EP1985953B1 - Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler - Google Patents

Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler Download PDF

Info

Publication number
EP1985953B1
EP1985953B1 EP08005238.4A EP08005238A EP1985953B1 EP 1985953 B1 EP1985953 B1 EP 1985953B1 EP 08005238 A EP08005238 A EP 08005238A EP 1985953 B1 EP1985953 B1 EP 1985953B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
turbulence
flow channel
flow
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08005238.4A
Other languages
English (en)
French (fr)
Other versions
EP1985953A1 (de
Inventor
Tobias Fetzer
Eberhard Pantow
Peter Geskes
Florian Pfister
Rainer Lutz
Jens Ruckwied
Klaus Irmler
Michael Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1985953A1 publication Critical patent/EP1985953A1/de
Application granted granted Critical
Publication of EP1985953B1 publication Critical patent/EP1985953B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • F28D7/0091Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium the supplementary medium flowing in series through the units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to heat exchangers, in particular for exhaust gas cooling of an internal combustion engine of a motor vehicle having a first Generalskyme (2004) with at least a first flow channel for flow with a medium to be cooled and at least a third flow channel for flow with a first cooling medium, at least a second partial heat exchanger with at least a second flow channel to flow through with the medium to be cooled and at least a fourth flow channel for flow with a second cooling medium, wherein the at least first flow channel and the at least second flow channel in fluid communication and the at least one first flow channel and the at least one second flow channel at least a first specific heat transfer surface and have at least a second specific heat transfer surface.
  • the invention further relates to methods for operating the heat exchanger according to one of claims 1 to 18.
  • the present invention relates to a system with at least one heat exchanger according to one of claims 1 to 18. Due to increasingly stringent emission regulations, part of the exhaust gas produced in an internal combustion engine is cooled and then fed back to the engine.
  • a multi-stage heat exchanger known.
  • the heat exchanger has turbulence-generating form elements in the form of ribs, webs, knobs or indentations.
  • the DE 10 2005 029 322 A1 is disclosed a system with a two-stage exhaust gas cooling.
  • the exhaust gas cooler is arranged on the low pressure side of a turbocharger. In particular, acidic condensate occurs, which leads to corrosion of the exhaust gas cooler.
  • a two-stage exhaust gas cooler is known, wherein the one stage of the exhaust gas cooler is air-cooled and the other stage of the exhaust gas cooler is cooled by means of a liquid coolant.
  • a two-stage exhaust gas cooler known with a high-temperature circuit and a low-temperature circuit.
  • the high-temperature circuit and the low-temperature circuit are separated from each other by a partition wall.
  • the heat exchanger has a first partial heat exchanger with at least one first flow channel for the flow through with a medium to be cooled, in particular exhaust gas, and at least one third flow channel for the flow through with a first cooling medium, in particular with a water-containing cooling liquid or air, on. Furthermore, the heat exchanger has at least one second partial heat exchanger with at least one second flow channel for flow through with the medium to be cooled, in particular the exhaust gas, and at least a fourth flow channel for flow through a second cooling medium, in particular a water-containing cooling liquid or air.
  • the at least first flow channel and the at least second flow channel are in fluid communication, wherein the at least one first flow channel and the at least one second flow channel have at least a first specific heat transfer surface and at least one second specific heat transfer surface.
  • the second specific heat transfer area divided by the first specific heat transfer area results in a quotient ⁇ , wherein the at least one first flow channel has a larger quotient ⁇ than the second flow channel.
  • the quotient ⁇ of the at least one first flow channel assumes values of 1.0 to 2.5 and / or the quotient of the at least one second flow channel values of 0 to 1.5.
  • the first flow channel and the second flow channel form a structural unit.
  • the heat exchanger particularly advantageously has a continuous flow channel for the first and second partial heat exchanger.
  • the heat exchanger is thus particularly compact and inexpensive, and easier to install.
  • the first cooling medium has a higher temperature than the second cooling medium. In this way, a high-temperature circuit and a low-temperature circuit are formed particularly advantageously.
  • the at least one first flow channel is tubular and has a first tube inner wall surface which forms the first heat transfer surface.
  • the at least one second flow channel is tube-like and has a second tube inner wall surface, which forms the first heat transfer surface.
  • the at least one first flow channel has first turbulence elements.
  • the at least one second flow channel has second turbulence elements.
  • the first turbulence elements have a first turbulence element height and / or the second turbulence elements have a second turbulence element height.
  • the first turbulence elements are designed as first dimples or first turbulence sheets with first rib segments.
  • the second turbulence elements are designed as second dimples or second turbulence plates with second rib segments.
  • the turbulence element is particularly easy Embossing or pressing are produced and adapted to the requirements in the first and second part of the heat exchanger - especially large areas for receiving the deposits of the exhaust gas and a surface design in the second part of the heat exchanger, which causes a condensation of water and a washing out of the deposits.
  • the first turbulence sheets and / or the second turbulence sheets have the second heat transfer surface.
  • the regions of the second heat transfer surface are particularly advantageously applied from both sides with exhaust gas.
  • the first heat exchanger surfaces are acted upon by exhaust gas on one wall side and act on the opposite side of the cooling medium.
  • the first turbulence elements have a first turbulence element height and / or the second turbulence elements have a second turbulence element height.
  • the first turbulence element height is greater than the second turbulence element height.
  • a first turbulence element density is defined by the number of first turbulence elements relative to a first length of the first flow channel and / or a second turbulence element density by the number of second turbulence elements relative to a second length of the second flow channel.
  • a first turbulence element thickness is greater than a second turbulence element thickness.
  • a first turbulence element thickness is smaller than a second turbulence element thickness. In this way, a particularly good corrosion resistance is ensured.
  • the heat exchanger is a U-flow heat exchanger.
  • the exhaust gas flows particularly advantageously on one side into the heat exchanger, flows through it, is deflected by 180 ° and flows back in the opposite direction.
  • the heat exchanger is an I-flow heat exchanger.
  • the exhaust gas flows into the heat exchanger on one side, flows through it and flows out of the heat exchanger on the opposite other side.
  • the heat exchanger has a third partial heat exchanger for reducing thermal voltages. Due to the relatively short heat exchanger, no high bending stresses occur due to the high exhaust gas temperatures.
  • the third partial heat exchanger has 1/8 to 1/4 of a heat exchanger length of the heat exchanger.
  • the first partial heat exchanger is arranged between the second partial heat exchanger and the third partial heat exchanger.
  • the first partial heat exchanger and / or the second partial heat exchanger and / or third partial heat exchanger form a structural unit.
  • the first partial heat exchanger and / or the second partial heat exchanger and / or the third partial heat exchanger can be connected with particular advantage by means of flanges or connected by means of a single housing to form a structural unit.
  • the final assembly in a vehicle can be done very quickly and easily.
  • the medium to be cooled and the cooling medium flow in cocurrent or countercurrent.
  • the medium to be cooled in particular exhaust gas, condenses as it flows through the second heat exchanger part at least water from the medium to be cooled, in particular the exhaust gas, from for cleaning the second flow channel of deposition of the medium to be cooled.
  • deposits are removed from the second part of the heat exchanger particularly advantageous and kept the power stable over time.
  • the medium to be cooled condenses at least at a temperature of the second cooling medium of less than 40 ° C at least water.
  • a system with at least one heat exchanger according to one of claims 1 to 22 is proposed.
  • at least a second heat exchanger for cooling an internal combustion engine of a motor vehicle and at least a third heat exchanger for cooling the second cooling medium is provided.
  • At least a fourth heat exchanger is provided for cooling the first cooling medium.
  • first the third heat exchanger and then the second heat exchanger are arranged.
  • the fourth heat exchanger is arranged after the second heat exchanger.
  • the fourth heat exchanger is arranged adjacent to the second heat exchanger and / or essentially at the same height in the air flow direction as the second heat exchanger.
  • the second heat exchanger and the fourth heat exchanger are identical.
  • a first control element for controlling the mass flow of the medium to be cooled and / or for bypassing medium to be cooled is arranged around at least one partial heat exchanger.
  • a second control element for controlling the mass flow of the medium to be cooled and / or for bypassing medium to be cooled around at least one partial heat exchanger is arranged downstream of the first partial heat exchanger and upstream of the second partial heat exchanger.
  • the heat transfer surface on the coolant side is adapted to the prevailing flow conditions there.
  • the flow should be present in the turbulent case.
  • the turbulent flow is produced particularly advantageously by adaptation of the flow cross-section and / or by means of turbulence-generating elements in this region.
  • Particularly advantageous are the turbulence-generating elements coolant-side ribs and / or winglets.
  • the turbulence-generating means are realized, in particular in the second stage, in the low-temperature cooler stage. In this way, the coolant mass flow of the low-temperature radiator is significantly lower than that of the high-temperature radiator
  • FIG. 1 shows a two-stage exhaust gas cooler 1.
  • the exhaust gas cooler has a first first partial heat exchanger 11 and a second partial heat exchanger 12.
  • the partial heat exchanger 11 has a housing made of stainless steel or aluminum or plastic. Via a cooling medium inlet KE1 first cooling medium flows into the partial heat exchanger 11 and cools the exhaust gas AE flowing in via the inlet diffuser in a first stage. The cooling medium exits via the outlet KA1. The already cooled exhaust gas continues to flow into the second partial heat exchanger 12 and is further cooled and leaves this then via the outlet diffuser 3 direction AA.
  • the second cooling medium for example water or air, flows into the partial heat exchanger 12 via the wide inlet EA2 and out again via the outlet EA.
  • the second partial heat exchanger 12 has a housing made of stainless steel or aluminum or plastic.
  • FIG. 2a shows a section of the first and second flow channel 21, 22 with a first heat transfer surface 23rd
  • FIG. 2b 1 shows a detail of the first and second flow channels 21, 22 with a second heat transfer area 24.
  • the Figures 3a, 3b and 3c represent three diagrams:
  • the factor ⁇ is a quotient formed by the division of the heat output of the unpolluted cooler, which has no deposits by the heat output of the dirty cooler, the deposits has.
  • the factor ⁇ is a quotient formed by dividing the heat-transmitting secondary surface 24 divided by the heat-transmitting primary surface 23.
  • FIG. 3a shows a graph of the factor ⁇ plotted against the factor ⁇ for the first part of the heat exchanger 11.
  • area 33 of ⁇ ⁇ 1 is too little secondary surface 24 is present and the heat transfer performance of the radiator is too low.
  • the area 35 of ⁇ > 2.5 there is a blockage and clogging of the exhaust gas cooler.
  • the optimum range 34 (1 ⁇ 2.5) ensures high performance with low addition of the exhaust gas cooler.
  • FIG. 3b shows a graph of the factor ⁇ plotted against the factor ⁇ for the second partial heat exchanger 12.
  • the performance is optimal and the deposits are well washed out.
  • a value ⁇ > 1.5 range 37 clogging of the second flow channels 22 takes place.
  • Figure 3c shows a graph of the factor ⁇ plotted against the temperature of the second cooling medium for the second partial heat exchanger. At temperatures ⁇ 40 ° C, experiments have shown that deposits are washed out particularly advantageous due to auskondensierendem water.
  • FIG. 4a shows a sectional view of a two-stage exhaust gas cooler 1 in disk construction with continuous disks 41,42,43,44. Identical features are provided with the same reference numerals as in the previous figures.
  • the first flow channels 21, the second flow channels 22, the third flow channels 41 and the fourth flow channels 42 are formed by stacked top disks with the sections 43 and 45 and bottom plates with the sections 44 and 46.
  • the plates are formed continuously in the illustrated embodiment, but may also be interconnected by fabric or positive engagement.
  • first turbulence elements 47 are arranged in the form of turbulence plates or dimples.
  • Second turbulence elements 48 in the form of turbulence plates or dimples are arranged in the second flow channels 22. These increase the heat transfer performance.
  • the plates are formed of a metal such as stainless steel or aluminum or another metal.
  • the plates are enclosed by a housing 40.
  • FIG. 4b shows a plan view of another embodiment of a two-stage exhaust gas cooler 1 in disk construction with continuous disks. Identical features are provided with the same reference numerals as in the previous figures.
  • Region 11 has smooth disks which are soldered to the rib elements of the first turbulence plates or.
  • Area 12 shows a wave structure. The wave height corresponds half the channel height. The gas-side rib has a reduced height. Accordingly, the height of the wave structure is reduced.
  • the disc may have a punched-through structure, wherein two discs form a tube bundle.
  • FIG. 5 shows continuous flow channels 50 with two corrugated turbulence plates 47, 48.
  • the same features are provided with the same reference numerals as in the previous figures.
  • the rib density of the second turbulence plates 48 is greater than that of the first turbulence plates 47. Therefore, no clogging takes place in section 11 and in section 12, water is condensed away which washes away deposits.
  • a partition wall 49 separates the two cooling medium circuits from each other.
  • FIG. 6 shows a sectional view of a continuous flow channel 60 with an inserted turbulence plate 61 in the first partial heat exchanger 11 and with dimples 62 in the form of winglets in the second partial heat exchanger 12.
  • the same features are provided with the same reference numerals as in the previous figures.
  • FIGS. 7a, b, c, d show furtherhostsfomen of turbulence-generating sheets. Identical features are provided with the same reference numerals as in the previous figures.
  • FIG. 7a shows a flat plate 71 with a turbulence plate 70th
  • FIG. 7b shows two soldered corrugated plates 72,73.
  • the wave structure can also be rounded.
  • FIG. 7c shows corrugated plates with ribs soldered in between.
  • the wave structure can also be rounded.
  • FIG. 7d shows tube bundle of two stamped plates 74th
  • FIG. 8 shows a two-stage exhaust gas heat exchanger 80 in the U-flow. Identical features are provided with the same reference numerals as in the previous figures.
  • the exhaust gas cooler has a housing 81 and a deflecting element 82.
  • FIG. 9 shows a system 90 with a two-stage exhaust gas cooler. Identical features are provided with the same reference numerals as in the previous figures.
  • the system 90 includes a turbocharger 103.
  • Charge air from the surroundings in the turbocharger 103 is cooled in the first charge air cooler 100 via the charge air line 96 and further compressed in a second turbocharger 104 and cooled again in the second charge air cooler, high-pressure cooler and then fed to the engine 95.
  • the exhaust gas produced in the engine 95 flows through the line 97.
  • a line 99 leads a portion of the exhaust gas via the turbochargers 104, 103 to the exhaust, another part of the exhaust gas is recycled in the line 98 and previously in the heat exchanger 1, in the first Stage 11 and then cooled in the second stage 12 and mixed with the cooled charge air.
  • the second charge air cooler 94 and second partial heat exchanger 12 are supplied by the low-temperature circuit 102 with coolant, which cools the air sucked in by the fan 91 in the low-temperature cooler 93. Between fan and 91 and low-temperature radiator 93, the coolant radiator 92 is arranged. This leads to the engine 95 and the first partial heat exchanger 11 to coolant. Air flows in the direction of LR through the second and third heat exchangers 92,93.
  • FIG. 10 shows a graph with the benefits of two-stage exhaust gas cooling.
  • the low-temperature cooler LT-EGR second partial heat exchanger 12
  • FIG. 11 shows a further system 110 with a first control member 111 upstream of the first partial heat exchanger 11 and a second control member 112 downstream of the first partial heat exchanger 11 and upstream of the second partial heat exchanger 12. Same features are provided with the same reference numerals as in the previous figures.
  • FIG. 12 shows a three-stage exhaust gas cooler with the additional third partial heat exchanger 123.
  • Part 123 can be flowed through in cocurrent or countercurrent and cools the exhaust gas to 300 ° C to 400 ° C.
  • a third circuit 133 having a temperature level above the engine coolant is, for example, propylene glycol at 160 ° C to 200 ° C. This results in a corresponding increase in performance of the recooler.
  • FIG. 13 shows a first system 130 with a three-stage exhaust gas cooler. Identical features are provided with the same reference numerals as in the previous figures. Compared to FIG. 9 a fourth heat exchanger 134 is provided.
  • FIG. 14 Shows a second system 140 with a three-stage exhaust gas cooler. Identical features are provided with the same reference numerals as in the previous figures.
  • the second heat exchanger 142 and the fourth heat exchanger 144 are disposed substantially at a height with respect to the direction LR.
  • FIG. 15 shows a third system 150 with a three-stage exhaust gas cooler. Identical features are provided with the same reference numerals as in the previous figures. Here, a separate second fan 152 is provided for the fourth heat exchanger.
  • FIG. 16 shows a fourth system 160 with a three-stage exhaust gas cooler. Identical features are provided with the same reference numerals as in the previous figures.
  • the second heat exchanger and the fourth heat exchanger are realized 162 in a single heat exchanger.

Description

  • Die vorliegende Erfindung betrifft Wärmetauscher, insbesondere zur Abgaskühlung einer Brennkraftmaschine eines Kraftfahrzeugs aufweisend einen ersten Teilwämetauscher mit zumindest einem ersten Strömungskanal zur Durchströmung mit einem zu kühlenden Medium und zumindest einen dritten Strömungskanal zur Durchströmung mit einem ersten Kühlmedium, zumindest einen zweiten Teilwärmetauscher mit zumindest einem zweiten Strömungskanal zur Durchströmung mit dem zu kühlenden Medium und zumindest einen vierten Strömungskanal zur Durchströmung mit einem zweiten Kühlmedium, wobei der zumindest erste Strömungskanal und der zumindest zweite Strömungskanal in Strömungsverbindung stehen und der zumindest eine erste Strömungskanal und der zumindest eine zweite Strömungskanal zumindest eine erste spezifische Wärmeübertragungsfläche und zumindest eine zweite spezifische Wärmeübertragungsfläche aufweisen.
    Die Erfindung betrifft darüber hinaus Verfahren zum Betreiben des Wärmetauschers nach einem der Ansprüche 1 bis 18. Ferner betrifft die vorliegende Erfindung ein System mit zumindest einem Wärmetauscher nach einem der Ansprüche 1 bis 18. Aufgrund von immer strenger werdenden Emissionsvorschriften wird ein Teil des in einem Verbrennungsmotor erzeugten Abgases gekühlt und anschließend dem Motor wieder zugeführt.
    Aus der DE 103 28 746 A1 ist ein mehrstufiger Wärmetauscher bekannt. Der Wärmetauscher weist turbulenzerzeugende Formelemente in Form von Rippen, Stegen, Noppen oder Einprägungen auf.
    In der DE 10 2005 029 322 A1 ist ein System mit einer zweistufigen Abgaskühlung offenbart. Der Abgaskühler ist auf der Niederdruckseite eines Turboladers angeordnet. Hierbei tritt insbesondere säurehaltiges Kondensat auf, das zur Korrosion des Abgaskühlers führt.
    Aus der DE 10 2005 042 396 A1 ist ein zweistufiger Abgaskühler bekannt, wobei die eine Stufe des Abgaskühlers luftgekühlt und die andere Stufe des Abgaskühlers mittels eines flüssigen Kühlmittels gekühlt ist.
    Aus der noch unveröffentlichten DE 10 2007 005 723.9 ist ein zweistufiger Abgaskühler bekannt mit einem Hochtemperaturkreislauf und einem Niedertemperaturkreislauf. Der Hochtemperaturkreislauf und der Niedertemperaturkreislauf sind dabei durch eine Trennwand voneinander getrennt.
    Es ist Aufgabe der vorliegenden Erfindung einen Wärmetauscher der eingangs genannten Art bezüglich Bauraum und Kosten zu optimieren. Insbesondere besteht die Aufgabe darin, die Verschmutzung des Wärmetauschers, insbesondere durch Abgas und eine damit verbundene Leistungsabnahme des Wärmetauschers im Dauerbetrieb zu verhindern.
    Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
  • Es wird ein Wärmetauscher zur Abgaskühlung einer Brennkraftmaschine eines Kraftfahrzeugs vorgeschlagen. Der Wärmetauscher weist einen ersten Teilwärmetauscher mit zumindest einem ersten Strömungskanal zur Durchströmung mit einem zu kühlenden Medium, insbesondere Abgas, und zumindest einen dritten Strömungskanal zur Durchströmung mit einem ersten Kühlmedium, insbesondere mit einer wasserhaltigen Kühlflüssigkeit oder Luft, auf.
    Ferner weist der Wärmetauscher zumindest einen zweiten Teilwärmetauscher mit zumindest einem zweiten Strömungskanal zur Durchströmung mit dem zu kühlenden Medium, insbesondere dem Abgas, und zumindest einen vierten Strömungskanal zur Durchströmung mit einem zweiten Kühlmedium, insbesondere einer wasserhaltigen Kühlflüssigkeit oder Luft auf.
    Der zumindest erste Strömungskanal und der zumindest zweite Strömungskanal stehen in Strömungsverbindung, wobei der zumindest eine erste Strömungskanal und der zumindest eine zweite Strömungskanal zumindest eine erste spezifische Wärmeübertragungsfläche und zumindest eine zweite spezifische Wärmeübertragungsfläche aufweisen.
  • Die zweite spezifischen Wärmeübertragungsfläche dividiert durch die erste spezifische Wärmeübertragungsfläche ergibt einen Quotienten ψ, wobei der zumindest eine erste Strömungskanal einen größeren Quotienten ψ aufweist als der zweite Strömungskanal.
  • Auf diese Weise wird besonders vorteilhaft erreicht, dass eine wärmeübertragende Fläche, die mit dem Abgas in Berührung kommt, im ersten Teilwärmetauscher ausreichend groß ist, so dass sich die Ablagerungen des Abgases an dieser Fläche absetzen können, ohne dass die Leistung im Dauerbetrieb wesentlich abnimmt und gleichzeitig die wärmeübertragende Fläche im zweiten Teilwärmetauscher so ausgebildet ist, dass die Ablagerungen des Abgases besonders vorteilhaft durch auskondensierendes Wasser aus dem Abgaswärmetauscher entfernt werden ohne dass es zu Korrosion im zweiten Teilwärmetauscher kommt, die zur Funktionsunfähigkeit des Wärmetauschers führt. Gemäß der Erfindung nimmt der Quotient ψ des zumindest einen ersten Strömungskanals Werte von 1,0 bis 2,5 und/oder der Quotient des zumindest einen zweiten Strömungskanals Werte von 0 bis 1,5 an.
  • In einer vorteilhaften Weiterbildung der Erfindung bilden der erste Strömungskanal und der zweite Strömungskanal eine Baueinheit. Auf diese Weise weist der Wärmetauscher besonders vorteilhaft einen durchgängigen Strömungskanal für den ersten und zweiten Teilwärmetauscher auf. Der Wärmetauscher ist dadurch besonders kompakt und kostengünstig, sowie einfacher montierbar.
    In einer vorteilhaften Weiterbildung der Erfindung weist das erste Kühlmedium eine höhere Temperatur auf als das zweite Kühlmedium. Auf diese Weise werden besonders vorteilhaft ein Hochtemperaturkreislauf und ein Niedertemperaturkreislauf gebildet. Der zumindest eine erste Strömungskanal ist rohrartig ausgebildet und weist eine erste Rohrinnenwandfläche auf, die die erste Wärmeübertragungsfläche bildet. Ebenso ist der zumindest eine zweite Strömungskanal rohrartig ausgebildet und weist eine zweite Rohrinnenwandfläche auf, die die erste Wärmeübertragungsfläche bildet. Erfindungsgemäß weist der zumindest eine erste Strömungskanal erste Turbulenzelemente auf. Der zumindest eine zweite Strömungskanal weist zweite Turbulenzelemente auf. Auf diese Weise kann die Wärmeübertragungsleistung zwischen zu kühlendem Abgas und Kühlmedium besonders vorteilhaft erhöht werden.
    In einer vorteilhaften Weiterbildung der Erfindung weisen die ersten Turbulenzelemente eine erste Turbulenzelementhöhe und/oder die zweiten Turbulenzelemente eine zweite Turbulenzelementhöhe auf.
  • In einer vorteilhaften Weiterbildung der Erfindung sind die ersten Turbulenzelemente als erste Dimpel oder erste Turbulenzbleche mit ersten Rippensegmenten ausgebildet. Die zweiten Turbulenzelemente sind als zweite Dimpel oder zweite Turbulenzbleche mit zweiten Rippensegmenten ausgebildet. Auf diese Weise kann das Turbulenzelement besonders einfach durch Prägen oder Pressen hergestellt werden und auf die Erfordernisse im ersten und zweiten Teilwärmetauscher - insbesondere große Flächen zur Aufnahme der Ablagerungen des Abgases und eine Flächengestaltung im zweiten Teilwärmetauscher, die ein Auskondensieren von Wasser und ein Auswaschen der Ablagerungen bewirkt, abgestimmt.
  • In einer vorteilhaften Weiterbildung der Erfindung weisen die ersten Turbulenzbleche und/oder die zweiten Turbulenzbleche die zweite Wärmeübertragungsfläche auf. Insbesondere werden die Bereiche der zweiten Wärmeübertragungsfläche besonders vorteilhaft von beiden Seiten mit Abgas beaufschlagt. Die ersten Wärmetauscherflächen werden an einer Wandseite von Abgas beaufschlagt und an der entgegengesetzten Seite von Kühlmedium beaufschlagt.
  • In einer vorteilhaften Weiterbildung der Erfindung weisen die ersten Turbulenzelemente eine erste Turbulenzelementhöhe und/oder die zweiten Turbulenzelemente eine zweite Turbulenzelementhöhe auf.
  • In einer vorteilhaften Weiterbildung der Erfindung ist die erste Turbulenzelementhöhe größer als die zweite Turbulenzelementhöhe.
  • In einer vorteilhaften Weiterbildung der Erfindung ist eine erste Turbulenzelementdichte durch die Anzahl der ersten Turbulenzelemente bezogen auf eine erste Länge des ersten Strömungskanals und/oder eine zweite Turbulenzelementdichte durch die Anzahl der zweiten Turbulenzelemente bezogen auf eine zweite Länge des zweiten Strömungskanals definiert.
  • In einer vorteilhaften Weiterbildung der Erfindung ist eine erste Turbulenzelementdicke größer als eine zweite Turbulenzelementdicke. Auf diese Weise wird ein besonders guter Wärmeübergang durch die Materialanhäufung gewährleistet.
  • In einer vorteilhaften Weiterbildung der Erfindung ist eine erste Turbulenzelementdicke kleiner als eine zweite Turbulenzelementdicke. Auf diese Weise wird eine besonders gute Korrosionsresistenz gewährleistet.
  • In einer vorteilhaften Weiterbildung der Erfindung ist der Wärmetauscher ein U-Flow-Wärmetauscher. Dabei strömt das Abgas besonders vorteilhaft an einer Seite in den Wärmetauscher ein, durchströmt diesen, wird um 180° umgelenkt und strömt in entgegengesetzter Richtung zurück.
  • In einer vorteilhaften Weiterbildung der Erfindung ist der Wärmetauscher ein I-Flow-Wärmetauscher. Das Abgas strömt an einer Seite in den Wärmetauscher ein, durchströmt diesen und strömt an der entgegengesetzten anderen Seite wieder aus dem Wärmetauscher.
  • In einer vorteilhaften Weiterbildung der Erfindung weist der Wärmetauscher einen dritten Teilwärmetauscher zum Abbau von Thermospannungen auf. Aufgrund des relativ kurzen Wärmetauschers entstehen aufgrund der hohen Abgastemperaturen keine großen Biegespannungen.
  • In einer vorteilhaften Weiterbildung der Erfindung weist der dritte Teilwärmetauscher 1/8 bis 1/4 einer Wärmetauscherlänge des Wärmetauschers auf.
  • In einer vorteilhaften Weiterbildung der Erfindung ist der erste Teilwärmetauscher zwischen dem zweiten Teilwärmetauscher und dem dritten Teilwärmetauscher angeordnet.
  • In einer vorteilhaften Weiterbildung der Erfindung bilden der erste Teilwärmetauscher und/oder der zweite Teilwärmetauscher und/oder dritte Teilwärmetauscher eine Baueinheit. Auf diese Weise können der erste Teilwärmetauscher und/oder der zweite Teilwärmetauscher und/oder der dritte Teilwärmetauscher besonderes vorteilhaft mittels Flanschen verbunden oder mittels eines einzigen Gehäuses zu einer Baueinheit verbunden werden. Auf dieser Weise kann die Endmontage in ein Fahrzeug besonders schnell und einfach erfolgen.
  • In einer vorteilhaften Weiterbildung der Erfindung strömen in dem ersten Teilwärmetauscher und/oder in dem zweiten Teilwärmetauscher und/oder in dem dritten Teilwärmetauscher das zu kühlende Medium und das Kühlmedium im Gleichstrom oder im Gegenstrom.
  • Ferner wird ein Verfahren zum Betreiben des Wärmetauschers nach einem der Ansprüche 1 bis 22 vorgeschlagen. Das zu kühlende Medium, insbesondere Abgas, kondensiert beim Durchströmen des zweiten Wärmetauscherteils zumindest Wasser aus dem zu kühlenden Medium, insbesondere dem Abgas, aus zum Reinigen des zweiten Strömungskanals von Ablagerung des zu kühlenden Mediums. Auf diese Weise werden Ablagerungen aus dem zweiten Teilwärmetauscher besonderes vorteilhaft abgeführt und die Leistung auf Dauer stabil gehalten.
  • In einer vorteilhaften Weiterbildung der Erfindung kondensiert das zu kühlende Medium im Wesentlichen bei einer Temperatur des zweiten Kühlmediums von kleiner als 40°C zumindest Wasser aus.
  • Ferner wird ein System mit zumindest einem Wärmetauscher nach einem der Ansprüche 1 bis 22 vorgeschlagen. Dabei ist zumindest ein zweiter Wärmetauscher zur Kühlung eines Verbrennungsmotors eines Kraftfahrzeugs und zumindest ein dritter Wärmetauscher zur Kühlung des zweiten Kühlmediums vorgesehen.
  • In einer vorteilhaften Weiterbildung der Erfindung ist zumindest ein vierter Wärmetauscher zur Kühlung des ersten Kühlmediums vorgesehen.
  • In einer vorteilhaften Weiterbildung der Erfindung ist in einer Luftströmungsrichtung gesehen zunächst der dritte Wärmetauscher und anschließend der zweite Wärmetauscher angeordnet.
  • In einer vorteilhaften Weiterbildung der Erfindung ist in Luftströmungsrichtung gesehen nach dem zweiten Wärmetauscher der vierte Wärmetauscher angeordnet.
  • In einer vorteilhaften Weiterbildung der Erfindung ist der vierte Wärmetauscher benachbart zu dem zweiten Wärmetauscher und/oder im Wesentlichen auf derselben Höhe in Luftströmungsrichtung gesehen wie der zweite Wärmetauscher angeordnet.
  • In einer vorteilhaften Weiterbildung der Erfindung sind der zweite Wärmetauscher und der vierte Wärmetauscher identisch.
  • In einer vorteilhaften Weiterbildung der Erfindung ist zustromseitig des ersten Wärmetauschers ein erstes Regelorgan zur Regelung des Massenstroms des zu kühlenden Mediums und/oder zum Bypassen von zu kühlendem Medium um zumindest einen Teilwärmetauscher angeordnet.
  • In einer vorteilhaften Weiterbildung der Erfindung ist abstromseitig des ersten Teilwärmetauschers und zustromseitig des zweiten Teilwärmetauschers ein zweites Regelorgan zur Regelung des Massenstroms des zu kühlenden Mediums und/oder zum Bypassen von zu kühlendem Medium um zumindest einen Teilwärmetauscher angeordnet.
  • In einer vorteilhaften Weiterbildung der Erfindung ist die Wärmeübertragungsfläche auf der Kühlmediumsseite an die dort herrschenden Strömungsbedingungen angepasst. Dort soll die Strömung im turbulenten Fall vorliegen. Die turbulente Strömung wird besonders vorteilhaft durch Anpassung des Strömungsquerschnitts und/oder mittels turbulenzerzeugender Elemente in diesem Bereich erzeugt. Besonders vorteilhaft sind die turbulenzerzeugenden Elemente kühlmittelseitige Rippen und/oder Winglets.
  • In einer vorteilhaften Weiterbildung der Erfindung sind die turbulenzerzeugenden Mittel insbesondere in der zweiten Stufe, in der Niedertemperaturkühlerstufe realisiert. Auf diese Weise ist der Kühlmittelmassenstrom des Niedertemperaturkühlers deutlich geringer als der des Hochtemperaturkühlers
  • Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und aus der Zeichnung. Die Gegenstände der Unteransprüche beziehen sich sowohl auf den erfindungsgemäßen Wärmetauscher, als auch auf das erfindungsgemäße System und das Verfahren zum Betreiben des erfindungsgemäßen Wärmetauschers.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher erläutert, wobei eine Beschränkung der Erfindung hierdurch nicht erfolgen soll. Es zeigen
    • Figur 1: einen zweistufigen Abgaskühler;
    • Figur 2a: einen Ausschnitt des ersten bzw. zweiten Strömungskanals mit einer ersten Wärmeübertragungsfläche;
    • Figur 2b: einen Ausschnitt des ersten bzw. zweiten Strömungskanals mit einer zweiten Wärmeübertragungsfläche;
    • Figur 3a: ein Diagramm des Faktors γ aufgetragen über dem Faktor ψ für den ersten Teilwärmetauscher;
    • Figur 3b: ein Diagramm des Faktors γ aufgetragen über dem Faktor ψ für den zweiten Teilwärmetauscher;
    • Figur 3c: ein Diagramm des Faktors γ aufgetragen über der Tempertur des zweiten Kühlmediums für den zweiten Teilwärmetauscher;
    • Figur 4a: eine Schnittdarstellung eines zweistufigen Abgaskühlers in Scheibenbauweise mit durchgängigen Scheiben;
    • Figur 4b: eine Draufsicht einer anderen Ausführungsform eines zweistufigen Abgaskühlers in Scheibenbauweise mit durchgängigen Scheiben;
    • Figur 5: durchgängige Strömungskanäle mit zwei gewellten Turbulenzblechen;
    • Figur 6: eine Schnittdarstellung eines durchgängigen Strömungskanals mit einem eingeschobenen Turbulenzblech im ersten Teilwärmetauscher und mit Dimpeln im Form von Winglets im zweiten Teilwärmetauscher;
    • Figur 7a,b,c,d: weitere Ausführungsformen von turbulenzerzeugenden Blechen;
    • Figur 8: einen zweistufigen Abgaswärmetauscher im U-Flow ;
    • Figur 9: ein System mit einem zweistufigen Abgaskühler;
    • Figur 10: ein Schaubild mit den Vorteilen der zweistufigen Abgaskühlung;
    • Figur 11: ein weiteres System mit einem ersten Regelorgan zustromseitig des ersten Teilwärmetauschers und einem zweiten Regelorgan abstromseitig des ersten Teilwärmetauschers und zustromseitig des zweiten Teilwärmetauschers;
    • Figur 12: einen dreistufigen Abgaskühler;
    • Figur 13: ein erstes System mit einem dreistufigen Abgaskühler;
    • Figur 14: ein zweites System mit einem dreistufigen Abgaskühler;
    • Figur 15: ein drittes System mit einem dreistufigen Abgaskühler;
    • Figur 16: ein viertes System mit einem dreistufigen Abgaskühler.
  • Figur 1 zeigt einen zweistufigen Abgaskühler 1. Der Abgaskühler weist eine ersten ersten Teilwärmetauscher 11 und einen zweiten Teilwärmetauscher 12 auf.
  • Der Teilwärmetauscher 11 weist ein Gehäuse aus Edelstahl oder Aluminium oder aus Kunststoff auf. Über einer Kühlmediumeintritt KE1 strömt erstes Kühlmedium in den Teilwärmetauscher 11 und kühlt das über den Eintrittsdiffusor einströmende Abgas AE in einer ersten Stufe ab. Das Kühlmedium tritt über den Austritt KA1 aus. Das bereits abgekühlte Abgas strömt weiter in den zweiten Teilwärmetauscher 12 und wird weiter abgekühlt und verlässt diesen anschließend über den Austrittsdiffusor 3 Richtung AA. Das zweite Kühlmedium, bsp Wasser oder Luft, strömt über den weiten Eintritt EA2 in den Teilwärmetauscher 12 ein und über den Austritt EA wieder aus. Der zweite Teilwärmetauscher 12 weist ein Gehäuse aus Edelstahl oder Aluminium oder aus Kunststoff auf.
  • Figur 2a zeigt einen Ausschnitt des ersten bzw. zweiten Strömungskanals 21, 22 mit einer ersten Wärmeübertragungsfläche 23.
  • Figur 2b : zeigt einen Ausschnitt des ersten bzw. zweiten Strömungskanals 21, 22 mit einer zweiten Wärmeübertragungsfläche 24.
  • Die Figuren 3a, 3b und 3c stellen drei Diagramme dar:
    Der Faktor γ ist ein Quotient der gebildet wird durch die Division der Wärmeleistung des unverschmutzten Kühlers, der keine Ablagerungen aufweist durch die Wärmeleistung des verschmutzten Kühlers, der Ablagerungen aufweist.
  • Der Faktor ψ ist ein Quotient, der gebildet wird durch die Division der wärmeübertragenden Sekundäroberfläche 24 dividiert durch die wärmeübertragende Primäroberfläche 23.
  • Figur 3a zeigt ein Diagramm des Faktors γ aufgetragen über dem Faktor ψ für den ersten Teilwärmetauscher 11. Im Bereich 33 von ψ<1 ist zu wenig Sekundärfläche 24 vorhanden und die Wärmeübertragungsleistung des Kühlers ist zu gering. Im Bereich 35 von ψ>2,5 erfolgt eine Verblockung und ein Zusetzen des Abgaskühlers. Der optimale Bereich 34 (1≤ψ≤2,5) gewährleistet hohe Leistung bei geringer Zusetzung des Abgaskühlers.
  • Figur 3b zeigt ein Diagramm des Faktors γ aufgetragen über dem Faktor ψ für den zweiten Teilwärmetauscher 12. Im Bereich 36 (0≤ψ≤1,5) ist die Leistung optimal und die Ablagerungen werden gut ausgewaschen. Bei einem Wert ψ>1,5 Bereich 37 erfolgt ein Zusetzen der zweiten Strömungskanäle 22.
  • Figur 3c zeigt ein Diagramm des Faktors γ aufgetragen über der Temperatur des zweiten Kühlmediums für den zweiten Teilwärmetauscher. Bei Temperatur ≤40°C, so haben Versuche gezeigt, werden Ablagerungen aufgrund von auskondensierendem Wasser besonders vorteilhaft ausgewaschen.
  • Figur 4a zeigt eine Schnittdarstellung eines zweistufigen Abgaskühlers 1 in Scheibenbauweise mit durchgängigen Scheiben 41,42,43,44. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Die ersten Strömungskanäle 21, die zweiten Strömungskanäle 22, die dritten Strömungskanäle 41 und die vierten Strömungskanäle 42 werden durch übereinander gestapelte Oberscheiben mit den Abschnitten 43 und 45 und Unterscheiben mit den Abschnitten 44 und 46 gebildet. Die Platten sind im dargestellten Ausführungsbeispiel durchgehend ausgebildet, können aber auch miteinander verbunden sein durch Stoff- oder Formschluss. In den ersten Strömungskanälen 21 sind erste Turbulenzelemente 47 in Form von Turbulenzblechen oder Dimpeln angeordnet. In den zweiten Strömungskanälen 22 sind zweite Turbulenzelemente 48 in Form von Turbulenzblechen oder Dimpeln angeordnet. Diese steigern die Wärmeübertragungsleistung.
  • Die Platten sind aus einem Metall wie Edelstahl oder Aluminium oder einem anderen Metall ausgebildet. Die Platten werden von einem Gehäuse 40 umschlossen.
  • Figur 4b zeigt eine Draufsicht einer anderen Ausführungsform eines zweistufigen Abgaskühlers 1 in Scheibenbauweise mit durchgängigen Scheiben. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Im Gegensatz zu Figur 4a sind bei Figur 4b die Kühlmedienein- und auslässe KE1 und 2 sowie KA1 und 2 auf derselben Seite. Bereich 11 weist glatte Scheiben auf, die mit den Rippenelementen der ersten Turbulenzbleche bzw. verlötet sind. Bereich 12 zeigt eine Wellenstruktur. Die Wellenhöhe entspricht der halben Kanalhöhe. Die gasseitige Rippe weist eine reduzierte Höhe auf. Entsprechend ist die Höhe der Wellenstruktur reduziert. Ferner kann die Scheibe eine durchgestanzte Struktur aufweisen, wobei zwei Scheiben ein Rohrbündel bilden.
  • Figur 5 zeigt durchgängige Strömungskanäle 50 mit zwei gewellten Turbulenzblechen 47, 48. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Die Rippendichte der zweiten Turbulenzbleche 48 ist größer als die der ersten Turbulenzbleche 47. Deshalb erfolgt in Abschnitt 11 kein Zusetzen und in Abschnitt 12 wird Wasser auskondensiert, das Ablagerungen wegspült. Eine Trennwand 49 trennt die beiden Kühlmedienkreisläufe voneinander.
  • Figur 6 zeigt eine Schnittdarstellung eines durchgängigen Strömungskanals 60 mit einem eingeschoben Turbulenzblech 61 im ersten Teilwärmetauscher 11 und mit Dimpeln 62 in Form von Winglets im zweiten Teilwärmetauscher 12. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Figuren 7a,b,c,d zeigen weitere Ausführungsfomen von turbulenzerzeugenden Blechen. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Figur 7a zeigt eine ebene Platte 71 mit einem Turbulenzblech 70. Figur 7b zeigt zwei verlötete gewellte Platten 72,73. Die Wellenstruktur kann auch gerundet sein. Figur 7c zeigt gewellte Platten mit dazwischen gelöteten Rippen. Die Wellenstruktur kann auch gerundet sein. Figur 7d zeigt Rohrbündel aus zwei gestanzten Platten 74.
  • Figur 8 zeigt einen zweistufigen Abgaswärmetauscher 80 im U-Flow . Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Der Abgaskühler weist ein Gehäuse 81 und ein Umlenkelement 82 auf.
  • Figur 9 zeigt ein System 90 mit einem zweistufigen Abgaskühler. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Das System 90 weist einen Turbolader 103 auf. Über die Ladeluftleitung 96 wird Ladeluft aus der Umgebung im Turbolader 103 verdichtet im ersten Ladeluftkühler 100 abgekühlt und in einem zweiten Turbolader 104 weiterverdichtet und im zweiten Ladeluftkühler, Hochdruckkühler, erneut abgekühlt und anschließend dem Motor 95 zugeführt.
  • Das im Motor 95 entstehende Abgas strömt durch die Leitung 97. Eine Leitung 99 führt einen Teils des Abgases über die Turbolader 104, 103 zum Auspuff, ein anderer Teil des Abgases wird in der Leitung 98 rückgeführt und zuvor in dem Wärmetauscher 1, in der ersten Stufe 11 und anschließend in der zweiten Stufe 12 gekühlt und der abgekühlten Ladeluft beigemischt. Der zweite Ladeluftkühler 94 und zweite Teilwärmetauscher 12 werden vom Niedertemperaturkreislauf 102 mit Kühlmittel versorgt, das in dem Niedertemperaturkühler 93 die vom Lüfter 91 angesaugte Luft kühlt. Zwischen Lüfter und 91 und Niedertemperaturkühler 93 ist der Kühlmittelkühler 92 angeordnet. Dieser führt dem Motor 95 sowie dem ersten Teilwärmetauscher 11 Kühlmittel zu. Luft strömt in Richtung LR durch den zweiten und dritten Wärmetauscher 92,93.
  • Figur 10 zeigt ein Schaubild mit den Vorteilen der zweistufigen Abgaskühlung. Der Niedertemperaturkühler LT-EGR (zweiter Teilwärmetauscher 12) erreicht deutlich geringere Temperaturen und kaum Verschmutzung (Fouling).
  • Figur 11 zeigt ein weiteres System 110 mit einem ersten Regelorgan 111 zustromseitig des ersten Teilwärmetauschers 11 und einem zweiten Regelorgan 112 abstromseitig des ersten Teilwärmetauschers 11 und zustromseitig des zweiten Teilwärmetauschers 12. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren.
  • Figur 12 zeigt einen dreistufigen Abgaskühler mit dem zusätzlichen dritten Teilwärmetauscher 123. Dieser reduziert die Thermowechelbelastungen der Abschnitte 11 und 12 und weist 1/4 bis 1/8 der Gesamtlänge des Wärmetauschers auf. Teil 123 ist im Gleichstrom- oder im Gegenstrom durchströmbar und kühlt das Abgas auf 300°C bis 400°C ab. Es herrscht ein hoher Kühlmitteldurchsatz und gasseitig besteht ein geringer Druckabfall aufgrund der geringen Rippenanzahl und der wenigen turbulenzerzeugenden Strukturen. Es werden glatte Rippen oder nur wenige Winglets eingebracht, so dass eine geringe Rippendichte herrscht. Ein dritter Kreislauf 133 mit einem Temperaturniveau oberhalb des Motorkühlmittels ist bsp Propylenglykol bei 160°C bis 200°C. Dadurch erfolgt bei entsprechender Anordnung des Rückkühlers eine Leistungssteigerung.
  • In Abschnitt 11 wird die meiste Wärme dem Abgas entzogen, es darf jedoch kein Zusetzen aufgrund von Verschmutzung erfolgen.
  • In Abschnitt 12 wird schließlich die Zieltemperatur erreicht. Das im Abgas enthaltene Wasser kondensiert und fördert so die Reinigung des Abschnitts 12.
  • Figur 13 zeigt ein erstes System 130 mit einem dreistufigen Abgaskühler. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren. Im Vergleich zu Figur 9 ist ein vierter Wärmetauscher 134 vorgesehen.
  • Figur 14 : zeigt ein zweites System 140 mit einem dreistufigen Abgaskühler. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren. Der zweite Wärmetauscher 142 und der vierte Wärmetauscher 144 sind bezüglich der Richtung LR im Wesentlichen auf einer Höhe angeordnet.
  • Figur 15 zeigt ein drittes System 150 mit einem dreistufigen Abgaskühler. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren. Hierbei ist für den vierten Wärmetauscher ein separater zweiter Lüfter 152 vorgesehen.
  • Figur 16 zeigt ein viertes System 160 mit einem dreistufigen Abgaskühler. Gleiche Merkmale sind mit den gleichen Bezugszeichen versehen wie in den vorherigen Figuren. Hierbei sind der zweite Wärmetauscher und der vierte Wärmetauscher in einem einzigen Wärmetauscher realisiert 162.

Claims (28)

  1. Wärmetauscher zur Abgaskühlung einer Brennkraftmaschine eines Kraftfahrzeugs aufweisend:
    einen ersten Teilwärmetauscher (11) mit zumindest einem ersten Strömungskanal (21) zur Durchströmung mit einem zu kühlenden Medium und zumindest einen dritten Strömungskanal (41) zur Durchströmung mit einem ersten Kühlmedium,
    zumindest einen zweiten Teilwärmetauscher (12) mit zumindest einem zweiten Strömungskanal (22) zur Durchströmung mit dem zu kühlenden Medium und zumindest einen vierten Strömungskanal (42) zur Durchströmung mit einem zweiten Kühlmedium,
    wobei der zumindest eine erste Strömungskanal vor dem zumindest einen zweiten Strömungskanal in Strömungsrichtung des Abgases angeordnet ist,
    wobei der zumindest eine erste Strömungskanal (21) und der zumindest eine zweite Strömungskanal (22) in Strömungsverbindung stehen und der zumindest eine erste Strömungskanal (21) und der zumindest eine zweite Strömungskanal (22) zumindest jeweils eine erste spezifische Wärmeübertragungsfläche (23) und zumindest jeweils eine zweite spezifische Wärmeübertragungsfläche (24) aufweisen, wobei die zweite spezifische Wärmeübertragungsfläche (24) dividiert durch die erste spezifische Wärmeübertragungsfläche (23) einen Quotienten (ψ) ergibt,
    und der zumindest eine erste und der zumindest eine zweite Strömungskanal (21,22) rohrartig ausgebildet sind und eine erste Rohrinnenwandfläche aufweist, die die zumindest eine erste Wärmeübertragungsfläche (23) bildet und
    der zumindest eine erste Strömungskanal (21) erste Turbulenzelemente (47) aufweist und der zumindest eine zweite Strömungskanal (22) zweite Turbulenzelemente (48) aufweist jeweils als zweite spezifische Wärmeübertragungsflächen, dadurch gekennzeichnet dass der zumindest eine erste Strömungskanal (21) einen größeren Quotienten (ψ) aufweist als der zumindest eine zweite Strömungskanal (22),
    wobei der Quotient (ψ) des zumindest einen ersten Strömungskanals (21) Werte von 1,0 bis 2,5 und der Quotient (ψ) des zumindest einen zweiten Strömungskanals (22) Werte von 0 bis 1,5 annimmt.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass der zumindest eine erste Strömungskanal (21) und der zumindest eine zweite Strömungskanal (22) eine Baueinheit bilden.
  3. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Kühlmedium eine höhere Temperatur aufweist als das zweite Kühlmedium.
  4. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Turbulenzelemente (47) eine erste Turbulenzelementhöhe und/oder die zweiten Turbulenzelemente (48) eine zweite Turbulenzelementhöhe aufweisen.
  5. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Turbulenzelemente (47) erste Dimpel (62) oder erste Turbulenzbleche (61, 70, 71, 72, 73, 74) mit ersten Rippensegmenten und/oder die zweiten Turbulenzelemente (48) zweite Dimpel (61) oder zweite Turbulenzbleche (61, 70, 71, 72, 73, 74) mit zweiten Rippensegmenten sind.
  6. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Turbulenzbleche (61, 70, 71, 72, 73, 74) und/oder die zweiten Turbulenzbleche (61, 70, 71, 72, 73, 74) die zumindest eine zweite Wärmeübertragungsfläche (24) aufweisen.
  7. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Turbulenzelemente (47) eine erste Turbulenzelementhöhe und/oder die zweiten Turbulenzelemente (48) eine zweite Turbulenzelementhöhe aufweisen.
  8. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Turbulenzelementhöhe größer ist als die zweite Turbulenzelementhöhe.
  9. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine erste Turbulenzelementdichte durch die Anzahl der ersten Turbulenzelemente (47) bezogen auf eine erste Länge des zumindest einen ersten Strömungskanals (21) und/oder eine zweite Turbulenzelementdichte durch die Anzahl der zweiten Turbulenzelemente (48) bezogen auf eine zweite Länge zumindest einen zweiten Strömungskanals (22) definiert ist.
  10. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine erste Turbulenzelementdicke größer als eine zweite Turbulenzelementdicke ist.
  11. Wärmetauscher nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine erste Turbulenzelementdicke kleiner als eine zweite Turbulenzelementdicke ist.
  12. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmetauscher ein U-Flow-Wärmetauscher (80) ist.
  13. Wärmetauscher nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Wärmetauscher ein I-Flow-Wärmetauscher (1) ist.
  14. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmetauscher einen dritten Teilwärmetauscher (123) zum Abbau von Thermospannungen aufweist.
  15. Wärmetauscher nach Anspruch 14, dadurch gekennzeichnet, dass der dritte Teilwärmetauscher (123) 1/8 bis 1/4 einer Wärmetauscherlänge des Wärmetauschers bildet.
  16. Wärmetauscher nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, dass der erste Teilwärmetauscher (11) zwischen dem zweiten Teilwärmetauscher (12) und dem dritten Teilwärmetauscher (123) angeordnet ist.
  17. Wärmetauscher nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass der erste Teilwärmetauscher (11) und/oder der zweite Teilwärmetauscher (12) und/oder dritte Teilwärmetauscher (123) eine Baueinheit bilden.
  18. Wärmetauscher nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass in dem ersten Teilwärmetauscher (11) und/oder in dem zweiten Teilwärmetauscher (12) und/oder in dem dritten Teilwärmetauscher (123) das zu kühlende Medium und das Kühlmedium im Gleichstrom oder im Gegenstrom strömen.
  19. Verfahren zum Betreiben des Wärmetauschers (1, 80, 120) nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das zu kühlende Medium, insbesondere Abgas, beim Durchströmen des zweiten Wärmetauscherteils (12) zumindest Wasser aus dem zu kühlenden Medium, insbesondere dem Abgas, auskondensiert zum Reinigen des zweiten Strömungskanals (22) von Ablagerung des zu kühlenden Mediums.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass das zu kühlende Medium im Wesentlichen bei einer Temperatur des zweiten Kühlmediums von kleiner als 40°C zumindest Wasser auskondensiert.
  21. System mit zumindest einem Wärmetauscher (1, 80, 120) nach einem der Ansprüche 1 bis 18 aufweisend
    - zumindest einen zweiten Wärmetauscher (92, 142, 152) zur Kühlung eines Verbrennungsmotors eines Kraftfahrzeugs
    - zumindest einen dritten Wärmetauscher (93,133) zur Kühlung eines zweiten Kühlmediums.
  22. System nach Anspruch 21, dadurch gekennzeichnet, dass zumindest ein vierter Wärmetauscher (134, 144, 154) zur Kühlung des ersten Kühlmediums vorgesehen ist.
  23. System nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass in einer Luftströmungsrichtung gesehen zunächst der dritte Wärmetauscher (93) und anschließend der zweite Wärmetauscher (92) angeordnet sind.
  24. System nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass in Luftströmungsrichtung gesehen nach dem zweiten Wärmetauscher (92) der vierte Wärmetauscher (134) angeordnet ist.
  25. System nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass der vierte Wärmetauscher (144) benachbart zu dem zweiten Wärmetauscher (142) und/oder im Wesentlichen auf derselben Höhe in Luftströmungsrichtung (LR) gesehen wie der zweite Wärmetauscher (142) angeordnet ist.
  26. System nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass der zweite Wärmetauscher und der vierte Wärmetauscher identisch sind.
  27. System nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, dass zustromseitig des ersten Wärmetauschers ein erstes Regelorgan (111) zur Regelung des Massenstroms des zu kühlenden Mediums und/oder zum Bypassen von zu kühlendem Medium um zumindest einen Teilwärmetauscher (11,12,123) angeordnet ist.
  28. System nach einem der Ansprüche 21 bis 27, dadurch gekennzeichnet, dass abstromseitig des ersten Teilwärmetauschers (11) und zustromseitig des zweiten Teilwärmetauschers (12) ein zweites Regelorgan (112) zur Regelung des Massenstroms des zu kühlenden Mediums und/oder zum Bypassen von zu kühlendem Medium um zumindest einen Teilwärmetauscher (11,12) angeordnet ist.
EP08005238.4A 2007-04-26 2008-03-20 Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler Not-in-force EP1985953B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007020103 2007-04-26

Publications (2)

Publication Number Publication Date
EP1985953A1 EP1985953A1 (de) 2008-10-29
EP1985953B1 true EP1985953B1 (de) 2018-09-05

Family

ID=39672594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08005238.4A Not-in-force EP1985953B1 (de) 2007-04-26 2008-03-20 Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler

Country Status (3)

Country Link
US (1) US20080264609A1 (de)
EP (1) EP1985953B1 (de)
DE (1) DE102008014169A1 (de)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322211A1 (de) * 2003-05-16 2004-12-02 Modine Manufacturing Co., Racine Wärmetauscherblock
SE533750C2 (sv) * 2008-06-09 2010-12-21 Scania Cv Ab Arrangemang hos en överladdad förbränningsmotor
DE112009001675T5 (de) * 2008-07-16 2011-06-01 Borgwarner Inc., Auburn Hills Diagnostizieren eines Kühlteilsystems eines Motorsystems als Antwort auf einen in dem Teilsystem erfassten dynamischen Druck
FR2936304B1 (fr) * 2008-09-25 2015-08-07 Valeo Systemes Thermiques Element d'echange de chaleur d'un faisceau d'echange de chaleur d'un echangeur de chaleur
SE533123C2 (sv) * 2008-12-08 2010-06-29 Scania Cv Ab Arrangemang för kylning av återcirkulerande avgaser hos en förbränningsmotor
IT1393254B1 (it) * 2009-03-17 2012-04-12 Unical Ag Spa Tubo di convogliamento di fumi in apparecchi di scambio termico, in particolare caldaie per la produzione di acqua calda o di vapor d'acqua.
US20110023840A1 (en) * 2009-07-31 2011-02-03 International Engine Intellectual Property Company, Llc Exhaust Gas Cooler
US20110186266A1 (en) * 2010-02-01 2011-08-04 Suna Display Co. Heat transfer device with anisotropic thermal conducting structures
IT1398347B1 (it) * 2010-02-23 2013-02-22 Mta Spa Unita' per il trattamento termico di un fluido.
US9309839B2 (en) 2010-03-18 2016-04-12 Modine Manufacturing Company Heat exchanger and method of manufacturing the same
AU2011201083B2 (en) 2010-03-18 2013-12-05 Modine Manufacturing Company Heat exchanger and method of manufacturing the same
FR2958327B1 (fr) * 2010-03-31 2012-03-23 Valeo Sys Controle Moteur Sas Dispositif de refroidissement pour un circuit de recirculation de gaz d'echappement d'un moteur, notamment de vehicule automobile.
SE535877C2 (sv) * 2010-05-25 2013-01-29 Scania Cv Ab Kylarrangemang hos ett fordon som drivs av en överladdad förbränningsmotor
US20120067332A1 (en) * 2010-09-17 2012-03-22 Gm Global Technology Operations, Inc. Integrated exhaust gas recirculation and charge cooling system
US9127606B2 (en) * 2010-10-20 2015-09-08 Ford Global Technologies, Llc System for determining EGR degradation
DE102010043750B4 (de) * 2010-11-11 2017-10-26 Halla Visteon Climate Control Corporation Vorrichtung und Verfahren zur Abgaskühlung in Kraftfahrzeugen
DE102010063324A1 (de) 2010-12-17 2012-06-21 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung von Ladeluft, System zum Konditionieren von Ladeluft und Ansaugmodul für einen Verbrennungsmotor
DE102011003248A1 (de) 2011-01-27 2012-08-02 Bayerische Motoren Werke Aktiengesellschaft Wärmetauscher
DE102011006793A1 (de) * 2011-04-05 2012-10-11 Behr Gmbh & Co. Kg Abgaskühler
GB2493741B (en) * 2011-08-17 2017-02-22 Gm Global Tech Operations Llc Exhaust gas recirculation system for an internal combustion engine
DE102012202234A1 (de) * 2012-02-14 2013-08-14 Behr Gmbh & Co. Kg Wärmeübertrageranordnung
DE102012208742A1 (de) * 2012-03-28 2013-10-02 Mahle International Gmbh Abgaskühler
KR101921905B1 (ko) * 2012-04-24 2018-11-26 주식회사 두산 배기 가스의 온도 저감장치
DE102012008700A1 (de) * 2012-04-28 2013-10-31 Modine Manufacturing Co. Wärmetauscher mit einem Kühlerblock und Herstellungsverfahren
DE102012209893B4 (de) * 2012-06-13 2014-05-08 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit Ladeluftkühlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
FR2993354B1 (fr) * 2012-07-13 2018-07-13 Delphi Automotive Systems Lux Refroidisseur d'air de suralimentation
US9217610B2 (en) * 2012-07-16 2015-12-22 Caterpillar Inc. Heat exchanger for exhaust gas recirculation
KR101316444B1 (ko) * 2012-08-10 2013-10-08 현대자동차주식회사 차량 쿨러 시스템
DE102012216452A1 (de) * 2012-09-14 2014-03-20 Eberspächer Exhaust Technology GmbH & Co. KG Wärmeübertrager
DE102012216448A1 (de) * 2012-09-14 2014-03-20 Eberspächer Exhaust Technology GmbH & Co. KG Wärmeübertrager
DE102012216453A1 (de) * 2012-09-14 2014-03-20 Eberspächer Exhaust Technology GmbH & Co. KG Wärmeübertrager
ES2450791B1 (es) * 2012-09-25 2015-01-16 Valeo Térmico, S. A. Intercambiador de calor para gases, en especial de los gases de escape de un motor
DE102012022676A1 (de) * 2012-11-21 2014-05-22 Voith Patent Gmbh Verdampfer zur teilweisen oder vollständigen Verdampfung eines Flüssigkeitsstromes
FR3001773A1 (fr) * 2013-02-01 2014-08-08 Peugeot Citroen Automobiles Sa Refroidisseur d'air de suralimentation en u
US20140311466A1 (en) * 2013-04-17 2014-10-23 Caterpillar Inc. Coolant Inlet Structures for Heat Exchangers for Exhaust Gas Recirculation Systems
US9494112B2 (en) * 2013-05-10 2016-11-15 Modine Manufacturing Company Exhaust gas heat exchanger and method
CN104541032B (zh) * 2013-06-17 2017-03-08 丰田自动车株式会社 内燃机系统的冷却装置及其控制方法
DE102013211700B3 (de) * 2013-06-20 2014-09-25 Ford Global Technologies, Llc Fahrzeugheizsystem sowie Verfahren zum Heizen des Innenraums eines Fahrzeugs mit einem Fahrzeugheizsystem
JP6346426B2 (ja) * 2013-08-12 2018-06-20 現代自動車株式会社Hyundai Motor Company Egrガス及びエンジンオイル冷却装置とその制御方法
DE102013216408A1 (de) * 2013-08-19 2015-02-19 Behr Gmbh & Co. Kg Wärmeübertrager
JP5684439B1 (ja) * 2013-11-14 2015-03-11 住友精密工業株式会社 航空機用熱交換器
DE102013224038A1 (de) * 2013-11-25 2015-05-28 MAHLE Behr GmbH & Co. KG Abgaswärmetauscher zur Abgaskühlung einer Brennkraftmaschine, vorzugsweise für ein Kraftfahrzeug
KR101534725B1 (ko) * 2013-12-06 2015-07-07 현대자동차 주식회사 터보차저를 갖는 엔진시스템
KR101490963B1 (ko) * 2013-12-11 2015-02-06 현대자동차 주식회사 터보차저를 갖는 엔진시스템
DE102014205378A1 (de) 2014-03-24 2015-09-24 Bayerische Motoren Werke Aktiengesellschaft Abgasanlage für eine Brennkraftmaschine
KR101569829B1 (ko) * 2014-06-13 2015-11-19 주식회사 코렌스 Egr 가스 차압 저감용 웨이브 핀 플레이트를 갖는 열교환기
DE102014217920A1 (de) * 2014-09-08 2016-03-10 Mahle International Gmbh Stapelscheiben-Wärmeübertrager
KR101628129B1 (ko) * 2014-11-13 2016-06-08 현대자동차 주식회사 통합된 냉각 시스템 및 이를 제어하는 방법
DE102015200952A1 (de) 2015-01-21 2016-07-21 Mahle International Gmbh Stapelscheiben-Wärmeübertrager
EP3056711B1 (de) * 2015-02-13 2018-12-05 Caterpillar Motoren GmbH & Co. KG Kühlsystem für einen Verbrennungsmotor
KR102161475B1 (ko) * 2015-06-15 2020-10-05 한온시스템 주식회사 차량용 에어컨 시스템
JP6499326B2 (ja) * 2016-01-22 2019-04-10 フタバ産業株式会社 排気熱回収装置
DE102016002380B4 (de) * 2016-03-01 2023-10-05 Volkswagen Aktiengesellschaft Kraftfahrzeug mit einem Abgaskondensator
US10794336B2 (en) * 2016-04-14 2020-10-06 Ford Global Technologies, Llc Methods and systems for an exhaust gas recirculation cooler
US10352278B2 (en) * 2016-08-19 2019-07-16 Ge Global Sourcing Llc Method and systems for an exhaust gas recirculation cooler including two sections
DE102016216233A1 (de) 2016-08-29 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Kühlung von Ladeluft einer aufgeladenen Brennkraftmaschine
JP6631720B2 (ja) * 2016-10-13 2020-01-15 株式会社デンソー 熱交換器
CN106884747B (zh) * 2017-02-20 2019-04-30 上海理工大学 一种egr冷却器
DE102017115919B4 (de) 2017-07-14 2020-12-24 Benteler Automobiltechnik Gmbh Abgaswärmetauscher mit zwei voneinander verschiedenen Arbeitsbereichen
DE102017130094B4 (de) 2017-12-15 2021-06-17 Benteler Automobiltechnik Gmbh Abgaswärmetauscher sowie Verfahren zum Betreiben des Abgaswärmetauschers
DE102018207777A1 (de) * 2018-05-17 2019-11-21 Mahle International Gmbh Verfahren zur Betriebszustandsbestimmung eines PTC-Thermistorelementes
WO2020038576A1 (en) * 2018-08-23 2020-02-27 Volvo Truck Corporation A method for operating an internal combustion engine system
EP3741985A1 (de) * 2019-05-23 2020-11-25 Valeo Termico S.A. Kühler mit abgasrückführung (agr)
JP7136757B2 (ja) * 2019-09-27 2022-09-13 株式会社ユタカ技研 熱交換器
CN115298417A (zh) * 2020-03-23 2022-11-04 康明斯公司 多芯热回收增压冷却器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4414429C1 (de) * 1994-04-26 1995-06-01 Mtu Friedrichshafen Gmbh Verfahren zur Kühlung von dieselmotorischen Abgasen
US6318455B1 (en) * 1999-07-14 2001-11-20 Mitsubishi Heavy Industries, Ltd. Heat exchanger
JP4069570B2 (ja) * 2000-03-16 2008-04-02 株式会社デンソー 排気熱交換器
US6978772B1 (en) * 2003-02-03 2005-12-27 Chapeau, Inc. EGR cooling and condensate regulation system for natural gas fired co-generation unit
DE10312788A1 (de) * 2003-03-21 2004-09-30 Behr Gmbh & Co. Kg Abgaswärmetauscher und Dichteinrichtung für Abgaswärmetauscher
DE10328746A1 (de) 2003-06-25 2005-01-13 Behr Gmbh & Co. Kg Vorrichtung zum mehrstufigen Wärmeaustausch und Verfahren zur Herstellung einer derartigen Vorrichtung
US6904898B1 (en) * 2003-09-09 2005-06-14 Volvo Lastyagnar Ab Method and arrangement for reducing particulate load in an EGR cooler
JP2005220747A (ja) * 2004-02-03 2005-08-18 Usui Kokusai Sangyo Kaisha Ltd Egrガス冷却機構
SE527479C2 (sv) * 2004-05-28 2006-03-21 Scania Cv Ab Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor
US7073573B2 (en) * 2004-06-09 2006-07-11 Honeywell International, Inc. Decreased hot side fin density heat exchanger
DE102005029322A1 (de) 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Vorrichtung zur Rückführung und Kühlung von Abgas für eine Brennkraftmaschine
DE102005042396A1 (de) 2005-09-06 2007-03-15 Behr Gmbh & Co. Kg Kühlsystem für ein Kraftfahrzeug

Also Published As

Publication number Publication date
DE102008014169A1 (de) 2009-01-08
US20080264609A1 (en) 2008-10-30
EP1985953A1 (de) 2008-10-29

Similar Documents

Publication Publication Date Title
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP2663823B1 (de) Wärmeübertrager
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
EP1491837B1 (de) Wärmetauscher in gehäuseloser Plattenbauweise
EP1941224A1 (de) Wärmetauscher
WO2006100072A1 (de) Abgaswärmeübertrager, insbesondere abgaskühler für eine abgasrückführung in kraftfahrzeugen
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
DE102006009948A1 (de) Abgaswärmeaustauscher
WO2008058734A1 (de) Wärmeübertrager für kraftfahrzeug mit stranggepresstem gekrümmten strömungskanal
WO2007104580A2 (de) Wärmetauscher für ein kraftfahrzeug
DE102009047620B4 (de) Wärmeübertrager mit Rohrbündel
EP2831529B1 (de) Abgaskühler
WO2010015433A1 (de) Wärmeübertragungseinheit für eine verbrennungskraftmaschine
EP2159394A2 (de) Gaskühler für einen Verbrennungsmotor
DE60310992T2 (de) Hochdruckwärmetauscher
DE102006049106A1 (de) Wärmetauscher
EP1901020B1 (de) Stapelscheibenwärmetauscher zur Ladeluftkühlung
DE102008014373A1 (de) Strömungskanal, Wärmetauscher, Abgasrückführsystem, Ladeluft-Zuführsystem, Verwendung eines Wärmetauschers
EP3039372B1 (de) Wärmeübertrager
WO2005100895A1 (de) Wärmeübertrager für kraftfahrzeuge
DE102006013868A1 (de) Abgaswärmeübertrager, insbesondere Abgaskühler für eine Abgasrückführung in Kraftfahrzeugen
EP3247960B1 (de) Stapelscheiben-wärmeübertrager
WO2017167872A1 (de) Stapelscheibenwärmetauscher
EP3203173B1 (de) Abgaswärmeübertrager
DE102011088635A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090429

17Q First examination report despatched

Effective date: 20090609

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008016309

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28D0009000000

Ipc: F02M0026230000

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/02 20060101ALI20171219BHEP

Ipc: F02M 26/24 20160101ALI20171219BHEP

Ipc: F28F 13/14 20060101ALI20171219BHEP

Ipc: F28D 7/00 20060101ALI20171219BHEP

Ipc: F28D 7/16 20060101ALI20171219BHEP

Ipc: F28D 9/00 20060101ALI20171219BHEP

Ipc: F02M 26/32 20160101ALI20171219BHEP

Ipc: F02M 26/23 20160101AFI20171219BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PANTOW, EBERHARD

Inventor name: IRMLER, KLAUS

Inventor name: GESKES, PETER

Inventor name: FETZER, TOBIAS

Inventor name: LUTZ, RAINER

Inventor name: SCHMIDT, MICHAEL

Inventor name: PFISTER, FLORIAN

Inventor name: RUCKWIED, JENS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1038104

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016309

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: F02M 26/32 20160101ALI20171219BHEP

Ipc: F28D 7/00 20060101ALI20171219BHEP

Ipc: F28F 13/14 20060101ALI20171219BHEP

Ipc: F28D 7/16 20060101ALI20171219BHEP

Ipc: F28F 3/02 20060101ALI20171219BHEP

Ipc: F02M 26/23 20160101AFI20171219BHEP

Ipc: F02M 26/24 20160101ALI20171219BHEP

Ipc: F28D 9/00 20060101ALI20171219BHEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016309

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200514

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1038104

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008016309

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001