向の一枚おきに第1流体(3)が流通する第1流路(4)と、第2流体(6)が流通する第2流路(5)とが交互に形成され、
     各プレート(1、2)には互いに離間して第1連通孔(7)と第2連通孔(8)とが設けられており、
     第1流体(3)が第1連通孔(7)から第1流路(4)を介して第2連通孔(8)に導かれるコア(9)を有するプレート積層型熱交換器において、
     プレート(1、2)の積層方向の一方の端部に第1流体(3)の入口(10)が形成され、他方の端部に第1流体(3)の出口(11)が形成され、
     入口(10)は第1連通孔(7)に連結され、
     前記一方の端部の第2連通孔(8)から出口(11)へのバイパス(12)がコア(9)の内部または外部を通って形成されたプレート積層型熱交換器。
  2.  皿状の多数のプレート(1、2)が積層されて、
     プレート(1、2)の積層方向の一枚おきに第1流体(3)が流通する第1流路(4)と、第2流体(6)が流通する第2流路(5)とが交互に形成され、
     各プレート(1、2)には互いに離間して第1連通孔(7)と第2連通孔(8)とが設けられており、
     第1流体(3)が第2連通孔(8)から第1流路(4)を介して第1連通孔(7)に導かれるコア(9)を有するプレート積層型熱交換器において、
     プレート(1、2)の積層方向の一方の端部に第1流体(3)の入口(10)が形成され、他方の端部に第1流体(3)の出口(11)が形成され、
     入口(10)はバイパス(12)に連結され、
     入口(10)から前記他方の端部の第2連通孔(8)へのバイパス(12)がコア(9)の内部または外部を通って形成され、
     第1連通孔(7)に出口(11)が連結されたプレート積層型熱交換器。
  3.  請求項1または請求項2のいずれかに記載のプレート積層型熱交換器において、
     前記第1流体(3)が液体であるプレート積層型熱交換器。
     
PCT/JP2023/025393 2022-07-27 2023-07-10 プレート積層型熱交換器 WO2024024465A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022119799 2022-07-27
JP2022-119799 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024024465A1 true WO2024024465A1 (ja) 2024-02-01

Family

ID=89706272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025393 WO2024024465A1 (ja) 2022-07-27 2023-07-10 プレート積層型熱交換器

Country Status (1)

Country Link
WO (1) WO2024024465A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027514A1 (ja) * 2012-08-16 2014-02-20 カルソニックカンセイ株式会社 熱交換器
JP2016133121A (ja) * 2015-01-16 2016-07-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH 内燃機関
JP2017032178A (ja) * 2015-07-30 2017-02-09 株式会社マーレ フィルターシステムズ 熱交換器
FR3059400A1 (fr) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques Echangeur de chaleur entre un fluide refrigerant et un liquide caloporteur
JP2021011976A (ja) * 2019-07-05 2021-02-04 株式会社ティラド プレート積層型熱交換器
WO2022030566A1 (ja) * 2020-08-06 2022-02-10 株式会社ティラド 熱交換器の取付構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027514A1 (ja) * 2012-08-16 2014-02-20 カルソニックカンセイ株式会社 熱交換器
JP2016133121A (ja) * 2015-01-16 2016-07-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH 内燃機関
JP2017032178A (ja) * 2015-07-30 2017-02-09 株式会社マーレ フィルターシステムズ 熱交換器
FR3059400A1 (fr) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques Echangeur de chaleur entre un fluide refrigerant et un liquide caloporteur
JP2021011976A (ja) * 2019-07-05 2021-02-04 株式会社ティラド プレート積層型熱交換器
WO2022030566A1 (ja) * 2020-08-06 2022-02-10 株式会社ティラド 熱交換器の取付構造

Similar Documents

Publication Publication Date Title
JP3960233B2 (ja) 熱交換器
US4274482A (en) Laminated evaporator
JP3292128B2 (ja) プレート型熱交換器
US6892803B2 (en) High pressure heat exchanger
US11346612B2 (en) Plate heat exchanger
EP2865983A1 (en) Heat-exchanger header and heat exchanger provided therewith
JP2005083677A (ja) 蒸発器
WO2020089966A1 (ja) 熱交換器及び冷凍サイクル装置
JP2006010130A (ja) 多流体熱交換器
JP3947931B2 (ja) 積層型熱交換器
US7121331B2 (en) Heat exchanger
JP2019105423A (ja) オイルクーラ
JP2020079693A (ja) 熱交換器
WO2024024465A1 (ja) プレート積層型熱交換器
JP2007113793A (ja) エバポレータ
CN106802099B (zh) 一种换热器
JP2001108392A (ja) 積層型熱交換器
WO2024024466A1 (ja) プレート積層型熱交換器
JP2005055074A (ja) 熱交換器
CN111765786A (zh) 换热器与换热器组件
JP2941768B1 (ja) 積層型熱交換器
US12007183B2 (en) Heat exchanger
US20220018614A1 (en) Heat exchanger
WO2020192666A1 (zh) 一种换热器和换热装置
JP2005055073A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846197

Country of ref document: EP

Kind code of ref document: A1