EP1269175A1 - Sensorelement mit katalytisch aktiver schicht und verfahren zur herstellung desselben - Google Patents

Sensorelement mit katalytisch aktiver schicht und verfahren zur herstellung desselben

Info

Publication number
EP1269175A1
EP1269175A1 EP01921191A EP01921191A EP1269175A1 EP 1269175 A1 EP1269175 A1 EP 1269175A1 EP 01921191 A EP01921191 A EP 01921191A EP 01921191 A EP01921191 A EP 01921191A EP 1269175 A1 EP1269175 A1 EP 1269175A1
Authority
EP
European Patent Office
Prior art keywords
gas
catalytically active
sensor element
diffusion barrier
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01921191A
Other languages
English (en)
French (fr)
Inventor
Roland Stahl
Gerhard Hoetzel
Harald Neumann
Johann Riegel
Lothar Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1269175A1 publication Critical patent/EP1269175A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the invention relates to a sensor element with a catalytically active layer for determining the concentration of gas components in gas mixtures and a method for producing the same according to the preamble of the independent claims.
  • Amperometric gas sensors for determining the concentration of gas components in exhaust gases from internal combustion engines are usually operated according to the so-called limit current principle.
  • a limit current situation is only reached if the electrochemical pump cells in the gas sensor are able to pump out the entire content of the gas to be determined (for example oxygen) present in the measuring gas from the measuring gas space of the gas sensor.
  • the gas to be determined for example oxygen
  • oxygen-pumping gas sensor this must also be ensured with an atmospheric oxygen content of approximately 20% by volume.
  • a diffusion barrier is integrated between the gas inlet opening of the sensor element and the measurement gas space which contains the electrochemical pump cells.
  • a gas sensor is described in the patent specification DE 37 28 289 Cl, which contains a diffusion barrier with a platinum content of up to 90% by weight.
  • the main disadvantage of this is the large amount of platinum required for this, which has a negative effect on the production costs of the gas sensor.
  • the sensor element according to the invention with the characterizing features of claim 1 has the advantage that gas constituents of a gas mixture can be determined very precisely, even with combustion mixtures set to be rich, despite the associated lack of oxygen. This is achieved by incorporating a catalytically active layer in the area of the diffusion barrier, which can be produced with little manufacturing effort in accordance with the method according to the invention.
  • the measures listed in the subclaims further advantageous developments and improvements of the sensor element specified in the main claim are possible.
  • the application of a catalytically active layer on a side of the diffusion barrier facing the gas inlet opening of the sensor element enables a catalytic reaction of the gas components with one another even before they enter the diffusion barrier.
  • catalytically active layer between the diffusion barrier and the solid electrolyte layers surrounding it is particularly advantageous since these catalytically active layers enable good pre-catalysis and can be produced very easily in the production of the sensor element.
  • FIG. 1 shows a cross section through the large area of the sensor element according to the invention according to a first embodiment.
  • exemplary embodiment and FIG. 2 shows a cross section through a sensor element according to a second exemplary embodiment.
  • FIG. 1 shows the basic structure of a first embodiment of the present invention.
  • 10 designates a planar sensor element of an electrochemical gas sensor which has, for example, a plurality of solid electrolyte layers 11a, 11b, 11c, 11d, 11le and 11f which conduct oxygen ions.
  • the solid electrolyte layers 11a-11f are designed as ceramic foils and form a planar ceramic body.
  • the integrated shape of the planar ceramic body of the sensor element 10 is produced by laminating together the ceramic films printed with functional layers and then sintering the laminated structure in a manner known per se.
  • Each of the solid electrolyte layers 11a-11f is made of solid ion material which conducts oxygen ions, such as, for example, Y 2 O 3 partially or fully stabilized ZrO 2 .
  • the sensor element 10 contains a measuring gas space 13 and, for example, in a further layer plane 11 an air reference channel 15, which at one end leads out of the planar body of the sensor element 10 and is connected to the air atmosphere.
  • an outer pump electrode 20 is arranged on the solid electrolyte layer 11a, which can be covered with a porous protective layer (not shown) and which is arranged in a ring shape around a gas inlet opening 17.
  • a porous protective layer not shown
  • the associated inner pump electrode 22 which is adapted to the circular geometry of the measuring gas chamber 13 is also circular. Both pump electrodes 20, 22 together form a pump cell.
  • a measuring electrode 21 is located in the measuring gas space 13 opposite the inner pump electrode 22. This is also designed, for example, in the form of a ring.
  • An associated reference electrode 23 is arranged in the reference gas channel 15. Measuring and reference electrodes 21, 23 together form a Nernst or concentration cell.
  • all electrodes used contain a catalytically active material, such as platinum, the electrode material being used as a cermet for all electrodes in a manner known per se to sinter the ceramic foils.
  • a resistance heater 39 is also embedded in the ceramic base body of the sensor element 10 between two electrical insulation layers. The resistance heater serves that
  • a porous diffusion barrier 12 is arranged upstream of the measuring gas space 13 in the diffusion direction of the measuring gas of the inner pump electrode 22 and the measuring electrode 21.
  • the porous diffusion barrier 12 forms a diffusion resistance with respect to the gas diffusing to the electrodes 21, 22.
  • a basic requirement for the functional humidity of an amperometric gas sensor is that the electrochemical pump cell of the sensor element is always able to remove the entire oxygen content from the measuring gas space 13 even at high oxygen concentrations.
  • the maximum oxygen content that occurs is the atmospheric one about 20 vol. %.
  • a diffusion barrier 12 is connected upstream of the measuring gas chamber 13 and thus also the inner pump electrode 22, which causes a reduction in the oxygen content in the measuring gas chamber 13 by gas phase diffusion.
  • the other gas components occurring in the exhaust gas are also subject to diffusion and the composition of the gas atmosphere present in the measuring gas space 13 is dependent on the diffusion rate of the individual gas components. Especially with a rich exhaust gas, this leads to a strong accumulation of hydrogen in the sensor element 10 and thus to a falsified measurement value of the gas sensor.
  • the hydrogen content in the exhaust gas can, however, be reduced if the hydrogen is reacted with oxidizing gases such as oxygen and carbon dioxide on a catalytically active surface and thus thermodynamic equilibrium between the gas components is ensured.
  • the diffusion barrier 12 is provided according to the invention with a catalytically active layer 14.
  • a catalytically active layer 14 In the first exemplary embodiment, this is applied to a side of the diffusion barrier 12 facing the gas inlet opening 17. It is porous and has a layer thickness which, although it ensures pre-catalysis, does not oppose the penetrating gas mixture with any appreciable diffusion resistance.
  • the catalytically active layer 14 contains metals such as Pt, Ru, Rh, Pd, Ir or a mixture thereof as catalytically active components.
  • the solid electrolyte layer 11b is imprinted with a cavity paste in the form of the later cavity 18.
  • the cavity paste decomposes at subsequent heat treatment in gaseous products.
  • Cavity pastes of this type usually contain glass carbon.
  • the cavity 18 forms during the heat treatment and the catalytically active component is deposited on the walls of the cavity 18 and thus forms the catalytically active layer 14 .
  • the deposition of the catalytically active layer 14 is not limited to that side of the diffusion barrier 12 which faces the gas inlet opening 17, but other surfaces in the region of the cavity 18 are also coated. This is definitely desirable.
  • the catalytically active material can be deposited on the glassy carbon either mechanically by grinding the glassy carbon with a powder of the catalytically active components or by chemical deposition of the catalytically active components on the glassy carbon powder.
  • FIG. 2 A corresponding second exemplary embodiment of the sensor element according to the invention is shown in FIG. 2, FIG. 2 showing a section of the sensor element shown in FIG.
  • a catalytically active layer 14a, 14b is arranged between the diffusion barrier 12 and the surrounding solid electrolyte layers 11a, 11b parallel to the direction of flow of the gas mixture. This has a small layer thickness, so that there is no significant change in the diffusion resistance of the diffusion barrier 12.
  • the catalytically active layer 14a, 14b contains comparable catalytically active components as those of the first exemplary embodiment.
  • the production of a sensor element in accordance with the second exemplary embodiment can be carried out very efficiently.
  • a first catalytically active layer 14a is produced together with the inner pump electrode 22 by a common printing process using an electrode paste, and a second catalytically active layer
  • one or more substances are added to the catalytically active layers 14, 14a, 14b, which remove sulfur oxides from the penetrating exhaust gas.
  • This can be barium nitrate, for example.
  • catalytically active layers for pre-catalysis in exhaust gas sensors is not limited to the exemplary embodiments listed, but can also be used in multi-chamber sensors, sensors with several pump and concentration cells or sensors with a gas inlet opening arranged on the end face.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Es wird ein Sensorelement zur Bestimmung der Konzentration von Gaskomponenten in Abgasen von Verbrennungsmotoren beschrieben. Dieses umfasst mindestens einen Messgasraum (13) und mindestens eine Gaseintrittsöffnung (17), über die das Gasgemisch dem Messgasraum (13) zuführbar ist, sowie mindestens eine zwischen Gaseintrittsöffnung (17) und Messgasraum (13) angeordnete Diffusionsbarriere (12). Die Diffusionsbarriere (12) umfasst mindestens eine Schicht (14, 14a, 14b) aus katalytisch aktivem Material zur Einstellung des Gleichgewichtes der Gaskomponenten.

Description

Sensorelement mit katalytisch aktiver Schicht und Verfahren zur Herstellung desselben
Die Erfindung betrifft ein Sensorelement mit katalytisch aktiver Schicht zur Bestimmung der Konzentration von Gaskomponenten in Gasgemischen und ein Verfahren zur Herstellung desselben nach dem Oberbegriff der unabhängigen Ansprüche.
Stand der Technik
Amperometrische Gassensoren zur Bestimmung der Konzentration von Gasbestandteilen in Abgasen von Verbrennungsmotoren werden üblicherweise nach dem sogenannten Grenzstromprinzip betrieben. Eine Grenzstromsituation wird jedoch nur dann erreicht, wenn die im Gassensor befindlichen elektrochemischen Pumpzellen in der Lage sind, den gesamten im Meßgas vorhandenen Gehalt des zu bestimmenden Gases (beispielsweise Sauerstoff) aus dem Meßgasraum des Gassensors abzupumpen. Dies muß im Falle eines Sauerstoffabpumpenden Gassensors auch bei einem atmosphärischen Sauerstoffge- halt von ungefähr 20 Vol.% gewahrleistet sein. Da die üblichen in Gassensoren zum Einsatz kommenden elektrochemischen Pumpzellen dafür keine ausreichende Pumpleistung aufweisen, wird zwischen der Gaseintrittsoffnung des Sensorelements und dem Meßgasraum, der die elektrochemischen Pumpzellen beinhaltet, eine Diffusionsbarriere integriert. An dieser bildet sich bedingt durch die daran stattfindende Gasphasendiffusion ein Konzentrationsgradient zwischen externem Gasgemisch und der Gasatmosphare im Meßgasraum aus. Dies hat zur Folge, daß auch andere Gasbestandteile des Gasgemischs der Diffusion unterliegen und sich auf- grund deren unterschiedlicher Diffusionsgeschwindigkeiten eine in ihrer Zusammensetzung veränderte Meßgasatmosphare im Meßgasraum des Sensorelements einstellt.
Dies wirkt sich vor allem nachteilig auf die Meßgenauigkeit von Lambdasonden aus, da diese bei einem Kraftstoffuberschuß im Abgas (fettes Abgas) deutlich abweichende Lambdawerte ermitteln. Die Ursache hierfür ist, daß der in einem fetten Abgas vorhandene Wasserstoff wegen seines kleinen Molekuldurchmessers eine sehr hohe Diffusionsgeschwindigkeit aufweist und sich im Meßgas- räum des Sensorelements anreichert. Wird das Abgas noch vor Eintritt in den Gassensor einer katalytisch aktiven Oberflache ausgesetzt, so reagieren oxidierende Bestandteile im Abgas mit dem Wasserstoff und die Meßgenauigkeit der Abgassensoren verbessert sich merklich.
In der Patentschrift DE 37 28 289 Cl wird ein Gassensor beschrieben, der eine Diffusionsbarriere mit einem Platingehalt von bis zu 90 Gew.% beinhaltet. Nachteilig daran ist vor allem die große dafür erforderliche Platinmenge, die sich negativ auf die Herstellungskosten des Gassensors auswirkt.
Aufgabe der vorliegenden Erfindung ist es, mit geringen Mengen an Platin und ohne Veränderung des Diffusionsverhaltens herkömmlicher Diffusionsbarrieren eine Gleichgewichtseinstellung der Gaskomponenten zu ermöglichen, noch bevor diese die elektrochemische Pumpzelle des Sensorelements erreichen. Vorteile der Erfindung
Das erfindungsgemaße Sensorelement mit den kennzeichnenden Merk- malen des Anspruchs 1 hat den Vorteil, daß Gasbestandteile eines Gasgemischs auch bei fett eingestellten Verbrennungsgemischen trotz des damit verbundenen Sauerstoffmangels sehr genau bestimmt werden können. Dies wird durch die Einarbeitung einer katalytisch aktiven Schicht im Bereich der Diffusionsbarriere er- reicht, die gemäß dem erfindungsgemaßen Verfahren mit einem geringen Herstellungsaufwand erzeugt werden kann.
Durch die in den Unteranspruchen aufgeführten Maßnahmen sind weitere vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Sensorelements möglich. So ermöglicht beispielsweise die Aufbringung einer katalytisch aktiven Schicht auf einer der Gaseintrittsoffnung des Sensorelements zugewandten Seite der Diffusionbarriere eine katalytische Reaktion der Gasbestandteile untereinander noch vor deren Eintritt in die Diffu- sionsbarriere .
Besonders vorteilhaft ist die Einarbeitung einer katalytisch aktiven Schicht zwischen der Diffusionbarriere und den sie umgebenden Festelektrolytschichten, da diese katalytisch aktiven Schichten eine gute Vorkatalyse ermöglichen und sehr einfach bei der Herstellung des Sensorelements erzeugt werden können.
Zeichnung
Zwei Ausfuhrungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung naher erläutert. Es zeigen Figur 1 einen Querschnitt durch die Großflache des erfindungsgemaßen Sensorelements gemäß eines ersten Aus- fuhrungsbeispiels und Figur 2 einen Querschnitt durch ein Sensorelement gemäß eines zweiten Ausfuhrungsbeispiels.
Ausfuhrungsbeispiele
Die Figur 1 zeigt den prinzipiellen Aufbau einer ersten Ausfuhrungsform der vorliegenden Erfindung. Mit 10 ist ein planares Sensorelement eines elektrochemischen Gassensors bezeichnet, das beispielsweise eine Mehrzahl von Sauerstoffionenleitenden Fest- elektrolytschichten 11a, 11b, 11c, lld, lle und llf aufweist.
Die Festelektrolytschichten lla-llf werden dabei als keramische Folien ausgeführt und bilden einen planaren keramischen Korper. Die integrierte Form des planaren keramischen Korpers des Sensorelements 10 wird durch Zusammenlaminieren der mit Funktions- schichten bedruckten keramischen Folien und anschließendem Sintern der laminierten Struktur in an sich bekannter Weise hergestellt. Jede der Festelektrolytschichten lla-llf ist aus Sauerstoffionenleitendem Festelektrolytmaterial, wie beispielsweise mit Y203 teil- oder vollstabilisiertem Zr02 ausgeführt.
Das Sensorelement 10 beinhaltet einen Meßgasraum 13 und beispielsweise in einer weiteren Schichtebene lld einen Luftreferenzkanal 15, der an einem Ende aus dem planaren Korper des Sensorelements 10 herausfuhrt und mit der Luftatmosphare in Verbin- düng steht.
Auf der dem Meßgas unmittelbar zugewandten Großflache des Sensorelements 10 ist auf der Festelektrolytschicht 11a eine äußere Pumpelektrode 20 angeordnet, die mit einer nicht dargestellten porösen Schutzschicht bedeckt sein kann und die kreisringformig um eine Gaseintrittsoffnung 17 herum angeordnet ist. Auf der dem Meßgasraum 13 zugewandten Seite der Festelektrolytschicht 11a befindet sich die dazugehörige innere Pumpelektrode 22, die angepaßt an die kreisringformige Geometrie des Meßgasraums 13 ebenfalls kreisringformig ausgeführt ist. Beide Pumpelektroden 20, 22 bilden zusammen eine Pumpzelle.
Gegenüber der inneren Pumpelektrode 22 befindet sich im Meßgas- räum 13 eine Meßelektrode 21. Auch diese ist beispielsweise kreisringformig ausgeführt. Eine dazugehörige Referenzelektrode 23 ist im Referenzgaskanal 15 angeordnet. Meß- und Referenzelektrode 21, 23 bilden zusammen eine Nernst- bzw. Konzentrationszelle .
Um zu gewahrleisten, daß an den Elektroden eine Einstellung des thermodynamisehen Gleichgewichts der Meßgaskomponenten erfolgt, enthalten alle verwendeten Elektroden ein katalytisch aktives Material, wie beispielsweise Platin, wobei das Elektrodenmateri- al für alle Elektroden in an sich bekannter Weise als Cermet eingesetzt wird, um mit den keramischen Folien zu versintern.
In den keramischen Grundkorper des Sensorelements 10 ist ferner zwischen zwei elektrischen Isolationsschichten ein Wider- Standsheizer 39 eingebettet. Der Widerstandsheizer dient dem
Aufheizen des Sensorelements 10 auf die notwendige Betriebstemperatur .
Innerhalb des Meßgasraums 13 ist in Diffusionsrichtung des Meß- gases der inneren Pumpelektrode 22 und der Meßelektrode 21 eine poröse Diffusionsbarriere 12 vorgelagert. Die poröse Diffusions - barriere 12 bildet einen Diffusionswiderstand bezüglich des zu den Elektroden 21, 22 diffundierenden Gases aus.
Wie schon eingangs erwähnt, ist eine Grundvoraussetzung für die Funktionstuchtigkeit eines amperometrischen Gassensors, daß auch bei hohen Sauerstoffkonzentrationen die elektrochemische Pumpzelle des Sensorelements stets in der Lage ist, den gesamten Gehalt an Sauerstoff aus dem Meßgasraum 13 zu entfernen. Der dabei maximal auftretende Sauerstoffgehalt ist der atmosphärische mit ungefähr 20 Vol . % . Da dieser jedoch zu einer Überlastung der elektrochemischen Pumpzelle fuhrt, wird dem Meßgasraum 13 und damit auch der inneren Pumpelektrode 22 eine Diffusionsbarriere 12 vorgeschaltet, die eine Reduzierung des Sauerstoffgehaltes im Meßgasraum 13 durch Gasphasendiffusion bewirkt.
Allerdings unterliegen auch die anderen im Abgas vorkommenden Gasbestandteile der Diffusion und die Zusammensetzung der im Meßgasraum 13 vorliegenden Gasatmosphare ist abhangig von der Diffusionsgeschwindigkeit der einzelnen Gaskomponenten. Dies fuhrt vor allem bei einem fetten Abgas zu einer starken Anreicherung von Wasserstoff im Sensorelement 10 und damit zu einem verfälschten Meßwert des Gassensors. Der Wasserstoffgehalt im Abgas läßt sich jedoch verringern, wenn an einer katalytisch ak- tiven Oberflache der Wasserstoff mit oxidierenden Gasen wie Sauerstoff und Kohlendioxid umgesetzt wird und somit eine thermody- namische Gleichgewichtseinstellung der Gasbestandteile untereinander gewahrleistet ist.
Um eine derartige Vorkatalyse zu bewerkstelligen, wird die Diffusionsbarriere 12 erfindungsgemaß mit einer katalytisch aktiven Schicht 14 versehen. Diese ist im ersten Ausfuhrungsbeispiel auf einer der Gaseintrittsoffnung 17 zugewandten Seite der Diffusionsbarriere 12 aufgebracht. Sie ist porös und weist eine Schichtdicke auf, die zwar eine Vorkatalyse gewahrleistet, jedoch dem eindringenden Gasgemisch keinen nennenswerten Diffusionswiderstand entgegensetzt. Die katalytisch aktive Schicht 14 beinhaltet als katalytisch aktive Komponenten Metalle wie Pt, Ru, Rh, Pd, Ir oder eine Mischung derselben.
Zur Erzeugung der katalytisch aktiven Schicht 14 in einem der Diffusionsbarriere 12 vorgelagerten Hohlraum 18 des Sensorelements 10 wird beispielsweise die Festelektrolytschicht 11b mit einem Aufdruck einer Hohlraumpaste in der Form des spateren Hohlraums 18 versehen. Die Hohlraumpaste zersetzt sich bei der anschließenden Wärmebehandlung in gasformige Produkte. Derartige Hohlraumpasten enthalten dazu üblicherweise Glaskohle. Wird der Hohlraumpaste die katalytisch aktive Komponente entweder als Pulver oder in auf Glaskohle abgeschiedener Form zugemischt, so bildet sich wahrend der Wärmebehandlung der Hohlraum 18 und die katalytisch aktive Komponente schlagt sich an den Wandungen des Hohlraums 18 nieder und bildet somit die katalytisch aktive Schicht 14 aus. Die Abscheidung der katalytisch aktiven Schicht 14 ist dabei nicht auf die der Gaseintrittsoffnung 17 zugewand- ten Seite der Diffusionsbarriere 12 beschrankt, sondern auch andere Oberflachen im Bereich des Hohlraums 18 werden mitbeschichtet. Dies ist durchaus erwünscht.
Die Abscheidung des katalytisch aktiven Materials auf der Glas- kohle kann entweder mechanisch durch Mahlen der Glaskohle mit einem Pulver der katalytisch aktiven Komponenten oder durch chemische Abscheidung der katalytisch aktiven Komponenten auf dem Glaskohlepulver geschehen.
Es ist auch möglich, die Vorkatalyse an einer katalytisch aktiven Schicht innerhalb der Diffusionsbarriere durchzufuhren. Ein entsprechendes zweites Ausfuhrungsbeispiel des erfindungsgemaßen Sensorelements ist in Figur 2 dargestellt, wobei die Figur 2 einen Ausschnitt des in Figur 1 dargestellten Sensorelements dar- stellt.
Hierbei ist zwischen der Diffusionsbarriere 12 und den umgebenden Festelektrolytschichten 11a, 11b jeweils eine katalytisch aktive Schicht 14a, 14b parallel zur Stromungsrichtung des Gas- gemischs angeordnet. Diese weist eine geringe Schichtdicke auf, so daß es zu keiner wesentlichen Änderung des Diffusionswiderstandes der Diffusionsbarriere 12 kommt. Die katalytisch aktive Schicht 14a, 14b beinhaltet vergleichbare katalytisch aktive Komponenten wie die des ersten Ausfuhrungsbeispiels. Die Herstellung eines Sensorelements gemäß des zweiten Ausfuh- rungsbeipiels ist sehr rationell durchfuhrbar. Eine erste katalytisch aktive Schicht 14a wird- zusammen mit der inneren Pumpelektrode 22 durch einen gemeinsamen Druckvorgang mittels einer Elektrodenpaste erzeugt und eine zweite katalytisch aktive
Schicht 14b zusammen mit der Meßelektrode 21. Beide katalytisch aktiven Schichten 14a, 14b werden dabei aus derselben Druckpaste wie die simultan gedruckten Elektroden 21, 22 hergestellt.
Da die Einstellung des Gleichgewichtes der Gaskomponenten durch Schwefeloxide im Abgas gehemmt wird, werden den katalytisch aktiven Schichten 14, 14a, 14b darüber hinaus eine oder mehrere Substanzen zugemischt, die Schwefeloxide aus dem eindringenden Abgas entfernen. Dies kann beispielsweise Bariumnitrat sein.
Es ist ausdrucklich anzumerken, daß sich die Anwendung katalytisch aktiver Schichten zur Vorkatalyse bei Abgassensoren nicht auf die aufgeführten Ausfuhrungsbeispiele beschrankt ist, sondern auch bei Mehrkammersensoren, bei Sensoren mit mehreren Pump- und Konzentrationszellen oder Sensoren mit stirnseitig angeordneter Gaseintrittsoffnung zum Einsatz kommen kann.

Claims

Ansprüche
1. Sensorelement zur Bestimmung der Konzentration von Gaskom- ponenten in Gasgemischen, insbesondere in Abgasen von Verbrennungsmotoren, mit mindestens einem Meßgasraum und mindestens einer Gaseintrittsoffnung, über die das Gasgemisch dem Meßgasraum zufuhrbar ist, und mindestens einer zwischen Gaseintrittsoffnung und Meßgasraum angeordneten Diffusionsbarriere, dadurch geken- zeichnet, daß die Diffusionsbarriere (12) mindestens eine
Schicht (14, 14a, 14b) aus katalytisch aktivem Material zur Einstellung des Gleichgewichtes im Gasgemisch aufweist.
2. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, daß die Schicht (14) aus katalytisch aktivem Material an einer der
Gaseintrittsoffnung (17) zugewandten Seite der Diffusionsbarriere (12) ausgebildet ist.
3. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, daß die Schicht (14a, 14b) aus katalytisch aktivem Material zumindest teilweise an zumindest einer einer Festelektrolytschicht (11a, 11b) zugewandten Außenflache der Diffusionsbarriere (12) ausgebildet ist.
4. Sensorelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das katalytisch aktive Material ein Metall aus der Gruppe Pt, Ru, Rh, Pd, Ir oder eine Mischung davon enthalt.
5. Sensorelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schicht aus katalytisch aktivem Material
(14, 14a, 14b) und die Diffusionsbarriere unterschiedliche Porositäten aufweisen.
6. Sensorelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schicht (14, 14a, 14b) aus katalytisch aktivem Material eine Komponente enthalt, die Schwefeloxide aus dem Gasgemisch entfernt.
7. Sensorelement nach Anspruch 6, dadurch gekennzeichnet, daß die Komponente, die Schwefeloxide aus dem Gasgemisch entfernt, Bariumnitrat ist.
8. Verfahren zur Herstellung eines Sensorelements nach einem der Ansprüche 1 bis 7 zur Bestimmung von Gaskomponenten in Gasgemischen, dadurch gekennzeichnet, daß ein katalytisch aktives Material einer Druckpaste zugesetzt wird und daß aus der Druckpaste mittels eines Druckvorgangs und einer anschließenden War- mebehandlung zumindest eine katalytisch aktive Schicht (14, 14a, 14b) an einer Diffusionsbarriere (12) erzeugt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das katalytisch aktive Material auf Glaskohle chemisch abgeschieden wird und die Glaskohle der Druckpaste zugesetzt wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das katalytisch aktive Material auf Glaskohle mechanisch abgeschieden wird und die Glaskohle der Druckpaste zugesetzt wird.
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Druckpaste in einen der Diffusionsbarriere
(12) vorgelagerten Raum eingebracht wird und daß durch eine nachgeschaltete Wärmebehandlung sich an der Diffusionsbarriere (12) die katalytisch aktive Schicht (14) abscheidet und ein Hohlraum (18) im Sensorelement unter Freisetzung gasförmiger Produkte der Druckpaste erzeugt wird.
12. Verfahren nach einem der Ansprüche 8 bis 10, dadurch ge- kennzeichnet, daß mittels der Druckpaste in jeweils einem Arbeitsschritt eine im Meßgasraum (13) angeordnete Elektrode (21, 22) und die katalytisch aktive Schicht (14a, 14b) gedruckt werden, wobei die katalytisch aktive Schicht (14a, 14b) in einem Zwischenraum zwischen einer Festelektrolytschicht (lla, 11b) und der Diffusionsbarriere (12) des Sensorelements erzeugt wird.
EP01921191A 2000-03-21 2001-03-15 Sensorelement mit katalytisch aktiver schicht und verfahren zur herstellung desselben Withdrawn EP1269175A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10013881 2000-03-21
DE10013881A DE10013881B4 (de) 2000-03-21 2000-03-21 Sensorelement mit katalytisch aktiver Schicht und Verfahren zur Herstellung desselben
PCT/DE2001/000972 WO2001071332A1 (de) 2000-03-21 2001-03-15 Sensorelement mit katalytisch aktiver schicht und verfahren zur herstellung desselben

Publications (1)

Publication Number Publication Date
EP1269175A1 true EP1269175A1 (de) 2003-01-02

Family

ID=7635701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01921191A Withdrawn EP1269175A1 (de) 2000-03-21 2001-03-15 Sensorelement mit katalytisch aktiver schicht und verfahren zur herstellung desselben

Country Status (6)

Country Link
US (1) US20030155239A1 (de)
EP (1) EP1269175A1 (de)
JP (1) JP2003528258A (de)
BR (1) BR0109352A (de)
DE (1) DE10013881B4 (de)
WO (1) WO2001071332A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259526A1 (de) * 2002-12-19 2004-07-15 Robert Bosch Gmbh Sensorelement
DE10345143B4 (de) * 2003-09-29 2006-08-24 Robert Bosch Gmbh Sensorelement
JP4739716B2 (ja) * 2003-09-29 2011-08-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサ素子
JP2007248357A (ja) * 2006-03-17 2007-09-27 Toyota Central Res & Dev Lab Inc ガスセンサと、それを用いる燃料供給システムと、その使用方法
JP4840274B2 (ja) * 2007-07-11 2011-12-21 トヨタ自動車株式会社 燃料やオイル中の硫黄濃度検出方法
JP4931074B2 (ja) * 2007-08-01 2012-05-16 日本特殊陶業株式会社 ガスセンサ及びNOxセンサ
DE102008044310A1 (de) 2008-12-03 2010-06-10 Robert Bosch Gmbh Verfahren zur Erkennung der Zusammensetzung eines Gasgemischs

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021326A (en) * 1972-06-02 1977-05-03 Robert Bosch G.M.B.H. Electro-chemical sensor
FR2442444A1 (fr) * 1978-11-21 1980-06-20 Thomson Csf Capteur electrochimique des concentrations relatives d'especes reactives dans un melange fluide, et systeme comportant un tel capteur, notamment pour la regulation
JPS6151555A (ja) * 1984-08-21 1986-03-14 Ngk Insulators Ltd 電気化学的装置
DE3615960A1 (de) * 1985-05-13 1986-11-27 Toyota Motor Co Ltd Fuehler zur ermittlung eines luft-kraftstoff-verhaeltnisses
DE3728289C1 (de) * 1987-08-25 1988-08-04 Bosch Gmbh Robert Nach dem polarographischen Messprinzip arbeitende Grenzstromsonde
US4950380A (en) * 1989-08-01 1990-08-21 Kabushiki Kaisha Riken Limiting current-type oxygen sensor
DE4032436A1 (de) * 1990-10-12 1992-04-16 Bosch Gmbh Robert Sensorelement fuer grenzstromsensoren zur bestimmung des (gamma)-wertes von gasgemischen
DE4226540A1 (de) * 1992-08-11 1994-04-21 Bosch Gmbh Robert Polarographischer Sensor
DE4312126A1 (de) * 1993-04-14 1994-10-20 Mannesmann Ag Gasdiffusionselektrode für elektrochemische Zellen
JP3571494B2 (ja) * 1997-05-20 2004-09-29 日本碍子株式会社 ガスセンサ
US6001152A (en) * 1997-05-29 1999-12-14 Sinha; Rabindra K. Flue gas conditioning for the removal of particulates, hazardous substances, NOx, and SOx
US6210641B1 (en) * 1997-07-09 2001-04-03 Denso Corporation Air-fuel ratio control system and gas sensor for engines
JPH11237361A (ja) * 1997-12-15 1999-08-31 Nippon Soken Inc ガスセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0171332A1 *

Also Published As

Publication number Publication date
US20030155239A1 (en) 2003-08-21
DE10013881A1 (de) 2001-10-04
WO2001071332A1 (de) 2001-09-27
BR0109352A (pt) 2002-12-03
JP2003528258A (ja) 2003-09-24
DE10013881B4 (de) 2007-01-11

Similar Documents

Publication Publication Date Title
DE3783103T2 (de) Elektrochemischer gassensor und verfahren zu seiner herstellung.
EP0613555B1 (de) Planare polarographische sonde zur bestimmung des lambda-wertes von gasgemischen
EP0386006B1 (de) Sensorelement für grenzstromsensoren zur bestimmung des lambda wertes von gasgemischen
DE3841611C2 (de)
DE10247144A1 (de) Gasdetektorelement und diese enthaltendes Gasdetektorgerät
WO2001071333A1 (de) Sensorelement mit vorkatalyse
EP0604468A1 (de) Abgassensor
DE19929625A1 (de) Stickoxidgassensor
EP1240506B1 (de) Gassensor zur bestimmung der konzentration von gaskomponenten in gasgemischen und dessen verwendung
DE4007856C2 (de)
EP0923724B1 (de) Messanordnung zur bestimmung von gasbestandteilen in gasgemischen
DE102011017711A1 (de) Sensorelement zur Erfassung einer Eigenschaft eines Gases in einem Messgasraum
DE19963008B4 (de) Sensorelement eines Gassensors zur Bestimmung von Gaskomponenten
DE112009004403T5 (de) Sensor mit Elektroden aus einem gleichen Material
DE4401749A1 (de) Sauerstoffkonzentrationssensor
WO2002042760A2 (de) Sensorelement eines gassensors
DE10013881B4 (de) Sensorelement mit katalytisch aktiver Schicht und Verfahren zur Herstellung desselben
DE3834987C2 (de)
DE3783127T2 (de) Elektrochemischer gassensor.
EP1023591B1 (de) AUFBAUSTRUKTUR FÜR NO x?-SENSOREN
DE19912100B4 (de) Elektrochemischer Gassensor
WO2008080675A1 (de) Festelektrolyt-sensorelement mit brenngassensitiver anode
DE10343477A1 (de) Verfahren zum Kalibrieren eines Sensorelements für eine Grenzstromsonde
EP1478920A1 (de) Katalytisch aktive schicht und verfahren zur herstellung einer solchen
EP1514099A1 (de) Verfahren zum kalibrieren eines sensorelements fur eine grenzstromsonde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050131

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060722