WO2012063355A1 - プレート式熱交換器及びヒートポンプ装置 - Google Patents

プレート式熱交換器及びヒートポンプ装置 Download PDF

Info

Publication number
WO2012063355A1
WO2012063355A1 PCT/JP2010/070179 JP2010070179W WO2012063355A1 WO 2012063355 A1 WO2012063355 A1 WO 2012063355A1 JP 2010070179 W JP2010070179 W JP 2010070179W WO 2012063355 A1 WO2012063355 A1 WO 2012063355A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
plate
fluid
long side
heat exchanger
Prior art date
Application number
PCT/JP2010/070179
Other languages
English (en)
French (fr)
Inventor
伊東 大輔
毅浩 林
進一 内野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10859440.9A priority Critical patent/EP2639540B1/en
Priority to JP2012542773A priority patent/JP5661119B2/ja
Priority to US13/878,601 priority patent/US9752836B2/en
Priority to PCT/JP2010/070179 priority patent/WO2012063355A1/ja
Priority to CN201080070070.4A priority patent/CN103201583B/zh
Publication of WO2012063355A1 publication Critical patent/WO2012063355A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Definitions

  • This invention relates to a plate heat exchanger formed by laminating a plurality of heat transfer plates.
  • JP-T61-500626 Japanese Patent Laid-Open No. 11-037677 JP 58-96987 A
  • the fluid flowing in the plate heat exchanger has been difficult to flow in the region opposite to the outflow inlet and the short side direction, and stagnation is likely to occur in that region.
  • a plate heat exchanger is used as an evaporator for exchanging heat between water and a refrigerant
  • the stagnation occurs in the flow path on the water side
  • the water temperature in that region rapidly decreases compared to the surroundings. .
  • Patent Document 2 the position of the outflow inlet is changed, and a blocking portion is provided in a region where water near the outflow inlet stagnates to prevent stagnation.
  • a wave is arrange
  • the waves are arranged in a substantially parallel manner with a constant interval, so the water stalls and flows downstream until it flows to the outer edge on the opposite side to the water outflow inlet. The fluid cannot flow to the area.
  • An object of the present invention is to prevent the occurrence of fluid stagnation in a plate heat exchanger without reducing the heat transfer area.
  • the plate heat exchanger according to the present invention is A plurality of rectangular plates each having a passage hole serving as an inlet / outlet for the first fluid or the second fluid are provided at four corners, and a first channel through which the first fluid flows and a second channel through which the second fluid flows Are plate-type heat exchangers that are alternately formed in the stacking direction by two adjacent plates,
  • the first flow path is a passage hole provided on the other side in the long side direction for the first fluid flowing in from an inlet which is a passage hole provided on one side in the long side direction of each plate.
  • Formed flow path In the first flow path, another passage that is a passage hole provided on the one side in the long side direction from an inlet peripheral portion that is a region around the inlet and that is different from the inlet.
  • the upstream adjacent hole which is a hole
  • the long side peripheral portion which is a region around the long side of the plate on the upstream adjacent hole side
  • An upstream bypass passage that allows a part of the first fluid to flow into the heat exchange passage from the periphery of the long side, the upstream bypass passage having a narrower cross-sectional area toward the periphery of the long side Is formed.
  • the first fluid flows from the bypass channel into the heat exchange channel on the opposite side to the inlet in the short side direction. Therefore, it is possible to prevent the stagnation of the first fluid.
  • FIG. The side view of the plate type heat exchanger 50 The side view of the plate type heat exchanger 50.
  • FIG. 10 is a circuit configuration diagram of a heat pump device 100 according to a seventh embodiment. The Mollier diagram about the state of the refrigerant
  • FIG. 1 is a side view of the plate heat exchanger 50.
  • FIG. 2 is a front view of the reinforcing side plate 1 (viewed from the stacking direction).
  • FIG. 3 is a front view of the heat transfer plate 2.
  • FIG. 4 is a front view of the heat transfer plate 3.
  • FIG. 5 is a front view of the reinforcing side plate 4.
  • FIG. 6 is a view showing a state in which the heat transfer plate 2 and the heat transfer plate 3 are stacked.
  • FIG. 7 is an exploded perspective view of the plate heat exchanger 50.
  • FIG. 8 is an explanatory diagram of the shape of the heat transfer plate 2.
  • FIG. 9 is an explanatory diagram of the shape of the heat transfer plate 3.
  • the heat transfer plates 2 and the heat transfer plates 3 are alternately stacked.
  • the reinforcing side plate 1 is stacked on the front surface
  • the reinforcing side plate 4 is stacked on the back surface.
  • the reinforcing side plate 1 is formed in a substantially rectangular plate shape.
  • the reinforcing side plate 1 is provided with a first inflow pipe 5, a first outflow pipe 6, a second inflow pipe 7, and a second outflow pipe 8 at four corners of a substantially rectangular shape.
  • each heat transfer plate 2, 3 is formed in a substantially rectangular plate shape like the reinforcing side plate 1, and includes a first inlet 9, a first outlet 10, A second inlet 11 and a second outlet 12 are provided.
  • Each of the heat transfer plates 2 and 3 has wave shapes 15 and 16 that are displaced in the laminating direction of the plates, and the wave shapes 15 and 16 that are substantially V-shaped when viewed from the laminating direction are formed.
  • the reinforcing side plate 4 is formed in a substantially rectangular plate shape, like the reinforcing side plate 1 and the like.
  • the reinforcing side plate 4 is not provided with the first inflow pipe 5, the first outflow pipe 6, the second inflow pipe 7, and the second outflow pipe 8.
  • positions of the first inflow pipe 5, the first outflow pipe 6, the second inflow pipe 7, and the second outflow pipe 8 are indicated by broken lines on the reinforcing side plate 4. These are not provided.
  • the heat transfer plates 2 and 3 are laminated so that the first inlets 9, the first outlets 10, the second inlets 11, and the second outlets 12 overlap each other.
  • the reinforcing side plate 1 and the heat transfer plate 2 have the first inflow pipe 5 and the first inflow port 9 overlapped, the first outflow pipe 6 and the first outflow port 10 overlapped, and the second inflow pipe 7.
  • the second inflow port 11 are overlapped, and the second outflow pipe 8 and the second outflow port 12 are stacked.
  • the heat transfer plates 2 and 3 and the reinforcing side plates 1 and 4 are laminated so that the outer peripheral edges thereof overlap and are joined by brazing or the like.
  • each of the heat transfer plates 2 and 3 is not only joined at the outer peripheral edge, but also when viewed from the stacking direction, the wave shape bottom of the upper plate and the wave shape top of the lower plate The overlapping parts are also joined.
  • the first flow path 13 through which the first fluid (for example, water) flowing in from the first inflow pipe 5 flows out from the first outflow pipe 6 is formed between the back surface of the heat transfer plate 3 and the front surface of the heat transfer plate 2.
  • the second flow path 14 through which the second fluid (for example, refrigerant) flowing in from the second inflow pipe 7 flows out from the second outflow pipe 8 is formed between the back surface of the heat transfer plate 2 and the front surface of the heat transfer plate 3.
  • the first fluid that has flowed into the first inflow pipe 5 from the outside flows through the passage holes formed by overlapping the first inlets 9 of the heat transfer plates 2 and 3, and flows into the first flow paths 13.
  • the first fluid that has flowed into the first flow path 13 flows in the long side direction while gradually spreading in the short side direction, and flows out from the first outlet 10.
  • the first fluid that has flowed out of the first outlet 10 flows through the passage hole formed by the overlapping of the first outlets 10, and flows out from the first outlet pipe 6 to the outside.
  • the second fluid that has flowed into the second inflow pipe 7 from the outside flows through the passage holes formed by overlapping the second inlets 11 of the heat transfer plates 2 and 3, and enters the second flow paths 14. Inflow.
  • the second fluid that has flowed into the second flow path 14 flows in the long side direction while gradually spreading in the short side direction, and flows out from the second outlet 12.
  • the second fluid that has flowed out of the second outlet 12 flows through the passage hole formed by the overlapping of the second outlet 12, and flows out from the second outlet pipe 8 to the outside.
  • the first fluid flowing in the first flow path 13 and the second fluid flowing in the second flow path 14 are heat-exchanged via the heat transfer plates 2 and 3 when flowing through the portions where the wave shapes 15 and 16 are formed.
  • the In the first flow path 13 and the second flow path 14, a portion where the wave shapes 15 and 16 are formed is referred to as a heat exchange flow path 17 (see FIGS. 3, 4 and 6).
  • the hatched portions 18 around the first inlet 9 and the first outlet 10 of the heat transfer plate 2 are approximately the same height as the bottom of the wave shape 15.
  • the hatched portion 19 around the second inlet 11 and the second outlet 12 of the heat transfer plate 2 has the same height as the top of the wave shape 15.
  • the hatched portion 20 around the first inlet 9 and the first outlet 10 of the heat transfer plate 3 is approximately the same height as the top of the wave shape 16.
  • the hatched portion 21 around the second inlet 11 and the second outlet 12 of the heat transfer plate 3 has the same height as the bottom of the wave shape 16.
  • the hatching part 21 of the heat-transfer plate 3 and the heat-transfer plate are the back side of the heat-transfer plate 3 and the front side of the heat-transfer plate 2.
  • the hatched portion 19 of the plate 2 is in close contact.
  • a space is formed between the hatched portion 20 of the heat transfer plate 3 and the hatched portion 18 of the heat transfer plate 2. Therefore, the first fluid flowing through the first inlet 9 flows into the first flow path 13 formed between the back surface side of the heat transfer plate 3 and the front surface side of the heat transfer plate 2, but the second inlet port.
  • the second fluid flowing through 11 does not flow into the first flow path 13.
  • the first fluid flowing through the first flow path 13 does not flow out to the second inlet 11 or the second outlet 12.
  • the hatched portion 18 of the heat transfer plate 2 and the hatched portion 20 of the heat transfer plate 3 are in close contact with the back surface side of the heat transfer plate 2 and the front surface side of the heat transfer plate 3.
  • a space is formed between the hatched portion 19 of the heat transfer plate 2 and the hatched portion 21 of the heat transfer plate 3. Therefore, the second fluid flowing through the second inlet 11 flows into the second flow path 14 formed between the back surface side of the heat transfer plate 2 and the front surface side of the heat transfer plate 3.
  • the first fluid flowing through 9 does not flow into the second flow path 14. Further, the second fluid flowing through the second flow path 14 does not flow out to the first inlet 9 or the first outlet 10.
  • the hatching part 19 and the hatching part 21 contact
  • FIG. 10 is a diagram showing the heat transfer plate 2 according to the first embodiment.
  • the first flow path 13 is provided with a bypass flow path 22 (upstream bypass flow path) provided along the second outlet 12 (upstream adjacent hole). It is a feature.
  • the heat transfer plate 2 has a region around the long side of the heat transfer plate 2 on the second outlet 12 side from the periphery of the inlet that is the region around the first inlet 9.
  • a wave shape 23 that is displaced in the plate stacking direction is formed up to a certain peripheral region of the long side.
  • the wave shape 23 is formed so that the ridge line connecting the tops of the waves is along the second outlet 12.
  • a bypass flow path 22 is formed between the closed portion 24 that closes the periphery of the second outlet 12 with the heat transfer plate 3 and the wave shape 23. Is done.
  • the blocking portion 24 is a portion corresponding to the hatched portion 19 shown in FIG.
  • the bypass flow path 22 transfers a part of the first fluid flowing in from the first inflow port 9 from the long peripheral area on the second outflow port 12 side to the heat exchange flow path 17. Let it flow. That is, since the bypass flow path 22 is formed, the first fluid flowing into the first flow path 13 from the first inflow port 9 exchanges heat from the main inflow flow path 25 in the same manner as in a normal plate heat exchanger. In addition to flowing into the flow path 17, it flows from the bypass flow path 22 into the heat exchange flow path 17. As described above, if only the first fluid flows into the heat exchange channel 17 from the main inflow channel 25, the first fluid is difficult to flow to the vicinity of the second outlet 12 in the heat exchange channel 17. . However, by providing the bypass flow path 22, it is possible to flow the first fluid to the vicinity of the second outlet 12 in the heat exchange flow path 17 and to prevent stagnation.
  • the bypass channel 22 has a gradually decreasing channel cross-sectional area from the first inlet 9 side (inlet side) toward the long side peripheral region side (outlet side). Therefore, the flow rate of the first fluid can be increased toward the outlet side of the bypass flow path 22, and the first fluid is not stalled in the middle of the bypass flow path 22, and the vicinity of the second outlet 12 where stagnation is likely to occur. It is possible to flow a first fluid into the
  • the substantially curved shape is a shape including only a curved line, a combination of a curved line and a short straight line, a continuous straight line, and the like.
  • the first fluid is water
  • the second fluid is a refrigerant
  • the plate heat exchanger 50 functions as an evaporator
  • the retained water is changed by the refrigerant. It is cooled rapidly.
  • water may freeze and the plate heat exchanger 50 may be damaged by volume expansion.
  • the plate heat exchanger 50 according to the first embodiment since water does not stay in the first flow path 13, it is possible to prevent the plate heat exchanger 50 from being damaged.
  • the portion where the first fluid has been stagnant conventionally has not been effectively heat exchanged.
  • the stagnation of the portion where the first fluid has been stagnation is eliminated, and the effective heat exchange area increases. Therefore, the heat exchange efficiency is improved. Therefore, the plate heat exchanger 50 may be used not only as an evaporator but also as a condenser.
  • the heat exchange performance of the plate heat exchanger 50 is improved, so that the number of plates required for the plate heat exchanger 50 with respect to the necessary capacity of the air conditioner can be reduced. Can be reduced. Further, as described above, freezing in the plate heat exchanger 50 can be prevented, and damage can be prevented. Therefore, it is possible to provide a highly reliable plate heat exchanger 50 while reducing costs.
  • Embodiment 2 FIG. In the first embodiment, the provision of the bypass flow path 22 on the first inlet 9 side of the first flow path 13 has been described. In the second embodiment, a description will be given of providing a bypass channel 26 (downstream bypass channel) on the second inlet 11 side (downstream adjacent hole) of the first channel 13.
  • FIG. 11 is a view showing the heat transfer plate 2 according to the second embodiment.
  • the heat transfer plate 2 is displaced in the plate stacking direction from the long peripheral area on the second inflow port 11 side to the peripheral area of the outflow port that is the area around the first outflow port 10.
  • a wave shape 27 is formed.
  • the wave shape 27 is formed so that the ridgeline is along the second inflow port 11.
  • the bypass channel 26 is formed between the closed portion 28 that closes the periphery of the second inlet 11 with the heat transfer plate 3 and the wave shape 27. Is done.
  • the closed portion 28 is a portion corresponding to the hatched portion 19 shown in FIG.
  • the bypass flow channel 26 causes a part of the first fluid flowing through the heat exchange flow channel 17 to flow into the first outlet 10 from the peripheral region of the long side, as indicated by a broken line arrow in FIG. That is, by forming the bypass flow path 26, the first fluid flowing through the heat exchange flow path 17 flows from the main outflow flow path 29 to the first outlet 10 in the same manner as a normal plate heat exchanger. In addition, it flows into the first outlet 10 from the bypass channel 26. As described above, the first fluid does not easily flow to the vicinity of the second inlet 11 in the heat exchange channel 17 just by flowing the first fluid from the main outlet channel 29 to the first outlet 10. End up. However, by providing the bypass flow path 26, the first fluid can flow near the second inlet 11 in the heat exchange flow path 17, and stagnation can be prevented.
  • the flow-path cross-sectional area is gradually narrowed toward the 1st outflow port 10 side (outlet side) from the long side periphery area
  • the wave shape 27 is formed in a substantially curved shape along the second inflow port 11
  • the bypass flow path 26 is also formed in a substantially curved shape along the second inflow port 11. Therefore, the pressure loss of the first fluid flowing through the bypass channel 26 can be kept low.
  • the substantially curved shape is a shape including only a curved line, a combination of a curved line and a short straight line, a continuous straight line, etc., as in the first embodiment.
  • the plate heat exchanger 50 can be prevented from being damaged and the effective heat exchange area can be increased.
  • it is effective to combine the configuration of the first embodiment and the configuration of the second embodiment.
  • Embodiment 3 In the first and second embodiments, the provision of the bypass flow paths 22 and 26 has been described. In the third embodiment, it will be described how long the bypass flow paths 22 and 26 are formed on the long side.
  • the wave shape 23 is formed so that an angle ⁇ formed by the above becomes 90 degrees or more and 180 degrees or less.
  • the line 32 connecting the end of the ridge line of the corrugated shape 27 on the peripheral side of the long side and the center of the second inlet 11, and the short side of the heat transfer plate 2 are parallel.
  • the wave shape 27 is formed so that the angle ⁇ formed by the straight line 33 is 90 degrees or more and 180 degrees or less.
  • Embodiment 4 In the first and second embodiments, the provision of the bypass flow paths 22 and 26 has been described. In the fourth embodiment, the shape of the wall surface on the side of the closed portions 24 and 28 of the bypass channels 22 and 26 will be described.
  • FIG. 12 is a view showing the heat transfer plate 2 according to the fourth embodiment.
  • the bypass flow path 22 is formed between the blocking portion 24 and the wave shape 23, and the wave shape 23 is formed in a substantially curved shape along the second outlet 12.
  • the edge 34 of the blocking portion 24 is formed in a substantially curved shape so as to have an arc shape along the second outlet 12.
  • the wall surface of the bypass channel 22 on the second outlet 12 side also has a substantially curved shape.
  • the first fluid that has flowed into the bypass channel 22 from the first inlet 9 side flows smoothly in the bypass channel 22, and a vortex is generated on the wall surface of the bypass channel 22 on the second outlet 12 side. Absent. Therefore, the pressure loss in the bypass flow path 22 can be reduced.
  • bypass channel 26 when the bypass channel 26 is formed in a substantially curved shape so that the edge of the blocking portion 28 has an arc shape along the second inlet 11, the wall surface of the bypass channel 26 on the second inlet 11 side. Is also substantially curved.
  • the first fluid flowing into the bypass flow channel 26 from the heat exchange flow channel 17 side flows smoothly in the bypass flow channel 26, and vortex is generated on the wall surface of the bypass flow channel 26 on the second inlet 11 side. Absent. Therefore, the pressure loss in the bypass channel 26 can be reduced.
  • Embodiment 5 FIG. In Embodiment 1-4, only the heat transfer plate 2 has been described. In the fifth embodiment, the heat transfer plate 3 will be described.
  • FIG. 13 is a view showing the heat transfer plate 3 according to the fifth embodiment.
  • a wave shape 37 that is displaced in the plate stacking direction, the ridge line is centered on the center of the second outlet 12. It is formed so as to be radial. Therefore, when the heat transfer plate 2 and the heat transfer plate 3 are laminated, a bypass flow path along the second outlet 12 is provided between the heat transfer plate 2 and the heat transfer plate 3 on the heat transfer plate 2 side. 22 is formed, and a flow path radially extending from the center of the second outlet 12 is formed on the heat transfer plate 3 side.
  • the first fluid that has flowed into the bypass flow path 22 flows to the long side peripheral portion side (exit side) according to the bypass flow path 22 formed on the heat transfer plate 2 side, and a part thereof is on the heat transfer plate 3 side. It spreads radially according to the formed radial flow path and flows into the heat exchange flow path 17.
  • the ridge line is formed in the radial direction centered on the center of the second outlet 12, but the long side of the heat transfer plate 3 is formed.
  • a wave shape 37 is formed so that the ridge line is directed in the longer side direction than the radiation direction.
  • the flow path is made radial, so that the first fluid is spread radially and flows into the heat exchange flow path 17.
  • the wave shape 37 is formed so that the ridge line is directed to the long side direction rather than the radiation direction, and the flow path is directed to the long side direction.
  • a wave shape 40 that is displaced in the plate stacking direction has a ridge line that is radially centered on the center of the first inlet 9. It is formed to become.
  • the wave shape 41 that is displaced in the plate stacking direction is also formed on the heat exchange plate 17 side of the first inlet 9 of the heat transfer plate 2, and the ridge line is the center of the first inlet 9. It is formed so that it may become radial centering on. Therefore, when the heat transfer plate 2 and the heat transfer plate 3 are laminated, a flow path extending radially from the center of the first inlet 9 is formed between the heat transfer plate 2 and the heat transfer plate 3.
  • the ridge line is a wave shape 40, 41 in the radial direction centered on the center of the first inlet 9.
  • the wave shapes 40 and 41 are formed so that the ridge line is directed to the long side direction rather than the radiation direction.
  • Embodiment 6 FIG. In the fifth embodiment, the first inlet 9 and the second outlet 12 side of the heat transfer plate 3 has been described. In the sixth embodiment, the first outlet 10 and the second inlet 11 side of the heat transfer plate 3 will be described. In addition, about the 1st outflow port 10 and the 2nd inflow port 11 side of the heat exchanger plate 3, the structure similar to the 1st inflow port 9 and the 2nd outflow port 12 side of the heat exchanger plate 3 demonstrated in Embodiment 5. FIG. It is.
  • FIG. 14 is a view showing the heat transfer plate 3 according to the sixth embodiment.
  • a wave shape 44 that is displaced in the stacking direction of the plate has a ridge line centered on the center of the second inlet 11. It is formed so as to be radial. Therefore, when the heat transfer plate 2 and the heat transfer plate 3 are stacked, the bypass channel 26 along the second inlet 11 is provided between the heat transfer plate 2 and the heat transfer plate 3. And a flow path extending radially from the center of the second inlet 11 is formed on the heat transfer plate 3 side.
  • bypass flow path 26 not only flows into the bypass flow path 26 from the long side peripheral side (inlet side) of the bypass flow path 26 formed on the heat transfer plate 2 side, but also the radial shape formed on the heat transfer plate 3 side. It flows in according to the flow path. Then, the first fluid that has flowed into the bypass channel 26 flows toward the first outlet 10 according to the bypass channel 26.
  • the ridge line is formed in the radial direction around the center of the second inflow port 11, but the long side of the heat transfer plate 3 is formed.
  • a wave shape 44 is formed such that the ridge line is directed in the longer side direction than the radiation direction.
  • the first fluid flowing through the heat exchange channel 17 is concentrated from the radiation direction by making the channel radial.
  • the corrugated shape 44 is formed so that the ridge line is directed to the long side direction rather than the radiation direction, and the flow path is directed to the long side direction.
  • the flow rate of the first fluid in the long side direction can be increased.
  • the flow velocity to the long side direction of the 1st fluid can be approximated uniformly as a whole.
  • a wave shape 47 that is displaced in the plate stacking direction has a ridge line that is centered on the center of the first outlet 10. It is formed to become.
  • the wave shape 48 that is displaced in the plate stacking direction is also formed on the heat exchange channel 17 side of the first outlet 10 of the heat transfer plate 2, and the ridge line is the center of the first outlet 10. It is formed so that it may become radial centering on. Therefore, when the heat transfer plate 2 and the heat transfer plate 3 are laminated, a flow path extending radially from the center of the first outlet 10 is formed between the heat transfer plate 2 and the heat transfer plate 3.
  • the ridge line is a wave shape 47, 48 in the radial direction centering on the center of the first outlet 10.
  • wave shapes 47 and 48 are formed so that the ridge line is directed to the long side direction rather than the radiation direction.
  • Embodiment 7 FIG.
  • the refrigerant for example, CO 2, R410A, HC and the like are used.
  • CO 2 a refrigerant in which the high pressure side becomes a supercritical region
  • R410A a refrigerant in which the high pressure side becomes a supercritical region
  • FIG. 15 is a circuit configuration diagram of the heat pump device 100 according to the seventh embodiment.
  • FIG. 16 is a Mollier diagram of the refrigerant state of the heat pump apparatus 100 shown in FIG.
  • the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant pressure.
  • a compressor 51, a heat exchanger 52, an expansion mechanism 53, a receiver 54, an internal heat exchanger 55, an expansion mechanism 56, and a heat exchanger 57 are sequentially connected by piping, Is provided with a main refrigerant circuit 58 that circulates.
  • a four-way valve 59 is provided on the discharge side of the compressor 51 so that the refrigerant circulation direction can be switched.
  • a fan 60 is provided in the vicinity of the heat exchanger 57.
  • the heat exchanger 52 is the plate heat exchanger 50 described in the above embodiment.
  • the heat pump device 100 includes an injection circuit 62 that connects between the receiver 54 and the internal heat exchanger 55 to the injection pipe of the compressor 51 by piping.
  • An expansion mechanism 61 and an internal heat exchanger 55 are sequentially connected to the injection circuit 62.
  • a water circuit 63 through which water circulates is connected to the heat exchanger 52.
  • the water circuit 63 is connected to a device that uses water such as a water heater, a radiator, a radiator such as floor heating, and the like.
  • the heating operation includes not only heating used for air conditioning, but also hot water supply that heats water to make hot water.
  • the gas-phase refrigerant (point 1 in FIG. 16) that has become high-temperature and high-pressure in the compressor 51 is discharged from the compressor 51, and is heat-exchanged and liquefied in a heat exchanger 52 that is a condenser and a radiator (FIG. 16). Point 2). At this time, the water circulating in the water circuit 63 is warmed by the heat radiated from the refrigerant and used for heating and hot water supply. The liquid-phase refrigerant liquefied by the heat exchanger 52 is decompressed by the expansion mechanism 53 and becomes a gas-liquid two-phase state (point 3 in FIG. 16).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 53 is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 54, cooled, and liquefied (point 4 in FIG. 16).
  • the liquid phase refrigerant liquefied by the receiver 54 branches and flows into the main refrigerant circuit 58 and the injection circuit 62.
  • the liquid phase refrigerant flowing through the main refrigerant circuit 58 is heat-exchanged by the internal heat exchanger 55 with the refrigerant flowing through the injection circuit 62 that has been decompressed by the expansion mechanism 61 and is in a gas-liquid two-phase state, and further cooled (FIG. 16). Point 5).
  • the liquid-phase refrigerant cooled by the internal heat exchanger 55 is decompressed by the expansion mechanism 56 and becomes a gas-liquid two-phase state (point 6 in FIG. 16).
  • the refrigerant that has been in the gas-liquid two-phase state by the expansion mechanism 56 is heat-exchanged with the outside air by the heat exchanger 57 serving as an evaporator and heated (point 7 in FIG. 16).
  • the refrigerant heated by the heat exchanger 57 is further heated by the receiver 54 (point 8 in FIG. 16) and sucked into the compressor 51.
  • the refrigerant flowing through the injection circuit 62 is decompressed by the expansion mechanism 61 (point 9 in FIG.
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 55 flows into the compressor 51 from the injection pipe of the compressor 51 in the gas-liquid two-phase state.
  • the refrigerant sucked from the main refrigerant circuit 58 (point 8 in FIG. 16) is compressed and heated to an intermediate pressure (point 11 in FIG. 16).
  • the injection refrigerant (point 10 in FIG. 16) joins the refrigerant compressed and heated to the intermediate pressure (point 11 in FIG. 16), and the temperature decreases (point 12 in FIG. 16).
  • the opening degree of the expansion mechanism 61 is fully closed. That is, when the injection operation is performed, the opening degree of the expansion mechanism 61 is larger than the predetermined opening degree. However, when the injection operation is not performed, the opening degree of the expansion mechanism 61 is more than the predetermined opening degree. Make it smaller. Thereby, the refrigerant does not flow into the injection pipe of the compressor 51.
  • the opening degree of the expansion mechanism 61 is controlled electronically by a control unit such as a microcomputer.
  • the cooling operation includes not only cooling used for air conditioning but also making cold water by taking heat from water, freezing and the like.
  • the gas-phase refrigerant (point 1 in FIG. 16) that has become high-temperature and high-pressure in the compressor 51 is discharged from the compressor 51, and is heat-exchanged and liquefied by a heat exchanger 57 that is a condenser and a radiator (FIG. 16).
  • Point 2 The liquid-phase refrigerant liquefied by the heat exchanger 57 is decompressed by the expansion mechanism 56 and becomes a gas-liquid two-phase state (point 3 in FIG. 16).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 56 is heat-exchanged by the internal heat exchanger 55, cooled and liquefied (point 4 in FIG. 16).
  • the refrigerant that has become a gas-liquid two-phase state by the expansion mechanism 56 and the liquid-phase refrigerant that has been liquefied by the internal heat exchanger 55 have been decompressed by the expansion mechanism 61, and have become a gas-liquid two-phase state.
  • Heat exchange is performed with the refrigerant (point 9 in FIG. 16).
  • the liquid refrigerant (point 4 in FIG. 16) heat-exchanged by the internal heat exchanger 55 branches and flows to the main refrigerant circuit 58 and the injection circuit 62.
  • the liquid-phase refrigerant flowing through the main refrigerant circuit 58 is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 54 and further cooled (point 5 in FIG. 16).
  • the liquid-phase refrigerant cooled by the receiver 54 is decompressed by the expansion mechanism 53 and becomes a gas-liquid two-phase state (point 6 in FIG. 16).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 53 is heat-exchanged and heated by the heat exchanger 52 serving as an evaporator (point 7 in FIG. 16).
  • the heat exchanger 52 serving as an evaporator
  • the refrigerant heated by the heat exchanger 52 is further heated by the receiver 54 (point 8 in FIG. 16) and sucked into the compressor 51.
  • the refrigerant flowing through the injection circuit 62 is decompressed by the expansion mechanism 61 (point 9 in FIG. 16), and is heat-exchanged by the internal heat exchanger 55 (point 10 in FIG. 16).
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 55 flows from the injection pipe of the compressor 51 in the gas-liquid two-phase state.
  • the compression operation in the compressor 51 is the same as in the heating operation.
  • the opening of the expansion mechanism 61 is fully closed so that the refrigerant does not flow into the injection pipe of the compressor 51, as in the heating operation.

Abstract

 伝熱面積を減少させること無く、プレート式熱交換器内における流体のよどみの発生を防止することを目的とする。第1流体又は第2流体の流出入口9,10等が四隅に設けられた複数の矩形のプレートが積層され、第1流体が流れる第1流路と第2流体が流れる第2流路とが隣接するプレートの間に交互に形成されたプレート式熱交換器において、第1流路に、流入口の周辺の領域である流入口周辺部から、第2流体の流出口12に沿って、第2流出口12側のプレートの長辺周辺部まで形成され、流入口9から流入した第1流体の一部を長辺周辺部から熱交換流路17へ流入させるバイパス流路22を形成した。

Description

プレート式熱交換器及びヒートポンプ装置
 この発明は、複数の伝熱プレートを積層して形成されたプレート式熱交換器に関する。
 従来のプレート式熱交換器は、伝熱プレート間に形成される流路の一部が、流体の流出入口近傍で閉塞されている(特許文献1参照)。
 また、プレート式熱交換器内で流体がよどみ、プレート式熱交換器内で流体が凍結することを回避するため、流体の流出入口の位置を変更し、閉塞部を設けたプレート式熱交換器がある(特許文献2参照)。
 また、流出入口付近を一端とする一定間隔の略平行状に波を配置したプレート式熱交換器や、プレートの短辺方向における中心線上を中心とする放射状に波を配置したプレート式熱交換器がある(特許文献3参照)。
特表昭61-500626号公報 特開平11-037677号公報 特開昭58-96987号公報
 従来、プレート式熱交換器内を流れる流体は、流出入口と短辺方向逆側の領域に流れづらく、その領域でよどみを生じやすい。例えば、プレート式熱交換器が水と冷媒とを熱交換させる蒸発器として使われる場合、水側の流路で前述のよどみが発生すると、その領域での水温度が周囲に比べ急速に低下する。その結果、その領域で水が凍結し、熱交換器が破損してしまう。
 この対策として、特許文献2では、流出入口の位置を変更し、流出入口の近傍の水がよどむ領域に閉塞部を設け、よどみを防止している。しかし、閉塞部は水が流れず伝熱面積が減少し熱交換性能の低下を生じる。また、特許文献3では、流出入口付近を一端とする一定間隔の略平行状に波を配置したり、プレートの短辺方向における中心線上を中心とする放射状に波を配置したりしている。しかし、一定間隔の略平行状に波を配置した場合、波の間隔が一定であるため、水が水流出入口と短辺方向逆側の外縁側に流れるまでに失速し下流側へ流れるので、この領域へ流体を流すことができない。また、放射状に波を配置した場合、水流出入口と短辺方向逆側の外縁側へ強制的な水を流す流路が無いため、この領域へ流体を流すことが出来ない。
 この発明は、伝熱面積を減少させること無く、プレート式熱交換器内における流体のよどみの発生を防止することを目的とする。
 この発明に係るプレート式熱交換器は、
 第1流体又は第2流体の流出入口となる通路孔が四隅に設けられた複数の矩形のプレートが積層され、前記第1流体が流れる第1流路と前記第2流体が流れる第2流路とが隣接する2枚のプレートによって積層方向に交互に形成されたプレート式熱交換器であり、
 前記第1流路は、前記各プレートの長辺方向の一方側に設けられた通路孔である流入口から流入した前記第1流体を、前記長辺方向の他方側に設けられた通路孔である流出口から流出させる流路であって、前記流入口と前記流出口との間に、前記第1流体を隣接する第2流路を流れる前記第2流体と熱交換させる熱交換流路が形成された流路であり、
 前記第1流路には、前記流入口の周辺の領域である流入口周辺部から、前記長辺方向の前記一方側に設けられた通路孔であって前記流入口とは異なるもう1つの通路孔である上流側隣接孔に沿って、前記上流側隣接孔側のプレートの長辺の周辺の領域である長辺周辺部まで形成されて前記熱交換流路に接続し、前記流入口から流入した前記第1流体の一部を前記長辺周辺部から前記熱交換流路へ流入させる上流側バイパス流路であって、前記長辺周辺部側ほど流路断面積の狭い上流側バイパス流路が形成された
ことを特徴とする。
 この発明に係るプレート式熱交換器は、バイパス流路から短辺方向における流入口とは逆側の熱交換流路へ第1流体が流入する。そのため、第1流体のよどみが発生することを防止できる。
プレート式熱交換器50の側面図。 補強用サイドプレート1の正面図。 伝熱プレート2の正面図。 伝熱プレート3の正面図。 補強用サイドプレート4の正面図。 伝熱プレート2と伝熱プレート3とを積層した状態を示す図。 プレート式熱交換器50の分解斜視図。 伝熱プレート2の形状の説明図。 伝熱プレート3の形状の説明図。 実施の形態1に係る伝熱プレート2を示す図。 実施の形態2に係る伝熱プレート2を示す図。 実施の形態4に係る伝熱プレート2を示す図。 実施の形態5に係る伝熱プレート3を示す図。 実施の形態6に係る伝熱プレート3を示す図。 実施の形態7に係るヒートポンプ装置100の回路構成図。 図15に示すヒートポンプ装置100の冷媒の状態についてのモリエル線図。
 実施の形態1.
 実施の形態1に係るプレート式熱交換器50の基本構成を説明する。
 図1は、プレート式熱交換器50の側面図である。図2は、補強用サイドプレート1の正面図(積層方向から見た図)である。図3は、伝熱プレート2の正面図である。図4は、伝熱プレート3の正面図である。図5は、補強用サイドプレート4の正面図である。図6は、伝熱プレート2と伝熱プレート3とを積層した状態を示す図である。図7は、プレート式熱交換器50の分解斜視図である。図8は、伝熱プレート2の形状の説明図である。図9は、伝熱プレート3の形状の説明図である。
 図1に示すように、プレート式熱交換器50は、伝熱プレート2と伝熱プレート3とが交互に積層される。また、プレート式熱交換器50は、最前面に補強用サイドプレート1が積層され、最背面に補強用サイドプレート4が積層される。
 図2に示すように、補強用サイドプレート1は、略矩形の板状に形成される。補強用サイドプレート1は、略矩形の四隅に、第1流入管5、第1流出管6、第2流入管7、第2流出管8が設けられる。
 図3,4に示すように、各伝熱プレート2,3は、補強用サイドプレート1と同様に、略矩形の板状に形成され、四隅に第1流入口9、第1流出口10、第2流入口11、第2流出口12が設けられる。また、各伝熱プレート2,3は、プレートの積層方向に変位する波形状15,16であって、積層方向から見た場合に略V字状に形成された波形状15,16が形成される。特に、伝熱プレート2に形成された波形状15と、伝熱プレート3に形成された波形状16とでは、略V字状の向きが逆向きになっている。
 図5に示すように、補強用サイドプレート4は、補強用サイドプレート1等と同様に、略矩形の板状に形成される。補強用サイドプレート4は、第1流入管5、第1流出管6、第2流入管7、第2流出管8が設けられない。なお、図5では、補強用サイドプレート4に、第1流入管5、第1流出管6、第2流入管7、第2流出管8の位置を破線で示すが、補強用サイドプレート4にこれらが設けられているわけではない。
 図6に示すように、伝熱プレート2と伝熱プレート3とを積層した場合、向きの異なる略V字状の波形状15,16が重なり合うことにより、伝熱プレート2と伝熱プレート3との間に複雑な流れを引き起こす流路が形成される。
 図7に示すように、各伝熱プレート2,3は、第1流入口9同士、第1流出口10同士、第2流入口11同士、第2流出口12同士がそれぞれ重なるように積層される。また、補強用サイドプレート1と伝熱プレート2とは、第1流入管5と第1流入口9とが重なり、第1流出管6と第1流出口10とが重なり、第2流入管7と第2流入口11とが重なり、第2流出管8と第2流出口12とが重なるように積層される。そして、各伝熱プレート2,3及び補強用サイドプレート1,4の外周の縁が重なるように積層され、ロウ等により接合される。この際、各伝熱プレート2,3は、外周の縁が接合されるだけでなく、積層方向から見た場合に、上側のプレートの波形状の底と下側のプレートの波形状の頂とが重なる部分も接合される。
 これにより、第1流入管5から流入した第1流体(例えば、水)が第1流出管6から流出する第1流路13が、伝熱プレート3の背面と伝熱プレート2の前面との間に形成される。同様に、第2流入管7から流入した第2流体(例えば、冷媒)が第2流出管8から流出する第2流路14が、伝熱プレート2の背面と伝熱プレート3の前面との間に形成される。
 外部から第1流入管5へ流入した第1流体は、各伝熱プレート2,3の第1流入口9が重なり合うことで形成された通路孔を流れ、各第1流路13へ流入する。第1流路13へ流入した第1流体は、短辺方向へ徐々に広がりながら、長辺方向へ流れて、第1流出口10から流出する。第1流出口10から流出した第1流体は、第1流出口10が重なり合うことで形成された通路孔を流れ、第1流出管6から外部へ流出する。
 同様に、外部から第2流入管7へ流入した第2流体は、各伝熱プレート2,3の第2流入口11が重なり合うことで形成された通路孔を流れ、各第2流路14へ流入する。第2流路14へ流入した第2流体は、短辺方向へ徐々に広がりながら、長辺方向へ流れて、第2流出口12から流出する。第2流出口12から流出した第2流体は、第2流出口12が重なり合うことで形成された通路孔を流れ、第2流出管8から外部へ流出する。
 第1流路13を流れる第1流体と第2流路14を流れる第2流体とは、波形状15,16が形成された部分を流れる際、伝熱プレート2,3を介して熱交換される。なお、第1流路13と第2流路14とにおいて、波形状15,16が形成された部分を熱交換流路17(図3,4,6参照)と呼ぶ。
 図8に示すように、伝熱プレート2の第1流入口9及び第1流出口10の周囲のハッチング部分18は、波形状15の底と同程度の高さである。一方、伝熱プレート2の第2流入口11及び第2流出口12の周囲のハッチング部分19は、波形状15の頂と同程度の高さである。
 同様に、図9に示すように、伝熱プレート3の第1流入口9及び第1流出口10の周囲のハッチング部分20は、波形状16の頂と同程度の高さである。一方、伝熱プレート3の第2流入口11及び第2流出口12の周囲のハッチング部分21は、波形状16の底と同程度の高さである。
 そして、伝熱プレート2と伝熱プレート3とが交互に積層された場合、伝熱プレート3の背面側と伝熱プレート2の前面側とでは、伝熱プレート3のハッチング部分21と、伝熱プレート2のハッチング部分19とが密着する。一方、伝熱プレート3のハッチング部分20と、伝熱プレート2のハッチング部分18との間には空間ができる。したがって、第1流入口9を流れる第1流体は、伝熱プレート3の背面側と伝熱プレート2の前面側との間に形成された第1流路13へ流入するが、第2流入口11を流れる第2流体は、第1流路13へ流入しない。また、第1流路13を流れる第1流体が第2流入口11や第2流出口12へ流出することもない。
 同様に、伝熱プレート2の背面側と伝熱プレート3の前面側とでは、伝熱プレート2のハッチング部分18と、伝熱プレート3のハッチング部分20とが密着する。一方、伝熱プレート2のハッチング部分19と、伝熱プレート3のハッチング部分21との間には空間ができる。したがって、第2流入口11を流れる第2流体は、伝熱プレート2の背面側と伝熱プレート3の前面側との間に形成された第2流路14へ流入するが、第1流入口9を流れる第1流体は、第2流路14へ流入しない。また、第2流路14を流れる第2流体が第1流入口9や第1流出口10へ流出することもない。
 第1流路13では、ハッチング部分19とハッチング部分21とが密着し、その部分の流路が閉塞された状態となる。そのため、第1流路13の熱交換流路17における第2流入口11付近及び第2流出口12付近(図7の破線部分25a)は、第1流体が流れづらく、よどみ易い部分となる。
 同様に、第2流路14では、ハッチング部分18とハッチング部分20とが密着し、その部分の流路が閉塞された状態となる。そのため、第2流路14の熱交換流路17における第1流入口9付近及び第1流出口10付近(図7の破線部分25b)は、第2流体が流れづらく、よどみ易い部分となる。
 次に、実施の形態1に係るプレート式熱交換器50の特徴について説明する。
 図10は、実施の形態1に係る伝熱プレート2を示す図である。
 実施の形態1に係るプレート式熱交換器50は、第1流路13に第2流出口12(上流側隣接孔)に沿って設けられたバイパス流路22(上流側バイパス流路)を設けたことが特徴である。
 図10に示すように、伝熱プレート2には、第1流入口9の周辺の領域である流入口周辺部から、第2流出口12側の伝熱プレート2の長辺の周辺の領域である長辺周辺領域まで、プレートの積層方向に変位する波形状23が形成されている。波形状23は、波の頂を繋いだ稜線が第2流出口12に沿うように形成されている。伝熱プレート2,3が積層された場合に、第2流出口12の周囲を伝熱プレート3との間で閉塞する閉塞部24と、波形状23との間に、バイパス流路22が形成される。なお、閉塞部24は、図8に示すハッチング部分19に相当する部分である。
 バイパス流路22は、図10において破線矢印で示すように、第1流入口9から流入した第1流体の一部を、第2流出口12側の長辺周辺領域から熱交換流路17へ流入させる。つまり、バイパス流路22が形成されたことにより、第1流入口9から第1流路13へ流入した第1流体は、通常のプレート式熱交換器と同様に、主流入流路25から熱交換流路17へ流入するだけでなく、バイパス流路22から熱交換流路17へ流入する。
 上述したように、主流入流路25から熱交換流路17へ第1流体が流入しただけでは、熱交換流路17における第2流出口12付近へは、第1流体が流れづらく、よどんでしまう。しかし、バイパス流路22を設けることにより、熱交換流路17における第2流出口12付近へ第1流体を流すことが可能となり、よどみが発生することを防止できる。
 なお、バイパス流路22は、第1流入口9側(入口側)から長辺周辺領域側(出口側)へ向かって、流路断面積が徐々に狭くなっている。そのため、バイパス流路22の出口側へ向かって第1流体の流速を上げることができ、バイパス流路22の途中で第1流体が失速することなく、よどみが発生しやすい第2流出口12付近へ第1流体を流すことが可能である。
 また、波形状23は第2流出口12に沿って略曲線状に形成されているため、バイパス流路22も、第2流出口12に沿って略曲線状に形成されている。そのため、バイパス流路22を流れる第1流体の圧力損失を低く抑えることができる。
 なお、略曲線形状とは、曲線のみ、曲線と短い直線との組み合わせ、短い直線を連続的に繋げたものなどを含む形状である。
 例えば、第1流体が水であり、第2流体が冷媒であり、プレート式熱交換器50が蒸発器として機能する場合、第1流路13内で水が滞留すると、滞留した水が冷媒により急激に冷却される。その結果、水が凍結し、体積膨張によりプレート式熱交換器50が破損する虞がある。しかし、実施の形態1に係るプレート式熱交換器50では、第1流路13内で水が滞留しないため、プレート式熱交換器50が破損することを防止できる。
 また、従来第1流体がよどんでいた部分は、有効に熱交換されていなかった。しかし、実施の形態1に係るプレート式熱交換器50では、従来第1流体がよどんでいた部分のよどみが解消され、有効な熱交換面積が増加する。したがって、熱交換効率がよくなる。そのため、プレート式熱交換器50は、蒸発器としてだけではなく、凝縮器として用いてもよい。
 また、プレート式熱交換器50を空気調和機に用いる場合、プレート式熱交換器50の熱交換性能が向上したことにより、空気調和機の必要能力に対するプレート式熱交換器50の必要プレート枚数を減らすことができる。また、上述したように、プレート式熱交換器50内の凍結を防止でき、破損を防止できる。したがって、コストを抑えつつ、信頼性の高いプレート式熱交換器50を提供できる。
 実施の形態2.
 実施の形態1では、第1流路13の第1流入口9側にバイパス流路22を設けることについて説明した。実施の形態2では、第1流路13の第2流入口11側(下流側隣接孔)にバイパス流路26(下流側バイパス流路)を設けることについて説明する。
 図11は、実施の形態2に係る伝熱プレート2を示す図である。
 図11に示すように、伝熱プレート2には、第2流入口11側の長辺周辺領域から、第1流出口10の周辺の領域である流出口周辺部まで、プレートの積層方向に変位する波形状27が形成されている。波形状27は、稜線が第2流入口11に沿うように形成されている。伝熱プレート2,3が積層された場合に、第2流入口11の周囲を伝熱プレート3との間で閉塞する閉塞部28と、波形状27との間に、バイパス流路26が形成される。なお、閉塞部28は、図8に示すハッチング部分19に相当する部分である。
 バイパス流路26は、図11において破線矢印で示すように、熱交換流路17を流れる第1流体の一部を、長辺周辺領域から第1流出口10へ流入させる。つまり、バイパス流路26が形成されたことにより、熱交換流路17を流れる第1流体は、通常のプレート式熱交換器と同様に、主流出流路29から第1流出口10へ流入するだけでなく、バイパス流路26から第1流出口10へ流入する。
 上述したように、主流出流路29から第1流出口10へ第1流体が流入しただけでは、熱交換流路17における第2流入口11付近へは、第1流体が流れづらく、よどんでしまう。しかし、バイパス流路26を設けることにより、熱交換流路17における第2流入口11付近へ第1流体を流すことが可能となり、よどみが発生することを防止できる。
 なお、バイパス流路26は、長辺周辺領域側(入口側)から第1流出口10側(出口側)へ向かって、流路断面積が徐々に狭くなっている。そのため、バイパス流路26の出口側へ向かって第1流体の流速を上げることができ、バイパス流路26の途中で第1流体が失速することなく、第1流出口10付近へ第1流体を流すことが可能である。
 また、波形状27は第2流入口11に沿って略曲線状に形成されているため、バイパス流路26も、第2流入口11に沿って略曲線状に形成されている。そのため、バイパス流路26を流れる第1流体の圧力損失を低く抑えることができる。
 なお、略曲線形状とは、実施の形態1と同様に、曲線のみ、曲線と短い直線との組み合わせ、短い直線を連続的に繋げたものなどを含む形状である。
 これにより、実施の形態1と同様に、プレート式熱交換器50の破損を防止できるとともに、有効な熱交換面積を増加させることができる。特に、実施の形態1の構成と実施の形態2の構成とを組合せることが有効である。
 実施の形態3.
 実施の形態1,2では、バイパス流路22,26を設けることについて説明した。実施の形態3では、バイパス流路22,26が長辺側のどの辺りまで形成されるかについて説明する。
 図10に示すように、長辺周辺部側の波形状23の稜線の端部と、第2流出口12の中心とを結んだ線30と、伝熱プレート2の短辺と平行な線31とが成す角θが90度以上180度以下となるように、波形状23が形成される。このように波形状23を形成することにより、バイパス流路22が第2流出口12側の長辺周辺部まで形成される。その結果、熱交換流路17における第2流出口12付近へ確実に第1流体を流すことができ、よどみを解消することができる。
 同様に、図11に示すように、長辺周辺部側の波形状27の稜線の端部と、第2流入口11の中心とを結んだ線32と、伝熱プレート2の短辺と平行な線33とが成す角θが90度以上180度以下となるように、波形状27が形成される。このように波形状27を形成することにより、バイパス流路26が第2流入口11側の長辺周辺部まで形成される。その結果、熱交換流路17における第2流入口11付近から第1流出口10付近へ確実に第1流体を流すことができ、よどみを解消することができる。
 実施の形態4.
 実施の形態1,2では、バイパス流路22,26を設けることについて説明した。実施の形態4では、バイパス流路22,26の閉塞部24,28側の壁面形状について説明する。
 図12は、実施の形態4に係る伝熱プレート2を示す図である。
 実施の形態1で説明したように、バイパス流路22は、閉塞部24と波形状23との間に形成され、波形状23は、第2流出口12に沿った略曲線状に形成される。ここで、閉塞部24の縁34を、第2流出口12に沿った円弧状となるように、略曲線状に形成する。すると、バイパス流路22の第2流出口12側の壁面も略曲線状となる。
 この結果、第1流入口9側からバイパス流路22へ流入した第1流体がバイパス流路22内を滑らかに流れ、バイパス流路22の第2流出口12側の壁面で渦を生じることもない。そのため、バイパス流路22における圧力損失を低減できる。
 バイパス流路26についても同様に、閉塞部28の縁を第2流入口11に沿った円弧状となるように、略曲線状に形成すると、バイパス流路26の第2流入口11側の壁面も略曲線状となる。この結果、熱交換流路17側からバイパス流路26へ流入した第1流体がバイパス流路26内を滑らかに流れ、バイパス流路26の第2流入口11側の壁面で渦を生じることもない。そのため、バイパス流路26における圧力損失を低減できる。
 実施の形態5.
 実施の形態1-4では、伝熱プレート2のみについて説明した。実施の形態5では、伝熱プレート3について説明する。
 図13は、実施の形態5に係る伝熱プレート3を示す図である。
 図13に示すように、伝熱プレート3の第2流出口12の熱交換流路17側には、プレートの積層方向に変位する波形状37が、稜線が第2流出口12の中心を中心とする放射状となるように形成されている。そのため、伝熱プレート2と伝熱プレート3とが積層されると、伝熱プレート2と伝熱プレート3との間において、伝熱プレート2側には第2流出口12に沿ったバイパス流路22が形成され、伝熱プレート3側には第2流出口12の中心から放射状に伸びた流路が形成される。
 したがって、バイパス流路22へ流入した第1流体は、伝熱プレート2側に形成されたバイパス流路22に従い長辺周辺部側(出口側)へ流れつつ、一部が伝熱プレート3側に形成された放射状の流路に従い放射状に広がって熱交換流路17へ流入する。
 特に、伝熱プレート3の短辺方向における中央寄り領域35では、稜線が第2流出口12の中心を中心とする放射線方向に波形状37が形成されているが、伝熱プレート3の長辺周辺部36では、稜線が前記放射線方向よりも長辺方向を向くように波形状37が形成されている。中央寄り領域35では、流路を放射状にすることで、第1流体を放射状に広げて熱交換流路17へ流入させる。一方、長辺周辺部36では、第1流体の流速が遅くなるため、稜線が前記放射線方向よりも長辺方向を向くように波形状37を形成し、流路が長辺方向を向くようにすることで、第1流体の長辺方向への流速を速くすることができる。これにより、全体として第1流体の長辺方向への流速を均一に近づけることができる。その結果、第1流体が流れ辛い長辺周辺部36におけるよどみを解消することができるとともに、圧力損失を低減できる。
 同様に、伝熱プレート3の第1流入口9の熱交換流路17側には、プレートの積層方向に変位する波形状40が、稜線が第1流入口9の中心を中心とする放射状となるように形成されている。なお、図10に示すように、伝熱プレート2の第1流入口9の熱交換流路17側にも、プレートの積層方向に変位する波形状41が、稜線が第1流入口9の中心を中心とする放射状となるように形成されている。そのため、伝熱プレート2と伝熱プレート3とが積層されると、伝熱プレート2と伝熱プレート3との間には、第1流入口9の中心から放射状に伸びた流路が形成される。
 したがって、第1流入口9から流入した第1流体の大部分は、放射状の流路に従い放射状に広がって主流入流路25から熱交換流路17へ流入する。
 なお、第2流出口12側と同様に、伝熱プレート2,3の短辺方向における中央寄り領域38では、稜線が第1流入口9の中心を中心とする放射線方向に波形状40,41が形成されているが、伝熱プレート2,3の長辺周辺部39では、稜線が前記放射線方向よりも長辺方向を向くように波形状40,41が形成されている。
 実施の形態6.
 実施の形態5では、伝熱プレート3の第1流入口9及び第2流出口12側について説明した。実施の形態6では、伝熱プレート3の第1流出口10及び第2流入口11側について説明する。
 なお、伝熱プレート3の第1流出口10及び第2流入口11側については、実施の形態5で説明した伝熱プレート3の第1流入口9及び第2流出口12側と同様の構成である。
 図14は、実施の形態6に係る伝熱プレート3を示す図である。
 図14に示すように、伝熱プレート3の第2流入口11の熱交換流路17側には、プレートの積層方向に変位する波形状44が、稜線が第2流入口11の中心を中心とする放射状となるように形成されている。そのため、伝熱プレート2と伝熱プレート3とが積層されると、伝熱プレート2と伝熱プレート3との間において、伝熱プレート2には第2流入口11に沿ったバイパス流路26が形成され、伝熱プレート3側には第2流入口11の中心から放射状に伸びた流路が形成される。
 したがって、バイパス流路26へは、伝熱プレート2側に形成されたバイパス流路26の長辺周辺部側(入口側)から流入するだけでなく、伝熱プレート3側に形成された放射状の流路に従い流入する。そして、バイパス流路26へ流入した第1流体は、バイパス流路26に従い、第1流出口10側へ流れる。
 特に、伝熱プレート3の短辺方向における中央寄り領域42では、稜線が第2流入口11の中心を中心とする放射線方向に波形状44が形成されているが、伝熱プレート3の長辺周辺部43では、稜線が前記放射線方向よりも長辺方向を向くように波形状44が形成されている。中央寄り領域42では、流路を放射状にすることで、熱交換流路17を流れる第1流体を放射線方向から集約させる。一方、長辺周辺部43では、第1流体の流速が遅いため、稜線が前記放射線方向よりも長辺方向を向くように波形状44を形成し、流路が長辺方向を向くようにすることで、第1流体の長辺方向への流速を速くすることができる。これにより、全体として第1流体の長辺方向への流速を均一に近づけることができる。その結果、第1流体が流れ辛い長辺周辺部43におけるよどみを解消することができるとともに、圧力損失を低減できる。
 同様に、伝熱プレート3の第1流出口10の熱交換流路17側には、プレートの積層方向に変位する波形状47が、稜線が第1流出口10の中心を中心とする放射状となるように形成されている。なお、図11に示すように、伝熱プレート2の第1流出口10の熱交換流路17側にも、プレートの積層方向に変位する波形状48が、稜線が第1流出口10の中心を中心とする放射状となるように形成されている。そのため、伝熱プレート2と伝熱プレート3とが積層されると、伝熱プレート2と伝熱プレート3との間には、第1流出口10の中心から放射状に伸びた流路が形成される。
 したがって、熱交換流路17を流れる第1流体の大部分は、放射状の流路に従い放射線方向に集約されて主流出流路29から第1流出口10へ流入する。
 なお、第2流入口11側と同様に、伝熱プレート2,3の短辺方向における中央寄り領域45では、稜線が第1流出口10の中心を中心とする放射線方向に波形状47,48が形成されているが、伝熱プレート2,3の長辺周辺部46では、稜線が前記放射線方向よりも長辺方向を向くように波形状47,48が形成されている。
 実施の形態7.
 実施の形態7では、プレート式熱交換器50を用いたヒートポンプ装置100の回路構成の一例について説明する。
 ヒートポンプ装置100では、冷媒として、例えば、CO、R410A、HC等が用いられる。COのように高圧側が超臨界域となる冷媒もあるが、ここでは、冷媒としてR410Aを用いた場合を例として説明する。
 図15は、実施の形態7に係るヒートポンプ装置100の回路構成図である。
 図16は、図15に示すヒートポンプ装置100の冷媒の状態についてのモリエル線図である。図16において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。
 ヒートポンプ装置100は、圧縮機51と、熱交換器52と、膨張機構53と、レシーバ54と、内部熱交換器55と、膨張機構56と、熱交換器57とが配管により順次接続され、冷媒が循環する主冷媒回路58を備える。なお、主冷媒回路58において、圧縮機51の吐出側には、四方弁59が設けられ、冷媒の循環方向が切り替え可能となっている。また、熱交換器57の近傍には、ファン60が設けられる。また、熱交換器52は、上記実施の形態で説明したプレート式熱交換器50である。
 さらに、ヒートポンプ装置100は、レシーバ54と内部熱交換器55との間から、圧縮機51のインジェクションパイプまでを配管により繋ぐインジェクション回路62を備える。インジェクション回路62には、膨張機構61、内部熱交換器55が順次接続される。
 熱交換器52には、水が循環する水回路63が接続される。なお、水回路63には、給湯器、ラジエータや床暖房等の放熱器等の水を利用する装置が接続される。
 まず、ヒートポンプ装置100の暖房運転時の動作について説明する。暖房運転時には、四方弁59は実線方向に設定される。なお、この暖房運転とは、空調で使われる暖房だけでなく、水に熱を与えて温水を作る給湯も含む。
 圧縮機51で高温高圧となった気相冷媒(図16の点1)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器52で熱交換されて液化する(図16の点2)。このとき、冷媒から放熱された熱により、水回路63を循環する水が温められ、暖房や給湯に利用される。
 熱交換器52で液化された液相冷媒は、膨張機構53で減圧され、気液二相状態になる(図16の点3)。膨張機構53で気液二相状態になった冷媒は、レシーバ54で圧縮機51へ吸入される冷媒と熱交換され、冷却されて液化される(図16の点4)。レシーバ54で液化された液相冷媒は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
 主冷媒回路58を流れる液相冷媒は、膨張機構61で減圧され気液二相状態となったインジェクション回路62を流れる冷媒と内部熱交換器55で熱交換されて、さらに冷却される(図16の点5)。内部熱交換器55で冷却された液相冷媒は、膨張機構56で減圧されて気液二相状態になる(図16の点6)。膨張機構56で気液二相状態になった冷媒は、蒸発器となる熱交換器57で外気と熱交換され、加熱される(図16の点7)。そして、熱交換器57で加熱された冷媒は、レシーバ54でさらに加熱され(図16の点8)、圧縮機51に吸入される。
 一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図16の点9)、内部熱交換器55で熱交換される(図16の点10)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから圧縮機51内へ流入する。
 圧縮機51では、主冷媒回路58から吸入された冷媒(図16の点8)が、中間圧まで圧縮、加熱される(図16の点11)。中間圧まで圧縮、加熱された冷媒(図16の点11)に、インジェクション冷媒(図16の点10)が合流して、温度が低下する(図16の点12)。そして、温度が低下した冷媒(図16の点12)が、さらに圧縮、加熱され高温高圧となり、吐出される(図16の点1)。
 なお、インジェクション運転を行わない場合には、膨張機構61の開度を全閉にする。つまり、インジェクション運転を行う場合には、膨張機構61の開度が所定の開度よりも大きくなっているが、インジェクション運転を行わない際には、膨張機構61の開度を所定の開度より小さくする。これにより、圧縮機51のインジェクションパイプへ冷媒が流入しない。
 ここで、膨張機構61の開度は、マイクロコンピュータ等の制御部により電子制御により制御される。
 次に、ヒートポンプ装置100の冷房運転時の動作について説明する。冷房運転時には、四方弁59は破線方向に設定される。なお、この冷房運転とは、空調で使われる冷房だけでなく、水から熱を奪って冷水を作ることや、冷凍等も含む。
 圧縮機51で高温高圧となった気相冷媒(図16の点1)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器57で熱交換されて液化する(図16の点2)。熱交換器57で液化された液相冷媒は、膨張機構56で減圧され、気液二相状態になる(図16の点3)。膨張機構56で気液二相状態になった冷媒は、内部熱交換器55で熱交換され、冷却され液化される(図16の点4)。内部熱交換器55では、膨張機構56で気液二相状態になった冷媒と、内部熱交換器55で液化された液相冷媒を膨張機構61で減圧させて気液二相状態になった冷媒(図16の点9)とを熱交換させている。内部熱交換器55で熱交換された液相冷媒(図16の点4)は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
 主冷媒回路58を流れる液相冷媒は、レシーバ54で圧縮機51に吸入される冷媒と熱交換されて、さらに冷却される(図16の点5)。レシーバ54で冷却された液相冷媒は、膨張機構53で減圧されて気液二相状態になる(図16の点6)。膨張機構53で気液二相状態になった冷媒は、蒸発器となる熱交換器52で熱交換され、加熱される(図16の点7)。このとき、冷媒が吸熱することにより、水回路63を循環する水が冷やされ、冷房や冷凍に利用される。
 そして、熱交換器52で加熱された冷媒は、レシーバ54でさらに加熱され(図16の点8)、圧縮機51に吸入される。
 一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図16の点9)、内部熱交換器55で熱交換される(図16の点10)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから流入する。
 圧縮機51内での圧縮動作については、暖房運転時と同様である。
 なお、インジェクション運転を行わない際には、暖房運転時と同様に、膨張機構61の開度を全閉にして、圧縮機51のインジェクションパイプへ冷媒が流入しないようにする。
 1,4 補強用サイドプレート、2,3 伝熱プレート、5 第1流入管、6 第1流出管、7 第2流入管、8 第2流出管、9 第1流入口、10 第1流出口、11 第2流入口、12 第2流出口、13 第1流路、14 第2流路、15,16 波形状、17 熱交換流路、18,19,20,21 ハッチング部分、22,26 バイパス流路、23,27,37,40,41,44,47,48 波形状、24,28 閉塞部、25 主流入流路、29 主流出流路、30,31,32,33 線、34 縁、35,38,42,45 中央寄り領域、36,39,43,46 長辺周辺部、50 プレート式熱交換器、51 圧縮機、52,57 熱交換器、53,56,61 膨張機構、54 レシーバ、55 内部熱交換器、58 主冷媒回路、59 四方弁、60 ファン、62 インジェクション回路、63 水回路、100 ヒートポンプ装置。

Claims (8)

  1.  第1流体又は第2流体の流出入口となる通路孔が四隅に設けられた複数の矩形のプレートが積層され、前記第1流体が流れる第1流路と前記第2流体が流れる第2流路とが隣接する2枚のプレートによって積層方向に交互に形成されたプレート式熱交換器であり、
     前記第1流路は、前記各プレートの長辺方向の一方側に設けられた通路孔である流入口から流入した前記第1流体を、前記長辺方向の他方側に設けられた通路孔である流出口から流出させる流路であって、前記流入口と前記流出口との間に、前記第1流体を隣接する第2流路を流れる前記第2流体と熱交換させる熱交換流路が形成された流路であり、
     前記第1流路には、前記流入口の周辺の領域である流入口周辺部から、前記長辺方向の前記一方側に設けられた通路孔であって前記流入口とは異なるもう1つの通路孔である上流側隣接孔に沿って、前記上流側隣接孔側のプレートの長辺の周辺の領域である長辺周辺部まで形成されて前記熱交換流路に接続し、前記流入口から流入した前記第1流体の一部を前記長辺周辺部から前記熱交換流路へ流入させる上流側バイパス流路であって、前記長辺周辺部側ほど流路断面積の狭い上流側バイパス流路が形成された
    ことを特徴とするプレート式熱交換器。
  2.  前記上流側バイパス流路は、前記上流側隣接孔の前記熱交換流路側に形成された
    ことを特徴とする請求項1に記載のプレート式熱交換器。
  3.  前記第1流路には、前記長辺方向の前記他方側に設けられた通路孔であって前記流出口とは異なるもう1つの通路孔である下流側隣接孔側の長辺周辺部から、前記下流側隣接孔に沿って、前記流出口の周辺の領域である流出口周辺部まで形成され、前記熱交換流路の前記下流側隣接孔側を流れる前記第1流体を前記流出口へ流入させる下流側バイパス流路であって、前記流出口側ほど流路断面積の狭い下流側バイパス流路が形成された
    ことを特徴とする請求項1又は2に記載のプレート式熱交換器。
  4.  前記上流側隣接孔は円形であり、
     前記第1流路を形成する2枚のプレートのうち一方のプレートには、前記上流側バイパス流路を形成するために、前記プレートの積層方向に変位する波形状が、波の頂を繋いだ稜線が前記上流側隣接孔に沿うように、かつ、前記稜線の前記長辺周辺部側の端部と前記上流側隣接孔の中心とを通る直線と、プレートの短辺との成す角が90度以上180度以下となるように形成された
    ことを特徴とする請求項1から3までのいずれかに記載のプレート式熱交換器。
  5.  前記上流側バイパス流路は、プレートの積層方向から見た場合に、前記上流側隣接孔側の壁面が、前記流入口周辺部から前記上流側隣接孔側の前記長辺周辺部にかけて円弧状に形成された
    ことを特徴とする請求項1から4までのいずれかに記載のプレート式熱交換器。
  6.  前記第1流路を形成する2枚のプレートのうち一方のプレートには、前記上流側バイパス流路を形成するために、前記プレートの積層方向に変位する波形状が、波の頂を繋いだ稜線が前記上流側隣接孔に沿うように形成され、
     前記第1流路を形成する2枚のプレートのうち他方のプレートには、前記上流側隣接孔の前記熱交換流路側に、前記プレートの積層方向に変位する波形状が、波の頂を繋いだ稜線が前記上流側隣接孔を中心として放射状となるように形成されるとともに、長辺周辺部寄りの部分においては前記稜線の方向が前記上流側隣接孔を中心とする放射線方向よりも長辺方向を向くように前記波形状が形成された
    ことを特徴とする請求項1から5までのいずれかに記載のプレート式熱交換器。
  7.  前記第1流路を形成する2枚のプレートには、前記流入口の前記熱交換流路に、前記プレートの積層方向に変位する波形状が、波の頂を繋いだ稜線が前記流入口を中心として放射状となるように形成されるとともに、長辺周辺部寄りの部分においては前記稜線の方向が前記流入口を中心とする放射線方向よりも長辺方向を向くように前記波形状が形成された
    ことを特徴とする請求項1から6までのいずれかに記載のプレート式熱交換器。
  8.  圧縮機と、第1熱交換器と、膨張機構と、第2熱交換器とが配管で接続された冷媒回路を備え、
     前記冷媒回路に接続された前記第1熱交換器は、
     第1流体又は第2流体の流出入口となる通路孔が四隅に設けられた複数の矩形のプレートが積層され、前記第1流体が流れる第1流路と前記第2流体が流れる第2流路とが隣接する2枚のプレートによって積層方向に交互に形成されたプレート式熱交換器であり、
     前記第1流路は、前記各プレートの長辺方向の一方側に設けられた通路孔である流入口から流入した前記第1流体を、前記長辺方向の他方側に設けられた通路孔である流出口から流出させる流路であって、前記流入口と前記流出口との間に、前記第1流体を隣接する第2流路を流れる前記第2流体と熱交換させる熱交換流路が形成された流路であり、
     前記第1流路には、前記流入口の周辺の領域である流入口周辺部から、前記長辺方向の前記一方側に設けられた通路孔であって前記流入口とは異なるもう1つの通路孔である上流側隣接孔に沿って、前記上流側隣接孔側のプレートの長辺の周辺の領域である長辺周辺部まで形成されて前記熱交換流路に接続し、前記流入口から流入した前記第1流体の一部を前記長辺周辺部から前記熱交換流路へ流入させる上流側バイパス流路であって、前記長辺周辺部側ほど流路断面積の狭い上流側バイパス流路が形成された
    ことを特徴とするヒートポンプ装置。
PCT/JP2010/070179 2010-11-12 2010-11-12 プレート式熱交換器及びヒートポンプ装置 WO2012063355A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10859440.9A EP2639540B1 (en) 2010-11-12 2010-11-12 Plate heat exchanger and heat pump device
JP2012542773A JP5661119B2 (ja) 2010-11-12 2010-11-12 プレート式熱交換器及びヒートポンプ装置
US13/878,601 US9752836B2 (en) 2010-11-12 2010-11-12 Plate heat exchanger and heat pump apparatus
PCT/JP2010/070179 WO2012063355A1 (ja) 2010-11-12 2010-11-12 プレート式熱交換器及びヒートポンプ装置
CN201080070070.4A CN103201583B (zh) 2010-11-12 2010-11-12 板式换热器及热泵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070179 WO2012063355A1 (ja) 2010-11-12 2010-11-12 プレート式熱交換器及びヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2012063355A1 true WO2012063355A1 (ja) 2012-05-18

Family

ID=46050535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070179 WO2012063355A1 (ja) 2010-11-12 2010-11-12 プレート式熱交換器及びヒートポンプ装置

Country Status (5)

Country Link
US (1) US9752836B2 (ja)
EP (1) EP2639540B1 (ja)
JP (1) JP5661119B2 (ja)
CN (1) CN103201583B (ja)
WO (1) WO2012063355A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014147804A1 (ja) * 2013-03-22 2017-02-16 三菱電機株式会社 プレート式熱交換器及びそれを備えた冷凍サイクル装置
WO2017138322A1 (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム
US10451038B2 (en) 2015-06-26 2019-10-22 Vestas Wind Systems A/S Increasing active power from a wind turbine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220313B4 (de) * 2013-10-08 2023-02-09 Mahle International Gmbh Stapelscheiben-Wärmetauscher
DE102013223742A1 (de) * 2013-11-20 2015-05-21 MAHLE Behr GmbH & Co. KG Stapelplattenwärmeübertrager mit einer Vielzahl an Stapelplattenelementen
US10837717B2 (en) * 2013-12-10 2020-11-17 Swep International Ab Heat exchanger with improved flow
KR101755456B1 (ko) * 2015-05-06 2017-07-07 현대자동차 주식회사 열교환기
ES2797487T3 (es) * 2015-05-11 2020-12-02 Alfa Laval Corp Ab Una placa de intercambiador de calor y un intercambiador de calor de placas
CN111288824B (zh) * 2018-12-06 2021-08-03 丹佛斯有限公司 板式换热器
US20220155031A1 (en) * 2019-03-28 2022-05-19 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchanger and heat exchange device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896987A (ja) 1981-12-03 1983-06-09 Hisaka Works Ltd プレ−ト式熱交換器
JPS61500626A (ja) 1983-12-08 1986-04-03 アルフア−ラヴアル サ−マル ア−ベ− プレ−ト型熱交換器のプレ−ト
JPH06281377A (ja) * 1993-03-26 1994-10-07 Hisaka Works Ltd プレート式熱交換器用プレート
JPH08271172A (ja) * 1995-03-31 1996-10-18 Hisaka Works Ltd プレート式熱交換器のプレート構造
JPH1137677A (ja) 1997-07-16 1999-02-12 Daikin Ind Ltd プレート式熱交換器
JPH1137676A (ja) * 1997-07-16 1999-02-12 Daikin Ind Ltd プレート式熱交換器
JP2001280889A (ja) * 2000-03-30 2001-10-10 Hisaka Works Ltd プレート式熱交換器
JP2008170090A (ja) * 2007-01-12 2008-07-24 Mac:Kk 伝熱用ブレージングプレート及びそれを用いた熱交換器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523638A (en) * 1979-10-01 1985-06-18 Rockwell International Corporation Internally manifolded unibody plate for a plate/fin-type heat exchanger
SE8504379D0 (sv) * 1985-09-23 1985-09-23 Alfa Laval Thermal Ab Plattvemevexlare
JP3292128B2 (ja) * 1998-02-27 2002-06-17 ダイキン工業株式会社 プレート型熱交換器
US20010030043A1 (en) * 1999-05-11 2001-10-18 William T. Gleisle Brazed plate heat exchanger utilizing metal gaskets and method for making same
DE10035939A1 (de) * 2000-07-21 2002-02-07 Bosch Gmbh Robert Vorrichtung zur Wärmeübertragung
SE0303307L (sv) 2003-12-10 2004-10-19 Swep Int Ab Plattvärmeväxlare
JP4599910B2 (ja) * 2004-07-01 2010-12-15 ダイキン工業株式会社 給湯装置
DE602004004114T3 (de) * 2004-08-28 2014-07-24 Swep International Ab Plattenwärmetauscher
JP2007205634A (ja) 2006-02-01 2007-08-16 Hisaka Works Ltd プレート式熱交換器
SE532524C2 (sv) 2008-06-13 2010-02-16 Alfa Laval Corp Ab Värmeväxlarplatta samt värmeväxlarmontage innefattandes fyra plattor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896987A (ja) 1981-12-03 1983-06-09 Hisaka Works Ltd プレ−ト式熱交換器
JPS61500626A (ja) 1983-12-08 1986-04-03 アルフア−ラヴアル サ−マル ア−ベ− プレ−ト型熱交換器のプレ−ト
JPH06281377A (ja) * 1993-03-26 1994-10-07 Hisaka Works Ltd プレート式熱交換器用プレート
JPH08271172A (ja) * 1995-03-31 1996-10-18 Hisaka Works Ltd プレート式熱交換器のプレート構造
JPH1137677A (ja) 1997-07-16 1999-02-12 Daikin Ind Ltd プレート式熱交換器
JPH1137676A (ja) * 1997-07-16 1999-02-12 Daikin Ind Ltd プレート式熱交換器
JP2001280889A (ja) * 2000-03-30 2001-10-10 Hisaka Works Ltd プレート式熱交換器
JP2008170090A (ja) * 2007-01-12 2008-07-24 Mac:Kk 伝熱用ブレージングプレート及びそれを用いた熱交換器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014147804A1 (ja) * 2013-03-22 2017-02-16 三菱電機株式会社 プレート式熱交換器及びそれを備えた冷凍サイクル装置
US10451038B2 (en) 2015-06-26 2019-10-22 Vestas Wind Systems A/S Increasing active power from a wind turbine
WO2017138322A1 (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム

Also Published As

Publication number Publication date
US20130192291A1 (en) 2013-08-01
JPWO2012063355A1 (ja) 2014-05-12
JP5661119B2 (ja) 2015-01-28
US9752836B2 (en) 2017-09-05
CN103201583B (zh) 2015-04-08
CN103201583A (zh) 2013-07-10
EP2639540B1 (en) 2018-10-03
EP2639540A1 (en) 2013-09-18
EP2639540A4 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP5661119B2 (ja) プレート式熱交換器及びヒートポンプ装置
JP5932777B2 (ja) プレート式熱交換器及びヒートポンプ装置
JP5805189B2 (ja) プレート式熱交換器及びヒートポンプ装置
JP6641544B1 (ja) プレート式熱交換器及びそれを備えたヒートポンプ装置
CN108603732B (zh) 板式热交换器及具备板式热交换器的热泵式制热供热水系统
JP5819592B2 (ja) プレート式熱交換器及びヒートポンプ装置
JP5859022B2 (ja) プレート式熱交換器およびこの熱交換器を備えた冷凍サイクル装置
JPWO2018216245A1 (ja) プレート式熱交換器及びヒートポンプ式給湯システム
WO2013076751A1 (ja) プレート式熱交換器及びそれを用いた冷凍サイクル装置
JP7062131B2 (ja) プレート式熱交換器及びそれを備えたヒートポンプ装置
JP6177459B1 (ja) プレート式熱交換器および冷凍サイクル装置
JP3423981B2 (ja) 熱交換器および冷凍空調装置
JP6601380B2 (ja) 熱交換器および空気調和装置
JP2010255981A (ja) 冷凍サイクル装置
JP2007010299A (ja) 熱交換器および給湯装置
JP2007303762A (ja) 冷暖房システム
JPWO2013076751A1 (ja) プレート式熱交換器及びそれを用いた冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13878601

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012542773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010859440

Country of ref document: EP