EP1297580A1 - Thermoelektrisches bauelement - Google Patents

Thermoelektrisches bauelement

Info

Publication number
EP1297580A1
EP1297580A1 EP01947196A EP01947196A EP1297580A1 EP 1297580 A1 EP1297580 A1 EP 1297580A1 EP 01947196 A EP01947196 A EP 01947196A EP 01947196 A EP01947196 A EP 01947196A EP 1297580 A1 EP1297580 A1 EP 1297580A1
Authority
EP
European Patent Office
Prior art keywords
leg
thermoelectric component
component according
contact point
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01947196A
Other languages
English (en)
French (fr)
Inventor
Christine Engel
Wolfgang Dressler
Alexander Klonczynski
Horst Boeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1297580A1 publication Critical patent/EP1297580A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon

Definitions

  • thermoelectric component in particular a thermocouple, according to the preamble of the main claim.
  • thermocouples When using thermocouples to measure temperatures, there are often limits to the material load capacity with regard to temperature and operating atmosphere. In the thermocouples currently used for the temperature range up to 1500 ° C based on PtRh / Pt elements, a longer period of use above 1000 ° C often results in a drift in the thermal voltage and at the same time a considerable deterioration in the mechanical properties due to creeping processes. In particular, upon contact with carbon, metal carbides often form in such thermocouples, which change the Seebeck coefficient and the mechanical properties of the thermocouple. In addition, PtRh / Pt thermocouples are very expensive to manufacture and therefore cannot be used for certain applications.
  • the object of the present invention was to provide a thermoelectric component which is to be used in particular as a thermocouple, and which also in areas with permanently high temperatures and / or transient temperature loads, both in oxidizing and in re- ducent gas atmospheres always allows a precise temperature measurement.
  • thermoelectric component according to the invention has the advantage over the prior art that it has very good durability and very good constancy of the thermal voltage that occurs, even under high temperatures and reactive gas atmospheres, with a typical durability of five years.
  • thermoelectric component according to the invention when used as a thermocouple, allows temperature measurements of up to 1300 ° C. both in an oxidizing and in a reducing atmosphere to be carried out with an accuracy of less than ⁇ 10 ° C. It is also advantageous that the thermoelectric component according to the invention has a short response time to temperature changes, which is typically less than a second.
  • thermoelectric component according to the invention can also be implemented in a small size, so that microstructured thermocouples or microstructured thermoelectric components can also be produced therewith.
  • a microstructured component is understood to mean a component that has typical dimensions of the legs in the micrometer range.
  • thermoelectric component according to the invention Due to the good temperature resistance or resistance to reactive gas atmospheres, a ceramic or metallic protective tube can also be dispensed with in the thermoelectric component according to the invention, so that when used as a thermocouple, an accurate and at the same time rapid temperature measurement is possible.
  • the thermoelectric component according to the invention has the advantage of a long life expectancy even in reactive gas atmospheres with a high temperature resolution and fast response time.
  • it can be produced inexpensively and, particularly when used as a thermocouple, has typical thermal voltages in the mV range that are easy to measure.
  • thermoelectric component is not only suitable as a thermocouple, but it can also be designed as a Peltier element by impressing an external electrical current in a manner known per se, in order to implement a thermoelectric heating element or cooling element, for example.
  • the legs of the thermoelectric component furthermore advantageously consist of a first ceramic material and a different ceramic material, of which preferably at least one additionally contains one or more suitable fillers. In this way, the contact voltages that occur increase due to the
  • a filler with at least approximately metallic conductivity is particularly advantageously suitable for one of the legs and, on the other hand, an electrically semi-conductive or insulating filler for the other leg.
  • the ceramic material of at least one leg by pyrolysis of a polymeric precursor material. terials or a polymeric precursor material provided with one or more fillers has been obtained.
  • the thermal expansion coefficients of the legs of the thermoelectric component can be matched to one another in a particularly simple manner by selecting the polymeric precursor material and by the type and proportion of the fillers in this polymeric precursor material.
  • the selection and the proportion of the polymeric precursor materials as well as the selection and the proportion of the fillers in a simple manner also advantageously make it possible to match the shrinkage in the legs of the thermoelectric component which is unavoidable during the pyrolysis of the precursor materials.
  • thermoelectric component can also be realized in that at least in one area of the contact point only one leg is made of a ceramic material, while the second leg is made of a known solderable metal.
  • FIG. 1 shows a thermoelectric component in the form of a thermocouple
  • FIG. 2 shows the course of the contact voltage or the thermal voltage in the region of the contact point of the two legs of the thermocouple as a function of the temperature of the contact point.
  • Particularly suitable polymeric precursor materials for the exemplary embodiments explained below are polymers which are obtained by pyrolysis in ceramic materials based on Si-C compounds, Si-CN compounds, Si-Ti-CO compounds, Si-CO compounds, Si -BCN compounds, Si-BCO compounds, BCN compounds, Si-Al-CO compounds, Si-Al-NCO compounds or Si-CON compounds can be converted.
  • fillers with at least approximately metallic conductivity such as MoSi 2 , Cr 3 C 2 , TiC, WC, TiN, FeCr, FeCrNi, ZrN or ZrC are suitable as fillers in these polymeric precursor materials or the ceramic materials obtained after pyrolysis.
  • an electrically semiconducting or insulating filler such as, for example, A1 2 O 3 , SiC, B 4 C, BN, ZrO 2 , SiO 2 , Si 3 N 4 or graphite can also be used as the filler.
  • Molybdenum disilicide with a specific electrical resistance of 2xl0 ⁇ 5 ⁇ cm and a positive temperature coefficient of electrical resistance of 5x10 ⁇ 3 K _1 is particularly suitable.
  • Al 2 O 3 with a specific electrical resistance of more than 10 11 ⁇ cm at room temperature is preferably used as a high-resistance insulating, high-temperature-resistant filler, which is combined with a ceramic material based on an Si-OC compound as the conductivity-carrying phase, the specific electrical phase Resistance after pyrolysis at 1400 ° C is about 2 ⁇ cm.
  • FIG. 1 shows a thermoelectric component in the form of a thermocouple 5, which has a first leg 10 and a second leg 11, which are connected to one another by a contact point 12 in the form of a thermal contact. It is further provided that the thermocouple 5 is electrically connected to a device for measuring the contact voltage. The thermocouple 5 is used to measure a temperature to which the contact point 12 is exposed. This temperature is typically in the range from 0 ° C to 1500 ° C.
  • FIG. 2 shows the course of the thermal voltage which occurs in the area of the contact point 12 of the thermocouple 5 as a function of the temperature to which the contact point 12 is exposed. It can be seen from FIG. 2 that the thermal voltage occurring is in the mV range and is a linear function of the temperature in the range from approximately 50 ° C. to 1000 ° C.
  • thermocouple 5 further consists in its two legs 10, 11 of a single pyrolysis ceramic, but filled with two different fillers, whose electrical properties with regard to the Seebeck coefficient and the specific electrical resistance in the region of the first leg 10 and second leg 11 have been set defined by the type of filler.
  • the shaping of the thermocouple 5 before pyrolysis was carried out using common manufacturing processes in plastic process engineering, such as transfer molding, injection molding or hot pressing.
  • the area of the contact point 12 in which the two materials of the first leg 10 and the second leg 11 meet is particularly important for the function of the thermocouple 5. In this contact area, in which the thermal voltage to be measured occurs, it is important that the two materials of the first and second leg 10, 11 are each as homogeneous as possible in an environment of the contact point 12.
  • thermoelectric component can furthermore be provided in a preferred embodiment in that the materials used before the pyrolysis are matched to one another with regard to the shrinkage occurring during the pyrolysis.
  • This adaptation preferably takes place via the selection and the proportion of the filler in the respective polymeric precursor material.
  • the thermal expansion coefficients of the material of the first leg 10 and the material of the second leg 11 are adapted to one another in order to avoid stresses and cracks in the area during operation of the thermocouple 5 to minimize or avoid the contact point 12.
  • the electromotive force or the Seebeck coefficient of the materials of the first leg 10 and the second leg 11 is set only by the type of filler used, while both legs 10, 11 are otherwise made of the same polymeric pre-pyrolysis.
  • cursor material exist.
  • molybdenum disilicide is used as a high-temperature-resistant filler with at least approximately metallic conductivity. Electrically semiconducting or insulating fillers such as aluminum oxide or graphite are then used for the second leg.
  • a solderable metal such as Vacon (manufacturer: VAC vacuum melt), i.e. a Ni-Co alloy with a low coefficient of thermal expansion.
  • the second leg of the thermocouple 5 is then made of the ceramic material which is filled with one of the fillers explained.
  • thermocouple 5 provides that two different polymeric precursor materials are used as materials for the first leg 10 or the second leg 11, which after pyrolysis are in the form of two different ceramic materials, for example an Si-Ti-CO -Connection on the side of one leg 10 and an Si-CO connection on the side of the other leg 11.
  • the contact point 12 is formed in the form of a thermal contact with an occurring thermal voltage for a thermocouple 5 from adjacent pyrolysis ceramics of different compositions with preferably different fillers.
  • the proportion of the filler in the polymeric precursor material (s) used can also be varied in order in this way to improve the thermoelectric and mechanical properties, in particular the Seebeck coefficient Contact area 12 of the thermocouple 5 obtained.
  • the total filler content is between 10% by volume and 50% by volume based on the volume of the green body present before the pyrolysis with the polymeric precursor materials explained.
  • the thermal voltage or the Seebeck coefficient that occurs in the area of the contact point 12 can also be set within certain limits by the process parameters during the pyrolysis in all the above exemplary embodiments.
  • thermocouple 5 An exemplary embodiment for producing a thermocouple 5 according to FIG. 1 will now be explained in more detail.
  • Alternative exemplary embodiments can easily be implemented by the person skilled in the art with knowledge of documents EP 0 412 028 B1 or DE 195 38 695 A1 by varying the type and amount of the fillers used or the type of polymeric precursor compounds used.
  • 53.1 g of powdery, condensation-crosslinked polymethylsiloxane and 46.9 g of Al 2 O 3 powder are specified in 1000 millimeters of iron grinding balls. This corresponds to a degree of filling of 20 vol.% A1 2 0 3 based on the polymer-filler mixture.
  • the powder mixture obtained is then separated from the iron balls and sieved using a 150 ⁇ m sieve.
  • the sieved powder mixture is then poured into a mold and cold-pressed at a pressure of 150 MPa.
  • This first pul mixture thus serves as a first polymeric precursor material provided with a first filler, from which the first leg 10 of the thermocouple 5 will be formed.
  • the second leg 11 of the thermocouple 5 35.3 g of powdered, condensation-crosslinked polymethylsiloxane and 64.7 g of molybdenum disilicide powder are also initially used on 1000 g of iron grinding balls. This corresponds to a degree of filling of 25 vol.% Molybdenum disilicide based on the polymer-filler mixture. After grinding and sieving, which is carried out as stated above, the powder mixture is then filled into the press mold as a second polymeric precursor material provided with a second filler, in which the material for the first leg 10 is already located. After a cold pressing process at
  • the resulting composite is then cured at a pressure of 10 MPa and a temperature of 170 ° C for 30 minutes.
  • thermo element 5 obtained according to this temperature program has a thermoelectric voltage which is in the area of the thermoelectric voltage. known thermocouples based on PtPh / Pt. The temperature dependence of the occurring thermal voltage of the thermocouple 5 obtained is shown in FIG. 2.
  • the thermocouple 5 has typical dimensions of the width of the legs 10, 11 from 10 ⁇ m to 1 cm and a thickness of the legs 10, 11 from 1 ⁇ m to 1 cm. Furthermore, the typical length of the legs 10, 11 is in the range of 1 cm and more. The distance between the first and second legs 10, 11 is between 50 ⁇ m and 5 cm in the region of the thermocouple 5 in which these two legs 10, 11 run parallel to one another.
  • the thermocouple 5 can thus in particular also be designed as a microstructured thermocouple with typical dimensions in the micrometer range. It is also clear that, instead of a thermocouple 5 in the manner explained above, a thermoelectric component in the form of a Peltier element can also be implemented. For this purpose, more than one contact point 12 can then also be provided, which are formed by corresponding material combinations for the legs 10, 11 defining these contact points 12.
  • thermocouple 5 is not limited to the U-shape explained according to FIG. 1; H. other geometries and other dimensions of the thermoelectric component can also be implemented depending on the desired response time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Es wird ein thermoelektrisches Bauelement (5) vorgeschlagen, das einen ersten und einen zweiten Schenkel (10, 11) aufweist, die im Bereich einer Kontaktstelle (12) insbesondere in Form eines Thermokontaktes miteinander in Kontakt sind. Dabei weist weiter der erste Schenkel (10) und/oder der zweite Schenkel (11) zumindest in einer Umgebung der Kontaktstelle (12) ein keramisches Material auf. Das vorgeschlagene Bauelement (5) eignet sich insbesondere als Thermoelement zur Temperaturmessung auf Basis des Seebeck-Effektes oder zum Einsatz in einem Peltierelement als thermoelektrisches Heizelement oder Kühlelement auf Basis des Peltiereffektes.

Description

Thermoelektrisches Bauelement
Die Erfindung betrifft ein thermoelektrisches Bauelement, insbesondere ein Thermoelement, nach der Gattung des Hauptanspruchs .
Stand der Technik
Bei der Anwendung von Thermoelementen zur Messung von Temperaturen trifft man vielfach auf Grenzen der Materialbelastbarkeit hinsichtlich Temperatur und Einsatzatmosphäre. So tritt bei den derzeit eingesetzten Thermoelementen für den Temperaturbereich bis 1500°C auf Basis von PtRh/Pt-Elementen bei längerem Einsatz oberhalb von 1000 °C vielfach ein Drift in der Thermospannung und gleichzeitig eine erhebliche Verschlechterung der mechanischen Eigenschaften aufgrund von Kriechvorgängen auf. Insbesondere bilden sich bei Kontakt mit Kohlenstoff in derartigen Thermoelementen häufig Me- tallcarbide, welche den Seebeck-Koeffizienten und die mechanischen Eigenschaften des Thermoelements verändern. Zudem sind PtRh/Pt-Thermoele ente sehr teuer in ihrer Herstellung und daher für bestimmte Anwendungen nicht einsetzbar.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines thermoelektrischen Bauelementes, das insbesondere als Thermoelement einsetzbar sein soll, und das auch in Bereichen mit dauerhaft hohen Temperaturen und/oder transienten Temperaturbelastungen sowohl in oxidierenden als auch in re- duzierenden Gasatmosphären stets eine präzise Temperaturmessung erlaubt.
Vorteile der Erfindung
Das erfindungsgemäße thermoelektrische Bauelement hat gegenüber dem Stand der Technik den Vorteil, dass es eine sehr gute Haltbarkeit und eine sehr gute Konstanz der auftretenden Thermospannung auch unter hohen Temperaturen und reakti- ven Gasatmosphären aufweist, wobei von einer typischen Haltbarkeit von fünf Jahren auszugehen ist. Insbesondere erlaubt es das erfindungsgemäße thermoelektrische Bauelement bei einer Verwendung als Thermoelement Temperaturmessungen von bis zu 1300 °C sowohl in oxidierender als auch in reduzierender Atmosphäre mit einer Genauigkeit von weniger als ±10 °C vorzunehmen. Weiter ist vorteilhaft, dass das erfindungsgemäße thermoelektrische Bauelement eine kurze Ansprechzeit auf Temperaturänderungen hat, die typischerweise unterhalb einer Sekunde liegt.
Daneben ist das erfindungsgemäße thermoelektrische Bauelement auch in geringer Baugröße realisierbar, so dass damit auch mikrostrukturierte Thermoelemente beziehungsweise mikrostrukturierte thermoelektrische Bauelemente herstellbar sind. Unter einem mikrostrukturierten Bauelement wird dabei ein Bauelement verstanden, das typische Dimensionen der Schenkel im Mikrometerbereich aufweist.
Aufgrund der guten Temperaturbeständigkeit beziehungsweise Resistenz gegenüber reaktiven Gasatmosphären kann bei dem erfindungsgemäßen thermoelektrischen Bauelement weiter auch auf ein keramisches oder metallisches Schutzrohr verzichtet werden, so dass damit bei einem Einsatz als Thermoelement eine genaue und gleichzeitig schnelle Temperaturmessung mög- lieh ist. Zusammenfassend hat das erfindungsgemäße thermoelektrische Bauelement den Vorteil einer hohen Lebenserwartung auch in reaktiven Gasatmosphären bei gleichzeitig hoher Temperatur- auflösung und schneller Ansprechzeit. Darüber hinaus ist es kostengünstig herstellbar und weist insbesondere bei einem Einsatz als Thermoelement typische Thermospannungen im mV- Bereich auf, die gut messbar sind.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.
So eignet sich das thermoelektrische Bauelement nicht nur als Thermoelement, sondern es kann durch Aufprägen eines äu- ßeren elektrischen Stromes in an sich bekannter Weise ebenso als Peltier-Element ausgeführt sein, um damit beispielsweise ein thermoelektrisches Heizelement oder Kühlelement zu realisieren.
Die Schenkel des thermoelektrischen Bauelementes bestehen weiter vorteilhaft aus einem ersten keramischen Material und einem davon verschiedenen zweiten keramischen Material, von denen bevorzugt mindestens eines zusätzlich einen oder mehrere geeignete Füllstoffe enthält. Auf diese Weise vergrö- ßern sich die auftretenden Kontaktspannungen aufgrund des
Seebeck-Effektes deutlich. Als Füllstoff eignet sich besonders vorteilhaft für einen der Schenkel ein Füllstoff mit zumindest näherungsweise metallischer Leitfähigkeit und andererseits für den anderen Schenkel ein elektrisch halblei- tender oder isolierender Füllstoff.
Vorteilhaft bei der Realisierung des ersten und/oder des zweiten Schenkels des thermoelektrischen Bauelementes ist schließlich auch, wenn das keramische Material mindestens eines Schenkels durch Pyrolyse eines polymeren Precursorma- terials oder eines mit einem oder mehreren Füllstoffen versehenen polymeren Precursormaterial erhalten worden ist. Dabei können durch Auswahl des polymeren Precursormaterials und durch die Art und den Anteil der Füllstoffe in diesem polymeren Precursormaterial in besonders einfacher Weise die thermischen Ausdehnungskoeffizienten der Schenkel des thermoelektrischen Bauelementes aneinander angepasst werden. Zudem ist es durch die Auswahl und den Anteil der polymeren Precursormaterialien sowie durch die Auswahl und den Anteil der Füllstoffe in einfacher Weise ebenso vorteilhaft möglich, die bei der Pyrolyse der Precursormaterialien unvermeidbar auftretende Schwindung in den Schenkeln des thermoelektrischen Bauelementes aneinander anzupassen.
Im Übrigen kann das thermoelektrische Bauelement auch dadurch realisiert werden, dass zumindest in einer Umgebung der Kontaktstelle lediglich ein Schenkel aus einem keramischen Material besteht, während der zweite Schenkel aus einem bekannten lötbaren Metall gefertigt ist.
Zeichnungen
Die Erfindung wird anhand der Zeichnung und in der nachfolgenden Beschreibung näher erläutert. Die Figur 1 zeigt ein thermoelektrisches Bauelement in Form eines Thermoelementes, die Figur 2 zeigt den Verlauf der Kontaktspannung beziehungsweise der Thermospannung im Bereich der Kontaktstelle der beiden Schenkel des Thermoelementes als Funktion der Temperatur der Kontaktstelle.
Ausführungsbeispiele
Die im Weiteren erläuterten Ausführungsbeispiele gehen zunächst aus von mit Füllstoffen versehenen polymeren Precur- sormaterialien, die durch Pyrolyse in keramische Materialien überführbar sind. Derartige Precursormaterialien beziehungsweise Füllstoffe sind aus EP 0 412 428 Bl oder aus DE 195 38 695 AI bekannt. Weiter ist daraus auch schon bekannt, durch die Zugabe von Füllstoffen zu den eingesetzten polymeren Precursormaterialien mittels Pyrolyse Formkörper herzustellen. Dabei kann der spezifische Widerstand der erhaltenen keramischen Formkörper sowohl durch die Auswahl der Füllstoffe als auch durch die Auswahl des polymeren Precur- sormaterials eingestellt werden.
Als polymere Precursormaterialien für die im Weiteren erläuterten Ausführungsbeispiele eignen sich insbesondere Polymere, die durch Pyrolyse in keramische Materialien auf Basis von Si-C-Verbindungen, Si-C-N-Verbindungen, Si-Ti-C-O- Verbindungen, Si-C-O-Verbindungen, Si-B-C-N-Verbindungen, Si-B-C-O-Verbindungen, B-C-N-Verbindungen, Si-Al-C-O- Verbindungen, Si-Al-N-C-O-Verbindungen oder Si-C-O-N- Verbindungen überführbar sind.
Als Füllstoffe in diesen polymeren Precursormaterialien beziehungsweise den nach Pyrolyse erhaltenen keramischen Materialien eignen sich einerseits Füllstoffe mit zumindest näherungsweise metallischer Leitfähigkeit wie MoSi2, Cr3C2, TiC, WC, TiN, FeCr, FeCrNi, ZrN oder ZrC. Daneben oder al- ternativ kommt als Füllstoff auch ein elektrisch halbleitender oder isolierender Füllstoff wie beispielsweise A1203, SiC, B4C, BN, Zr02, Si02, Si3N4 oder Graphit in Frage.
Als niederohmiger hochtemperaturbeständiger Füllstoff mit näherungsweise metallischer Leitfähigkeit ist insbesondere
Molybdändisilizid mit einem spezifischen elektrischen Widerstand von 2xl0~5 Ωcm und einem positiven Temperaturkoeffizienten des elektrischen Widerstandes von 5x10~3 K_1 besonders geeignet. Als hochohmiger isolierender, hochtemperaturbeständiger Füllstoff wird bevorzugt Al203 mit einem spezifischen elektrischen Widerstand von mehr 1011 Ωcm bei Raumtemperatur eingesetzt, der mit einem keramischen Material auf Basis ei- ner Si-O-C-Verbindung als leitfähigkeitstragende Phase kombiniert wird, deren spezifischer elektrischer Widerstand nach der Pyrolyse bei 1400°C etwa 2 Ωcm beträgt.
Ein erstes Ausführungsbeispiel der Erfindung wird anhand der Figur 1 erläutert. Die Figur 1 zeigt ein thermoelektrisches Bauelement in Form eines Thermoelementes 5, das einen ersten Schenkel 10 und einen zweiten Schenkel 11 aufweist, die durch eine Kontaktstelle 12 in Form eines Thermokontaktes miteinander verbunden sind. Weiter ist vorgesehen, dass das Thermoelement 5 elektrisch mit einer Vorrichtung zur Messung der Kontaktspannung verschaltet ist. Das Thermoelement 5 dient zur Messung einer Temperatur, der die Kontaktstelle 12 ausgesetzt ist. Diese Temperatur liegt typischerweise im Bereich von 0°C bis 1500°C.
Die Figur 2 zeigt den Verlauf der ThermoSpannung, die im Bereich der Kontaktstelle 12 des Thermoelementes 5 als Funktion der Temperatur auftritt, der die Kontaktstelle 12 ausgesetzt ist. Man erkennt gemäß Figur 2, dass die auftretende Thermospannung im mV-Bereich liegt, und im Bereich von ca. 50°C bis 1000°C eine lineare Funktion der Temperatur ist.
Das Thermoelement 5 besteht im erläuterten Ausführungsbeispiel weiter in seinen beiden Schenkeln 10, 11 aus einer einzigen, jedoch mit zwei unterschiedlichen Füllstoffen gefüllten Pyrolyse-Keramik, deren elektrische Eigenschaften hinsichtlich des Seebeck-Koeffizienten und des spezifischen elektrischen Widerstandes im Bereich des ersten Schenkels 10 und der zweiten Schenkels 11 jeweils durch die Art des Füll- Stoffes definiert eingestellt worden sind. Die Formgebung des Thermoelementes 5 vor der Pyrolyse erfolgte dabei durch geläufige Fertigungsprozesse der Kunst- stoffverfahrenstechnik wie beispielsweise Transfer Molding, Spritzguss oder Warmpressen.
Besonders wichtig für die Funktion des Thermoelementes 5 ist der Bereich der Kontaktstelle 12 in dem die beiden Materialien des ersten Schenkels 10 beziehungsweise des zweiten Schenkels 11 aufeinander treffen. In diesem Kontaktbereich, in dem die zu messende ThermoSpannung auftritt, ist es wichtig, dass die beiden Materialien des ersten beziehungsweise zweiten Schenkels 10, 11 jeweils in einer Umgebung der Kontaktstelle 12 möglichst homogen sind.
Um zu vermeiden, dass beim Pyrolysieren der zunächst eingesetzten, die Schenkel 10, 11 bildenden polymeren Precursormaterialien unterschiedliche Schwindungen in dem ersten Schenkel 10 beziehungsweise dem zweiten Schenkel 11 auftre- ten, die insbesondere im Bereich der Kontaktstelle 12 zu
Rissen und damit Fehlfunktionen des thermoelektrischen Bauelementes führen können, ist in einer bevorzugten Ausführungsform weiter vorgesehen, dass die vor der Pyrolyse eingesetzten Materialien hinsichtlich der bei der Pyrolyse auf- tretenden Schwindung aneinander angepasst sind. Diese Anpassung geschieht vorzugsweise über die Auswahl und den Anteil des Füllstoffes in dem jeweiligen polymeren Precursormaterial.
Neben der Anpassung der Schwindung ist bevorzugt weiter vorgesehen, dass auch die thermischen Ausdehnungskoeffizienten des Materials des ersten Schenkels 10 und des Materials des zweiten Schenkels 11 aneinander angepasst sind, um bei Betrieb des Thermoelementes 5 Spannungen und Risse im Bereich der Kontaktstelle 12 zu minimieren beziehungsweise zu vermeiden.
Im Rahmen des erläuterten Ausführungsbeispiels wird die elektromotorische Kraft beziehungsweise der Seebeck- Koeffizient der Materialien des ersten Schenkels 10 und des zweiten Schenkels 11 lediglich durch die Art des eingesetzten Füllstoffes eingestellt, während beide Schenkel 10, 11 ansonsten vor der Pyrolyse aus dem gleichen polymeren Pre- cursormaterial bestehen. So wird für einen der Schenkel 10, 11 des Thermoelementes 5 als hochtemperaturbeständiger Füllstoffe mit zumindest näherungsweise metallischer Leitfähigkeit Molybdändisilizid eingesetzt. Für den zweiten Schenkel kommen dann elektrisch halbleitende oder isolierende Füll- Stoffe wie beispielsweise Aluminiumoxid oder Graphit zum Einsatz. Daneben ist es jedoch ebenso möglich, einen der beiden Schenkel 10, 11 des Thermoelementes 5 vollständig aus einem lötbaren Metall wie beispielsweise Vacon (Hersteller: VAC Vakummschmelze) , d.h. einer Ni-Co-Legierung mit geringem thermischen Ausdehnungskoeffizienten, anzufertigen. In diesem Fall wird der zweite Schenkel des Thermoelementes 5 dann aus dem keramischen Material ausgeführt, das mit einem der erläuterten Füllstoffe gefüllt ist.
Ein alternatives Ausführungsbeispiel des Thermoelementes 5 sieht vor, dass als Materialien für den ersten Schenkel 10 beziehungsweise den zweiten Schenkel 11 zwei unterschiedliche polymere Precursormaterialien eingesetzt werden, die nach der Pyrolyse in Form von zwei unterschiedlichen kerami- sehen Materialien, beispielsweise einer Si-Ti-C-O-Verbindung auf der Seite des einen Schenkels 10 und einer Si-C-O- Verbindung auf der Seite des anderen Schenkels 11, vorliegen. In diesem Fall wird die Kontaktstelle 12 in Form eines Ther- mokontaktes mit einer auftretenden Thermospannung für ein Thermoelement 5 von aneinander angrenzenden Pyrolyse- Keramiken unterschiedlicher Zusammensetzung mit bevorzugt unterschiedlichen Füllstoffen gebildet.
Im Übrigen sei betont, dass neben der Art des Füllstoffes alternativ oder zusätzlich in den vorstehenden Ausführungsbeispielen auch der Anteil des Füllstoffes in dem oder den eingesetzten polymeren Precursormaterialien variiert werden kann, um auf diese Weise die thermoelektrischen und mechanischen Eigenschaften, insbesondere den Seebeck-Koeffizienten im Kontaktbereich 12, des erhaltenen Thermoelements 5 einzustellen.
Der gesamte Füllstoffgehalt liegt dabei zwischen 10 Vol.% und 50 Vol.% bezogen auf das Volumen des vor der Pyrolyse vorliegenden Grünkörpers mit den erläuterten polymeren Precursormaterialien.
Schließlich sei erwähnt, dass die Thermospannung beziehungsweise der Seebeck-Koeffizient, der im Bereich der Kontaktstelle 12 auftritt, in allen vorstehenden Ausführungsbeispielen innerhalb gewisser Grenzen auch durch die Verfahren- sparameter bei der Pyrolyse eingestellt werden kann.
Im Weiteren wird nun ein Ausführungsbeispiel zur Herstellung eines Thermoelementes 5 gemäß Figur 1 im Detail näher erläutert. Alternative Ausführungsbeispiele sind vom Fachmann in Kenntnis der Dokumente EP 0 412 028 Bl oder DE 195 38 695 AI durch Variation der Art und Menge der eingesetzten Füllstoffe beziehungsweise der Art der eingesetzten polymeren Pre- cursorverbindungen ohne Weiteres realisierbar. Zunächst werden in einem Mahltopf auf 1000 g Eisenmahlkugeln 53,1 g pulverförmiges, kondensationsvernetztes Polymethylsi- loxan und 46,9 g Al203-Pulver vorgegeben. Dies entspricht einem Füllgrad von 20 Vol.% A1203 bezogen auf die Polymer- Füllstoff-Mischung. Nach einer Mahlzeit von 5 Minuten wird dann die erhaltene Pulvermischung von den Eisenkugeln getrennt und mittels eines 150 μm-Siebes gesiebt. Danach wird die gesiebte Pulvermischung in eine Pressform eingefüllt und bei einem Druck von 150 MPa kalt gepresst. Diese erste Pul- Vermischung dient somit als mit einem ersten Füllstoff versehenes erstes polymeres Precursormaterial, aus dem im Weiteren der erste Schenkel 10 des Thermoelementes 5 geformt werden wird.
Für den zweiten Schenkel 11 des Thermoelementes 5 werden ebenfalls zunächst auf 1000 g Eisenmahlkugeln 35,3 g pulverförmiges, kondensationsvernetztes Polymethylsiloxan und 64,7 g Molybdändisilizid-Pulver eingesetzt. Dies entspricht einem Füllgrad von 25 Vol.% Molybdändisilizid bezogen auf die Polymer-Füllstoff-Mischung. Nach dem Mahlen und Sieben, welches wie vorstehend bereits ausgeführt durchgeführt wird, wird die Pulvermischung dann als mit einem zweiten Füllstoff versehenes zweites polymeres Precursormaterial in die Pressform gefüllt, in der sich schon das Material für den ersten Schenkel 10 befindet. Nach einem Kaltpressvorgang bei
150 MPa wird dann der entstandene Materialverbund bei einem Druck von 10 MPa und einer Temperatur von 170 °C zunächst 30 Minuten lang ausgehärtet.
Anschließend werden daraus U-förmige Formkörper gemäß Figur
1 herausgetrennt, die im Weiteren unter fließender Argon- Atmosphäre mit einem Argonfluss von 5 1/min gemäß dem nachfolgenden Temperaturprogramm pyrolysiert werden. Das nach diesem Temperaturprogramm erhaltene Thermolement 5 weist ei- ne Thermospannung auf, die im Bereich der Thermospannung be- kannter Thermoelemente auf Basis von PtPh/Pt liegt. Die Temperaturabhängigkeit der auftretenden Thermospannung des erhaltenen Thermoelementes 5 ist in Figur 2 dargestellt.
Das Thermoelement 5 gemäß Figur 1 hat typische Dimensionen der Breite der Schenkel 10, 11 von 10 μm bis 1 cm und eine Dicke der Schenkel 10, 11 von 1 μm bis 1 cm . Weiter liegt die typische Länge der Schenkel 10, 11 im Bereich von 1 cm und mehr. Der Abstand des ersten beziehungsweise zweiten Schenkels 10, 11 beträgt in dem Bereich des Thermoelementes 5, in dem diese beiden Schenkel 10, 11 parallel zueinander verlaufen, zwischen 50 μm und 5 cm. Das Thermoelement 5 ist somit insbesondere auch als mikrostrukturiertes Thermoelement mit typischen Dimensionen im Mikrometer-Bereich ausführbar. Außerdem ist klar, dass anstelle eines Thermoelementes 5 in der vorstehend erläuterten Weise auch ein thermoelektrisches Bauelement in Form eines Peltier-Elementes realisierbar ist. Dazu kann dann auch mehr als eine Kontaktstelle 12 vorgesehen sein, die von entsprechenden Materialkombinationen für die diese Kontaktstellen 12 definierenden Schenkeln 10, 11 gebildet werden.
Weiter ist offensichtlich, dass die Geometrie des Thermoelementes 5 nicht auf die gemäß Figur 1 erläuterte U-Form beschränkt ist, d. h. es sind auch andere Geometrien und andere Dimensionen des thermoelektrischen Bauelementes je nach gewünschter Ansprechzeit realisierbar.

Claims

Ansprüche
1. Thermoelektrisches Bauelement, insbesondere Thermoelement, mit einem ersten Schenkel und einem zweiten Schenkel, die im Bereich mindestens einer Kontaktstelle miteinander in Kontakt sind, dadurch gekennzeichnet, dass zumindest in einer Umgebung der Kontaktstelle (12) der erste Schenkel (10) und/oder der zweite Schenkel (11) ein keramisches Material aufweist.
2. Thermoelektrisches Bauelement nach Anspruch 1, dadurch gekennzeichnet, dass zumindest in einer Umgebung der Kontaktstelle (12) das Material des ersten Schenkels (10) und das Material des zweiten Schenkels (11) derart ausgewählt ist, dass an der Kontaktstelle (12) aufgrund des Seebeck-Effektes eine Kontaktspannung oder aufgrund des Pel- tier-Effektes bei einem aufgeprägten äußeren elektrischen Strom eine Temperaturänderung auftritt.
3. Thermoelektrisches Bauelement nach Anspruch 2, dadurch gekennzeichnet, dass der erste Schenkel (10) und der zweite Schenkel (11) elektrisch mit einer Vorrichtung zur Messung der Kontaktspannung oder mit einer Vorrichtung zum Einprägen eines durch die Kontaktstelle (12) fließenden äußeren elektrischen Stromes verschaltet sind.
4. Thermoelektrisches Bauelement nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest in einer Umgebung der Kontaktstelle (12) der erste Schenkel (11) aus einem ersten keramischen Material und der zweite Schenkel (12) aus einem davon verschiedenen zweiten keramischen Material besteht.
5. Thermoelektrisches Bauelement nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest in einer Umgebung der Kontaktstelle (12) der erste Schenkel (11) aus einem ersten keramischen Material und der zweite Schenkel (12) aus einem lötbaren Metall besteht.
6. Thermoelektrisches Bauelement nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest in einer Umgebung der Kontaktstelle (12) das erste keramische Material und/oder das zweite keramische Material mindestens einen, insbesondere hochtemperaturbeständigen Füllstoff aufweist.
7. Thermoelektrisches Bauelement nach Anspruch 6, da- durch gekennzeichnet, dass der Füllstoff ein Füllstoff mit zumindest näherungsweise metallischer Leitfähigkeit, insbesondere MoSi2, CrSi2, Cr3C2, TiC, WC, TiN, FeCr, FeCrNi, ZrN oder ZrC, oder ein elektrisch halbleitender oder isolierender Füllstoff, insbesondere A1203, SiC, B4C, BN, Zr02, Si02, Si3N oder Graphit, ist.
8. Thermoelektrisches Bauelement nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das erste und/oder das zweite keramische Material ein Mate- rial ist, das durch Pyrolyse eines polymeren Precursormate- rials oder eines mit einem oder mehreren Füllstoffen versehenen polymeren Precursormaterials erhalten worden ist.
9. Thermoelektrisches Bauelement nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das erste und/oder das zweite keramische Material ein keramisches Material auf Basis von Si-C-Verbindungen, Si-C-N- Verbindungen, Si-Ti-C-O-Verbindungen, Si-C-O-Verbindungen, Si-B-C-N-Verbindungen, Si-B-C-O-Verbindungen, B-C-N- Verbindungen, Si-Al-C-O-Verbindungen, Si-Al-N-C-O- Verbindungen oder Si-C-O-N-Verbindungen enthält.
10. Thermoelektrisches Bauelement nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Material des ersten Schenkels (10) und das Material des zweiten Schenkels (11) zumindest im Bereich der Kontaktstelle (12) einen zumindest näherungsweise gleichen thermischen Ausdehnungskoeffizienten aufweisen.
11. Thermoelektrisches Bauelement nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das erste keramische Material durch Pyrolyse eines ersten polymeren Precursormaterials oder eines mit einem ersten Füllstoff versehenen ersten polymeren Precursormaterials er- halten worden ist, und dass das zweite keramische Material durch Pyrolyse eines zweiten polymeren Precursormaterials oder eines mit einem zweiten Füllstoff versehenen zweiten polymeren Precursormaterials erhalten worden ist.
12. Thermoelektrisches Bauelement nach Anspruch 11, dadurch gekennzeichnet, dass das erste polymere Precursormaterial und das zweite polymere Precursormaterial derart ausgewählt sind, dass bei einer Pyrolyse der Precursormaterialien zumindest im Bereich der Kontaktstelle (12) eine zumindest näherungsweise gleiche Schwindung auftritt.
13. Verwendung des thermoelektrischen Bauelements nach mindestens einem der vorangehenden Ansprüche in einem Thermoelement zur Temperaturmessung oder einem Peltierelement als thermoelektrisches Heizelement oder Kühlelement.
EP01947196A 2000-06-21 2001-06-07 Thermoelektrisches bauelement Withdrawn EP1297580A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10030354A DE10030354A1 (de) 2000-06-21 2000-06-21 Thermoelektrisches Bauelement
DE10030354 2000-06-21
PCT/DE2001/002144 WO2001099204A1 (de) 2000-06-21 2001-06-07 Thermoelektrisches bauelement

Publications (1)

Publication Number Publication Date
EP1297580A1 true EP1297580A1 (de) 2003-04-02

Family

ID=7646378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01947196A Withdrawn EP1297580A1 (de) 2000-06-21 2001-06-07 Thermoelektrisches bauelement

Country Status (5)

Country Link
US (1) US7029173B2 (de)
EP (1) EP1297580A1 (de)
JP (1) JP4314028B2 (de)
DE (1) DE10030354A1 (de)
WO (1) WO2001099204A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361830B2 (en) * 2002-03-21 2008-04-22 Rtd Company Polymer encapsulated micro-thermocouple
US6977575B2 (en) * 2003-05-22 2005-12-20 Rtd Company Flexible averaging resistance temperature detector
WO2005112140A2 (en) * 2004-04-12 2005-11-24 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Thin film ceramic thermocouples
EP1677087A1 (de) * 2004-12-21 2006-07-05 Vesuvius Crucible Company Thermoelementeinheit und Verfahren zu deren Verwendung
DE102005001116A1 (de) * 2005-01-05 2006-07-20 Universität Kassel Mikrosystemtechnisches Bauelement
US7719400B1 (en) 2005-08-02 2010-05-18 Rtd Company Method and apparatus for flexible temperature sensor having coiled element
US20070084499A1 (en) * 2005-10-14 2007-04-19 Biprodas Dutta Thermoelectric device produced by quantum confinement in nanostructures
US20070084495A1 (en) * 2005-10-14 2007-04-19 Biprodas Dutta Method for producing practical thermoelectric devices using quantum confinement in nanostructures
US8790256B2 (en) * 2006-08-14 2014-07-29 Frederick J. Buja System and method employing a thermocouple junction for monitoring of physiological parameters
US8251579B2 (en) * 2007-07-16 2012-08-28 Rtd Company Robust stator winding temperature sensor
DE102008007740B3 (de) * 2008-02-05 2009-07-30 Uhde Gmbh Thermoelement aus einem oxidischen und nichtoxidischen keramischen Thermopaar
KR101149144B1 (ko) * 2009-07-24 2012-06-01 현대제철 주식회사 압연재의 온도 측정 장치
US20110026562A1 (en) * 2009-07-31 2011-02-03 Rtd Company Temperature sensor using thin film resistance temperature detector
JP2013083324A (ja) * 2011-10-11 2013-05-09 Ricoh Co Ltd 駆動力伝達装置、および画像形成装置
DE102012217166A1 (de) * 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Verfahren zur Herstellung eines thermoelektrischen Generators
JP6243917B2 (ja) 2012-10-16 2017-12-06 メジャメント スペシャリティーズ, インコーポレイテッド 補強された可撓性の温度センサ
US9891114B2 (en) * 2014-05-28 2018-02-13 Hamilton Sundstrand Corporation Flexible laminated thermocouple
NL2020545B1 (en) 2018-03-07 2019-09-13 Rgs Dev B V Thermoelectric conversion device

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US885430A (en) * 1907-12-27 1908-04-21 William H Bristol Thermo-electric couple.
US971767A (en) * 1909-09-03 1910-10-04 Hoskins Mfg Company Thermo-electric couple.
US2094102A (en) * 1932-11-25 1937-09-28 Fitterer Pyrometer Company Thermoelectric apparatus
US2691690A (en) * 1952-08-22 1954-10-12 Driver Harris Co Thermocouple element composition
DE1082311B (de) * 1955-08-08 1960-05-25 Siemens Ag Thermoelement
US2912477A (en) * 1957-09-18 1959-11-10 Max Planck Inst Eisenforschung Thermocouples
DE1060881B (de) 1958-02-19 1959-07-09 Siemens Ag Thermoelektrisches Material
US2981775A (en) * 1958-11-12 1961-04-25 Steatite Res Corp Oxide thermocouple device
US3411956A (en) * 1963-10-15 1968-11-19 Hoskins Mfg Company Thermocouple with nickel-containing elements
US3449175A (en) * 1968-02-21 1969-06-10 Atomic Energy Commission Zirconia-based thermoelectric compositions
DE1764388B1 (de) * 1968-05-29 1972-03-09 Foerderung Der Eisenhuettentec Thermoelement zum Messen hoher Temperaturen in aggressiven Medien
CH504764A (de) 1968-12-10 1971-03-15 Hugo Dipl Phys Wyss Verfahren zum Herstellen eines elektrisch leitenden Widerstandskörpers
US3906721A (en) * 1974-08-22 1975-09-23 Gen Motors Corp Thermoelectric exhaust gas sensor
DE2519338C3 (de) 1975-04-30 1979-01-18 Danfoss A/S, Nordborg (Daenemark) Verfahren zur Herstellung eines Thermoelements und dessen Anwendung
GB1590011A (en) * 1976-08-17 1981-05-28 Kyoto Ceramic Method of producing dense sintered silicon carbide body from polycarbosilane
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
DE2927226A1 (de) * 1979-07-05 1981-01-08 Kempten Elektroschmelz Gmbh Dichte formkoerper aus polykristallinem beta -siliciumcarbid und verfahren zu ihrer herstellung durch heisspressen
FR2469807A1 (fr) * 1979-11-07 1981-05-22 Commissariat Energie Atomique Procede de realisation d'une jonction entre deux fils metalliques de dimension tres reduite et dispositifs de mesure realises a partir de cette jonction
US4336215A (en) * 1979-11-30 1982-06-22 Ube Industries, Ltd. Sintered ceramic body and process for production thereof
US4298558A (en) * 1980-07-23 1981-11-03 Dow Corning Corporation High yield silicon carbide pre-ceramic polymers
KR860000371Y1 (ko) * 1981-12-02 1986-03-17 도오교오 덴기 가가꾸 고오교오 가부시기 가이샤 열 전 소 자
JPS6115380A (ja) * 1984-06-30 1986-01-23 Toshiba Corp 熱電対
DE3608559A1 (de) * 1986-03-14 1987-09-17 Kernforschungsanlage Juelich Verfahren zum verbinden von formteilen aus sic mit keramik oder metall und zur oberflaechenbehandlung von sisic sowie eine zum verbinden brauchbare legierung
US4946713A (en) * 1988-02-09 1990-08-07 University Of Pennsylvania Poly(alkenylpentaborane) ceramic precursors
JP2620364B2 (ja) * 1988-03-18 1997-06-11 本田技研工業株式会社 セラミックス焼結体の製造方法
US5246504A (en) 1988-11-15 1993-09-21 Director-General, Agency Of Industrial Science And Technology Thermoelectric material
US5009717A (en) * 1989-07-18 1991-04-23 Mitsubishi Metal Corporation Thermoelectric element and method of manufacturing same
DE3926077A1 (de) * 1989-08-07 1991-02-14 Peter Prof Dr Greil Keramische verbundkoerper und verfahren zu ihrer herstellung
JPH0374885A (ja) * 1989-08-15 1991-03-29 Mitsubishi Materials Corp P型Fe珪化物熱電変換材料
US5332701A (en) * 1990-12-14 1994-07-26 Massachusetts Institute Of Technology Ceramic synthesis by pyrolysis of metal-containing polymer and metal
US5232286A (en) * 1991-04-10 1993-08-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Energy, Mines And Resources Long lasting thermocouple for high temperature measurements of liquid metals, mattes and slags
JPH05343747A (ja) * 1992-06-09 1993-12-24 Matsushita Electric Ind Co Ltd 熱電材料及びその製造方法並びにセンサー
JPH07196371A (ja) 1993-12-29 1995-08-01 Tonen Corp 熱電発電素子用SiCの製造方法
GB2288908B (en) * 1994-04-27 1997-08-20 Rowan Technologies Ltd Ceramic thermocouple
DE19538695C2 (de) * 1994-10-19 2003-05-28 Bosch Gmbh Robert Keramischer elektrischer Widerstand und dessen Verwendung
JPH08335721A (ja) 1995-06-08 1996-12-17 Isuzu Motors Ltd ポーラス状熱発電素子の製造方法
CA2282547C (en) * 1997-12-27 2005-10-18 Osamu Yamashita Thermo-electric conversion element
RU2223573C2 (ru) * 1999-06-02 2004-02-10 Асахи Касеи Кабусики Кайся Термоэлектрический материал и способ его изготовления
JP4207218B2 (ja) * 1999-06-29 2009-01-14 住友電気工業株式会社 金属多孔体とその製造方法及びそれを用いた金属複合材
US6225550B1 (en) * 1999-09-09 2001-05-01 Symyx Technologies, Inc. Thermoelectric material system
DE10055082A1 (de) * 2000-11-07 2002-05-16 Bosch Gmbh Robert Keramischer Verbundwerkstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0199204A1 *

Also Published As

Publication number Publication date
JP2003536277A (ja) 2003-12-02
WO2001099204A1 (de) 2001-12-27
JP4314028B2 (ja) 2009-08-12
DE10030354A1 (de) 2002-01-10
US7029173B2 (en) 2006-04-18
US20030091092A1 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
EP1297580A1 (de) Thermoelektrisches bauelement
DE3512483C2 (de)
DE69736662T2 (de) Grossbereichthermistormaterial und dessen herstellungsverfahren
DE3519437C2 (de)
DE4440005C2 (de) Siliziumnitridkeramikheizer und Verfahren zu seiner Herstellung
EP2771659B1 (de) Thermoelement
EP2917711B1 (de) Temperatursensorsystem und verfahren zur herstellung eines temperatursensorsystems
EP1051371B1 (de) Gesinterter stiftheizer
DE2314455A1 (de) Thermistor
EP0755058A2 (de) Elektrisch und thermisch leitfähiger Kunststoff und Verwendung dieses Kunststoffs
WO2011045227A1 (de) Keramikmaterial, verfahren zur herstellung des keramikmaterials und widerstandsbauelement umfassend das keramikmaterial
EP2917710B1 (de) Temperatursensorsystem und verfahren zur herstellung eines temperatursensorsystems
DE68917966T2 (de) Elektrisch leitfähiger Keramikwerkstoff.
WO2001016528A1 (de) Keramische glühstiftkerze
DE60307024T2 (de) Hochpräziser Leistungswiderstand und Verfahren zu seiner Herstellung
EP0711496B1 (de) Keramisches heizelement sowie verfahren zur herstellung eines solchen heizelements
EP3642583A1 (de) Schichtwiderstand und dünnfilmsensor
DE19952127C2 (de) Hochtemperaturbeständiger, mechanisch stabiler Temperaturfühler
EP1092696B1 (de) Gesinterter keramischer Verbundkörper
DE102006062374A1 (de) Keramisches elektrisches Heizelement
DE102020203166A1 (de) Sensoraufbau zur Bestimmung hoher Temperaturen und Verfahren zur Herstellung des Sensoraufbaus
DE1943748A1 (de) Heiz- und Temperaturmessgeraet
DE102018200548B3 (de) Keramisches Thermoelement sowie Verfahren zu seiner Herstellung
DE102016213930B4 (de) Verfahren zur Herstellung von Referenzmaterialien für Messungen des Seebeck-Koeffizienten sowie entsprechende Proben zur Verwendung als Referenzmaterial
EP0837837A1 (de) Verfahren zur herstellung von elektrisch isolierendem siliziumkarbid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOEDER, HORST

Inventor name: KLONCZYNSKI, ALEXANDER

Inventor name: DRESSLER, WOLFGANG

Inventor name: ENGEL, CHRISTINE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20081031

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110104