WO2006100072A1 - Abgaswärmeübertrager, insbesondere abgaskühler für eine abgasrückführung in kraftfahrzeugen - Google Patents

Abgaswärmeübertrager, insbesondere abgaskühler für eine abgasrückführung in kraftfahrzeugen Download PDF

Info

Publication number
WO2006100072A1
WO2006100072A1 PCT/EP2006/002666 EP2006002666W WO2006100072A1 WO 2006100072 A1 WO2006100072 A1 WO 2006100072A1 EP 2006002666 W EP2006002666 W EP 2006002666W WO 2006100072 A1 WO2006100072 A1 WO 2006100072A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat exchanger
gas heat
inserts
exchanger according
Prior art date
Application number
PCT/EP2006/002666
Other languages
English (en)
French (fr)
Inventor
Jens Ruckwied
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to US11/817,243 priority Critical patent/US7614389B2/en
Priority to EP06723657A priority patent/EP1864005A1/de
Priority to JP2008502326A priority patent/JP2008534834A/ja
Publication of WO2006100072A1 publication Critical patent/WO2006100072A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2889Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with heat exchangers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • Exhaust gas heat exchanger in particular exhaust gas cooler for a
  • the invention relates to an exhaust gas heat exchanger, in particular an exhaust gas cooler for exhaust gas recirculation in motor vehicles.
  • the exhaust gas heat exchanger is designed as an exhaust gas cooler and turned on in an exhaust gas recirculation line of a diesel engine.
  • the exhaust gas cooler is associated with an oxidation catalyst, which in one embodiment (according to FIG. 4 of the earlier application) is integrated into the exhaust gas cooler in such a way that the oxidation-catalytic coating is arranged on the inner wall of the exhaust gas pipes.
  • a disadvantage of this solution is that the heat transfer and the heat conduction in the exhaust pipes through the catalytic coating, preferably a noble metal such. B. platinum is affected.
  • the oxidation-catalytic coating ie the catalyst, has a relatively low temperature, since it is arranged on the tube wall cooled from outside by a liquid medium.
  • the oxidation catalyst needs a minimum temperature to "jump": the oxidation of hydrocarbons - and carbon monoxide (CO) - takes place in a temperature range of about 200 to 600 degrees C.
  • the catalytic efficiency is not optimal in this arrangement of the coating and its associated relatively low temperature.
  • JP 2000 257512 A, JP 2000 249003 A and JP 2000 038962 A have disclosed exhaust gas coolers of an exhaust gas recirculation system, the exhaust gas pipes being provided on their inner wall (exhaust gas side) with a catalytic layer, in particular an oxidation catalytic converter such as platinum. Also for these interior wall coatings apply the aforementioned disadvantages, d. H. a lower temperature of the oxidation catalyst.
  • the invention aims to improve the effectiveness of the oxidation catalyst.
  • the deposits form the carrier of the oxidation catalytic substance, which is thus not - primarily - arranged on the inner wall of the exhaust ducts, but within the flow cross-section of the exhaust ducts, where significantly higher temperatures prevail than at the duct wall.
  • the advantage of improved heat transfer on the exhaust side and thus improved exhaust gas cooling is achieved, which in turn has smaller exhaust gas heat exchanger result, combined with a reduction in weight or cost.
  • the channels or exhaust pipes may have any desired cross-section, with circular and rectangular cross-sections being preferred.
  • the inserts are connected to the inner wall of the tubes by soldering or welding, via contact points in the form of crests, wave crests or ribbed arches. It is provided according to an advantageous embodiment of the invention that not all, but only part of the wave crests of a corrugated fin is connected to the pipe inner wall, while the remaining part of the wave crests is spaced from the pipe wall and is completely surrounded by the hot exhaust gas stream. This achieves the advantage of improved conversion due to higher temperature of the oxidation catalyst.
  • the deposits, z. B. corrugated ribs or rib ribs need not necessarily be made as a separate part, but can also be integral with the pipe wall of the exhaust pipe, z. B. be formed at a flat tube cross-section.
  • the catalytic substance is additionally arranged on the tube inner wall, so that the entire area swept by the exhaust gas is coated with the oxidation-catalytic substance.
  • the channels are formed by adjacent disks.
  • the channels can be produced particularly advantageously by a reshaping production method, such as pressing, stamping or by an original molding process, such as casting.
  • the discs form pairs of discs.
  • the disks and / or adjacent pairs of disks are particularly advantageously stackable and / or with each other in particular - A -
  • FIG. 1 shows a cross section through an exhaust gas cooler
  • Fig. 2 shows a cross section through an exhaust pipe with a modified inner fin
  • Fig. 3 is a sectional view of another embodiment of a Abgas139übertragers and
  • Fig. 4 shows another embodiment of a heat exchanger, in particular exhaust gas heat exchanger.
  • FIG. 1 shows a cross section through an exhaust gas heat exchanger 1, which can be used as an exhaust gas cooler of an exhaust gas recirculation system (AGR system), not shown.
  • the exhaust gas heat exchanger 1 has a housing shell 2, which has an approximately rectangular cross-section and a bundle of exhaust pipes 3 receives, which also have an approximately rectangular cross-section and form between them and the housing shell 2 column 4, which are flowed through by a liquid coolant ,
  • Such exhaust gas heat exchangers are described in more detail in DE 199 07 163 C2 and DE 195 40 683 A1 of the applicant.
  • the coolant is taken from a coolant circuit, not shown, of an internal combustion engine of the motor vehicle and cools the hot exhaust gas flowing through the exhaust pipes 3.
  • meander-shaped deposits 5 are arranged, which are also referred to as inner ribs.
  • the inner ribs 5 have peaks 5a (peaks), which are preferably soldered or welded to the inner wall of the exhaust pipes 3.
  • the surface of the inner fin 5 is coated with an oxidation-catalytic substance, for example a noble metal such as platinum.
  • an oxidation-catalytic substance for example a noble metal such as platinum.
  • the inner fins 5 are catalytic coated, but also the inner wall of the exhaust pipes 3, which has an oxikatalytician layer 6a.
  • the inserts may also have other shapes than shown in the drawing, z.
  • the inserts in particular in the case of a rectangular crosspiece, can also be formed in one piece with the tube wall by shaping, folding and soldering or welding the tube from a sheet metal.
  • Fig. 2 shows a second embodiment of the invention, wherein only the cross section of a single exhaust pipe 7 is shown.
  • a corrugated inner rib (corrugated fin) 8 is arranged whose wave crests or ribbed arcs are offset from one another such that only a part, in the drawing, the wave crests 8a, 8d, 8g, the inner wall contact the exhaust pipe 7 and are soldered at these contact points with the pipe wall.
  • the other peaks, in the drawing 8b, 8c, 8e, 8f have a distance from the inner wall and are completely exposed to the exhaust gas flow.
  • the entire inner fin 8 and the inner wall of the exhaust pipe 7 have a continuous oxikatalytician coating 9. Due to the partial connection of the corrugated fin 8, the average temperature The catalytic coating is further increased, whereby a higher efficiency of the oxidation catalyst is achieved.
  • Fig. 3 shows in a sectional view another embodiment of a Abgas139übertragers 10, which is designed as an exhaust gas cooler and in an exhaust gas recirculation system (EGR system) of an internal combustion engine for motor vehicles can be used.
  • EGR systems are known from the prior art: in this case, the exhaust gas of the internal combustion engine is removed before or after an exhaust gas turbine (high pressure or low pressure feedback) and cooled one or two stages supplied to the intake of the engine again. The amount of exhaust gas removed is regulated by means of an exhaust gas recirculation valve (EGR valve).
  • the illustrated exhaust gas cooler 10 is traversed by exhaust gas and cooled by a liquid coolant, which is preferably removed from the cooling circuit of the internal combustion engine.
  • the exhaust gas cooler 10 has a two-part housing 11, which consists of a trough-shaped housing shell 11a and a lid 11b - both parts are preferably formed as sheet metal parts and can be produced by deep drawing.
  • a package of disc pairs 12 is arranged, which are flowed through by the coolant.
  • the pairs of disks 12 extend over the full width of the housing shell 11a, which has two housing walls 11c, 11d, which are shown vertically in the drawing and run parallel to one another.
  • the pairs of disks 12 have longitudinal sides 12a, which abut against the housing walls 11c, 11d, and form flow channels, which are equipped with turbulence inserts 13 to increase the heat transfer.
  • the pairs of discs 12 are arranged in parallel at a distance from each other and form passageways 14 for the exhaust gas.
  • turbulence inserts 15 are arranged to increase the heat transfer.
  • All parts of the exhaust gas cooler 10 are cohesively, ie, connected to each other by soldering, welding or gluing.
  • the soldering, welding or gluing is preferably carried out in one operation in a soldering oven or welding apparatus, not shown, or by means of an adhesive device.
  • the disk pairs each have a top disk 80b and a bottom disk 80c.
  • 4 shows a further embodiment of a heat exchanger 16, in particular an exhaust gas heat exchanger.
  • the heat exchanger 16 has a first housing element 60, 70 and a second housing element 80.
  • the housing element 60, 70 receives first disks 40 and second disks 50 in it.
  • the first disks 40 and the second disks 50 are arranged substantially parallel to each other and stackable.
  • a first disk 40 forms a disk pair 22 with a second disk 50.
  • the first and second disks are connected to one another in a material-bonded manner, in particular by soldering, welding or gluing.
  • adjacent pairs of disks 22, in particular on cups 20 at both disk ends of the disks 40, 50 and the pairs of disks 22 are connected to one another in a material-locking manner, in particular by soldering, welding or gluing.
  • the discs 40, 50 and the disc pairs have cup openings.
  • the first housing element 60, 70 is materially and / or positively connected to the second housing element.
  • the second housing element has a first housing opening for the entry of the first medium.
  • the first medium in particular the hot exhaust gas
  • flows into the disk pairs 22 through the Napföffonne flows through the pairs of disks in the flow channel formed in the interior 20 and flows through a second housing opening of the housing member 80 from this via the outlet.
  • the disk pairs are stackable in the stacking direction S.
  • the housing element 80 has a third housing opening, whereby cooling medium, in particular liquid coolant, cooling water, gas or refrigerant, in particular an air conditioner, enters the first housing element 60, 70 via an inlet and cools the latter, so that substantially no thermal stresses occur.
  • the second cooling medium circumscribes the outer sides of the disks 40, 50 and the disk pairs 22 and the disk pair edge surfaces 24. It flows through openings formed by the spaced pairs of disks, whereby a heat exchange between the exhaust gas to be cooled takes place. Second flow channels 30 of the cooling medium are also formed between the first housing element 60, 70 and the disc pair edge surfaces 24, as a result of which the housing element 60, 70 is substantially cooled.
  • the cooling medium leaves a fourth housing opening of the housing element 80 via an outlet.
  • the heat exchanger 16 is in the form of a module in a modular system. built-in. The heat exchanger can be integrated in a cooling module.
  • a cooling module comprises in particular a plurality of heat exchangers, in particular coolant radiator, oil cooler, intercooler, exhaust gas cooler, heat exchanger of an air conditioner.
  • the housing member 60, 70 receives in its interior the discs 40, 50 and the disc pairs 22.
  • the first housing element 60, 70 is materially connected to the second housing element 80 by soldering, welding, gluing, etc. and / or by form-fitting by crimping, corrugated slot crimping, crimping, folding, clips, etc.
  • both housing elements are sealed by a sealing element, in particular an O-ring, etc. with respect to each other.
  • Adjacent pairs of discs are spaced apart by forms, in particular turboule inserts or turbulence-generating elements, 18.
  • the heat transfer between the first medium and the second medium is improved.
  • Variants, in particular turbulence inserts or turbulence-generating elements, 18 are also arranged within the pairs of disks and, in particular, bonded to the disks 40, 50 by soldering, welding, gluing and / or forming from them by forming.
  • the inserts 5, 8, 13, 15, 18 are formed of aluminum.
  • the inserts 5, 8, 13, 15, 18 are formed of ferrite.
  • the inserts 5, 8, 13, 15, 18 are made of a heat-resistant steel with an aluminum content of up to 10%.
  • the inserts 5, 8, 13, 15, 18 are made of a heat-resistant steel with an aluminum content of up to 10%. In another embodiment, the inserts 5, 8, 13, 15, 18 are made of a heat-resistant steel with an aluminum content of up to 6%.
  • the inserts 5, 8, 13, 15, 18 are formed of a heat-resistant steel with aluminum coating.
  • the inserts 5, 8, 13, 15, 18 are formed of a heat-resistant steel with aluminum coating.
  • the inserts 5, 8, 13, 15, 18 are formed of a heat-resistant steel with aluminum plating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft einen Abgaswärmeübertrager, insbesondere Abgaskühler für eine Abgasrückführung in Kraftfahrzeugen mit von Abgas durchströmbaren und von einem Fluid kühlbaren Kanälen (3), wobei ein Oxidationskatalysator, bestehend aus einem Träger und einer oxikatalytischen Beschichtung, in den Abgaswärmeübertrager (1 ) integriert und wobei der Träger der oxikatalytischen Beschichtung (6) als in den Kanälen (3) angeordnete Einlage (5) ausgebildet ist.

Description

Abgaswärmeübertrager, insbesondere Abgaskühler für eine
Abgasrückführung in Kraftfahrzeugen
Die Erfindung betrifft einen Abgaswärmeübertrager, insbesondere einen Ab- gaskühler für eine Abgasrückführung in Kraftfahrzeugen.
Ein derartiger Abgaswärmeübertrager ist in der älteren Patentanmeldung der Anmelderin mit dem Anmeldeaktenzeichen 10 2004 042 454.3 offenbart. Der Abgaswärmeübertrager ist als Abgaskühler ausgebildet und in eine Abgas- rückführleitung eines Dieselmotors eingeschaltet. Dabei ist dem Abgaskühler ein Oxidationskatalysator zugeordnet, welcher in einem Ausführungsbeispiel (gemäß Fig. 4 der älteren Anmeldung) derart in den Abgaskühler integriert ist, dass die oxidationskatalytische Beschichtung auf der Innenwand der Ab- gasrohre angeordnet ist. Damit wird der Vorteil erreicht, dass im Dieselabgas enthaltene Kohlenwasserstoffe (HC) konvertiert werden, wodurch auch die Rußablagerung in den Abgasrohren reduziert wird. Nachteilig bei dieser Lösung ist, dass der Wärmeübergang und auch die Wärmeleitung in den Abgasrohren durch die katalytische Beschichtung, vorzugsweise ein Edelmetall wie z. B. Platin beeinträchtigt wird. Darüber hinaus weist die oxidationskata- lytische Beschichtung, d. h. der Katalysator eine relativ niedrige Temperatur auf, da er auf der von außen durch ein flüssiges Medium gekühlten Rohrwand angeordnet ist. Der Oxidationskatalysator benötigt jedoch eine Mindesttemperatur, um „anzuspringen": die Oxidation der Kohlenwasserstoffe - und auch von Kohlenmonoxid (CO) - findet in einem Temperaturbereich von etwa 200 bis 600 Grad Celsius statt. Der katalytische Wirkungsgrad ist bei dieser Anordnung der Beschichtung und ihrer damit verbundenen relativ niedrigen Temperatur nicht optimal.
Durch die JP 2000 257512 A, die JP 2000 249003 A und die JP 2000 038962 A wurden Abgaskühler eines Abgasrückführsystems bekannt, wobei die Abgasrohre auf ihrer Innenwand (Abgasseite) mit einer katalytischen Schicht, insbesondere einem Oxidationskatalysator wie Platin versehen sind. Auch für diese Innenwandbeschichtungen gelten die vorgenannten Nachteile, d. h. einer zu niedrigeren Temperatur des Oxidationskatalysators.
Es ist Aufgabe der vorliegenden Erfindung, einen Abgaswärmeübertrager, wie er in der vorgenannten älteren Anmeldung offenbart ist, weiter zu verbessern. Insbesondere zielt die Erfindung darauf ab, die Wirksamkeit des Oxidationskatalysators zu verbessern.
Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Neu gegenüber dem Abgaswärmeübertrager der älteren Anmeldung ist, dass die oxidationskatalytische Substanz auf einer Einlage angeordnet ist, welche sich in den von Abgas durchströmbaren Kanälen befindet. Unter Ein- läge ist eine beliebige, den Querschnitt der Abgaskanäle teilweise durchsetzende Struktur oder Schikane zu verstehen. Beispielsweise - wie in den Unteransprüchen angegeben - kann es sich dabei um an sich bekannte Turbulenzeinlagen handeln, welche als separate Teile in die Kanäle respektive Rohre gesteckt werden. Mögliche Einlagen sind auch in Innenwellrippen, mit oder ohne Kiemen, Stegrippen und dergleichen. Die Einlagen bilden die Träger der oxidationskatalytischen Substanz, die somit nicht - primär - an der Innenwandung der Abgaskanäle, sondern innerhalb des Strömungsquerschnittes der Abgaskanäle angeordnet ist, wo erheblich höhere Temperaturen herrschen als an der Kanalwand. Damit ergibt sich der Vorteil, dass der Oxidationskatalysator infolge seiner höheren Temperatur erheblich wirksamer ist und somit den Oxidationsprozess schneller und effektiver in Gang setzt. Gleichzeitig wird der Vorteil eines verbesserten Wärmeübergangs auf der Abgasseite und somit eine verbesserte Abgaskühlung erreicht, was wiederum kleinere Abgaswärmeübertrager zur Folge hat, verbunden mit einer Reduktion des Gewichts bzw. der Kosten. Die Kanäle bzw. Abgasrohre können einen beliebigen Querschnitt aufweisen, wobei kreisförmige und rechteckförmige Querschnitte bevorzugt sind.
Vorteilhafterweise werden die Einlagen mit der Innenwand der Rohre durch Löten oder Schweißen verbunden, und zwar über Kontaktstellen in Form von Kuppen, Wellenbergen oder Rippenbögen. Dabei ist nach einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, dass nicht alle, sondern nur ein Teil der Wellenberge einer Wellrippe mit der Rohrinnenwand verbunden ist, während der restliche Teil der Wellenberge von der Rohrwand beabstandet ist und vollständig vom heißen Abgasstrom umspült wird. Damit wird der Vorteil einer verbesserten Konvertierung infolge höherer Temperatur des Oxida- tionskatalysators erreicht.
Die Einlagen, z. B. Wellrippen oder Stegrippen müssen nicht notwendigerweise als separates Teil hergestellt sein, sondern können auch einstückig mit der Rohrwandung des Abgasrohres, z. B. bei einem Flachrohrquerschnitt ausgebildet sein.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die kataly- tische Substanz zusätzlich auf der Rohrinnenwand angeordnet, so dass die gesamte vom Abgas überstrichene Fläche mit der oxidationskatalytischen Substanz beschichtet ist. Daraus ergibt sich einerseits der Vorteil einer vereinfachten Beschichtung bzw. Herstellung der Abgasrohre und andererseits einer maximalen katalytischen Wirkung.
In einer Weiterbildung sind die Kanäle durch benachbarte Scheiben ausgebildet. Auf diese Weise sind die Kanäle besonders vorteilhaft durch ein umformendes Fertigungsverfahren wie Pressen, Stanzen oder durch eine ur- formendes Fertigungsverfahren wie Gießen herstellbar.
In einer weiteren vorteilhaften Ausgestaltung bilden die Scheiben Scheibenpaare. Auf diese Weise sind die Scheiben und/oder benachbarte Scheibenpaare besonders vorteilhaft stapelbar und/oder miteinander insbesondere - A -
mittels eines stoffschlüssigen Verbindungsverfahrens wie Schweißen, Löten, Kleben usw. verbindbar.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
Fig. 1 einen Querschnitt durch einen Abgaskühler, Fig. 2 einen Querschnitt durch ein Abgasrohr mit veränderter Innenrippe, Fig. 3 eine Schnittdarstellung ein weiteres Ausführungsbeispiel eines Abgaswärmeübertragers und
Fig. 4 eine weitere Ausführungsform eines Wärmetauschers, insbesondere Abgaswärmetauschers.
Figur 1 zeigt einen Querschnitt durch einen Abgaswärmeübertrager 1 , welcher als Abgaskühler eines nicht dargestellten Abgasrückführsystems (AGR- System) einsetzbar ist. Im Übrigen wird auf die eingangs genannte ältere Anmeldung hingewiesen, die hiermit vollumfänglich einschließlich des darin genannten Standes der Technik in den Offenbarungsgehalt dieser Anmel- düng einbezogen wird. Der Abgaswärmeübertrager 1 weist einen Gehäusemantel 2 auf, welcher einen etwa rechteckförmigen Querschnitt besitzt und in sich ein Bündel von Abgasrohren 3 aufnimmt, welche ebenfalls einen etwa rechteckförmigen Querschnitt aufweisen und zwischen sich und dem Gehäusemantel 2 Spalte 4 bilden, welche von einem flüssigen Kühlmittel durchströmt werden. Derartige Abgaswärmeübertrager sind in der DE 199 07 163 C2 und der DE 195 40 683 A1 der Anmelderin genauer beschrieben. Das Kühlmittel wird einem nicht dargestellten Kühlmittelkreislauf eines Verbrennungsmotors des Kraftfahrzeuges entnommen und kühlt das durch die Abgasrohre 3 strömende heiße Abgas. Innerhalb der Abgasrohre 3 sind mäanderförmige Einlagen 5 angeordnet, welche auch als Innenrippen bezeichnet werden. Die Innenrippen 5 weisen Kuppen 5a (Wellenberge) auf, welche vorzugsweise mit der Innenwand der Abgasrohre 3 verlötet oder verschweißt sind. Die Oberfläche der Innenrippe 5 ist mit einer oxidationskataly- tischen Substanz, beispielsweise ein Edelmetall wie Platin, beschichtet. Auf der rechten Seite der Zeichnung sind nicht nur die Innenrippen 5 katalytisch beschichtet, sondern auch die Innenwand der Abgasrohre 3, welche eine oxikatalytische Schicht 6a aufweist. Damit ist - auf der rechten Seite der Zeichnung - die gesamte vom Abgas bespülte Fläche katalytisch beschichtet. Das durch die Abgasrohre 3 strömende heiße Abgas kommt somit mit einer katalytischen Beschichtung in Kontakt, welche sich innerhalb des Strömungsquerschnittes befindet und somit - verglichen mit der gekühlten Wand der Abgasrohre 3 - eine hohe Temperatur aufweist. Dies fördert die Konvertierung, d. h. die Oxidation von Kohlenwasserstoffen sowie Kohlen- monoxid.
Die Einlagen können auch andere Formen als in der Zeichnung dargestellt aufweisen, z. B. Wellrippen (etwa sinusförmiger Verlauf), die zudem mit Kiemen besetzt sein können. Dreieck- oder trapezförmige Innenrippen sowie so genannte Turbulenzeinlagen sind ebenfalls möglich.
Darüber hinaus können die Einlagen, insbesondere bei rechteckförmigem Querstück auch einstückig mit der Rohrwand ausgebildet sein, indem das Rohr aus einem Blech geformt, gefaltet und verlötet oder verschweißt wird.
Bei kreisförmigen Rohrquerschnitten können z. B. wendeiförmige Einlagen vorteilhaft als Träger für die oxikatalytische Substanz sein.
Fig. 2 zeigt ein zweites Ausführungsbeispiel der Erfindung, wobei lediglich der Querschnitt eines einzelnen Abgasrohres 7 dargestellt ist. Innerhalb ei- nes rechteckförmigen Strömungsquerschnittes 7a für das Abgas ist eine wellenförmig ausgebildete Innenrippe (Wellrippe) 8 angeordnet, deren Wellenberge bzw. Rippenbögen derart versetzt zueinander angeordnet sind, dass nur ein Teil, in der Zeichnung die Wellenberge 8a, 8d, 8g, die Innenwand des Abgasrohres 7 kontaktieren und an diesen Kontaktstellen mit der Rohr- wand verlötet sind. Die übrigen Wellenberge, in der Zeichnung 8b, 8c, 8e, 8f weisen einen Abstand zur Innenwand auf und sind vollständig dem Abgasstrom ausgesetzt. Die gesamte Innenrippe 8 und die Innenwand des Abgasrohres 7 weisen eine durchgehende oxikatalytische Beschichtung 9 auf. Durch die partielle Anbindung der Wellrippe 8 wird die Durchschnittstempe- ratur der katalytischen Beschichtung weiter angehoben, womit eine höhere Wirksamkeit des Oxidationskatalysators erreicht wird.
Fig. 3 zeigt in einer Schnittdarstellung ein weiteres Ausführungsbeispiel eins Abgaswärmeübertragers 10, welcher als Abgaskühler ausgebildet und in einem Abgasrückführsystem (AGR-System) einer Brennkraftmaschine für Kraftfahrzeuge einsetzbar ist. AGR-Systeme sind aus dem Stand der Technik bekannt: dabei wird das Abgas der Brennkraftmaschine vor oder hinter einer Abgasturbine (Hochdruck oder Niederdruck-Rückführung) entnommen und ein- oder zweistufig gekühlt dem Ansaugtrakt der Brennkraftmaschine wieder zugeführt. Die entnommene Abgasmenge wird über ein Abgasrück- führventil (AGR- Ventil) geregelt. Der dargestellte Abgaskühler 10 wird von Abgas durchströmt und durch ein flüssiges Kühlmittel, welches vorzugsweise dem Kühlkreislauf der Brennkraftmaschine entnommen wird, gekühlt. Der Abgaskühler 10 weist ein zweiteiliges Gehäuse 11 auf, welches aus einer wannenförmigen Gehäuseschale 11a und einem Deckel 11b besteht - beide Teile sind vorzugsweise als Blechteile ausgebildet und können durch Tiefziehen hergestellt werden. In der Gehäuseschale 11a ist ein Paket von Scheibenpaaren 12 angeordnet, welche vom Kühlmittel durchströmt werden. Die Scheibenpaare 12 erstrecken sich über die volle Breite der Gehäuseschale 11a, welche zwei in der Zeichnung senkrecht dargestellte und parallel zueinander verlaufende Gehäusewände 11c, 11d aufweist. Die Scheibenpaare 12 weisen Längsseiten 12a auf, welche an den Gehäusewänden 11c, 11d anliegen, und bilden Strömungskanäle, welche mit Turbulenzeinlagen 13 zur Erhöhung des Wärmeüberganges bestückt sind. Die Scheibenpaare 12 sind im parallel im Abstand zueinander angeordnet und bilden Durchtrittskanäle 14 für das Abgas. In den Durchtrittskanälen 14 sind zur Erhöhung des Wärmeüberganges Turbulenzeinlagen 15 angeordnet. Sämtliche Teile des Abgaskühlers 10 sind stoffschlüssig, d. h. durch Löten, Schweißen oder Kleben usw. miteinander verbunden. Das Löten, Schweißen oder Kleben erfolgt vorzugsweise in einem Arbeitsgang in einem nicht dargestellten Lötofen oder Schweißgerät oder mittels einer Klebevorrichtung. Die Scheibenpaare weisen jeweils eine Oberscheibe 80b und eine Unterscheibe 80c auf. Fig. 4 zeigt eine weitere Ausfühhrungsform eines Wärmetauschers 16, insbesondere eines Abgaswärmetauschers. Der Wärmetauscher 16 weist ein erste Gehäuseelement 60,70 und ein zweites Gehäuseelement 80 auf. Das Gehäuseelement 60,70 nimmt erste Scheiben 40 und zweite Scheiben 50 in sich auf. Die ersten Scheiben 40 und die zweiten Scheiben 50 sind im Wesentlichen parallel zueinander angeordnet und stapelbar. Eine erste Scheibe 40 bildet mit einer zweiten Scheibe 50 ein Scheibenpaar 22. Die ersten und zweiten Scheiben sind miteinander stoffschlüssig, insbesondere durch Löten, Schweißen oder Kleben, verbunden. Ebenso sind benachbarte Scheibenpaare 22 insbesondere an Näpfen 20 an beiden Scheibenenden der Scheiben 40, 50 bzw. der Scheibenpaare 22 miteinander stoffschlüssig, insbesondere durch Löten, Schweißen oder Kleben, verbunden. Die Scheiben 40, 50 und die Scheibenpaare weisen Napföffnungen auf. Das erste Gehäuseelement 60, 70 ist stoffschlüssig und/oder formschlüssig mit dem zweiten Gehäuseelement verbunden. Das zweite Gehäuseelement weist eine erste Gehäuseöffnung für den Eintritt des ersten Mediums auf. Durch den ersten Strömungskanal 20 strömt das erste Medium, insbesondere das heiße Abgas, in die Scheibenpaare 22 durch die Napföffungen ein, durchströmt die Scheibenpaare in dem im Inneren ausgebildeten Strömungskanal 20 und strömt durch eine zweite Gehäuseöffnung des Gehäuseelements 80 aus diesem über den Austritt heraus. Die Scheibenpaare sind in der Stapelrichtung S stapelbar. Das Gehäuseelement 80 weist eine dritte Gehäuseöffnung auf, wodurch über einen Eintritt Kühlmedium, insbesondere flüssiges Kühlmittel, Kühlwasser, Gas oder Kältemittel, insbesondere einer Klimaanlage, in das erste Gehäuseelement 60, 70 gelangt und dieses Kühlt, so dass im Wesentlichen keine Thermospannungen entstehen. Das zweite Kühlmedium umspült die Außenseiten der Scheiben 40, 50 und der Scheibenpaare 22 sowie die die Scheibenpaarrandflächen 24. Es strömt durch Öffnungen, die durch die beabstandeten Scheibenpaare gebildet werden, wodurch ein Wärmeaustausch zwischen dem zu kühlendem Abgas erfolgt. Zwischen dem ersten Gehäuseelement 60, 70 und den Scheibenpaarrandflächen 24 werden ebenfalls zweite Strömungskanäle 30 des Kühlmediums gebildet, wodurch das Gehäuseelement 60, 70 im Wesentlichen gekühlt wird. Das Kühl- medium verlässt über einen Austritt eine vierte Gehäuseöffnung des Gehäuseelements 80. Der Wärmetauscher 16 ist als Modul in ein modulares Sys- tem einbaubar. Der Wärmetauscher ist in ein Kühlmodul integrierbar. Ein Kühlmodul umfasst insbesondere mehrere Wärmetauscher, insbesondere Kühlmittelkühler, Ölkühler, Ladeluftkühler, Abgaskühler, Wärmetauscher einer Klimaanlage.
Das Gehäuseelement 60, 70 nimmt in seinem Inneren die Scheiben 40, 50 und die Scheibenpaare 22 auf. Das erste Gehäuseelement 60, 70 ist mit dem zweiten Gehäuseelement 80 stoffschlüssig durch Löten, Schweißen, Kleben usw. und/oder formschlüssig durch Bördeln, Wellschlitzbördeln, Crimpen, Falzen, Clipsen usw. verbunden. In einer nicht dargestellten Ausführung sind beide Gehäuseelemente durch ein Dichtelement, insbesondere einen O-Ring usw. gegenüber einander abgedichtet.
Benachbarte Scheibenpaare sind durch Ausprägungen, insbesondere Tur- bulenzeinlagen bzw. turbulenzerzeugende Elemente, 18 beabstandet. Insbesondere wird die Wärmeübertragung zwischen dem ersten Medium und dem zweiten Medium verbessert. Innerhalb der Scheibenpaare sind ebenfalls Ausprägungen, insbesondere Turbulenzeinlagen bzw. turbulenzerzeugende Elemente, 18 angeordnet und insbesondere stoffschlüssig mit den Scheiben 40, 50 durch Löten, Schweißen, Kleben verbunden und/oder aus diesen durch Umformen ausgeprägt.
Die Einlagen 5, 8, 13, 15, 18 sind aus Aluminium ausgebildet.
In einem anderen Ausführungsbeispiel sind die Einlagen 5, 8, 13, 15, 18 aus Ferrit ausgebildet.
In einem anderen Ausführungsbeispiel sind die Einlagen 5, 8, 13, 15, 18 aus einem hitzebeständigen Stahl mit einem Aluminiumanteil bis zu 10% ausge- bildet.
In einem anderen Ausführungsbeispiel sind die Einlagen 5, 8, 13, 15, 18 aus einem hitzebeständigen Stahl mit einem Aluminiumanteil bis zu 10% ausgebildet. In einem anderen Ausführungsbeispiel sind die Einlagen 5, 8, 13, 15, 18 aus einem hitzebeständigen Stahl mit einem Aluminiumanteil bis zu 6% ausgebildet.
In einem anderen Ausführungsbeispiel sind die Einlagen 5, 8, 13, 15, 18 aus einem hitzebeständigen Stahl mit Aluminiumbeschichtung ausgebildet.
In einem anderen Ausführungsbeispiel sind die Einlagen 5, 8, 13, 15, 18 aus einem hitzebeständigen Stahl mit Aluminiumbeschichtung ausgebildet.
In einem anderen Ausführungsbeispiel sind die Einlagen 5, 8, 13, 15, 18 aus einem hitzebeständigen Stahl mit Aluminiumplattierung ausgebildet.

Claims

P a t e n t a n s p r ü c h e
1 . Abgaswärmeübertrager, insbesondere Abgaskühler für eine Abgasrückführung in Kraftfahrzeugen mit von Abgas durchströmbaren und von einem Fluid kühlbaren Kanälen (3, 7, 14, 20), wobei ein Oxidati- onskatalysator, bestehend aus einem Träger und einer oxikatalytsi- chen Beschichtung, in den Abgaswärmeübertrager (1 , 10, 16) integriert und wobei der Träger der oxikatalytischen Beschichtung (6) als in den Kanälen (3, 7, 14, 20) angeordnete Einlage (5, 8, 13, 15, 18) aus- gebildet ist.
2. Abgaswärmeübertrager nach Anspruch 1 , dadurch gekennzeichnet, dass die Kanäle als Rohre (3, 7) ausgebildet sind.
3. Abgaswärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass die Rohre (3, 7) einen Rechteckquerschnitt aufweisen.
4. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kanäle (14, 20) durch Scheiben (40, 50) ausgebildet sind.
5. Abgaswärmeübertrager nach Anspruch 4, dadurch gekennzeichnet, dass die Scheiben (40, 50) Scheibenpaare (12, 22) bilden.
6. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlagen als Turbulenzeinlagen ausgebildet (13, 15, 18) sind.
7. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlagen als Innenrippen (5, 8, 13, 15, 18), insbesondere Stegrippen ausgebildet sind.
8. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlagen als Wellrippen (5, 8, 13, 15, 18), insbesondere als mit Kiemen besetzte Wellrippen ausgebildet sind.
9. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlagen (5, 8, 13, 15, 18) als separate, in die Kanäle (3, 7, 14, 20) einsetzbare Teile ausgebildet sind.
10. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlagen (5, 8, 13, 15, 18) stoff- schlüssig, insbesondere durch Verlöten oder Verschweißen mit der Innenwand der Kanäle (3, 7, 14, 20) verbunden sind.
11. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlagen (5, 8, 13, 15, 18) respektive die Wellrippen (8) Kuppen (5a) respektive Wellenberge (8a - 8g) aufweisen und dass die Einlagen (5) respektive Wellenberge nur mit einem Teil der Kuppen (5a) respektive Wellenberge (8a, 8g) mit der Innenwand verbunden und dass der übrige Teil der Kuppen respektive Wellenberge (8b, 8c, 8f) von der Innenwand beabstandet ist.
12. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlagen (5, 8, 13, 15, 18) einstückig mit den Rohren (3, 7) und/oder Scheiben (40, 50) ausgebildet sind.
13. Abgaswärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die katalytische Beschichtung (6a, 9) auch auf der Innenwand der Kanäle (3, 7, 14, 20), insbesondere der Rohre (3, 7) und/oder der Scheibenpaare (12, 22), angeordnet ist.
PCT/EP2006/002666 2005-03-24 2006-03-23 Abgaswärmeübertrager, insbesondere abgaskühler für eine abgasrückführung in kraftfahrzeugen WO2006100072A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/817,243 US7614389B2 (en) 2005-03-24 2006-03-23 Exhaust gas heat exchanger, in particular an exhaust gas cooler for exhaust gas recirculation in a motor vehicle
EP06723657A EP1864005A1 (de) 2005-03-24 2006-03-23 Abgaswärmeübertrager, insbesondere abgaskühler für eine abgasrückführung in kraftfahrzeugen
JP2008502326A JP2008534834A (ja) 2005-03-24 2006-03-23 排気熱交換器、特に自動車内の排気再循環用排気冷却器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005014295 2005-03-24
DE102005014295.8 2005-03-24

Publications (1)

Publication Number Publication Date
WO2006100072A1 true WO2006100072A1 (de) 2006-09-28

Family

ID=36588809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002666 WO2006100072A1 (de) 2005-03-24 2006-03-23 Abgaswärmeübertrager, insbesondere abgaskühler für eine abgasrückführung in kraftfahrzeugen

Country Status (4)

Country Link
US (1) US7614389B2 (de)
EP (1) EP1864005A1 (de)
JP (1) JP2008534834A (de)
WO (1) WO2006100072A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008095578A1 (de) * 2007-02-03 2008-08-14 Behr Gmbh & Co. Kg Wärmeübertrager
FR2954955A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur comportant une ligne d'air avec une boucle de re-circulation de gaz d'echappement
FR2954956A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur comprenant une culasse et une ligne d'alimentation en air
FR2954957A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur avec une ligne d'air comportant une boucle de re-circulation de gaz d'echappement
FR2954954A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur dont la ligne d'alimentation en air comporte une boucle de re-circulation de gaz d'echappement
EP1925808A3 (de) * 2006-11-21 2013-03-06 Behr GmbH & Co. KG Wärmetauscher, insbesondere Abgaswärmetauscher
WO2015024802A1 (de) * 2013-08-19 2015-02-26 MAHLE Behr GmbH & Co. KG Wärmeübertrager
WO2021185770A1 (de) * 2020-03-16 2021-09-23 Mahle International Gmbh Wärmeübertrager

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881797B2 (en) 2010-05-05 2014-11-11 Ametek, Inc. Compact plate-fin heat exchanger utilizing an integral heat transfer layer
US8424296B2 (en) 2010-06-11 2013-04-23 Dana Canada Corporation Annular heat exchanger
US9909405B2 (en) 2012-02-13 2018-03-06 Specialized Desanders Inc. Desanding apparatus and a method of using same
US9938812B2 (en) 2012-02-13 2018-04-10 Specialized Desanders Inc. Desanding apparatus and a method of using same
US9327214B2 (en) 2012-02-13 2016-05-03 Specialized Desanders Inc. Desanding apparatus and a method of using same
US9140217B2 (en) * 2012-09-06 2015-09-22 Senior Ip Gmbh Exhaust gas recirculation apparatus and method for forming same
JP6346426B2 (ja) * 2013-08-12 2018-06-20 現代自動車株式会社Hyundai Motor Company Egrガス及びエンジンオイル冷却装置とその制御方法
CA2836437A1 (en) 2013-12-16 2015-06-16 Specialized Desanders Inc. An desanding apparatus and a method of using the same
US9209595B2 (en) * 2014-01-31 2015-12-08 Asml Netherlands B.V. Catalytic conversion of an optical amplifier gas medium
US10774712B2 (en) * 2015-12-14 2020-09-15 Volvo Truck Corporation Internal combustion engine system and an exhaust treatment unit for such a system
JP2017116153A (ja) * 2015-12-22 2017-06-29 株式会社豊田自動織機 化学蓄熱装置
DE102016215265A1 (de) * 2016-08-16 2018-02-22 Mahle International Gmbh Herstellungsverfahren eines Wärmeübertragerrohres
DE102018124574B4 (de) * 2018-10-05 2022-09-29 Hanon Systems Rippenwärmeübertrager
WO2022024309A1 (ja) * 2020-07-30 2022-02-03 株式会社Ihi 熱交換構造

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194231A (en) * 1988-11-28 1993-03-16 Citten Fluid Technology Limited Packing in or for a vessel
DE19540683A1 (de) 1995-11-01 1997-05-07 Behr Gmbh & Co Wärmeüberträger zum Kühlen von Abgas
JP2000038962A (ja) 1998-07-23 2000-02-08 Isuzu Motors Ltd Egrクーラーとegrクーラー付きegr装置
JP2000249003A (ja) 1999-03-01 2000-09-12 Isuzu Motors Ltd 排気ガス浄化機能付きegrクーラー
JP2000257512A (ja) 1999-03-03 2000-09-19 Isuzu Motors Ltd Egrクーラー
DE10124383A1 (de) * 2000-05-22 2002-01-10 Denso Corp Abgas-Wärmetauscher
WO2002063231A1 (en) * 2001-02-05 2002-08-15 Pursuit Dynamics Plc Spiral flow heat exchanger
DE19907163C2 (de) 1998-04-24 2003-08-14 Behr Gmbh & Co Wärmetauscher, insbesondere Abgaswärmetauscher
US6667011B1 (en) * 2000-03-21 2003-12-23 Exothermics, Inc. Heat exchanger with catalyst
EP1486749A2 (de) * 2003-06-12 2004-12-15 Bayer Industry Services GmbH & Co. OHG Turbulenzerzeuger
WO2005031235A1 (en) * 2003-09-30 2005-04-07 Dana Canada Corporation Tube bundle heat exchanger comprising tubes with expanded sections

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3314757A1 (de) * 1983-04-23 1984-10-25 Alfons 7450 Hechingen Jaumann Rauchgasbeheizter waermetauscher fuer feuerungsanlagen mit schwefelhaltigen brennstoffen
JPS6245922A (ja) * 1985-08-22 1987-02-27 Mitsubishi Heavy Ind Ltd エンジンの廃熱回収用熱交換器
US5846494A (en) 1992-04-30 1998-12-08 Gaiser; Gerd Reactor for catalytically processing gaseous fluids
DE4214579A1 (de) 1992-04-30 1993-11-04 Gerd Gaiser Reaktor zur katalytischen behandlung gasfoermiger fluide
DE9406197U1 (de) * 1994-04-14 1994-06-16 Behr Gmbh & Co Wärmetauscher zum Kühlen von Abgas eines Kraftfahrzeugmotors
DE19727730A1 (de) * 1997-06-30 1999-01-07 Abb Research Ltd Gasturbinenaufbau
JP4130512B2 (ja) 1998-04-24 2008-08-06 ベール ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー 熱交換器
DE10115336B4 (de) * 2001-03-28 2012-09-27 General Motors Corporation - Intellectual Property Group Legal Staff Brennstoffzellensystem sowie Verfahren zum Betrieb eines Brennstoffzellensystems
US6798038B2 (en) 2001-09-20 2004-09-28 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device with filling insulating film into trench
DE102004042454A1 (de) 2003-09-18 2005-04-14 Behr Gmbh & Co. Kg Abgaswärmeübertrager, insbesondere Abgaskühler für Abgasrückführung in Kraftfahrzeugen
US7210469B1 (en) * 2005-10-24 2007-05-01 International Engine Intellectual Property Company, Llc Oxidation catalyst coating in a heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194231A (en) * 1988-11-28 1993-03-16 Citten Fluid Technology Limited Packing in or for a vessel
DE19540683A1 (de) 1995-11-01 1997-05-07 Behr Gmbh & Co Wärmeüberträger zum Kühlen von Abgas
DE19907163C2 (de) 1998-04-24 2003-08-14 Behr Gmbh & Co Wärmetauscher, insbesondere Abgaswärmetauscher
JP2000038962A (ja) 1998-07-23 2000-02-08 Isuzu Motors Ltd Egrクーラーとegrクーラー付きegr装置
JP2000249003A (ja) 1999-03-01 2000-09-12 Isuzu Motors Ltd 排気ガス浄化機能付きegrクーラー
JP2000257512A (ja) 1999-03-03 2000-09-19 Isuzu Motors Ltd Egrクーラー
US6667011B1 (en) * 2000-03-21 2003-12-23 Exothermics, Inc. Heat exchanger with catalyst
DE10124383A1 (de) * 2000-05-22 2002-01-10 Denso Corp Abgas-Wärmetauscher
WO2002063231A1 (en) * 2001-02-05 2002-08-15 Pursuit Dynamics Plc Spiral flow heat exchanger
EP1486749A2 (de) * 2003-06-12 2004-12-15 Bayer Industry Services GmbH & Co. OHG Turbulenzerzeuger
WO2005031235A1 (en) * 2003-09-30 2005-04-07 Dana Canada Corporation Tube bundle heat exchanger comprising tubes with expanded sections

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925808A3 (de) * 2006-11-21 2013-03-06 Behr GmbH & Co. KG Wärmetauscher, insbesondere Abgaswärmetauscher
WO2008095578A1 (de) * 2007-02-03 2008-08-14 Behr Gmbh & Co. Kg Wärmeübertrager
FR2954955A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur comportant une ligne d'air avec une boucle de re-circulation de gaz d'echappement
FR2954956A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur comprenant une culasse et une ligne d'alimentation en air
FR2954957A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur avec une ligne d'air comportant une boucle de re-circulation de gaz d'echappement
FR2954954A1 (fr) * 2010-01-04 2011-07-08 Peugeot Citroen Automobiles Sa Moteur dont la ligne d'alimentation en air comporte une boucle de re-circulation de gaz d'echappement
WO2015024802A1 (de) * 2013-08-19 2015-02-26 MAHLE Behr GmbH & Co. KG Wärmeübertrager
WO2021185770A1 (de) * 2020-03-16 2021-09-23 Mahle International Gmbh Wärmeübertrager

Also Published As

Publication number Publication date
JP2008534834A (ja) 2008-08-28
US7614389B2 (en) 2009-11-10
US20080178577A1 (en) 2008-07-31
EP1864005A1 (de) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006100072A1 (de) Abgaswärmeübertrager, insbesondere abgaskühler für eine abgasrückführung in kraftfahrzeugen
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP1941224A1 (de) Wärmetauscher
EP2092259B1 (de) Wärmeübertrager für kraftfahrzeug mit stranggepresstem gekrümmten strömungskanal
EP1913324B1 (de) Wärmeübertrager
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
EP1999423A2 (de) Wärmetauscher für ein kraftfahrzeug
EP1837499B1 (de) Vorrichtung zur Kühlung eines Abgasstroms
DE102005042908A1 (de) Rippenstruktur und Wärmeübergangsrohr mit der darin untergebrachten Rippenstruktur
DE102006049106A1 (de) Wärmetauscher
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
DE102006009948A1 (de) Abgaswärmeaustauscher
DE102009047620B4 (de) Wärmeübertrager mit Rohrbündel
DE10136861A1 (de) Luftgekühlter Ladeluftkühler
DE102007049665A1 (de) Wärmeaustauscher
EP2134941B1 (de) Strömungskanal, wärmetauscher, abgasrückführsystem, ladeluft-zuführsystem, verwendung eines wärmetauschers
EP2831529B1 (de) Abgaskühler
EP2088299B1 (de) Wärmetauscher zur Ladeluftkühlung, Verfahren zur Herstellung eines Wärmetauschers zur Ladeluftkühlung
DE102006033313A1 (de) Wärmeübertrager
DE112015002074T5 (de) Ladeluftkühler mit mehrteiligem Kunststoffgehäuse
DE102007013302A1 (de) Wärmetauscher für ein Kraftfahrzeug
DE102006044154A1 (de) Stapelscheibenwärmetauscher zur Ladeluftkühlung
DE102006013868A1 (de) Abgaswärmeübertrager, insbesondere Abgaskühler für eine Abgasrückführung in Kraftfahrzeugen
EP3039372B1 (de) Wärmeübertrager
WO2007137863A1 (de) Wärmetauscher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006723657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008502326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11817243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006723657

Country of ref document: EP