US2691690A - Thermocouple element composition - Google Patents

Thermocouple element composition Download PDF

Info

Publication number
US2691690A
US2691690A US305924A US30592452A US2691690A US 2691690 A US2691690 A US 2691690A US 305924 A US305924 A US 305924A US 30592452 A US30592452 A US 30592452A US 2691690 A US2691690 A US 2691690A
Authority
US
United States
Prior art keywords
nickel
alloy
thermocouple
chromium
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US305924A
Inventor
Poch Stephen
Jr John C Lewis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Driver Harris Co
Original Assignee
Driver Harris Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Driver Harris Co filed Critical Driver Harris Co
Priority to US305924A priority Critical patent/US2691690A/en
Priority to ES0210792A priority patent/ES210792A1/en
Application granted granted Critical
Publication of US2691690A publication Critical patent/US2691690A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals

Definitions

  • This invention relates to thermocouples and, more particularly, to a combination of alloy compositions for the two components of a thermocouple which resist the deteriorative efiect of various furnace atmospheres at high temperatures.
  • the electromotive force developed by any alloy at any given temperature is sensitive to changes in the nature and quantities of the metallic constituents present in the alloy.
  • metallic constituents There are other constituents too, of a non-metallic nature, which are invariably present in all industrial alloys and which, if varied, have a marked effect in changing the electromotive force of a given alloy combination.
  • non-metallic constituents include oxygen, nitrogen and hydrogen which are adsorbed by the metallic constituents of the alloy, and they further include compounds such as oxides, nitrides, hydrides and sulfides which are soluble to a significant extent in the matrix of which the alloy is composed.
  • thermocouple alloys reach the ultimate consumer with properties conforming to the electromotive force which is desired.
  • the consumer uses these thermocouples for temperature control under conditions which frequently tend to alter the composition of the thermocouple alloys. For example, the atmospheres in industrial furnaces are in most cases either oxidizing or reducing.
  • thermocouple alloy When these atmospheres produce changes in the composition of the thermocouple alloy, as they invariably do at high temperatures, a corresponding change will occur in the thermal electromotive force of the alloy and the couple will depart from its initial calibration. Further changes due to the formation of oxides, carbides, and sulfides can occur. These metallic compounds, initially formed on the surface of the alloys, can dissolve in the alloys and diffuse in from the surface inasmuch as they tend to precipitate on grain boundaries within the alloy during the cooling cycle and serve as regions for further attack by the heated furnace atmospheres during a, subsequent heating cycle. Thus, in addition to changes in the electromotive force of the alloys, a general weakening of the structure results and the alloys develop brittle properties which destroy their usefulness.
  • thermocouple Since both elements of any thermocouple contribute to the electromotive force of the combination, it is essential that both of them resist, to a high degree, the destructive changes which have been outlined hereinbeiore. None is gained when one element of the thermocouple is highly resistant to attack from furnace atmospheres if the other is easily destroyed. The utility of the thermocouple is strictly limited to the service which can be obtained from the weaker member of the alloy combination.
  • thermocouple which has become popular because of its electromotive force characteristics comprises a combination in which the electropositive element is a nickel-chromium alloy containing approximately 8 to 10% of chromium with other metallic additions in minor amounts and the electronegative element is a nickel alloy with a manganese content of approximately 3% and aluminum and silicon in amounts usually not exceeding 2% each. Both of these alloys have proven to be subject to attack at high temperatures by a variety of furnace gases to which they are exposed. In the original development of the nickel-chromium alloy ior thermocouple applications, a chromium content of approximately 9% was used because this addition gave the maximum positive electromotive force in the nickel-chromium alloy system, and the stability of the alloy when exposed at high temperatures to furnace gases received subordinate consideration.
  • thermocouples having higher chromium contents, when used as the electropositive element of a thermocouple in combination with a certain other alloy composition as the electronegative element, result in thermocouples characterized by stability of their high electromotive force in the presence of corrosive atmospheres at elevated temperatures.
  • the novel thermocouple of our present invention comprises an electropositive element composed of an alloy containing from 10 to 25%, and preferably 18 to 22%, chromium and the bal ance substantially all nickel and an electronegative element composed of an alloy containing from 2 to 7%, and preferably 2 to i%, silicon and the balance essentially all nickel.
  • compositions within the aforementioned ranges comprise electropositive elements containing from 18 to 22% chromium, up to 2% columbium, up to 2% iron, up to 2% manganese, from 0.5 to 2% silicon, from 0.01 to 0.15% carbon, not more than 1 other metals than nickel, and the balance nickel, and electronegative elements containing 2 to 4% silicon, 0.01 to 0.15% carbon, and the balance substantially all nickel except for incidental impurities normally associ ated with nickel. 7
  • the chromium-containing alloys of the electropositive element of our novel thermocouple are stable and resist attack by strongly oxidizing and strongly reducing furnace atmospheres, even the higher-chromium alloys are somewhat subject to what is known in the art as green rot deterioration when the furnace atmosphere is of a character intermediate these extremes or when the atmosphere is alternately oxidizing and reducing in character.
  • green rot can be minified or even eliminated by the addition of 0.2 to 2% of columbium or silicon, or both, to the alloy composition of the electropositive element of our novel thermocouple.
  • Small amounts of other metals such as iron and manganese in amounts up to 2% and carbon in amounts from 0.1 to 0.15% may also be present.
  • the electronegative thermocouple elements which in the past have generally been used with a chromium-containing nickel electropositive element have been even more susceptible to deterioration than the electropositive element and have been particularly susceptible to deterioration in some reducing atmospheres. In such atmospheres, at high temperatures, these prior art electronegative elements absorb reducing gases which, on alternately heating and cooling, cause precipitation of extraneous compounds within the grain boundaries of the alloy with resulting grain boundary embrittlement.
  • thermocouple has an effective electromotive force which is substantially unaltered by extensive exposure of the thermocouple to both oxidizing and reducing atmospheres at high temperature. Since processing problems increase as the silicon content of the alloy is raised, we presently prefer to restrict the silicon content of the electronegative element to between 2 and 4%.
  • the alloy preferably should be composed substantially exclusively of nickel and silicon plus the aforementioned amount of carbon.
  • thermocouple of our invention characterized by outstanding resistance to deterioration at high temperature in conventional furnace gas atmospheres is illustrated in Table I, the electropositive element consisting nominally of 19.5% chromium, 0.05% carbon, 0.8% silicon, 1.1% columbium, 0.05% manganese and the balance substantially all nickel and the electronegative element consisting nominally of 3% silicon, 0.02% carbon and the balance substantially all nickel.
  • thermocouple A embodied our present invention and was composed of an electropositive element consisting nominally of 19.5% chromium, 0.05% carbon, 1.2% silicon, 0.5% manganese .and the balance substantially all nickel and an electronegative element consisting nominally of 3 silicon, 0.02 carbon and the balance substantially all nickel
  • thermocouple B was representative of prior art alloy compositions and was composed of an electropositive element consisting nominally of 10% chromium and nickel and an electronegative element consisting nominally of 5% total of aluminum, manganese and silicon and nickel. Both thermocouples were tested in the indicated atmospheres after exposure for '18 hours at 2100 F. in the atmospheres indicated.
  • thermocouple of our invention is not only resistant to attack by corrosive atmospheres, and hence stable under normal operating conditions, but is characterized by an electromotive force that adapts the thermocouple admirably to accurate temperature measurement of commercially encountered furnace atmospheres.
  • thermocouple comprising an electropositive element composed of an alloy containing from to 25% chromium and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 7% silicon and the balance essentially all nickel.
  • thermocouple comprising an electropositive element composed of an alloy containing 18 to 22% chromium and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 4% silicon and the balance essentially all nickel.
  • thermocouple comprising an electropositive element composed of an alloy containing from 10 to 25% chromium, up to 2% columbium, and the balance substantially all nickel and an electronegative element composed of an .alloy containing 2 to 7% silicon and the balance substantially all nickel.
  • thermocouple comprising an electropositive element composed of an alloy containing from 18 to 22% chromium, up to 2% columbium, and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 4% silicon and the balance substantially all nickel.
  • thermocouple comprising an electropositive element composed of an alloy containing 18 to 22% chromium, up to 2% columbium, up to 2% iron, up to 2% manganese, 0.5 to 2% silicon, 0.01 to 0.15% carbon, not more than 1% of other metals, and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 4% silicon, 0.01 to 0.15% carbon, and the balance substantially all nickel.
  • thermocouple comprising an electropositive element composed of an alloy consisting of 19.5% chromium, 0.05% carbon, 1.2% silicon, 0.5% manganese, and the balance substantially all nickel and an electronegative element composed of an alloy consisting of 3% silicon, 0.02% carbon, and the balance substantially all nickel.
  • thermocouple comprising an electropositive element composed of an alloy consisting of 19.5% chromium, 0.05% carbon, 0.8% silicon, 1.1% columbium, 0.05% manganese, and the balance substantially all nickel and an electronegative element composed of an alloy consisting of 3% silicon, 0.02% carbon, and the balance substantially all nickel.

Description

Patented Got. 121, 1954 retreat THERMOCOUPLE ELEMENT COMPOSITION Stephen Pooh, Wyckoii', and John G. Lewis, Jr., Maplewood, N. 3., assignors to Driver-Harris Company, Harrison, N. 3., a corporation of New Jersey No Drawing. Application August 22, 1952, Serial No. 305,924
7 Claims. 1
This invention relates to thermocouples and, more particularly, to a combination of alloy compositions for the two components of a thermocouple which resist the deteriorative efiect of various furnace atmospheres at high temperatures.
The electromotive force developed by any alloy at any given temperature is sensitive to changes in the nature and quantities of the metallic constituents present in the alloy. There are other constituents too, of a non-metallic nature, which are invariably present in all industrial alloys and which, if varied, have a marked effect in changing the electromotive force of a given alloy combination. These non-metallic constituents include oxygen, nitrogen and hydrogen which are adsorbed by the metallic constituents of the alloy, and they further include compounds such as oxides, nitrides, hydrides and sulfides which are soluble to a significant extent in the matrix of which the alloy is composed.
It is quite possible, industrially, to manufacture alloys of definite composition which will produce a definite electromotive force within specified limits at a given temperature. Both metallic and non-metallic constituents can be readily controlled, the former by metal additions and the latter by oxidizing or deoxidizing agents used in the melting operation. As a result, the thermocouple alloys reach the ultimate consumer with properties conforming to the electromotive force which is desired. However, the consumer uses these thermocouples for temperature control under conditions which frequently tend to alter the composition of the thermocouple alloys. For example, the atmospheres in industrial furnaces are in most cases either oxidizing or reducing. When these atmospheres produce changes in the composition of the thermocouple alloy, as they invariably do at high temperatures, a corresponding change will occur in the thermal electromotive force of the alloy and the couple will depart from its initial calibration. Further changes due to the formation of oxides, carbides, and sulfides can occur. These metallic compounds, initially formed on the surface of the alloys, can dissolve in the alloys and diffuse in from the surface inasmuch as they tend to precipitate on grain boundaries within the alloy during the cooling cycle and serve as regions for further attack by the heated furnace atmospheres during a, subsequent heating cycle. Thus, in addition to changes in the electromotive force of the alloys, a general weakening of the structure results and the alloys develop brittle properties which destroy their usefulness.
Since both elements of any thermocouple contribute to the electromotive force of the combination, it is essential that both of them resist, to a high degree, the destructive changes which have been outlined hereinbeiore. Nothing is gained when one element of the thermocouple is highly resistant to attack from furnace atmospheres if the other is easily destroyed. The utility of the thermocouple is strictly limited to the service which can be obtained from the weaker member of the alloy combination.
A thermocouple which has become popular because of its electromotive force characteristics comprises a combination in which the electropositive element is a nickel-chromium alloy containing approximately 8 to 10% of chromium with other metallic additions in minor amounts and the electronegative element is a nickel alloy with a manganese content of approximately 3% and aluminum and silicon in amounts usually not exceeding 2% each. Both of these alloys have proven to be subject to attack at high temperatures by a variety of furnace gases to which they are exposed. In the original development of the nickel-chromium alloy ior thermocouple applications, a chromium content of approximately 9% was used because this addition gave the maximum positive electromotive force in the nickel-chromium alloy system, and the stability of the alloy when exposed at high temperatures to furnace gases received subordinate consideration. We have now found that nickel-chromium alloys having higher chromium contents, when used as the electropositive element of a thermocouple in combination with a certain other alloy composition as the electronegative element, result in thermocouples characterized by stability of their high electromotive force in the presence of corrosive atmospheres at elevated temperatures.
The novel thermocouple of our present invention comprises an electropositive element composed of an alloy containing from 10 to 25%, and preferably 18 to 22%, chromium and the bal ance substantially all nickel and an electronegative element composed of an alloy containing from 2 to 7%, and preferably 2 to i%, silicon and the balance essentially all nickel. Presently preferred compositions within the aforementioned ranges comprise electropositive elements containing from 18 to 22% chromium, up to 2% columbium, up to 2% iron, up to 2% manganese, from 0.5 to 2% silicon, from 0.01 to 0.15% carbon, not more than 1 other metals than nickel, and the balance nickel, and electronegative elements containing 2 to 4% silicon, 0.01 to 0.15% carbon, and the balance substantially all nickel except for incidental impurities normally associ ated with nickel. 7
Within the broad range of useful alloy compositions which may constitute the electropositive element of our novel thermocouples, we have found that, regardless of the presence or absence of other incidental constituents, increasing amounts of chromium within the range of to 25% increase the resistance of the alloy to deterioration at high temperatures in industrial furnace atmospheres but decrease the electromotive force of the alloy. Thus, the alloy containing 10% chromium has a higher electromotive force but lower deterioration resistance than an alloy containing 25% chromium. We have ascertained that a chromium content of about results in an optimum combination of these two characteristics, particularly when used in conjunction with the electronegative siliconcontaining nickel alloy component of the thermocouple.
Although the chromium-containing alloys of the electropositive element of our novel thermocouple are stable and resist attack by strongly oxidizing and strongly reducing furnace atmospheres, even the higher-chromium alloys are somewhat subject to what is known in the art as green rot deterioration when the furnace atmosphere is of a character intermediate these extremes or when the atmosphere is alternately oxidizing and reducing in character. Such green rot can be minified or even eliminated by the addition of 0.2 to 2% of columbium or silicon, or both, to the alloy composition of the electropositive element of our novel thermocouple. Small amounts of other metals such as iron and manganese in amounts up to 2% and carbon in amounts from 0.1 to 0.15% may also be present. The electronegative thermocouple elements which in the past have generally been used with a chromium-containing nickel electropositive element have been even more susceptible to deterioration than the electropositive element and have been particularly susceptible to deterioration in some reducing atmospheres. In such atmospheres, at high temperatures, these prior art electronegative elements absorb reducing gases which, on alternately heating and cooling, cause precipitation of extraneous compounds within the grain boundaries of the alloy with resulting grain boundary embrittlement. Our investigations have disclosed that additions of 2 to 7% silicon to nickel minify or eliminate the embrittlement which otherwise results from exposure to reducing furnace atmospheres, that in oxidizing atmospheres this nickel-silicon alloy gives wholly satisfactory service, and that in combination with an electropositive element containing from 10 to chromium and the balance substantially all nickel the resulting thermocouple has an effective electromotive force which is substantially unaltered by extensive exposure of the thermocouple to both oxidizing and reducing atmospheres at high temperature. Since processing problems increase as the silicon content of the alloy is raised, we presently prefer to restrict the silicon content of the electronegative element to between 2 and 4%. Small amounts of carbon, say 0.01 to 0.15%, may be advantageously incorporated in the silicon-containing element, although we have not ascertained that the addition of any other extraneous metals has any beneficial effect. Thus, except for incidental amounts of other metals normally present as impurities in nickel, we have found that the alloy preferably should be composed substantially exclusively of nickel and silicon plus the aforementioned amount of carbon.
The relation between temperature and electromotive force in a thermocouple of our invention characterized by outstanding resistance to deterioration at high temperature in conventional furnace gas atmospheres is illustrated in Table I, the electropositive element consisting nominally of 19.5% chromium, 0.05% carbon, 0.8% silicon, 1.1% columbium, 0.05% manganese and the balance substantially all nickel and the electronegative element consisting nominally of 3% silicon, 0.02% carbon and the balance substantially all nickel.
Table I Electromotive Temperature (F) Force (Millivolts) The stability of the electromotive force in 'a thermocouple of our invention at an elevated temperature in different furnace atmospheres is illustrated in Table II. In this table, thermocouple A embodied our present invention and was composed of an electropositive element consisting nominally of 19.5% chromium, 0.05% carbon, 1.2% silicon, 0.5% manganese .and the balance substantially all nickel and an electronegative element consisting nominally of 3 silicon, 0.02 carbon and the balance substantially all nickel, and thermocouple B was representative of prior art alloy compositions and was composed of an electropositive element consisting nominally of 10% chromium and nickel and an electronegative element consisting nominally of 5% total of aluminum, manganese and silicon and nickel. Both thermocouples were tested in the indicated atmospheres after exposure for '18 hours at 2100 F. in the atmospheres indicated.
Table II EXPOSURE 'IN AIR AND TESTED IN AIR M2. M21. After 24. 88 After 34. 87 Before 24. 79 Before 34. 42
Change +0. 09 Change. +0. 45
EXPOSURE IN BURNED FURNACE GAS AND TESTED IN CITY GAS M1). Mu. After 24. 86 After 34. 86 Before M. 79 Before 34. 42
Change +0. 44
Change +0.07
EXPOSURE IN BURNED FURNACE GAS AND TESTED IN AIR Mv. M1 After 24. 82 After 34. 89 Before 24. 79 Bcfore34. 42
Change +0.03 Change +0. 47
It will be appreciated, accordingly, that the novel thermocouple of our invention is not only resistant to attack by corrosive atmospheres, and hence stable under normal operating conditions, but is characterized by an electromotive force that adapts the thermocouple admirably to accurate temperature measurement of commercially encountered furnace atmospheres.
We claim:
1. A thermocouple comprising an electropositive element composed of an alloy containing from to 25% chromium and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 7% silicon and the balance essentially all nickel.
2. A thermocouple comprising an electropositive element composed of an alloy containing 18 to 22% chromium and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 4% silicon and the balance essentially all nickel.
3. A thermocouple comprising an electropositive element composed of an alloy containing from 10 to 25% chromium, up to 2% columbium, and the balance substantially all nickel and an electronegative element composed of an .alloy containing 2 to 7% silicon and the balance substantially all nickel.
4. A thermocouple comprising an electropositive element composed of an alloy containing from 18 to 22% chromium, up to 2% columbium, and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 4% silicon and the balance substantially all nickel.
5. A thermocouple comprising an electropositive element composed of an alloy containing 18 to 22% chromium, up to 2% columbium, up to 2% iron, up to 2% manganese, 0.5 to 2% silicon, 0.01 to 0.15% carbon, not more than 1% of other metals, and the balance substantially all nickel and an electronegative element composed of an alloy containing 2 to 4% silicon, 0.01 to 0.15% carbon, and the balance substantially all nickel.
6. A thermocouple comprising an electropositive element composed of an alloy consisting of 19.5% chromium, 0.05% carbon, 1.2% silicon, 0.5% manganese, and the balance substantially all nickel and an electronegative element composed of an alloy consisting of 3% silicon, 0.02% carbon, and the balance substantially all nickel.
7. A thermocouple comprising an electropositive element composed of an alloy consisting of 19.5% chromium, 0.05% carbon, 0.8% silicon, 1.1% columbium, 0.05% manganese, and the balance substantially all nickel and an electronegative element composed of an alloy consisting of 3% silicon, 0.02% carbon, and the balance substantially all nickel.
References Cited in the file of this patent UNITED STATES PA'I'ENTS Number Name Date 1,076,488 Marsh Oct. 21, 1913 2,306,290 Widell Dec. 22, 1942 2,587,391 Seaver Feb. 26, 1952 FOREIGN PATENTS Number Country Date 438,019 Germany Dec. 3. 1926 OTHER REFERENCES American Institute of Physics, 1941, page 1227. Materials and Methods, No. 169, November 1948, page 97.

Claims (1)

1. A THERMOCOUPLE COMPRISING AN ELECTROPOSITIVE ELEMENT COMPOSED OF AN ALLOY CONTAINING FROM 10 TO 25% CHROMIUM AND THE BALANCE SUBSTANTIALLY ALL NICKEL AND AN ELECTRONEGATIVE ELEMENT COMPOSED OF AN ALLOY CONTAINING 2 TO 7% SILICON AND THE BALANCE ESSENTIALLY ALL NICKEL.
US305924A 1952-08-22 1952-08-22 Thermocouple element composition Expired - Lifetime US2691690A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US305924A US2691690A (en) 1952-08-22 1952-08-22 Thermocouple element composition
ES0210792A ES210792A1 (en) 1952-08-22 1953-10-02 Thermocouple element composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US305924A US2691690A (en) 1952-08-22 1952-08-22 Thermocouple element composition

Publications (1)

Publication Number Publication Date
US2691690A true US2691690A (en) 1954-10-12

Family

ID=23182942

Family Applications (1)

Application Number Title Priority Date Filing Date
US305924A Expired - Lifetime US2691690A (en) 1952-08-22 1952-08-22 Thermocouple element composition

Country Status (2)

Country Link
US (1) US2691690A (en)
ES (1) ES210792A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2757221A (en) * 1954-07-06 1956-07-31 Driver Harris Co Thermocouple element composition
US2859264A (en) * 1954-08-06 1958-11-04 Driver Harris Co Thermocouple element composition
US2992918A (en) * 1953-11-12 1961-07-18 Kanthal Ab Electrical resistors and materials therefor
US3186023A (en) * 1963-10-07 1965-06-01 Mitchell Co John E Vacuum rug cleaner attachment
US3457122A (en) * 1967-11-27 1969-07-22 Hoskins Mfg Co Nickel alloy thermocouple
WO1988002106A1 (en) * 1986-09-08 1988-03-24 Commonwealth Scientific And Industrial Research Or Stable metal-sheathed thermocouple cable
US6537393B2 (en) 2000-01-24 2003-03-25 Inco Alloys International, Inc. High temperature thermal processing alloy
US20030091092A1 (en) * 2000-06-21 2003-05-15 Christine Engel Thermoelectric component
US20130243036A1 (en) * 2010-03-31 2013-09-19 Cambridge Enterprise Limited Thermocouple apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1076438A (en) * 1912-09-30 1913-10-21 Hoskins Mfg Company Thermo-electric element.
DE438019C (en) * 1924-06-24 1926-12-03 Fried Krupp Akt Ges Thermocouple for measuring high temperatures
US2306290A (en) * 1941-10-03 1942-12-22 Rca Corp Cathode alloy
US2587391A (en) * 1949-06-10 1952-02-26 Gen Electric Thermocouple

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1076438A (en) * 1912-09-30 1913-10-21 Hoskins Mfg Company Thermo-electric element.
DE438019C (en) * 1924-06-24 1926-12-03 Fried Krupp Akt Ges Thermocouple for measuring high temperatures
US2306290A (en) * 1941-10-03 1942-12-22 Rca Corp Cathode alloy
US2587391A (en) * 1949-06-10 1952-02-26 Gen Electric Thermocouple

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992918A (en) * 1953-11-12 1961-07-18 Kanthal Ab Electrical resistors and materials therefor
US2757221A (en) * 1954-07-06 1956-07-31 Driver Harris Co Thermocouple element composition
US2859264A (en) * 1954-08-06 1958-11-04 Driver Harris Co Thermocouple element composition
US3186023A (en) * 1963-10-07 1965-06-01 Mitchell Co John E Vacuum rug cleaner attachment
US3457122A (en) * 1967-11-27 1969-07-22 Hoskins Mfg Co Nickel alloy thermocouple
US5043023A (en) * 1986-09-08 1991-08-27 Commonwealth Scientific And Industrial Research Organization Stable metal-sheathed thermocouple cable
WO1988002106A1 (en) * 1986-09-08 1988-03-24 Commonwealth Scientific And Industrial Research Or Stable metal-sheathed thermocouple cable
US6537393B2 (en) 2000-01-24 2003-03-25 Inco Alloys International, Inc. High temperature thermal processing alloy
US20030091092A1 (en) * 2000-06-21 2003-05-15 Christine Engel Thermoelectric component
US7029173B2 (en) * 2000-06-21 2006-04-18 Robert Bosch Gmbh Thermoelectric component
US20130243036A1 (en) * 2010-03-31 2013-09-19 Cambridge Enterprise Limited Thermocouple apparatus and method
US9702764B2 (en) * 2010-03-31 2017-07-11 Cambridge Enterprise Limited Thermocouple apparatus and method
US10168228B2 (en) 2010-03-31 2019-01-01 Cambridge Enterprise Limited Thermocouple apparatus and method

Also Published As

Publication number Publication date
ES210792A1 (en) 1953-11-16

Similar Documents

Publication Publication Date Title
US3061426A (en) Creep resistant alloy
US2691690A (en) Thermocouple element composition
JPH01180933A (en) Nickel base alloy plate
US2330018A (en) Thermocouple element
US2955934A (en) High temperature alloy
US2224573A (en) Alloy
US2757221A (en) Thermocouple element composition
US2587275A (en) Furnace element
US2891860A (en) Copper base brazing alloy
KR100482706B1 (en) Austenitic Stainless Steel and Use of the Steel
US3607243A (en) Corrosion resistant nickel-chromium-iron alloy
US2859264A (en) Thermocouple element composition
USRE24242E (en) Alloys and electrical resistance
US3607250A (en) High-temperature alloys and articles
Wu et al. Platinum: Platinum-rhodium thermocouple wire
US3403998A (en) High temperature alloys
US3411956A (en) Thermocouple with nickel-containing elements
US3125446A (en) Zirconium base alloy
JPH04502938A (en) Iron, nickel, chromium base alloy
US2858208A (en) Nickel base alloy for use as an electrical resistance element
US3457122A (en) Nickel alloy thermocouple
US3260594A (en) High temperature alloys
US2990440A (en) Thermocouple
Darling et al. Dispersion strengthened platinum
US1671491A (en) Bimetallic element