EP1303750A1 - Procede et dispositif d'analyse de coincidence par fluorescence a deux photons polychrome - Google Patents
Procede et dispositif d'analyse de coincidence par fluorescence a deux photons polychromeInfo
- Publication number
- EP1303750A1 EP1303750A1 EP01969428A EP01969428A EP1303750A1 EP 1303750 A1 EP1303750 A1 EP 1303750A1 EP 01969428 A EP01969428 A EP 01969428A EP 01969428 A EP01969428 A EP 01969428A EP 1303750 A1 EP1303750 A1 EP 1303750A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluorescence
- sample
- markers
- excitation
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000004458 analytical method Methods 0.000 title claims abstract description 23
- 238000005259 measurement Methods 0.000 claims abstract description 46
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 230000003595 spectral effect Effects 0.000 claims abstract description 13
- 230000005284 excitation Effects 0.000 claims description 74
- 239000000523 sample Substances 0.000 claims description 43
- 230000009102 absorption Effects 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 10
- 239000007850 fluorescent dye Substances 0.000 claims description 9
- 238000005286 illumination Methods 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 7
- 239000012491 analyte Substances 0.000 claims description 6
- 238000000695 excitation spectrum Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- 230000031018 biological processes and functions Effects 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 238000010494 dissociation reaction Methods 0.000 claims description 3
- 230000005593 dissociations Effects 0.000 claims description 3
- 238000001069 Raman spectroscopy Methods 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 claims description 2
- 238000002189 fluorescence spectrum Methods 0.000 claims description 2
- 108091006047 fluorescent proteins Proteins 0.000 claims description 2
- 102000034287 fluorescent proteins Human genes 0.000 claims description 2
- 239000002096 quantum dot Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 206010013457 Dissociation Diseases 0.000 claims 1
- 238000001311 chemical methods and process Methods 0.000 claims 1
- 238000003776 cleavage reaction Methods 0.000 claims 1
- 208000018459 dissociative disease Diseases 0.000 claims 1
- 238000013537 high throughput screening Methods 0.000 claims 1
- 238000005457 optimization Methods 0.000 claims 1
- 230000010287 polarization Effects 0.000 claims 1
- 239000012488 sample solution Substances 0.000 claims 1
- 230000007017 scission Effects 0.000 claims 1
- 239000000975 dye Substances 0.000 description 22
- 230000008901 benefit Effects 0.000 description 10
- 238000010219 correlation analysis Methods 0.000 description 9
- 239000003550 marker Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 238000002060 fluorescence correlation spectroscopy Methods 0.000 description 4
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 3
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007515 enzymatic degradation Effects 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 108010054624 red fluorescent protein Proteins 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 2
- ACNUVXZPCIABEX-UHFFFAOYSA-N 3',6'-diaminospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(N)C=C1OC1=CC(N)=CC=C21 ACNUVXZPCIABEX-UHFFFAOYSA-N 0.000 description 1
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002211 flavins Chemical class 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008832 photodamage Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical class [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6408—Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J2003/2866—Markers; Calibrating of scan
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
- G01N2021/6441—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/13—Tracers or tags
Definitions
- the invention relates to a method for fluorescence correlation analysis, in particular methods for coincidence or cross correlation analysis on analytes marked with at least two different fluorescent markers in a sample, and measuring devices for carrying out the methods mentioned.
- Fluorescence correlation spectroscopy is generally known as a highly sensitive optical method for the detection of dynamic properties of individual molecules or molecular compounds or of the lowest concentrations of fluorescent substances.
- a laser beam is coupled into the sample with a microscope and focused on a measuring volume of approx. 10 "15 1 (1 fl).
- the measuring volume is so small that, on average, less than a fluorescent one
- the fluorescence of the sample molecules of interest is detected by a correlation analysis of the detector signals.
- the microscope is designed for three-dimensional positioning of the measurement volume, as is possible with a confocal microscope, for example.
- a laser beam for fluorescence excitation is focused on a diffraction-limited point in the sample.
- a point diaphragm in the image plane, in which the excitation point is shown, serves as a field diaphragm, with which fluorescence and scattered light, which emanates from locations outside the focus, are masked out dynamic molecular properties (diffusion coefficient) in the pro- be determined.
- relatively high excitation intensities in the range of approx. 100 kW / cm 2
- the detector signals are subjected to a cross-correlation or coincidence analysis.
- concentration of the sample and the size of the measuring volume are selected so that at most one molecule is present in the measuring volume at one point in time.
- temporal correlations or coincidences in the detector signals it can be determined whether there was an analyte with one or the other or both marker dyes in the measurement volume at the time of measurement.
- molecular association or dissociation processes such as e.g. B. the formation or breaking of chemical bonds are measured in real time.
- the two-color technique according to WO 99/34195 also has disadvantages which limit the applicability and the accuracy of the method.
- Various lasers 21 ', 22' are usually required to excite the fluorescence emissions of the marking dyes, the foci of which must be formed at a measuring point in a stable manner over time and with an accuracy of fractions of a femtoliter. A considerable amount of experimentation is required to adjust and stabilize the excitation laser. Furthermore, in order to achieve a sufficient spatial resolution in the radiation direction (z direction), the imaging system must have a pinhole on the imaging side, onto which the measurement volume is imaged. Another limitation concerns the available dye systems. The marking dyes must have high light stability at all excitation wavelengths. In addition, the marking dyes used must have high quantum yields.
- the object of the invention is to provide an improved method for fluorescence measurement based on a cross-correlation and / or coincidence analysis, with which the disadvantages, in particular of the conventional two-color technique, are avoided become.
- the method according to the invention is to be implemented with a simplified measurement setup, without having to accept restrictions in terms of accuracy and stability.
- the object of the invention is also to provide improved correlation and / or coincidence measuring devices for fluorescence measurement with a simplified structure.
- the basic idea of the invention is to illuminate the sample for correlation fluorescence measurement on analytes with at least two fluorescence markers on one or more substances to be analyzed with such a high excitation intensity (photon flux density) that the fluorescence excitation of the fluorescence markers by 2-photon absorption he follows.
- the sample is preferably illuminated with a single laser line.
- the laser beam is focused into the sample at the desired location in the measurement volume.
- the fluorescence markers are excited simultaneously at a common excitation wavelength, but have spectrally separated fluorescence emissions that are detected with different detectors.
- the signals from the detectors are subjected to a correlation analysis (coincidence or cross-correlation analysis).
- the 2-photon excitation of fluorescence markers has the advantage that fluorescence markers can be used which have similar maxima in the excitation spectra of the 2-photon excitation, but which are characterized by different Stokes shifts in the emission.
- the fluorescence measurement is aimed at a single-molecule-based analysis, in which the measurement or observation volume is so small that fluorescence fluctuations from individual molecules can be detected and evaluated.
- fluorescent markers in particular fluorescent dyes
- the fluorescence markers for the correlation fluorescence measurement are preferably excited at an excitation wavelength at which both fluorescence markers have essentially the same fluorescence photon yield after 2-photon absorption. Since the fluorescence photon yield, defined as the count rate, which is detected per unit of time and per molecule, depends in particular on the ambient conditions (for example absorption state of the fluorescent markers, solvents and the like), a preliminary test is preferably carried out before the fluorescence measurement to determine the optimal excitation wavelength. The preliminary test is carried out once for a specific measuring system or several times before each fluorescence measurement.
- the measurement setup is considerably simplified.
- the simplification is that only one laser has to be used for excitation.
- the experimental set-up is further simplified since the excitation volume of the 2-photon excitation in the direction of propagation of the laser beam (z-direction) is reduced compared to the excitation volume for 1-photon excitation.
- the probability of 2-photon absorption depends on the square of the excitation intensity.
- the absorption cross section is therefore reduced proportionally to z ⁇ 4 .
- There is an inherent concentration of excitation at the focal level It is not absolutely necessary to map the measurement volume to a pinhole, since there is no flow outside the focal plane anyway. orescent light is emitted in the spectral regions of interest.
- Another important advantage of the 2-photon excitation according to the invention is the high tolerance of biological materials (cells, cell components or cell assemblies) to infrared radiation.
- biological materials cells, cell components or cell assemblies
- Due to the long-wave excitation there is a further advantage for the signal-to-noise ratio, since excitation and emission light are spectrally far apart, so that disturbing stray light can be largely suppressed by optical filters without losing part of the emission light to be detected.
- Another advantage is the reduction of false light, which mainly concerns the fluorescence of contaminants ("dirt").
- This fluorescence is essentially critical in the short-wave visible range, ie in the case of 1-photon excitation.
- impurities are excited with significantly less efficiency, so that the signal-to-noise ratio - compared to 1-photon excitation - is significantly higher.
- the invention also relates to a measuring device for fluorescence measurement on analytes with at least two different fluorescence markers, in which the illumination device is formed by a single laser line which is designed to excite 2-photon absorptions of the fluorescence markers.
- Another important feature of the device according to the invention consists in the provision of two detector devices which are set up to detect the fluorescence emission in different spectral ranges and on which the whole of the sample (in particular the excitation lumen and also fluorescent light emanating from the area surrounding the excitation volume). The detection takes place without an aperture, a pinhole aperture is not provided. A non-confocal mapping of the excitation volume onto the detectors is provided.
- the 2-photon excitation with a single laser not only reduces the expenditure on equipment. There are also advantages for the optical adjustment. The problem of size and overlap of excitation volumes is excluded. Additional detection shutters are not required. If fluorescent dyes are used as markers, there is a further advantage in the fact that, after the 2-photon excitation, practically no triplet states are assumed, so that no signal losses occur via the triplet formation.
- the excitation volume in the measurement method according to the invention is smaller than in the conventional 1-photon excitation. This enables measurements to be carried out at higher sample concentrations of approximately 100 nM, which has advantages for the further evaluation of the results. Concentrations in the nM range can also be determined. Short analysis times in the range of one or a few seconds are made possible. Measurements in living cells are made possible, which enables the exact determination of kinetics and concentrations of double-labeled molecules or complexes.
- the 2-photon excitation offers the following advantages in particular: There is a physically perfect overlap of the excitation volume elements for both fluorophores.
- the excitation volume element can counter can be reduced using conventional methods, ie measurements of higher concentrations (100 nM and higher) are possible. Detection takes place without a pinhole (excitation volume element is small enough due to 2-photon excitation). Multi-color detection of three or more fluorophores on a single-molecule basis is possible, ie monochromatic excitation via 2-photons with z.
- FIG. 1 shows a schematic overview of a measuring device according to the invention
- FIG. 2 shows an illustration of molecular processes which can advantageously be detected with the correlation measurement according to the invention
- FIGS. 4, 5 measurement results to illustrate the quantum yield of marking dyes as a function of the excitation wavelength and the excitation power
- FIGS. 6, 7 representations of curves to illustrate the accuracy and selectivity of the correlation measurement according to the invention
- 8 shows graphs of an enzymatic degradation of a substance observed according to the invention
- FIG. 9 shows a schematic overview of a conventional measuring device for two-color correlation measurement (prior art).
- the invention is described below with reference to 2-photon excitations in test systems with two fluorescent markers. Corresponding implementations of the invention result in multi-color applications. Three or more suitable fluorophores can be excited for emission with a monochrome 2-photon excitation. This allows the measurement of complex molecular and cellular processes in which more than two analytes are involved.
- the optical structure of a 2-photon fluorescence correlation spectrometer according to the invention is illustrated schematically in FIG. 1.
- the spectrometer 100 comprises a sample chamber 10, an illumination device 20, a detector device 30, a correlator 40 and an imaging system 50.
- the imaging system 50 is preferably formed by an inverted microscope construction (eg with an Olympus IX70 microscope).
- the sample chamber 10 is an application-selected container, in which the sample 11 is arranged at rest or flowing.
- the sample 11 is a solution or suspension of the substances or particles to be examined. It can be provided that the sample chamber 10 is arranged to be movable in one or more spatial directions. The agility of the
- the sample chamber can rely on a scan movement relative to the imaging system 50 for taking three-dimensional images, e.g. B. three-dimensional concentration distributions in the sample. It is also possible to use the sample chamber 10 to impress a periodic modulation movement as described in WO 99/34195.
- the wall of the sample chamber 10 facing the imaging system 50 has such a small thickness that the focus 12 of the excitation light can be formed by the objective 51 at a short distance of approximately 400 to 500 ⁇ m.
- the corresponding wall preferably has the thickness of a cover slip, as is used in microscopy. The thickness is, for example, approx. 150 to 190 ⁇ m.
- the illuminating device 20 is a single laser which is designed for the 2-photon excitation of the fluorescence markers used in each case.
- a tunable pulse laser is preferably used, such as.
- the parallel laser light is directed via the dichroic mirror 52 (eg of the type 710 DCSPXR, AHF Analysentechnik, Tübingen, Germany) into the lens 51 (eg 60 x 1.2 lens UplanApo Olympus) and in the sample chamber 10 focused.
- the dimensions of the excitation volume r 0 and z 0 in the focal plane are known from calibration measurements.
- the diameter of the focus in the focal plane is z. B.
- r 0 0.48 ⁇ m.
- a fluorescence emission is excited in this excitation volume, which is emitted via the objective 51, the dichroic mirror 52, an emission filter 53 (e.g. of the type 600 DF 200, AHF analysis technology) to suppress the excitation light and an optics 54 a second dichroic mirror 55 (e.g. type 595 DCLP, AHF analysis technology) is directed.
- the short-wave part of the fluorescent light is reflected at the second dichroic mirror 55 and is passed through a bandpass filter 56 onto the long-wave Leader detector 31 directed to the detector device.
- the fluorescent light transmitted through the dichroic mirror is also filtered (edge filter 57) and directed onto the shorter-wave detector 32.
- the coupling into the detectors takes place with optical fibers 58 or 59.
- the detectors are, for example, avalanche photodiodes (type: SPCM-200, EG & G Optoelectronics, Canada).
- the optical coupling fibers have a diameter of 100 ⁇ m and are individually adjustable in all three spatial directions.
- the detectors 31, 32 are connected to a correlator 40.
- a correlator card type: ALV-5000, manufacturer LAV Langen, Germany
- the coupling fibers can also be dispensed with and the fluorescent light can be imaged directly on the detectors.
- the optical structure can be equipped with a fiber-coupled spectrometer (manufacturer Ocean Optics, USA).
- the sample 11 in the sample chamber 10 contains at least two analytes marked with different fluorescent markers and / or at least one analyte marked with at least two fluorescent markers.
- the subject of the fluorescence measurement according to the invention is, for example, a coincidence analysis of the fluorescence emissions of the different fluorescence markers detected with the detectors 31, 32. This is illustrated schematically in FIG. 2.
- the sample contains, for example, the analytes AI and A2, which are each marked with fluorescent markers M1 and M2.
- the analytes are, for example, pairs of antibodies and antigens, the binding behavior of which is to be examined. As long as the analytes AI and A2 are not bound to each other, they pass through the excitation volume separately at different times.
- the detectors 31, 32 deliver fluorescence signals separated in time, which are symbolized schematically in FIG. 2 (left, center) by arrows P1, P2.
- the fluorescence signals are measured uncorrelated at any time. relations or coincidence signal G cannot be derived.
- a correlation or coincidence signal can be derived accordingly (FIG. 2, bottom right).
- the decomposition of the analyte A3 into subcomponents can also be detected, as is of interest, for example, when observing the enzymatic degradation of a substrate labeled twice with fluorescent markers.
- the measuring method according to the invention preferably captures all chemical reactions or physical processes in which a chemical bond is established between separate analytes or an existing bond is cut open or a physical association or dissociation is carried out accordingly. All analytes (substances) that can be marked with fluorescent markers on the different sides of the compound to be produced or separated are accessible to the measuring method.
- the signal detection with the detectors and the correlation analysis are carried out in a manner known per se from the FCS techniques.
- a fluorescence measurement is carried out with the detectors in predetermined time windows.
- the width of the time window is chosen depending on the application. It is preferably set to the mean residence time of the analytes in the measurement volume.
- the length of stay is particularly dependent on the molecular or particle size and mobility and can be measured or theoretically estimated.
- the photon numbers recorded in the time windows are
- a concentration measurement is possible on the basis of the coincidence analysis.
- a measure of the number of double-labeled molecules or particles in the sample is derived from the strength of the detected coincidences (amplitude of coincidence signals).
- the cross-correlation or coincidence analysis of the detector signals carried out with the correlator 40 is preferably carried out in a known manner, as described in WO 99/34195.
- the details of signal analysis disclosed in this patent application are fully incorporated by reference into the present description.
- a relative movement is set between the sample and the illumination device during the fluorescence analysis by means of a beam scanner and / or a sample drive.
- the fluctuation movements increase and the diffusion times become shorter.
- the measuring volume element can be scanned through the sample. If this relative movement is set, the time window of the coincidence analysis may have to be adjusted.
- Fluorescent dyes such as are known, for example, from fluorescence microscopy are preferably used as fluorescence markers M1, M2.
- Dye pairs are selected which have similar absorption cross sections at a selected wavelength and which have spectrally separable fluorescence spectra with high photostability.
- the marker pairs are, for example, the dyes rhodamine green / Texas red, fluorescein derivatives (eg Alexa 488 / Alexa 594) or molecular biological dyes such as green fluorescent proteins (GFP) / red fluorescent proteins (RFP) used.
- GFP green fluorescent proteins
- RFP red fluorescent proteins
- autofluorescent proteins such as GFP, dsRED, autofluorescent biomolecules, e.g. As tryptophan, tyrosine, or flavins, or autofluorescent organic molecules can be used.
- the method according to the invention can also be designed to detect Raman scattering or surface enhanced Raman scattering (SERS).
- FIG. 3 shows the spectral properties of the marker system rhodamine green / Texas red. Both dyes show a similarly high fluorescence photon yield and sufficient light stability to tolerate the excitation intensities used according to the invention.
- the spectra (1) and (2) show the fluorescence emissions of rhodamine green and Texas red ( ⁇ M solutions) at an excitation wavelength of 830 nm.
- Curve (3) shows the transmission curve of the dichroic mirror 55. In the region of the shorter-wave Fluorescence (1) results in the reflection to the detector 31.
- the curves (4) and (5) show the transmission characteristics of the filters 56 and 57, respectively, which are intended to further improve the signal-to-noise ratio, but not a mandatory feature of the invention are.
- the excitation of the 2-photon absorptions takes place at a predetermined excitation wavelength, which is selected as follows. After determining the excitation spectra of the fluorescent markers used (see FIG. 3), the fluorescence photon yield is determined for each fluorescence marker as a function of the excitation wavelength. Since the excitation spectra of the fluorescence markers overlap, there are also overlapping curve profiles of the wavelength-dependent fluorescence photons. prey.
- the optimal wavelength is selected according to the wavelength or the wavelength interval in which the fluorescence photon yields of the two fluorescent markers essentially match or the deviation between the fluorescence photon yields is less than a predetermined ratio, e.g. B. is less than factor 3. This is illustrated below using the example of fluorescent dyes.
- FIGS. 4 and 5 illustrate spectral properties of the marker pair rhodamine green / Texas red.
- an excitation spectrum in the range 740 nm to 900 nm is recorded for each dye.
- the curve profiles in FIG. 4 show an excitation maximum at 780 nm for Texas red (crosses) and at 850 nm for rhodamine green (triangles).
- an excitation wavelength is selected in which both dyes can be excited with almost the same efficiency and in which both dyes exhibit comparatively strong fluorescence emissions. In the example shown, the excitation wavelength is 830 nm.
- Figure 5 shows that the excitation at 830 nm actually causes 2-photon absorption.
- the fluorescence intensity as a function of the excitation power was measured separately for both dyes. For both dyes below the saturation limit there is the expected square dependence of the fluorescence intensity on the incident power for 2-photon processes.
- the double logarithmic representation provides the corresponding linearized form with slope 2.
- FIG. 6 shows the course of autocorrelation curves, which were recorded with a test solution from Rhodamin Grün in the two detection channels, and a corresponding cross-correlation curve between the two detection channels. All three curves are essentially the same. This shows that the detection volumes are identical or the detection beam paths are precisely adjusted to the excitation volume.
- Cross-correlation measurements on double-labeled (upper curve) and single-labeled (lower curve) DNA samples are illustrated in FIG. 7.
- One advantage of the measurement method is that cross-correlation signals G result for the non-correlated samples, which are less than 10% of the corresponding correlated signals.
- the structure according to the invention is thus superior to the conventional 1-photon measurements.
- FIG. 8 illustrates a preferred application of the measurement method according to the invention for determining concentrations in the sample.
- the real-time measurement of enzyme kinetics is shown.
- a double-labeled substrate (DNA sample) is broken down enzymatically into individually labeled products. Accordingly, the number of double-labeled molecules detected decreases over time. With increasing concentration of the added enzyme (endonuclease EcoRI), the decrease in substrate concentration is accelerated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10035190A DE10035190C5 (de) | 2000-07-20 | 2000-07-20 | Verfahren und Vorrichtung zur Fluoreszenzmessung |
DE10035190 | 2000-07-20 | ||
PCT/EP2001/008328 WO2002008732A1 (fr) | 2000-07-20 | 2001-07-18 | Procede et dispositif d"analyse de coincidence par fluorescence a deux photons polychrome |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1303750A1 true EP1303750A1 (fr) | 2003-04-23 |
Family
ID=7649515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01969428A Ceased EP1303750A1 (fr) | 2000-07-20 | 2001-07-18 | Procede et dispositif d'analyse de coincidence par fluorescence a deux photons polychrome |
Country Status (5)
Country | Link |
---|---|
US (1) | US7507582B2 (fr) |
EP (1) | EP1303750A1 (fr) |
AU (1) | AU2001289690A1 (fr) |
DE (1) | DE10035190C5 (fr) |
WO (1) | WO2002008732A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100451678C (zh) * | 2005-11-18 | 2009-01-14 | 北京航空航天大学 | 高光谱全偏振三维成像集成探测系统 |
CN100451677C (zh) * | 2005-11-18 | 2009-01-14 | 北京航空航天大学 | 高光谱全偏振成像遥感系统 |
CN101889192B (zh) * | 2007-10-25 | 2012-07-04 | 纽约州立大学研究基金会 | 光子光谱仪 |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10222359B4 (de) | 2002-05-21 | 2005-01-05 | Max Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zur spektral differenzierenden, bildgebenden Messung von Fluoreszenzlicht |
EP1546675A4 (fr) * | 2002-08-01 | 2008-03-26 | Sensor Technologies Inc | Procede permettant de mesurer les interactions moleculaires |
WO2005040771A1 (fr) * | 2003-10-23 | 2005-05-06 | National University Of Singapore | Spectroscopie a correlation de fluorescence au moyen d'une seule longueur d'onde d'excitation |
FI20040236A0 (fi) * | 2004-02-13 | 2004-02-13 | Arctic Diagnostics Oy | Kaksoisfotoniviritetyn Fluoresenssin käyttö kliinisen kemian analyyttien määrityksissä |
GB0412410D0 (en) * | 2004-06-03 | 2004-07-07 | Univ Cambridge Tech | Protein detection |
DE102004035948A1 (de) * | 2004-07-23 | 2006-03-16 | Basf Ag | Verfahren zur Bestimmung der Identität oder Nicht-Identität mindestens einer in einem Medium homogen verteilten chemischen Verbindung |
US8685711B2 (en) | 2004-09-28 | 2014-04-01 | Singulex, Inc. | Methods and compositions for highly sensitive detection of molecules |
US9040305B2 (en) | 2004-09-28 | 2015-05-26 | Singulex, Inc. | Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry |
US7682782B2 (en) | 2004-10-29 | 2010-03-23 | Affymetrix, Inc. | System, method, and product for multiple wavelength detection using single source excitation |
US8351026B2 (en) | 2005-04-22 | 2013-01-08 | Affymetrix, Inc. | Methods and devices for reading microarrays |
DE102005022880B4 (de) * | 2005-05-18 | 2010-12-30 | Olympus Soft Imaging Solutions Gmbh | Trennung spektral oder farblich überlagerter Bildbeiträge in einem Mehrfarbbild, insbesondere in transmissionsmikroskopischen Mehrfarbbildern |
JP5463671B2 (ja) * | 2007-01-19 | 2014-04-09 | 株式会社ニコン | 焦点検出装置、顕微鏡 |
ATE548637T1 (de) * | 2007-09-24 | 2012-03-15 | Univ Potsdam | Messanordnung für ein optisches spektrometer |
AU2008352940B2 (en) | 2007-12-19 | 2014-06-05 | Singulex, Inc. | Scanning analyzer for single molecule detection and methods of use |
US9291565B2 (en) | 2008-07-24 | 2016-03-22 | Massachusetts Institute Of Technology | Three dimensional scanning using membrane with optical features |
US9170199B2 (en) | 2008-07-24 | 2015-10-27 | Massachusetts Institute Of Technology | Enhanced sensors in three dimensional scanning system |
EP3266367B1 (fr) | 2008-07-24 | 2021-03-03 | Massachusetts Institute Of Technology | Systèmes et procédés d'imagerie au moyen de l'absorption |
US9170200B2 (en) | 2008-07-24 | 2015-10-27 | Massachusetts Institute Of Technology | Inflatable membrane with hazard mitigation |
US9140649B2 (en) | 2008-07-24 | 2015-09-22 | Massachusetts Institute Of Technology | Inflatable membrane having non-uniform inflation characteristic |
US8845526B2 (en) | 2008-07-24 | 2014-09-30 | Massachusetts Institute Of Technology | Integrated otoscope and three dimensional scanning system |
EP2584343B1 (fr) | 2010-07-26 | 2017-05-10 | Olympus Corporation | Procédé de détection de particules diluées dans une solution en utilisant une sonde luminescente |
CN103097878B (zh) | 2010-09-10 | 2015-07-22 | 奥林巴斯株式会社 | 使用单个发光颗粒的光强度的光学分析方法 |
WO2012032955A1 (fr) | 2010-09-10 | 2012-03-15 | オリンパス株式会社 | Procédé d'analyse optique utilisant une mesure optique dans de multiples bandes de longueur d'onde |
CN103210302B (zh) * | 2010-10-19 | 2015-05-27 | 奥林巴斯株式会社 | 观测单个发光粒子的偏振特性的光分析装置、光分析方法 |
EP2631631B1 (fr) | 2010-11-25 | 2016-01-20 | Olympus Corporation | Dispositif d'analyse photométrique et procédé d'analyse photométrique utilisant la caractéristique de longueur d'onde de lumière émise depuis une seule particule lumineuse |
EP2667183A4 (fr) | 2011-01-20 | 2017-05-10 | Olympus Corporation | Procédé de photoanalyse et dispositif associé faisant appel à la détection de la lumière émise par une particule luminescente individuelle |
CN103339256B (zh) | 2011-01-26 | 2016-03-16 | 奥林巴斯株式会社 | 鉴别核酸分子多态性的方法 |
EP2669663B1 (fr) | 2011-01-26 | 2017-09-27 | Olympus Corporation | Procédé d'identification du polymorphisme des molécules d'acide nucléique |
CN103460026B (zh) | 2011-03-29 | 2015-06-10 | 奥林巴斯株式会社 | 利用单个发光粒子检测的光分析装置、光分析方法以及光分析用计算机程序 |
JP5885738B2 (ja) | 2011-04-13 | 2016-03-15 | オリンパス株式会社 | 単一発光粒子検出を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム |
EP2700935A4 (fr) | 2011-04-18 | 2014-10-22 | Olympus Corp | Procédé de détermination quantitative de particules cibles, dispositif d'analyse photométrique et programme informatique d'analyse photométrique |
EP2743682B1 (fr) | 2011-08-11 | 2017-05-31 | Olympus Corporation | Procédé de détection de particules cibles |
WO2013024650A1 (fr) | 2011-08-15 | 2013-02-21 | オリンパス株式会社 | Dispositif d'analyse photométrique par détection de particules électroluminescentes individuelles, procédé et programme d'ordinateur afférents |
EP2749868B1 (fr) | 2011-08-26 | 2019-02-27 | Olympus Corporation | Détecteur de particules individuelles utilisant une analyse optique, procédé de détection de particules individuelles l'utilisant et programme informatique pour la détection de particules individuelles |
EP2749867B1 (fr) | 2011-08-26 | 2017-05-10 | Olympus Corporation | Analyseur optique utilisant la détection de particules à émission de lumière |
WO2013031365A1 (fr) | 2011-08-30 | 2013-03-07 | オリンパス株式会社 | Procédé de détection de particules cibles |
JP6010035B2 (ja) | 2011-08-30 | 2016-10-19 | オリンパス株式会社 | 単一発光粒子検出を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム |
WO2013069504A1 (fr) | 2011-11-10 | 2013-05-16 | オリンパス株式会社 | Dispositif de spectroscopie, procédé de spectroscopie et programme d'ordinateur pour spectroscopie, utilisant une détection de particule électroluminescente individuelle |
US9291562B2 (en) * | 2011-11-15 | 2016-03-22 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Method and apparatus for tracking a particle, particularly a single molecule, in a sample |
WO2013121905A1 (fr) | 2012-02-17 | 2013-08-22 | オリンパス株式会社 | Dispositif d'analyse optique utilisant une technique de détection de particule unique, procédé d'analyse optique et programme d'ordinateur pour analyse optique |
CN104115003B (zh) | 2012-02-22 | 2016-03-23 | 奥林巴斯株式会社 | 目标粒子的检测方法 |
EP2829614A4 (fr) | 2012-03-21 | 2016-03-16 | Olympus Corp | Procédé de détection d'une molécule d'acide nucléique cible |
CN104246479B (zh) | 2012-04-18 | 2016-10-19 | 奥林巴斯株式会社 | 利用光分析的单个粒子检测装置、单个粒子检测方法以及单个粒子检测用计算机程序 |
EP2840381B1 (fr) | 2012-04-18 | 2017-08-09 | Olympus Corporation | Procédé pour la détection de particules cibles |
WO2015015951A1 (fr) | 2013-07-31 | 2015-02-05 | オリンパス株式会社 | Dispositif de microscope optique, procédé de microscopie et programme informatique pour microscopie faisant appel à la technologie de détection de particule électroluminescente unique |
JP6313776B2 (ja) | 2013-10-07 | 2018-04-18 | オリンパス株式会社 | 単一発光粒子検出を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム |
CN104749156B (zh) * | 2013-12-27 | 2017-08-29 | 同方威视技术股份有限公司 | 拉曼光谱检测方法 |
DE102014016858A1 (de) * | 2014-02-19 | 2015-08-20 | Giesecke & Devrient Gmbh | Sicherheitsmerkmal und Verwendung desselben, Wertdokument und Verfahren zur Prüfung der Echtheit desselben |
GB2529498A (en) * | 2014-05-28 | 2016-02-24 | Chengdu Zhongyuan Qianye Technology Co Ltd | Frequency band spectroscopy analyzer |
CN106198482B (zh) * | 2015-05-04 | 2019-07-05 | 清华大学 | 基于拉曼光谱的检测保健品中是否添加有西药的方法 |
WO2017098597A1 (fr) | 2015-12-09 | 2017-06-15 | オリンパス株式会社 | Procédé d'analyse optique et dispositif d'analyse optique utilisant une détection de particule électroluminescente unique |
US10394008B2 (en) | 2016-10-19 | 2019-08-27 | Cornell University | Hyperspectral multiphoton microscope for biomedical applications |
US10153697B2 (en) * | 2017-04-10 | 2018-12-11 | Infineon Technologies Austria Ag | Multiphase power supply and failure mode protection |
CN109959601B (zh) * | 2019-03-01 | 2020-12-15 | 浙江大学 | 基于上转换和能量共振转移纳米颗粒的互相关检测系统 |
CN114072674A (zh) | 2019-07-29 | 2022-02-18 | 深圳帧观德芯科技有限公司 | 采用x射线荧光的生物成像方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19533092A1 (de) * | 1995-09-07 | 1997-03-13 | Basf Ag | Vorrichtung zur parallelisierten Zweiphotonen-Fluoreszenz-Korrelations-Spektroskopie (TPA-FCS) und deren Verwendung zum Wirkstoff-Screening |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5034613A (en) * | 1989-11-14 | 1991-07-23 | Cornell Research Foundation, Inc. | Two-photon laser microscopy |
DK0679251T3 (da) * | 1993-01-18 | 1999-01-25 | Evotec Biosystems Aktiengesell | Fremgangsmåde og apparat til vurdering af biopolymerers fitness |
US7241569B2 (en) * | 1993-01-18 | 2007-07-10 | Olympus Corporation | Method and a device for the evaluation of biopolymer fitness |
US6287620B1 (en) | 1994-10-07 | 2001-09-11 | Firmenich Sa | Flavor enhancing methods |
NZ318277A (en) * | 1995-09-19 | 1999-02-25 | Cornell Res Foundation Inc | Multi-photon laser microscopy |
JP3152416B2 (ja) | 1996-12-12 | 2001-04-03 | 株式会社 伊藤園 | 茶の製造方法 |
DE19757740C2 (de) * | 1997-12-23 | 2000-04-13 | Evotec Biosystems Ag | Verfahren zum Nachweis von Assoziations-, Dissoziations-, Verknüpfungs- oder Spaltreaktionen sowie Konformationsänderungen mittels Koinzidenzanalyse |
US6200818B1 (en) * | 1997-12-23 | 2001-03-13 | Evotec Biosystems Ag | Method for detecting reactions by means of coincidence analysis |
ATE354359T1 (de) | 1998-02-23 | 2007-03-15 | Taiyo Kagaku Kk | Theanin-beinhaltende zusammenstellung |
JP4669095B2 (ja) | 1999-07-19 | 2011-04-13 | 太陽化学株式会社 | ペットの問題行動抑制組成物 |
DE19935766A1 (de) * | 1999-07-29 | 2001-02-01 | Friedrich Schiller Uni Jena Bu | Verfahren zur optischen Anregung von Fluorophor-markierter DNA und RNA |
JP3126963B1 (ja) | 1999-08-05 | 2001-01-22 | 株式会社海研 | 微粉末茶の製造方法 |
JP4025546B2 (ja) | 1999-10-14 | 2007-12-19 | 日清オイリオグループ株式会社 | 美肌剤、皮膚の抗老化剤、美白剤および皮膚外用剤 |
WO2001072265A1 (fr) | 2000-03-31 | 2001-10-04 | The Nisshin Oil Mills, Ltd. | Preparation externe pour la peau et agents d'embellissement |
WO2001074352A1 (fr) | 2000-04-05 | 2001-10-11 | Taiyo Kagaku Co., Ltd. | Compositions somniferes |
JP3730522B2 (ja) | 2000-07-21 | 2006-01-05 | 太陽化学株式会社 | 喫煙欲求抑制組成物 |
-
2000
- 2000-07-20 DE DE10035190A patent/DE10035190C5/de not_active Expired - Fee Related
-
2001
- 2001-07-18 EP EP01969428A patent/EP1303750A1/fr not_active Ceased
- 2001-07-18 AU AU2001289690A patent/AU2001289690A1/en not_active Abandoned
- 2001-07-18 US US10/333,034 patent/US7507582B2/en not_active Expired - Lifetime
- 2001-07-18 WO PCT/EP2001/008328 patent/WO2002008732A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19533092A1 (de) * | 1995-09-07 | 1997-03-13 | Basf Ag | Vorrichtung zur parallelisierten Zweiphotonen-Fluoreszenz-Korrelations-Spektroskopie (TPA-FCS) und deren Verwendung zum Wirkstoff-Screening |
Non-Patent Citations (2)
Title |
---|
BERLAND K.M.; SO P.T.C.: "Dual-Color Fluorescence Correlation Spectroscopy Using Two-Photon Excitation", BIOPHYSICAL JOURNAL, vol. 78, no. 1, 12 February 2002 (2002-02-12), pages 441, XP001027202 * |
See also references of WO0208732A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100451678C (zh) * | 2005-11-18 | 2009-01-14 | 北京航空航天大学 | 高光谱全偏振三维成像集成探测系统 |
CN100451677C (zh) * | 2005-11-18 | 2009-01-14 | 北京航空航天大学 | 高光谱全偏振成像遥感系统 |
CN101889192B (zh) * | 2007-10-25 | 2012-07-04 | 纽约州立大学研究基金会 | 光子光谱仪 |
Also Published As
Publication number | Publication date |
---|---|
DE10035190A1 (de) | 2002-02-07 |
US7507582B2 (en) | 2009-03-24 |
WO2002008732A1 (fr) | 2002-01-31 |
AU2001289690A1 (en) | 2002-02-05 |
DE10035190B4 (de) | 2004-04-15 |
DE10035190C5 (de) | 2009-07-16 |
US20040022684A1 (en) | 2004-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10035190B4 (de) | Verfahren und Vorrichtung zur Fluoreszenzmessung | |
EP1504300B1 (fr) | Procede et systeme pour analyser des echantillons | |
DE10151217B4 (de) | Verfahren zum Betrieb eines Laser-Scanning-Mikroskops | |
EP1042664B1 (fr) | Procede de mise en evidence de reactions par analyse de coincidences | |
EP1584918B1 (fr) | Méthode et dispositif pour mesure de durée de vie de fluorescence en imagerie nanoscopique | |
EP0822395B1 (fr) | Procédé et dispositif de spectroscopie à corrélation d'émission Raman | |
DE10033180B4 (de) | Verfahren zur Detektion von Farbstoffen in der Fluoreszenzmikroskopie | |
DE19634873A1 (de) | System zur Unterscheidung fluoreszierender Molekülgruppen durch zeitaufgelöste Fluoreszenzmessung | |
JP2002139436A (ja) | 多光子レーザ顕微鏡法 | |
EP2067020A1 (fr) | Microscopie à luminescence à résolution améliorée | |
EP0979402B1 (fr) | Procede de detection optique de molecules a analyser dans un milieu biologique naturel | |
WO2022136361A1 (fr) | Procédé et microscope pour acquérir des trajectoires de particules individuelles dans un échantillon | |
EP1461600B1 (fr) | Procede pour identifier des substances fluorescentes, luminescentes et/ou absorbantes sur et/ou dans des supports d'echantillons | |
DE102006060180B9 (de) | Verfahren und Vorrichtung zum räumlich hochaufgelösten Abbilden einer mit einer Substanz markierten Struktur | |
EP1093001A2 (fr) | Microscope confocal de balayage à laser | |
EP2167940B1 (fr) | Procédé de détermination d'une valeur mesurée sur la base d'événements moléculaires individuels | |
DE10327531B4 (de) | Verfahren zur Messung von Fluoreszenzkorrelationen in Gegenwart von langsamen Signalschwankungen | |
WO2005043213A1 (fr) | Dispositif et procede de mesure des proprietes optiques d'un objet | |
EP1441218A2 (fr) | Méthode pour la détection de la lumière fluorescente | |
DE19822452C2 (de) | Verfahren zur Bestimmung der Dichte lumineszierender Moleküle an einer Oberfläche, Verwendung des Verfahrens zur Bestimmung von Adsorptions- und Bindungskinetiken und Gleichgewichts- und Bindungskonstanten von Molekülen an einer Oberfläche durch Lumineszenz-Messungen und Vorrichtung zur Durchführung des Verfahrens | |
DE112021005257T5 (de) | Optisches extinktionsspektrometer, optisches bauelement und verfahren zur optischen extinktionsspektrometrie | |
DE102010041426A1 (de) | Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit zur Bestimmung einer Analyt-Konzentration | |
DE102008056329B3 (de) | Verfahren zur Bestimmung eines Temperaturfelds | |
DE10231543B3 (de) | Konfokale 3D-Scanning Absorption | |
WO2004113987A1 (fr) | Procede de microscopie par fluorescence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030127 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KETTLING, ULRICHC/O DIREVO BIOTECH AG Inventor name: KOLTERMANN, ANDREC/O DIREVO BIOTECH AG Inventor name: SCHWILLE, PETRA Inventor name: HEINZE, KATRIN |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KETTLING, ULRICHC/O DIREVO BIOTECH AG Inventor name: KOLTERMANN, ANDREC/O DIREVO BIOTECH AG Inventor name: SCHWILLE, PETRA Inventor name: HEINZE, KATRINC/O. TUD |
|
17Q | First examination report despatched |
Effective date: 20040211 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20081215 |