EP1276922B1 - Tete de filage et procede de filage d'une solution de filage - Google Patents

Tete de filage et procede de filage d'une solution de filage Download PDF

Info

Publication number
EP1276922B1
EP1276922B1 EP01936252A EP01936252A EP1276922B1 EP 1276922 B1 EP1276922 B1 EP 1276922B1 EP 01936252 A EP01936252 A EP 01936252A EP 01936252 A EP01936252 A EP 01936252A EP 1276922 B1 EP1276922 B1 EP 1276922B1
Authority
EP
European Patent Office
Prior art keywords
spinning
capillary
temperature
dope
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01936252A
Other languages
German (de)
English (en)
Other versions
EP1276922B2 (fr
EP1276922A1 (fr
Inventor
Stefan Zikeli
Friedrich Ecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LL Plant Engineering AG
Original Assignee
ZiAG Plant Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7639492&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1276922(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ZiAG Plant Engineering GmbH filed Critical ZiAG Plant Engineering GmbH
Publication of EP1276922A1 publication Critical patent/EP1276922A1/fr
Application granted granted Critical
Publication of EP1276922B1 publication Critical patent/EP1276922B1/fr
Publication of EP1276922B2 publication Critical patent/EP1276922B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/09Control of pressure, temperature or feeding rate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods

Definitions

  • the invention relates to a method for spinning a spinning solution consisting of tertiary amine oxide, water and cellulose, in which the spinning solution is fed continuously or discontinuously from a spinning solution storage container to a spinning head and is passed in the spinning head through at least one spinning capillary which has a spinning solution outlet opening at its downstream end is provided and from which the spinning solution emerges from the spinning head.
  • the invention also relates to a spinning head for spinning a spinning solution flowing through the spinning head with tertiary amine oxide, with at least one spinning capillary which has a spinning solution outlet opening at its downstream end, the spinning solution being passed out of the spinning head through the spinning solution outlet opening, and with a heating device which acts on the spinning solution.
  • At least one spinning capillary is to be understood as the last section of the spinning head through which the spinning solution flows and which forms the spinning solution outlet opening.
  • the spun thread is formed by the spinning capillary.
  • a spinning head is described there, which has a pre-capillary (referred to as capillary in the publication) and a spinning capillary (referred to as the mouth in the publication) adjoining the pre-capillary in the flow direction of the spinning solution.
  • the pre-capillary and the spinning capillary are made from a two-part metal block.
  • the diameter of the pre-capillary is 1.2 to 2.5 times the diameter of the spinning capillary.
  • Openings are provided in the spinning head of WO 99/47733 in the area of the pre-capillary which serve to accommodate a heating device.
  • the metal block of the spinning head is heated in the area of the pre-capillary by the heating device.
  • the spinning block of WO 99/47733 is surrounded by a gas chamber which contains a heated gas which flows out of the spinning head essentially parallel to the spinning solution emerging from the spinning solution outlet opening and envelops the spinning solution as it exits.
  • the operating temperature of the spinning head in the area of the pre-capillary and the spinning capillary is between 70 ° C and 140 ° C.
  • the temperature of the outflowing gas is preferably 70 ° C, so it is below the temperature of the spinning head.
  • the disadvantage of the spinning head according to WO 99/47733 is that only small hole densities can be achieved by the construction of the spinning head described therein.
  • An additional disadvantage is that the temperature can only be influenced in the area of the pre-capillary. Due to the high cellulose concentrations when spinning NMMO / water / cellulose solutions and the high structural viscosity, it is necessary to influence the spinning temperature. In addition, care must be taken to ensure good temperature control uniformity, which is not the case with the spinneret described in WO 99/47733 or with the heating system.
  • shake test The tendency to fibrillation is determined by a so-called "shake test".
  • the shake test is described in the magazine “Chemiefaser Textilindustrie” 43/95 (1993), p. 879 ff. And in WO 96107779.
  • the fibers are shaken in water for a certain period of time in the presence of glass beads.
  • the degree of fibrillation of the fiber is determined by observation under a microscope: If a large amount of fibrils that have been split off is found under the microscope, this gives a high and therefore poor fibrillation value.
  • this object is achieved according to the invention in that, during operation of the spinning head, the wall temperature of the spinning capillary in a region near the spinning solution outlet opening is greater than the core temperature of the spinning solution.
  • the pre-capillary is heated, but not the spinning capillary, which extends to the spinning solution outlet opening.
  • the pre-capillary has a larger diameter than the capillary. Due to the cross-sectional jump from the pre-capillary to the capillary, the temperature distribution built up in the pre-capillary in the spinning solution is disturbed, so that a temperature distribution that is favorable for spinning the spinning solution can no longer build up over the short length of the capillary.
  • the gas flows out of the gas chamber through the annular gap along the outer wall of the capillary.
  • the temperature of this gas is below the temperature of the spinning solution.
  • the area of the capillary near the outlet opening is actually cooled by the gas below the core temperature of the spinning solution.
  • the wall of the capillary near the outlet opening is only indirectly heated by the heating device in the spinning head of WO 99/47733: the heating device is arranged near the pre-capillary and primarily acts only on the pre-capillary.
  • the downstream capillary is only heated indirectly by heating the capillary block.
  • the wall temperature of the capillary near the outlet opening is therefore always lower than the temperature of the pre-capillary in the spinning head of WO 99/347733.
  • the wall of the spinning capillary can be heated directly by a heating device.
  • the heating device acts directly on the spinning capillary wall. This is not the case with a conventional spinning head like that of WO 99/47733.
  • the wall of the spinning capillary is heated indirectly via the large mass of the spinning block.
  • Direct heating of the spinning capillary wall has the advantage that the temperature of the wall can be controlled more precisely and with a faster response, since there are no large inert masses that can only react slowly to changes in temperature.
  • a temperature control device can be provided in a further advantageous embodiment, by means of which the wall temperature of the spinning capillary is regulated to an adjustable value.
  • a temperature control device makes it possible to automatically adapt the wall temperature to changes in the spinning process, for example to different spinning solutions or spinning head geometries.
  • the wall temperature of the spinning capillary can be regulated as a function of the mass throughput of the spinning solution through the spinning capillary.
  • the mass flow increases the heat transport from the capillary wall, so that the heating of the capillary wall must be adapted accordingly. It is advantageous here if fluctuations in the mass throughput can be compensated for by the spinning capillary by regulating the wall temperature.
  • the wall temperature of the spinning capillary can be regulated depending on the spinning pressure in the spinning solution, preferably on the spinning pressure of the spinning solution in the capillary.
  • the flow rate and thus the heat transport in the spinning solution also depends on the spinning pressure and thus the flow rate in the spinning solution: With increasing spinning pressure, the flow rate of the spinning solution through the spinning capillary increases. It is also advantageous here if fluctuations in the spinning pressure are compensated for by regulating the wall temperature of the spinning capillary.
  • the tendency to fibrillation can be reduced in particular if, in a further advantageous embodiment, the heating of the spinning capillary wall generates a predetermined temperature profile over the flow cross section of the spinning capillary during operation. Due to the temperature-dependent viscosity of the spinning solution, the speed profile of the spinning solution in the spinning capillary is specifically influenced by this temperature profile. In particular, by strongly heating the capillary wall, it is possible to significantly reduce the viscosity of the spinning solution in the wall area.
  • the heating leads to a reduced wall friction in the spinning solution and to a fuller flow profile in the capillary:
  • the distribution of the flow speed over the flow cross-section no longer exhibits the strongly curved profile of a tube flow, but has a broad maximum that is almost constant up to that Wall of the spinning capillary extends.
  • the tendency to fibrillation can thus be improved by influencing the flow profile via the wall temperature.
  • This effect of the wall temperature on the flow profile of the spinning solution in the spinning capillary can be increased again in an advantageous embodiment, even if the heating of the spinning capillary wall is set in operation in the flow direction of the spinning solution in operation a predetermined temperature profile of the spinning capillary wall can.
  • the speed profile in the spinning capillary is influenced by a targeted change in the temperature distribution in the flow direction. The formation of a pipe flow profile is reliably avoided and the flow profile can be optimized again by adjusting the temperature distribution in the flow direction.
  • a particularly uniform heating of the spinning capillary wall can be achieved if the outside of the wall of the spinning capillary is surrounded by a heated heating fluid.
  • a heated heating fluid In contrast to an electric heater - as described for example in WO 99/47733 - there are no abrupt changes in the spatial temperature distribution in a fluid heater. Overheating can also be avoided locally.
  • the temperature of the heating fluid is at least 100 ° C, preferably around 150 ° C.
  • the temperature of the heating fluid can advantageously also be between 50 ° C, 80 ° C or 100 ° C and 150 ° C or 180 ° C. Due to the high flow velocities in the end capillary of the spinning head, the wall temperature of the spinning capillary can even be higher than the decomposition temperature of the spinning solution. The dwell time of the spinning solution in the spinning capillary is not sufficient to bring the spinning solution to the decomposition temperature.
  • At least one temperature sensor can be provided for detecting the capillary wall temperature and / or the spinning solution temperature in the capillary wall area.
  • the temperature sensor can output an electrical signal that is representative of the capillary wall temperature.
  • the temperature of the capillary wall can be determined directly or indirectly at any time.
  • the signal can be fed to a control device by means of which the wall temperature can be regulated.
  • the temperature control device changes the temperature of the heating fluid accordingly.
  • At least one temperature sensor for detecting the temperature of the heating fluid can be provided in a further advantageous embodiment, by means of which the temperature of the heating fluid is transmitted to the in the form of an electrical signal Control device can be issued.
  • the wall temperature of the spinning capillary can be determined and controlled by detecting the heating fluid temperature.
  • the spinning head if the area of the spinning capillary wall heated by the heating device, the temperature of which is higher than the core temperature of the spinning solution, extends essentially to the spinning solution outlet opening.
  • the spinning solution outlet opening is a particularly critical point where a high wall temperature has particularly positive effects on the tendency to fibrillation.
  • the area of the spinning capillary wall heated by the heating device can extend essentially over the entire length of the spinning capillary.
  • the temperature of the spinning capillary wall should be quickly adjustable by the heating device and react quickly to changes in temperature.
  • the spinning capillary is designed as a spinning capillary tube in the form of an essentially thin-walled tube and in that the heating device acts directly on the wall area of the spinning capillary tube near the spinning solution outlet opening. Due to the thin-walled design of the spinning capillary, the wall temperature reacts quickly when the temperature of the heating device changes, since there is hardly any inert mass. Due to the direct effect of the heating device on the thin-walled spinning capillary fast response is also ensured.
  • the wall thickness of the spinning capillary tube is advantageously less than 200 ⁇ m, preferably less than 150 ⁇ m.
  • the spinning solution outlet opening of the spinning capillary tube can be at least partially surrounded by a gap opening, from which a transport fluid flows in operation essentially in the direction of the spinning solution emerging from the spinning solution outlet opening.
  • the transport fluid envelops the spinning solution jet emerging from the outlet opening of the spinning capillary and leads to a reduced jump in speed on the lateral surface of the jet. This stabilizes the jet and calms the flow on the outer surface.
  • the speed of the transport fluid emerging from the gap opening during operation can essentially correspond to the speed of the spinning solution emerging from the spinning solution outlet opening.
  • the spinning capillary tube can be surrounded by a heating chamber filled with heating fluid near the spinning solution outlet opening. It is particularly advantageous if the heating chamber is connected to the gap opening. The heating fluid can thus sweep through the gap opening over the area of the spinning capillary wall which is located in the vicinity of the outlet cross section. The spinning capillary wall can thus be heated up to the outlet cross section.
  • the heating fluid emerges from the gap opening at a corresponding speed, it can simultaneously serve as a transport fluid. This makes it unnecessary to provide a separate transport fluid for stabilizing the spinning solution jet.
  • the ratio of the length of the spinning capillary to its diameter should be as large as possible.
  • the length of the spinning capillary can be at least 20 times to 150 times its diameter.
  • the length flowing into this ratio can be the length through which the spinning solution flows and / or the diameter of the inside diameter of the spinning capillary.
  • the flow cross section of the gap through which the fluid exits parallel to the spinning solution can be variable by means of an adjustable housing, for example adjustable jaws.
  • an adjustable housing for example adjustable jaws.
  • the spinning capillary can also be heated directly by being surrounded by an electrical heating element.
  • the spinning capillary can be designed as a precision steel tube. It can also have a circular outlet opening.
  • the diameter of the outlet opening can be less than 500 ⁇ m, preferably less than 250 ⁇ m.
  • the diameter can also be less than 100 ⁇ m to 75 ⁇ m.
  • the spinning head can be installed in a spinning system with a pressure compensation container which contains a spinning solution with tertiary amine oxide, with a spinning head through which a spinning filament is formed from the spinning solution and with a spinning solution line through which the spinning solution is passed to a spinning head.
  • This spirin plant then carries out the method according to the invention.
  • the invention also relates to the product produced by the method according to the invention using the spinning head according to the invention or the spinning installation according to the invention, which is characterized by the improved loop strength and the lower tendency to fibrillation and can be in the form of a filament, a staple fiber, a spunbonded nonwoven or a film.
  • FIG. 1 A spinning plant 1 by means of which the method according to the invention is carried out is shown schematically in FIG. 1.
  • a spinning solution reservoir or reactor 2 contains a highly viscous spinning solution 3 with a tertiary amine oxide, for example a solution of cellulose, water and N-methylmorpholine-N-oxide (NMMO).
  • a tertiary amine oxide for example a solution of cellulose, water and N-methylmorpholine-N-oxide (NMMO).
  • the spinning solution is conveyed with a pump 4 from the spinning solution storage container 2 through a spinning solution line 4 ′ and a pressure compensation container 5 to a distributor block 6.
  • a large number of spinning capillaries 7 are connected to the distributor block 6.
  • the distributor block 6 and the spinning capillary 7 are part of a spinning head 8.
  • the pressure expansion tank serves to compensate for any pressure and / or volume flow fluctuations in the spinning solution line 4 'and to ensure a uniform loading of the spinning head 8 with spinning solution.
  • the spinning solution jets are immersed in a precipitation bath 11 or in a bath of a non-solvent or an aqueous amine oxide solution.
  • the spinning solution in fiber form is drawn off from the precipitation bath 11 by means of a pulling device 12.
  • the spinning head 8 is fastened to a frame 50 and insulated by a layer 52 of heat-insulating material, so that no heat losses occur when the spinning head is heated.
  • the spinning head 8 is constructed modularly from the distributor block 6, an essentially disk-shaped or plate-shaped pressure distribution plate 54, an essentially disk-shaped or plate-shaped spinneret body 56 with a distributor chamber 56a, at least one spinning capillary 7 and a holding device 60.
  • the pressure distribution plate 54 of the spinneret body 56 is held by the holding device 60 on the distributor block 6 in the direction of a central axis M of the spinning head.
  • the holding device 60 forms an annular or slot-shaped recess in which the pressure distributor plate 54 and the nozzle holder 56 are received.
  • a shoulder 60a is formed at one end of the annular recess and engages in a corresponding recess 60b of the spinneret body 56.
  • One end face of the spinneret body 56 lies essentially over the entire surface of the pressure distributor plate 54.
  • a sealing element 62 is attached in the end face of the nozzle body 56, so that no spinning solution can escape between the pressure distribution plate 54 and the spinneret body 56.
  • the pressure distributor plate 54 lies with its end face facing away from the spinneret body 56 essentially over the entire surface of the distributor block 6.
  • a sealing element 62 is also attached to this surface, so that no spinning solution can escape between the distributor block 6 and the pressure distributor plate.
  • the holding device 60 is pulled in the direction of the distributor block 6 by a screw connection 64 engaging in the holding device 60.
  • the shoulder 60a of the holding device 60 exerts pressure on the corresponding recess 60b of the nozzle body 56.
  • the nozzle body 56 transmits this pressure back to the distributor block 6 via the pressure distribution plate 54. In this way, the nozzle body 54 and the nozzle holder 56 are held firmly and close to the distributor block 6 and are at the same time for maintenance purposes or for replacement with other geometries by loosening the screw connection 64 easily exchangeable.
  • the spinning capillary 7 is attached to the spinneret body 56.
  • the spinning capillary is designed in the form of a tube with an annular cross section and an inner diameter of less than 500 ⁇ m.
  • the inside diameter of the spinning capillary 7 is constant over the entire length of the spinning capillary.
  • Precision steel tubes from medical technology are used as tubes for the spinning capillary 7, the inside diameter of which is less than 500 ⁇ m and sometimes less than 250 ⁇ m.
  • inner diameters from less than 100 ⁇ m to less than 50 ⁇ m can also be provided.
  • the spinning capillary 7 is thin-walled and has a wall thickness of at most 200 ⁇ m.
  • the length of the spinning capillary is at least 20 times, preferably at least 150 times, the inside diameter.
  • a large number of spinning capillaries 7 are usually arranged on the spinning head 8 next to one another or offset in several rows from one another. As shown in Fig. 1, several spinning heads as previously described can be arranged in any arrangement to form an economical production unit.
  • Each nozzle body 56 contains a plurality of spinning capillaries 7 arranged in one or more rows, stretched or arranged in a ring.
  • the distributor space 56a is designed as a V-groove in an elongated or annular shape, as a single groove or a multi-row V-groove.
  • the pressure distribution plate 54 is located above the distributor space 56a, which is designed as a V-groove.
  • the spinning capillary 7 is surrounded by an inner housing 66 and an outer housing 68.
  • the inner housing 66 forms with the outer surface 7a of the spinning capillary an outwardly closed heating chamber 70 through which a heating fluid flows.
  • the inner housing 66 forms a unit with the nozzle body 56.
  • An outer housing 68 connects to the unit of nozzle body 56 and inner housing 66.
  • the spinning capillary 7 projects somewhat beyond the inner housing 66 or the outer housing 68.
  • the outer housing 68 surrounds the inner housing 66 and forms with the outer surface of the inner housing 66 a further heating chamber 72, which, however, in contrast to the heating chamber 70, is open to the outside.
  • the heating chamber 72 forms a gap 74 which surrounds the end of the spinning capillary 7 which is arranged opposite the spinning head.
  • the heating chamber 72 is also flowed through by a heating fluid, which emerges from the gap and flows essentially parallel to the central axis M.
  • the outer housing 68 is held on the inner housing 66 so as to be displaceable in the direction of the central axis M.
  • the same type of heating fluid can be used for both chambers 70, 72.
  • This is a gas which is inert to the spinning solution and which can be heated to 150 ° C e.g. can be heated via a heat exchanger (not shown here).
  • a different heating fluid can also be used for the chambers 70, 72.
  • the heating chamber 70 forms the heating device for the spinning capillary 7.
  • the distributor block 6 and the holding device 60 are designed as essentially solid blocks with a large mass and with heating channels 76, 78, 80 for hot water, hot air, Provide heat transfer oil, steam or optional heating elements. Due to their large mass and due to the thermal insulation, the operating temperatures of the distributor block 6 and the holding device 60 are subject to only slight fluctuations.
  • the spinning solution flows through the distributor block 6 via a feed line 82, which is connected to the spinning solution supply via seals 83, into a settling chamber 84 with a sieve disk or plate 86 with flow openings 88.
  • the settling chamber 84 and the sieve disk 86 are formed by the pressure distributor plate 54 ,
  • a filtration unit 90 is located in the flow direction in front of the sieve disk 86.
  • the settling chamber 84, the sieve disk 86 and the filtration unit 90 extend over all spinning capillaries 7.
  • the flow cross-section of the settling chamber 84 which is greatly enlarged compared to the supply line 82, reduces the flow speed of the spinning solution and makes the flow more uniform.
  • the spinning solution continues to flow through the filtration unit 88 and the openings 90 of the pressure distribution plate 54, as a result of which the flow and pressure profile across the flow cross-section is further homogenized and all capillaries 7 are evenly charged.
  • the spinning solution in the spinning head 8 flows out of the settling chamber 84 through the pressure distribution plate 54 into the distribution space 56a formed by the spinneret body 56.
  • the flow cross section gradually decreases in the flow direction.
  • the spinning solution is accelerated and, at the same time, the flow cross section is gradually reduced to the flow cross section of the spinning capillary 7.
  • the spinning capillaries 7 adjoin the distributor space 56a, which end in the flow direction in the spinning solution outlet openings 94.
  • the spinning solution emerges from the spinning head through the spinning solution outlet openings 94 at high speed or with a high mass throughput.
  • a typical mass throughput per spinning capillary is 0.03 to 0.5 g / min. Higher throughputs Up to 1.5 g / min are possible at higher heating temperatures of the spinning capillaries.
  • the pressure in the spinning solution can be up to 400 bar.
  • the heating channels 76, 78 and 80 already briefly mentioned above are provided in the distributor block 6 and in the holding device 60.
  • the distributor block heating channels 76 are arranged in the vicinity of the feed line 82 and keep the spinning solution in the feed line 82 at operating temperature.
  • a heating fluid such as hot water, heat transfer oil or steam, flows through the heating channels 76.
  • the heating channel 78 is arranged so far down in the area of the holding device 60 that it heats the distribution space 56a even before the spinning mass enters the capillary 7.
  • a heating fluid such as hot air, hot water, heat transfer oil, steam also flows through the heating element 78.
  • a second distributor block heating element 80 can also be provided, which is attached externally to the section of the spinning head 8 opposite the spinning solution outlet opening 94.
  • the distributor block heating element 80 serves to heat the upstream part of the feed line 82.
  • the heating channels 76, 78, 80 can be connected to a common heating circuit or form separate heating circuits.
  • the heating circuits of the heating channels 76, 78, 80 can also be connected to the heating chamber.
  • the tendency to fibrillation is in the first embodiment, cf. 2, reduced by the fact that the spinning capillary 7 is heated from the outside in the region of the outlet opening 94. This is achieved in that the heating fluid in the heating chamber 70 flows around the outer surface of the spinning capillary 7 and thus heats the spinning capillary 7 directly. Due to the thin-walled design of the spinning capillary 7 and the large outer surface due to its length, high heat transfer from the heating fluid to the spinning solution takes place via the spinning capillary wall. To heat the spinning capillary wall as well as possible To achieve, the contact area of the heating fluid with the outer wall of the spinning capillary should be as large as possible.
  • the temperature of the heating fluid can also be safely above the decomposition temperature of the spinning solution: due to the high speed of the spinning solution along the heated wall, the dwell time of the spinning solution in the capillary is not sufficient for the spinning solution reached the wall temperature of the spinning solution.
  • the large length of the spinning capillary ensures that the layer of the spinning solution close to the wall heats up. Since the viscosity decreases with increasing temperature in the conventional spinning solutions, the viscosity of the flow of the spinning solution through the spinning capillary 7 in the region near the wall is reduced. A fuller velocity profile can thus be formed in the core flow over the large barrel length of the spinning capillary 7, which is heated over the entire area.
  • the formation of the speed profile along the spinning capillary 7 is illustrated schematically in FIG. 2 using four speed profiles A, B, C and D.
  • the speed profile A forms shortly behind the distributor space 56a and is characterized by a narrow maximum in the area of the core flow, in the vicinity of the center line M.
  • the speed profile A drops steeply towards the walls of the spinning capillary 7.
  • the speed distribution in the core flow is almost constant and drops steeply towards the walls. This is shown by the speed profile C.
  • the steep drop in the wall area is possible due to the low viscosity and the strong heating of the spinning capillary wall up to the outlet opening 94.
  • the speed profile D schematically shows a speed profile after the spinning solution has emerged from the outlet opening 94.
  • the inert fluid from the chamber 72 and the spinning solution from the outlet opening 94 together form a broad jet.
  • the long length compared to the diameter of the capillary and the direct heating of the capillary work together and lead to an advantageous speed profile. It is important that the temperature of the spinning capillary wall lies above the temperature of the core of the spinning solution flow in the middle of the spinning capillary.
  • the temperature in the core of the spinning solution flow through the capillary 7 corresponds approximately to the operating temperature of the distributor block 6 and the holding device 60 set by the heating channels 76, 78, 80, with the pressure distributor plate 54 accommodated therein and the nozzle body 56.
  • the core flow remains when the spinning capillary flows through unaffected and does not change its temperature.
  • the temperature of the spinning capillary wall 7 can also be controlled precisely and with a quick response: due to the small mass of the spinning capillary wall, the wall temperature reacts immediately to temperature changes in the heating chamber 70.
  • a control device (not shown) can be provided for the specific setting of the wall temperature and thus the specific influencing of the flow through the capillary 7.
  • the control device is connected to sensors (not shown) which detect the temperature of the capillary wall and / or the heating fluid in the heating chamber 70, the flow rate of the spinning solution through the capillary and the operating pressure in the spinning solution.
  • sensors not shown
  • a control loop can be set up, by means of which the temperature of the wall can be adjusted independently or in a controlled manner to changing operating conditions. Fluctuations in the operating parameters can thus be compensated for without the spinning quality deteriorating.
  • the heating fluid is passed out of the heating chamber 72 through the gap 74 past the outer wall of the spinning capillary 7 and out of the spinning head 8. This ensures that the spinning capillary is actually heated over its entire length and that the fuller flow profile that forms over the length of the spinning capillary 7 cannot recede to this point at the end of the barrel length due to a colder wall.
  • the fluid flows out of the gap 74 at a high speed which is at least equal to the outflow speed of the spinning solution from the outlet opening 94.
  • the fluid also acts as a transport fluid, which sweeps and stabilizes the jet of spinning solution.
  • the fluid in the heating chamber 72 can also be part of a control circuit for the wall temperature of the spinning capillary 7.
  • a large number of sensors for detecting the operating parameters of the spinning system and sensors for detecting the temperature of the spinning capillary wall and the heating fluid can be provided.
  • the signals from these sensors are fed to a temperature control device, by means of which the temperature of the heating fluid in the heating chamber 70 is regulated.
  • the temperatures of the two heating fluids of these chambers can be set differently. It has proven to be advantageous if the spinning capillary wall near the outlet opening 94 is kept at a higher wall temperature than the central region of the spinning capillary. The above-described strand expansion can be suppressed by this measure.
  • the temperature profile along the spinning capillary, in particular in the case of a large capillary length, in the flow direction of the spinning solution can be controlled even more precisely in a further embodiment.
  • Each of these chambers can be provided with its own sensors.
  • the second exemplary embodiment according to FIG. 3 differs essentially in the construction of the heating chamber 70: the exemplary embodiment in FIG. 3 has only a single heating chamber 70 in the region of the spinning capillary, which extends to the outlet opening 94 of the individual spinning capillary 7 and the gap 74 forms.
  • Each spinning capillary 7 can have its own heating chamber 70, but a plurality of spinning capillaries 7 can also be combined in one heating chamber 70.
  • a second chamber 72 and a second housing 68 are not present.
  • the heating chamber 70 has a tube 100 in a circular or oval design, which surrounds the outer surfaces of the spinning capillaries and forms an annular space 102 between the spinning capillary 7 and the housing 66.
  • the annular space 102 opens as an annular gap 74.
  • the heating fluid in the annular space 102 heats the entire outer wall of the spinning capillary 7 up to the outlet opening 94.
  • the heating fluid is thus part of a heating device which acts directly on the spinning capillary wall and can be used for the targeted control of the wall temperature.
  • the tube 100 is made of one. Precision steel tube manufactured.
  • the heating fluid flows out of the annular space 102 parallel and coaxially to the spinning solution jet from the spinning solution outlet opening. This allows the spinning solution jet to be guided smoothly.
  • the exemplary embodiment in FIG. 4 differs from the second exemplary embodiment in that the gap 74 formed by the housing 66 is not a ring-shaped gap.
  • the housing 66 can be formed in one piece, or it can have two jaws 104a, 104b that are displaceable perpendicular to the center line M.
  • the width of the gap 74 can be adjusted by moving the jaws in the direction of the arrow shown in FIG. 4.
  • the spinning capillary is no longer heated via a heating fluid, but rather via an electric heating jacket 110, which is part of the heating device of the spinning head.
  • the heating jacket 110 can also be part of a control circuit for temperature control of the spinning capillary wall, as described above.
  • the heating jacket can be divided into several heating jacket segments that work independently of one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Materials For Medical Uses (AREA)
  • Pens And Brushes (AREA)

Claims (41)

  1. Procédé de filage d'une solution de filage formée d'un mélange de cellulose, d'eau et d'oxyde d'amine tertiaire, selon lequel la solution de filage est envoyée à au moins une tête de filage et guidée dans la tête de filage par au moins un capillaire de filage, qui est équipé, au niveau de son extrémité aval, d'une ouverture de sortie de la solution de filage, d'où la solution de filage sort de la tête de filage, caractérisé en ce que la paroi du capillaire de filage (7) est chauffée, à proximité de ladite ouverture (94) de sortie de la solution de filage, au moins par sections à une température qui est supérieure à la température du noyau interne de la solution de filage dans le capillaire de filage.
  2. Procédé selon la revendication 1, caractérisé en ce que la paroi du capillaire de filage est chauffée directement par un dispositif de chauffage (70,72).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la température de paroi du capillaire de filage (7) est réglée par un dispositif de réglage de température, à une valeur réglable.
  4. Procédé selon l'une des revendications indiquées précédentes, caractérisé en ce que la température de paroi du capillaire de filage (7) est réglée en fonction du débit massique de la solution de filage à l'intérieur du capillaire de filage (7).
  5. Procédé selon l'une des revendications indiquées précédentes, caractérisé en ce que la température de paroi du capillaire de filage (7) est réglée en fonction de la pression de filage dans la solution de filage, de préférence en fonction de la pression de filage de la solution de filage dans le capillaire de filage (7).
  6. Procédé selon l'une des revendications indiquées précédentes, caractérisé en ce que, lors du fonctionnement du capillaire de filage, sous l'effet du chauffage de la paroi du capillaire de filage un profil prédéterminé de température est réglé sur la section transversale d'écoulement du capillaire de filage (7).
  7. Procédé selon l'une des revendications indiquées précédentes, caractérisé en ce que, lors du fonctionnement du capillaire de filage, sous l'effet du chauffage de la paroi du capillaire de filage un profil prédéterminé de température de la paroi du capillaire de filage est réglé dans la direction d'écoulement de la solution de filage.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la paroi du capillaire de filage est chauffée par un fluide de chauffage qui enveloppe extérieurement la paroi du capillaire de filage.
  9. Tête de filage pour le filage d'une solution de filage traversant la tête de filage et constituée par un mélange de cellulose, d'eau et d' oxyde d'amine tertiaire, comportant au moins un capillaire de filage, qui comporte, au niveau de son extrémité aval, une ouverture de sortie pour la solution de filage, dans laquelle la solution de filage sort par l'ouverture de sortie de la solution de filage hors de la tête de filage, et comportant en plus un dispositif de chauffage dont la température est commandée et qui agit sur la solution de filage, caractérisée en ce que lors du fonctionnement de la tête de filage (8), la température de paroi, produite par le dispositif de chauffage (70,72), du capillaire de chauffage (7) est supérieure à la température du noyau de la solution de filage, dans une zone proche de l'ouverture (94) de sortie de la solution de filage.
  10. Tête de filage selon la revendication 9, caractérisée en ce que la zone de la paroi du capillaire de filage, qui est chauffée par ledit dispositif de chauffage (70,72) et dont la température est supérieure à la température intérieure de la solution de filage, s'étend essentiellement jusqu'à l'ouverture (94) de sortie de la solution de filage.
  11. Tête de filage selon la revendication 9 ou 10, caractérisée en ce que la zone de la paroi du capillaire de filage, qui est chauffée par ledit dispositif de chauffage (70, 72) et dont la température est supérieure à la température intérieure de la solution de filage, s'étend essentiellement sur toute la longueur du capillaire de filage (7).
  12. Tête de filage selon l'une des revendications 9 à 11, caractérisée en ce que le capillaire de filage (7) est agencé sous la forme d'un tube capillaire de filage réalisé sous la forme d'un tube essentiellement à paroi mince, et que le dispositif de chauffage (70,72) agit directement sur la zone de paroi du tube capillaire de filage à proximité de l'ouverture (94) de sortie de la solution de filage.
  13. Tête de filage selon l'une revendications 9 à 12, caractérisée en ce qu'il est prévu une unité de commande, qui agit sur le dispositif de chauffage (70,72) et à l'aide duquel la température de la zone de paroi directement chauffée du tube capillaire de filage (7) peut être réglée au moins par sections.
  14. Tête de filage selon l'une des revendications 9 à 13, caractérisée en ce que le dispositif de chauffage (70,72) comprend un fluide de chauffage, qui entoure au moins par sections le tube capillaire de filage (7).
  15. Tête de filage selon la revendication 14, caractérisée en ce que le fluide de chauffage du dispositif de chauffage (70,72) entoure au moins par sections le tube capillaire de filage (7).
  16. Tête de filage selon l'une des revendications 9 à 15, caractérisée en ce que, lors du fonctionnement de la tête de filage, l'ouverture (94) de sortie de la solution de filage du tube capillaire de filage (7) est entourée au moins par sections par une ouverture en forme de fente (74), à partir de laquelle circule, un fluide de transport essentiellement dans la direction de la solution de filage qui sort par l'ouverture (94) de sortie de la solution de filage.
  17. Tête de filage selon la revendication 16, caractérisée en ce que, lors du fonctionnement de la tête de filage, la vitesse du fluide de transport, qui sort à partir de l'ouverture en forme de fente (74), correspond sensiblement au moins à la vitesse de la solution de filage qui sort de l'ouverture (94) de sortie de la solution de filage.
  18. Tête de filage selon l'une des revendications 9 à 17, caractérisée en ce que le tube capillaire de filage (7) est entouré, à proximité de l'ouverture de sortie de la solution de filage, par une chambre de chauffage (70, 72) contenant un fluide de chauffage.
  19. Tête de filage selon la revendication 16 à 18, caractérisée en ce que la chambre de chauffage (72) est reliée à l'ouverture en forme de fente (74).
  20. Tête de filage selon l'une des revendications 16 à 19, caractérisée en ce que le fluide de chauffage est utilisé comme fluide de transport et est dirigé depuis la chambre de chauffage (72) à travers l'ouverture en forme de fente (74).
  21. Tête de filage selon l'une des revendications 16 à 20, caractérisée en ce qu'entre ladite chambre de chauffage (70) et ladite ouverture en forme de fente (74) s'étend une chambre annulaire (102), qui entoure extérieurement le tube capillaire (7) essentiellement sur toute sa longueur.
  22. Tête de filage selon la revendication 20, caractérisée en ce que l'espace annulaire (102) possède une section transversale sensiblement ovale.
  23. Tête de filage selon l'une des revendications 9 à 21, caractérisée en ce que la longueur du tube capillaire de filage (7) est comprise entre 20 fois et 150 fois son diamètre.
  24. Tête de filage selon la revendication 23, caractérisée en ce que ladite longueur est la longueur parcourue par la solution de filage et/ou ledit diamètre est le diamètre intérieur du capillaire de filage (7).
  25. Tête de filage selon l'une des revendications 9 à 24, caractérisée en ce que la section transversale de sortie (84) est en forme de cercle.
  26. Tête de filage selon la revendication 25, caractérisée en ce que la section transversale de sortie (94) possède un diamètre de moins de 500 µm et de préférence de moins de 250 µm.
  27. Tête de filage selon l'une des revendications 9 à 26, caractérisée en ce que l'épaisseur de paroi du tube capillaire de filage (7) est inférieure à 200 µm et de préférence est inférieure à 150 µm.
  28. Tête de filage selon l'une des revendications 9 à 27, caractérisée en ce que la température du fluide de chauffage dans la chambre de chauffage (70,72) est égale à au moins 100°C et de préférence est voisine de 150°C.
  29. Tête de filage selon l'une des revendications 9 à 27, caractérisée en ce que la température du fluide de chauffage dans la chambre de chauffage (70,72) est comprise de 50°C à 150°C.
  30. Tête de filage selon l'une des revendications 9 à 27, caractérisée en ce que la température du fluide de chauffage dans la chambre de chauffage (70,72) est comprise de 80°C à 150°C.
  31. Tête de filage selon l'une des revendications 9 à 27, caractérisée en ce que la température du fluide de chauffage dans la chambre de chauffage (70,72) est comprise de 100°C à 150°C.
  32. Tête de filage selon l'une des revendications 9 à 27, caractérisée en ce que la température du fluide de chauffage dans la chambre de chauffage (70,72) est comprise de 50°C à 180°C.
  33. Tête de filage selon l'une des revendications 9 à 32, caractérisée en ce qu'il est prévu au moins un capteur de température servant à détecter la température de paroi du capillaire et/ou la température de la solution de filage dans la zone de paroi du capillaire, capteur au moyen duquel la température de paroi du capillaire peut être délivrée sous la forme d'un signal électrique au dispositif de commande.
  34. Tête de filage selon la revendication 33, caractérisée en ce que le capteur de température est agencé sous la forme d'un élément résistif électrique.
  35. Tête de filage selon l'une des revendications 9 à 34, caractérisée en ce qu'il est prévu au moins un capteur de température servant à détecter la température du fluide de chauffage et au moyen duquel la température du fluide de chauffage peut être délivrée au dispositif de commande sous la forme d'un signal électrique.
  36. Tête de filage selon l'une des revendications 9 à 35, caractérisée en ce que la fente (74) est formée par un boîtier (100;104a,104b) qui est mobile au moins par sections transversalement par rapport à l'axe longitudinal du capillaire de filage, et que la section transversale d'écoulement de la fente (74) est modifiable.
  37. Tête de filage selon l'une des revendications 9 à 36, caractérisée en ce que le capillaire de filage est entouré par au moins un élément de chauffage électrique.
  38. Installation de filage comportant un récipient de compensation de pression, qui contient une solution de filage formée de cellulose, d'eau et d'un oxyde amino tertiaire, ainsi qu'un ou plusieurs dispositifs de stabilisation, comportant une tête de filage ou plusieurs têtes de filage, à l'aide de laquelle ou desquelles la solution de filage peut être filée pour former des corps de forme, et comportant une canalisation pour la solution de filage, par laquelle la solution de filage est envoyée depuis ledit récipient de compensation à ladite tête de filage ou à lesdites têtes de filage, caractérisée en ce que la tête de filage (8) est agencée selon l'une des revendications 9 à 37 et/ou que l'installation de filage (1) est agencée pour la mise en oeuvre du procédé selon l'une des revendications 1 à 8.
  39. Installation de filage selon la revendication 38, caractérisée en ce que ladite installation de filage comporte, à côté de la tête de filage (8) ou des têtes de filage (8), une fente (10), dans laquelle la solution de filage circule après sa sortie à partir de l'ouverture (94) de sortie de la solution de filage et dans laquelle elle est retardée.
  40. Installation de filage selon la revendication 38 ou 39, caractérisée en ce que l'installation de filage (1) comporte, en aval de la fente (10), un bain de précipitation (11), dans lequel la solution de filage, qui sort de la tête de filage (8), pénètre après traversée de la fente (10) et déformation pour constituer un corps de forme.
  41. Installation de filage selon l'une revendications 38 à 40, caractérisée en ce qu'il est prévu un dispositif de tirage (12), au moyen duquel la solution de filage peut être tirée du bain de précipitation sous la forme de fils ou de corps de forme qui ont précipité.
EP01936252A 2000-04-20 2001-04-19 Tete de filage et procede de filage d'une solution de filage Expired - Lifetime EP1276922B2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10019660A DE10019660B4 (de) 2000-04-20 2000-04-20 Verfahren zum Verspinnen einer Spinnlösung und Spinnkopf
DE10019660 2000-04-20
PCT/EP2001/004467 WO2001081663A1 (fr) 2000-04-20 2001-04-19 Tete de filage et procede de filage d'une solution de filage

Publications (3)

Publication Number Publication Date
EP1276922A1 EP1276922A1 (fr) 2003-01-22
EP1276922B1 true EP1276922B1 (fr) 2004-12-29
EP1276922B2 EP1276922B2 (fr) 2008-07-09

Family

ID=7639492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01936252A Expired - Lifetime EP1276922B2 (fr) 2000-04-20 2001-04-19 Tete de filage et procede de filage d'une solution de filage

Country Status (15)

Country Link
US (1) US20030155673A1 (fr)
EP (1) EP1276922B2 (fr)
KR (1) KR100500279B1 (fr)
CN (1) CN1232682C (fr)
AT (1) ATE286160T1 (fr)
AU (1) AU2001262211A1 (fr)
BR (1) BR0110432A (fr)
CA (1) CA2406765C (fr)
DE (2) DE10019660B4 (fr)
EA (1) EA003589B1 (fr)
MY (1) MY128277A (fr)
NO (1) NO321686B1 (fr)
TW (1) TW565632B (fr)
WO (1) WO2001081663A1 (fr)
ZA (1) ZA200209329B (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10112050B4 (de) * 2001-03-14 2004-02-12 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Verfahren und Vorrichtung zur Herstellung von Cellulosefasern und Cellulosefilamentgarnen
DE10200405A1 (de) 2002-01-08 2002-08-01 Zimmer Ag Spinnvorrichtung und -verfahren mit Kühlbeblasung
DE10204381A1 (de) 2002-01-28 2003-08-07 Zimmer Ag Ergonomische Spinnanlage
DE10206089A1 (de) 2002-02-13 2002-08-14 Zimmer Ag Bersteinsatz
DE102004024030A1 (de) 2004-05-13 2005-12-08 Zimmer Ag Lyocell-Verfahren mit polymerisationsgradabhängiger Einstellung der Verarbeitungsdauer
KR100595751B1 (ko) * 2004-11-11 2006-07-03 주식회사 효성 셀룰로오스 멀티 필라멘트의 제조방법
DE102005040000B4 (de) * 2005-08-23 2010-04-01 Lenzing Ag Mehrfachspinndüsenanordnung und Verfahren mit Absaugung und Beblasung
CN100553662C (zh) * 2006-07-18 2009-10-28 中国人民解放军第二军医大学 一种抗肿瘤的中药组合物及其制备方法
WO2009098073A1 (fr) * 2008-02-08 2009-08-13 List Holding Ag Procédé et dispositif de production de corps moulés
MX2012011708A (es) 2010-04-08 2013-02-27 List Holding Ag Procemiento para la fabricacion de un producto.
CN103015082B (zh) * 2012-12-25 2014-08-13 西安建筑科技大学 一种纺丝头及利用其制备编织管/聚合物复合膜的方法
EP3564415A1 (fr) * 2013-10-29 2019-11-06 Braskem S.A. Système et procédé de dosage d'un mélange de polymères avec un premier solvant
TWI667378B (zh) 2014-01-03 2019-08-01 奧地利商蘭精股份有限公司 纖維素纖維
CN103938283A (zh) * 2014-04-25 2014-07-23 吕赛林 用于制造竹浆高溶功能纤维的喷丝板
CN105332064B (zh) * 2015-12-02 2018-01-12 苏州布舞佳乡纺织科技有限公司 一种用于纺织的纤维制造装置
CN108298498B (zh) * 2017-01-13 2019-12-10 北京赛特超润界面科技有限公司 一种弹簧导液浸润装置
EP3467161A1 (fr) * 2017-10-06 2019-04-10 Lenzing Aktiengesellschaft Procédé de production d'un filament de cellulose de type lyocell
ES2911218T3 (es) 2018-01-15 2022-05-18 Chemiefaser Lenzing Ag Reutilización de la fibra de celulosa Lyocell para el procedimiento Lyocell
CN112176430B (zh) * 2020-09-21 2021-08-27 浙江永宁药业股份有限公司 一种口罩熔喷布生产用恒温型喷头
CN114277452B (zh) * 2022-01-26 2023-01-06 中国纺织科学研究院有限公司 干喷湿纺法纺丝设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437725A (en) 1967-08-29 1969-04-08 Du Pont Melt spinning apparatus and method
US4317790A (en) * 1979-02-21 1982-03-02 American Cyanamid Company Spinning process
DE3370976D1 (en) * 1982-05-28 1987-05-21 Asahi Chemical Ind Easily dyeable polyethylene terephtalate fibre and process for preparing the same
JPS61194204A (ja) * 1985-02-21 1986-08-28 Teijin Ltd 紡糸口金装置
US5264173A (en) * 1989-05-24 1993-11-23 Masatsugu Mochizuki Polyvinyl alcohol monofilament yarns and process for producing the same
US5652001A (en) * 1993-05-24 1997-07-29 Courtaulds Fibres Limited Spinnerette
AT399729B (de) * 1993-07-01 1995-07-25 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer fasern sowie vorrichtung zur durchführung des verfahrens und deren verwendung
AT403531B (de) * 1994-08-10 1998-03-25 Chemiefaser Lenzing Ag Vorrichtung zum regeln des druckes in einer strömenden, viskosen masse
DE4430828C2 (de) * 1994-08-31 2001-05-31 Thueringisches Inst Textil Verfahren zum Fibrillieren von lösungsmittelgesponnenen Cellulosefilamentgarnen
AT401063B (de) * 1994-09-05 1996-06-25 Chemiefaser Lenzing Ag Verfahren zur herstellung von cellulosischen formkörpern
US5984655A (en) * 1994-12-22 1999-11-16 Lenzing Aktiengesellschaft Spinning process and apparatus
US6210801B1 (en) * 1996-08-23 2001-04-03 Weyerhaeuser Company Lyocell fibers, and compositions for making same
GB9625634D0 (en) 1996-12-10 1997-01-29 Courtaulds Fibres Holdings Ltd Method of manufacture of nonwoven fabric
US6336801B1 (en) * 1999-06-21 2002-01-08 Kimberly-Clark Worldwide, Inc. Die assembly for a meltblowing apparatus

Also Published As

Publication number Publication date
CA2406765A1 (fr) 2002-10-18
DE10019660B4 (de) 2004-04-29
EP1276922B2 (fr) 2008-07-09
CN1430684A (zh) 2003-07-16
ATE286160T1 (de) 2005-01-15
MY128277A (en) 2007-01-31
WO2001081663A8 (fr) 2002-02-21
KR100500279B1 (ko) 2005-07-11
EP1276922A1 (fr) 2003-01-22
ZA200209329B (en) 2004-02-16
US20030155673A1 (en) 2003-08-21
WO2001081663A1 (fr) 2001-11-01
NO20025047D0 (no) 2002-10-21
BR0110432A (pt) 2003-02-11
EA200201118A1 (ru) 2003-02-27
NO20025047L (no) 2002-12-04
TW565632B (en) 2003-12-11
DE50104967D1 (de) 2005-02-03
EA003589B1 (ru) 2003-06-26
AU2001262211A1 (en) 2001-11-07
DE10019660A1 (de) 2000-10-26
CN1232682C (zh) 2005-12-21
NO321686B1 (no) 2006-06-19
CA2406765C (fr) 2007-01-09
KR20020093934A (ko) 2002-12-16

Similar Documents

Publication Publication Date Title
EP1276922B1 (fr) Tete de filage et procede de filage d'une solution de filage
AT403584B (de) Verfahren und vorrichtung zur herstellung cellulosischer flach- oder schlauchfolien
EP1902164B1 (fr) Dispositif de filature et procede pour produire des fils fins par epissurage afin d'obtenir un nontisse, et nontisse susceptible d'etre obtenu ainsi
EP3692188B1 (fr) Dispositif permettant l'extrusion de filaments et la fabrication de non-tissés meltspun
AT403531B (de) Vorrichtung zum regeln des druckes in einer strömenden, viskosen masse
EP0430926B1 (fr) Filière
WO1996005338A9 (fr) Dispositif et installation utilises dans le traitement de solutions de cellulose
WO2005035453A1 (fr) Dispositif et procede pour produire des tuyaux ou des barres
AT410195B (de) Verfahren und einrichtung zur anpassung eines extrusionswerkzeuges an einen extruder
EP1227925B1 (fr) Dispositif pour determiner l'etat de marche d'une extrudeuse
DE60216617T2 (de) Fällbad, und Verfahren, welches dieses Fällbad verwendet
DE19716394C1 (de) Verfahren und Vorrichtung zur passiven verzögerten Abkühlung von Spinnfilamenten
EP3505659A1 (fr) Procédé et dispositif de filage des filaments à déviation
DE10025231A1 (de) Verfahren zum Extrudieren eines Endlosformkörpers
DE60117505T2 (de) Vorrichtung zur Beschichtung von optischen Fasern
DE19732458C1 (de) Vorrichtung und Verfahren zur Filtration von hochviskosen Polymerschmelzen
AT405948B (de) Spinndüse
EP1226293B1 (fr) Procede et dispositif pour reguler la composition de solutions a extruder contenant de la cellulose lors du processus lyocell
DE10060877A1 (de) Spinntrichtervorrichtung mit Mitteneinspeisung
DE2823472A1 (de) Spritzspinnduese
DE102004028918A1 (de) Vorrichtung zum Spinnen von Fäden
DE10060876A1 (de) Ausfällvorrichtung für eine Spinnanlage
DE2705248A1 (de) Verfahren und vorrichtung zum herstellen eines gekraeuselten garnes
CH684887A5 (de) Verfahren und Vorrichtung zur Herstellung von dünnwandigen Röhrchen.
EP1118448A2 (fr) Appareil pour l'alimentation de matériaux élastomériques et utilisation d'un tel appareil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20040414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041230

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104967

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050419

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

BERE Be: lapsed

Owner name: ZIMMER A.G.

Effective date: 20050430

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LENZING AKTIENGESELLSCHAFT

Effective date: 20050929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

BERE Be: lapsed

Owner name: *ZIMMER A.G.

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050529

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20080709

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080415

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080421

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090422

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103