EP1182641B1 - Resonanzplatte in Faserverbund-Bauweise - Google Patents
Resonanzplatte in Faserverbund-Bauweise Download PDFInfo
- Publication number
- EP1182641B1 EP1182641B1 EP01119531A EP01119531A EP1182641B1 EP 1182641 B1 EP1182641 B1 EP 1182641B1 EP 01119531 A EP01119531 A EP 01119531A EP 01119531 A EP01119531 A EP 01119531A EP 1182641 B1 EP1182641 B1 EP 1182641B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- soundboard
- resonance
- mode
- frequency
- core plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10C—PIANOS, HARPSICHORDS, SPINETS OR SIMILAR STRINGED MUSICAL INSTRUMENTS WITH ONE OR MORE KEYBOARDS
- G10C3/00—Details or accessories
- G10C3/06—Resonating means, e.g. soundboards or resonant strings; Fastenings thereof
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10D—STRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
- G10D3/00—Details of, or accessories for, stringed musical instruments, e.g. slide-bars
- G10D3/02—Resonating means, horns or diaphragms
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10D—STRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
- G10D3/00—Details of, or accessories for, stringed musical instruments, e.g. slide-bars
- G10D3/22—Material for manufacturing stringed musical instruments; Treatment of the material
Definitions
- the invention relates to a resonance panel in fiber composite construction, containing at least one of long fibers and carrier material existing fiber coating, for use for an acoustic Music instrument, in particular a stringed instrument.
- the resonant corpus of a stringed instrument becomes of the two Soundboard (ceiling and floor) and the frames connecting them educated.
- the ceiling is made of spruce wood in the traditional way, the ground is mostly made of maple wood.
- Structures in fiber composite construction usually consist of long fibers, which are preferably oriented in certain directions, and one Carrier or matrix material, which is generally a duroplastic or thermoplastic.
- the invention is therefore the object of a resonance plate to create in fiber composite construction, compared to excellent, in traditional construction manufactured solid wood resonance panels a significantly improved acoustic quality has.
- the resonance plate according to the invention is intended in particular Maintaining the familiar and desired timbre of a Solid wood resonance panel a much higher sound power exhibit.
- the invention is based on the following considerations and To attempt:
- C L is the sound velocity (in m / s) of the longitudinal waves in the longitudinal direction of the test strip and rho the average total density (in g / m 3 ) of the test strip.
- the quality quotient Q M is therefore the higher, the greater the speed of sound of the longitudinal waves in relation to the oscillating mass.
- a large value of Q M thus corresponds to a favorable mass-stiffness ratio of the resonance plate.
- the thickness of a resonance panel in fiber composite construction is reduced (in order to lower the resonance frequencies back into the desired range), then the quality quotient Q M is also reduced, thus losing the acoustic advantage that the fiber composite construction itself has over the traditional wood Construction method.
- the invention therefore proceeds a fundamentally different way to tune the resonant frequencies of a Fiber composite construction produced resonant plate in the desired and of solid wood resonance panels usual area lay.
- the natural frequency increase caused by the fiber composite construction (with which the very desired increase of the quality quotient Q M is connected) is compensated by such a geometry-related natural frequency reduction, by which the quality quotient Q M is not appreciably reduced.
- the surface area of the resonance plate is dimensioned larger than for a soundboard made of solid wood of a string instrument of the same tone for this purpose. An area enlargement of the resonance plate results in a shift of the natural frequencies downwards. Due to its larger area, the resonant plate can then be given a correspondingly greater thickness without the natural frequencies leaving the range required for the desired and familiar timbre. The resulting quality quotient Q M is therefore significantly higher than that of a non-enlarged, thinner plate in fiber composite construction.
- the solution according to the invention not only the desired timbre of realizes classic string instruments, but it will be about it
- the resonance plate according to the invention allows it's about building instruments that respect the listening habits (Klangmaschineempfinden) the conventional, made of solid wood Instruments, but with regard to their acoustic characteristics Efficiency far superior to traditional instruments are.
- the formulated in the feature b) of claim 1 acoustic condition serves to control comparable timbres. It is about in feature b1) by the frequency of the main body resonance, the - According to the relevant literature - designated B1-mode becomes. In feature b2) is the second deepest for the guitar Called body resonance, which is referred to as 0.0-mode. feature b3) concerns the lowest resonance of the sound board of pianos or concert grand pianos, which according to their vibration also with 0,0-mode is called.
- Figs. 1 to 4 show the typical natural vibration mode of the main body resonance (B1 mode) as it is given in violins, violas, cellos and double basses. Parts of the literature call the B1-Mode also C3-Mode (Jansson) or B1 + Mode (Hutchins).
- the mode is determined by means of experimental modal analysis by measurement. In experimental modal analysis, a variety of transfer functions (acceleration divided by force, or vibration response divided by vibration excitation) are measured by exciting the instrument at a variety of co-ordinate coordinates using impulse hammers (eg PCB 086C80). The vibration response is measured by means of an accelerometer (eg PCB 352B22) at the so-called driving point.
- the upper end of the side edge (bass bar side) of the bridge is selected. All of these measurements take place in the ready-to-play state of the instrument, with only the strings being damped by means of foam in such a way that the sharp-edged string resonances are damped, while the body resonances of the instrument to be determined are not changed.
- the measurement of the other musical instruments, in which the resonance plate according to the invention is installed with free-free storage.
- the instruments are stored soft on foam pad in the area of the upper and lower block.
- the transfer functions are evaluated by means of the relevant programs (eg STAR Structure) in the manner customary for modal analysis.
- FIG. 3 (ceiling) and Fig. 4 (bottom) show for better understanding also the natural mode of the B1-mode, but now (im Contrary to Contourplot Fig. 1) as a wire grid model, wherein FIG. 3a and 4a deflected by -90 °, Fig. 3c and Fig. 4c with the + 90 ° deflected state relative to that in Fig. 3b and Fig. 4b shown rest state with 0 °.
- the frequency responses shown in FIGS. 5 to 8 represent the typical Entrance accelain dance of a violin (FIG. 5), a viola (FIG. 6), a cello (Fig. 7), and a double bass (Fig. 8).
- the input acellance is that transfer function in which the vibration excitation and the vibration response at the same Measuring point to be measured. As a measuring point is the above driving Point chosen.
- the X-axis of the input acellance is around the frequency, with the Y-axis around the vibration level (Acceleration divided by stimulating force) in dB. The different resonances are clearly as single peaks too detect.
- the violin and the viola Fig.
- the B1 mode typically the last outstanding resonance peak a body resonance area formed by the envelope 7. This resonance area is always by a steep burglary. 8 (Antiresonance) from the higher frequency plate resonance peaks separated. As can be seen in FIG. 7, the B1 mode forms at Violoncello usually the highest low-frequency resonance peak Below 300 Hz.
- the B1 mode is often without cello physical measurement methods by the so-called Wolfston susceptibility that of the canceled tone (especially on the C-string) whose fundamental frequency is the resonance frequency of the B1 mode equivalent.
- the B1 mode is usually second, the Helmholtz resonance Ao following main body resonance in the area around 100 Hz.
- the resonance peaks of the Helmholtz resonance Ao and the lying below the B1 mode T1 mode are in Fig. 4 to 7 as such marked.
- FIG. 9 The second deepest mentioned in feature b2) of claim 1 Body resonance of the acoustic guitar is shown in FIG. 9 illustrated.
- This resonance is in the literature [see Fletcher N. H. and Rossing T.D .: The Physics of Musical Instruments, New York 1991] is described as a mode with 0,0-character, as they neither in longitudinal in the transverse direction of the ceiling 9 node lines, but rather, by a single antinode on each resonance plate (Ceiling and floor) is marked.
- the connection of cavity, Ceiling and floor leads to three body resonances in the guitar 0,0 characteristic, namely for Helmholtz resonance and two frequency closely adjacent, about 100 Hz above the Helmholtz resonance lying body resonances.
- This mode is the lower frequency of these two the latter resonances, and thus, since the Helmholtz resonance the The first body mode of the guitar is the second deepest Corpus resonance, or the middle of the three body resonances with 0,0-character. It is different from the higher frequency, third Body resonance with 0,0 character due to the phase position between the ceiling and soil. Ceiling and floor swing at the feature b2) called resonance in phase (in the same spatial direction), so that the body bends like a thick plate as a whole; in the On the other hand, higher-frequency, third 0-0-body modes swing blanket and Ground in phase, so lead a "breathing" movement of the body out.
- the mode of vibration of the mode mentioned in feature b2) is in Fig. 9 illustrated by lines of equal amplitudes 10.
- Feature b3 is the lowest resonance of the Soundboard of the piano or concert grand piano. This resonance will according to their vibration also with 0,0-mode designated. Their vibration shape is the same by lines Amplitudes 10 are shown in FIG. 10 [cf. Kindel: Modal Analysis and finite element analysis of a piano soundboard "M.S. University of Cincinnati. Quoted from: Fletcher N.H. and Rossing T.D .: "The Physics of Musical Instruments", New York 1998, p. 382].
- Strip elements 14 are cut out of the surface of the resonance plate.
- the proportions of a strip element are derived as follows from the average thickness (D m ) of the strip element:
- the length L of the strip corresponds to 25 times the thickness D m
- the width B of the strip corresponds to 5 times the thickness D m .
- the sound velocity C L of the longitudinal waves in the longitudinal direction of the strip element (strip) is then determined by measurement.
- the resonance method established in the field of structure-borne noise measurement is used for this measurement. It is illustrated in FIG. 11:
- the strip 14 is in the two node lines (n 1 and n 2 ) of its first bending natural frequency elastically mounted on rubber bands or foam wedges 15 (free-free boundary conditions).
- the strip is excited sinusoidally by airborne sound.
- a miniature loudspeaker 16 is positioned at a distance of about 5 mm below one of the two strip ends, which is connected to a power amplifier 17.
- the sinusoidal signal is generated by a sine wave generator 18.
- the oscillation response of the strip sinusoidally excited in this way is removed by means of a sound level meter 19.
- the microphone 20 of the sound level meter is positioned at a distance of about 1 mm above the end of the strip opposite the loudspeaker.
- the frequency is gradually increased until the natural frequency of the first bending natural vibration of the strip can be read by the associated level maximum of the level peak at the sound level meter. (The low natural frequency deviation due to the damping can be neglected here).
- the frequency f 2, 0 (in Hz) corresponding to the level maximum of this resonance peak is noted.
- L is the strip length (in m)
- D m is the mean strip thickness (in m)
- f 2 is the resonant frequency (in Hz). (If the strip thickness is not constant according to claim 5, averaged over the different thicknesses and an average strip thickness D m is used.)
- FIG. 12 shows the physically essential relationship of the thickness dependence of the quality quotient Q M on which the invention is based: on the X axis, the strip thickness D m (in mm), on the Y axis the quality quotient Q M (in m 4 / sg) applied.
- the curves labeled A (maple) and F (spruce) represent the quality quotient of the wood species conventionally used for gutting panels. It is shown to be thickness independent and to be 0.0155 m 4 / sg for this spruce and 0.0067 for maple m 4 / sg lag.
- the curve denoted by VS shows the quality quotient Q M for the test strips of the resonance plate according to the invention manufactured as a fiber composite sandwich.
- the worsening of this quotient Q M can clearly be seen by reducing the strip thicknesses below 4 mm.
- different curves VS are obtained, ie different dependencies of the quality quotient Q M on the plate thickness.
- the thickness of the resonant plate is dimensioned so that the quality quotient Q M of at least one test strip cut from the resonance plate has at least 90% of the maximum value achievable with the selected fiber composite material. This 90% line 28 is shown in FIG. 12 for the fiber composite material used there.
- FIGS. 13 and 14 show an embodiment for this purpose. Since the width of the resonant plate in the first approximation in the second power in the natural frequencies, even a relatively small broadening of the outline 23 of the invention constructed with fiber composite coating 24 resonance plate by about 5% compared to the conventional outline 22 (dashed lines) accomplish the required frequency shift ,
- the core plate 26 of the resonance plate has, as shown in Fig.
- the segment of the resonance plate shown in Fig. 14 has a different thickness D.
- it has a multi-directional fiber coating consisting of non-parallel fibers 25.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Manufacturing & Machinery (AREA)
- Stringed Musical Instruments (AREA)
- Multicomponent Fibers (AREA)
- Laminated Bodies (AREA)
Description
- bei der Violine zwischen 480 und 580 Hz, vorzugsweise zwischen 510 und 550 Hz,
- bei der Viola zwischen 380 und 500 Hz, vorzugsweise zwischen 420 und 460 Hz,
- beim Violoncello zwischen 150 und 210 Hz, vorzugsweise zwischen 170 und 190 Hz,
- beim Kontrabass zwischen 80 und 120 Hz, vorzugsweise zwischen 90 und 110Hz,
- in Längsrichtung des Bodens 2 verlaufen zwei Knotenlinien 3a und 3b, wobei die linke Knotenlinie 3a durch den Bereich des Stimmstocks 5 verläuft. Der Mittelbereich des Bodens 2 schwingt somit gegenphasig zu seinen beiden seitlichen Rändern. Für die B1-Mode ist diese Querbiegeschwingung des Bodens charakteristisch. Bei einigen wenigen Instrumenten kann beobachtet werden, daß die beiden Knotenlinien 3a und 3b sich im oberen Bereich des Bodens 2 bogenartig zusammenschließen.
- die (weiß gezeichnete) untere rechte Backe 4 der Decke 1 schwingt gegenphasig zu dem den größten Anteil der Deckenfläche einnehmenden (schwarz gezeichneten) Schwingungsbauch im Bereich des Baßbalkens 6, wobei die Knotenlinie 3c, welche diese gegenphasigen Schwingungsbäuche trennt, in der Regel durch den unmittelbaren Nahbereich des Stimmstocks 5, und anschließend durch das rechte (mit "f" bezeichnete) f-Loch verläuft, um den Deckenumriß im Bereich der größten Umrißbreite unten rechts zu verlassen.
Die mit VS bezeichnete Kurve zeigt den Qualitätsquotienten QM für die als Faserverbund-Sandwich gefertigten Teststreifen der erfindungsgemäßen Resonanzplatte. Deutlich ist die Verschlechterung dieses Quotienten QM bei Verringerung der Streifendicken unter 4 mm erkennbar. Je nach Materialbeschaffenheit der Kernplatte und des Faserverbund-Werkstoffs (Faser-Flächengewicht; Harzgehalt u.s.w), sowie je nach Kernplattenaussparungen und Faserbeschichtung (Richtung und Dichte) erhält man unterschiedliche Kurven VS, d.h. unterschiedliche Abhängigkeiten des Qualitätsquotienten QM von der Plattendicke. Gemäß Anspruch 2 wird die Dicke der Resonanzplatte so dimensioniert, daß der Qualitätsquotient QM wenigstens eines aus der Resonanzplatte geschnittenen Teststreifens wenigstens 90% des mit dem gewählten Faserverbund-Werkstoff erzielbaren Maximalwertes aufweist. Diese 90%-Linie 28 ist in Fig. 12 für den dort zugrundegelegten Faserverbund-Werkstoff eingezeichnet.
Die Funktion VS in Fig. 12 macht sofort einsichtig, daß eine Kompensation der Eigenfrequenz-Erhöhungen der Resonanzplatte durch Verkleinerung ihrer Dicke zu einer Verschlechterung der akustischen Qualität führt. Erfindungsgemäß wird demgegenüber die klanglich notwendige Eigenfrequenz-Erniedrigung durch eine Vergrößerung des vom Umriß der Resonanzplatte umgrenzten Flächeninhalts erreicht. Die Fig. 13 und 14 zeigen dafür ein Ausführungsbeispiel. Da die Breite der Resonanzplatte in erster Näherung in zweiter Potenz in die Eigenfrequenzen eingeht, kann bereits eine relativ geringe Verbreiterung des Umrisses 23 der erfindungsgemäßen, mit Faserverbundbeschichtung 24 aufgebauten Resonanzplatte um etwa 5% gegenüber dem herkömmlichen Umriß 22 (gestrichelt gezeichnet) die geforderte Frequenzverschiebung bewerkstelligen.
Die Kernplatte 26 der Resonanzplatte weist, wie in Fig. 14 an einem Segment dargestellt, gemäß Anspruch 4 Aussparungen 27 auf, wobei das Gesamtvolumen aller Aussparungen höchstens 80 %, vorzugsweise zwischen 20 und 45 % des von Material erfüllten Gesamtvolumens der Kernplatte beträgt. Dieses Merkmal gestattet eine Verbesserung des Masse-Steifigkeits-Verhältnisses der Resonanzplatte. Gemäß Anspruch 5 besitzt das in Fig. 14 dargestellte Segment der Resonanzplatte eine unterschiedliche Dicke D. Gemäß Anspruch 6 weist es eine multidirektionale Faserbeschichtung auf, die aus nicht parallel angeordneten Fasern 25 besteht.
Claims (6)
- Resonanzplatte in Faserverbund-Bauweise, enthaltend wenigstens eine aus Langfasern und Trägermaterial bestehende Faserbeschichtung, zur Verwendung für ein akustisches Musikinstrument, insbesondere ein Streichinstrument, gekennzeichnet durch die Kombination folgender Merkmale:a) wenigstens ein aus der Resonanzplatte geschnittener Teststreifen weist einen Qualitätsquotienten QM = cL/rho von mindestens 0,02 m4/sg, vorzugsweise von mindestens 0,04 m4/sg auf, wobei cL die Schallgeschwindigkeit in m/s der Longitudinalwellen in Längsrichtung des Teststreifens und rho die mittlere Gesamtdichte in g/m3 des Teststreifens ist;b) der vom Umriß der Resonanzplatte umgrenzte Flächeninhalt der Resonanzplatte ist so groß gewählt, daßb1) im Falle eines Streichinstruments, die Frequenz der Hauptkorpusresonanz (B1-Mode) in folgenden Bereichen liegt:bei der Violine zwischen 480 und 580 Hz, vorzugsweise zwischen 510 und 550 Hz,bei der Viola zwischen 380 und 500 Hz, vorzugsweise zwischen 420 und 460 Hz,beim Violoncello zwischen 150 und 210 Hz, vorzugsweise zwischen 170 und 190 Hz,beim Kontrabass zwischen 80 und 120 Hz, vorzugsweise zwischen 90 und 110 Hz,b2) im Falle einer Gitarre, die Frequenz der zweittiefsten Korpusresonanz (0,0-Mode) zwischen 180 und 240 Hz, vorzugsweise zwischen 190 und 220 Hz, liegt,b3) im Falle eines Klaviers bzw. Konzertflügels, die Frequenz der tiefsten Resonanz (0,0-Mode) des Resonanzbodens zwischen 40 und 60 Hz, vorzugsweise zwischen 45 und 55 Hz, liegt.
- Resonanzplatte nach Anspruch 1, gekennzeichnet durch eine solche Dicke der Resonanzplatte, daß für den vorgegebenen Faserverbund-Werkstoff der Qualitätsquotient QM wenigstens eines aus der Resonanzplatte geschnittenen Teststreifens wenigstens 90% des mit diesem Faserverbund-Werkstoff erzielbaren Maximalwerts aufweist.
- Resonanzplatte nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Kernplatte und wenigstens eine aus Langfasern und Trägermaterial bestehende äußere Faserbeschichtung enthält.
- Resonanzplatte nach Anspruch 3, dadurch gekennzeichnet, daß die Kernplatte innerhalb der durch den Umriß der Resonanzplatte umgrenzten Fläche wenigstens eine Aussparung aufweist, wobei das Gesamtvolumen aller Aussparungen höchstens 80 %, vorzugsweise zwischen 20 und 45 %, des von Material erfüllten Gesamtvolumens der Kernplatte beträgt.
- Resonanzplatte nach Anspruch 3, dadurch gekennzeichnet, daß einzelne Bereiche der Kernplatte eine unterschiedliche Dicke aufweisen.
- Resonanzplatte nach Anspruch 1, daß die Faserbeschichtung einlagig und zugleich multidirektional ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10041357 | 2000-08-23 | ||
DE10041357 | 2000-08-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1182641A2 EP1182641A2 (de) | 2002-02-27 |
EP1182641A3 EP1182641A3 (de) | 2003-09-10 |
EP1182641B1 true EP1182641B1 (de) | 2005-11-09 |
Family
ID=7653500
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01119531A Expired - Lifetime EP1182641B1 (de) | 2000-08-23 | 2001-08-14 | Resonanzplatte in Faserverbund-Bauweise |
EP01119532A Expired - Lifetime EP1182642B1 (de) | 2000-08-23 | 2001-08-14 | Resonanzplatte in Faserverbund-Bauweise |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01119532A Expired - Lifetime EP1182642B1 (de) | 2000-08-23 | 2001-08-14 | Resonanzplatte in Faserverbund-Bauweise |
Country Status (4)
Country | Link |
---|---|
US (3) | US6610915B2 (de) |
EP (2) | EP1182641B1 (de) |
AT (2) | ATE309597T1 (de) |
DE (3) | DE20113495U1 (de) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7151210B2 (en) * | 2002-09-26 | 2006-12-19 | Fender Musical Instruments Corporation | Solid body acoustic guitar |
US6777601B1 (en) * | 2003-04-28 | 2004-08-17 | Gregory L. Kerfoot | Stringed musical instrument soundboard system |
US7276868B2 (en) * | 2004-03-29 | 2007-10-02 | Allred Iii Jimmie B | Carbon-fiber laminate musical instrument sound board |
DE102004041011A1 (de) | 2004-08-24 | 2006-03-02 | Martin Schleske | Resonanzplatte in Faserverbund-Bauweise für akustische Musikinstrumente |
DE102004041010A1 (de) | 2004-08-24 | 2006-03-02 | Martin Schleske | Resonanzplatte in Faserverbund-Bauweise für akustische Saiteninstrumente |
US7820896B2 (en) * | 2004-09-01 | 2010-10-26 | Guobao Wang | Violin with structural integrity |
DE102005027424A1 (de) * | 2005-06-14 | 2006-12-28 | Martin Schleske | Verfahren zur Verbesserung der akustischen Eigenschaften von Klangholz für Musikinstrumente |
US7342161B1 (en) * | 2005-08-05 | 2008-03-11 | Charles Edward Fox | Tonally improved hollow body stringed instrument |
US20070084335A1 (en) * | 2005-10-14 | 2007-04-19 | Silzel John W | Musical instrument with bone conduction monitor |
DE102006058849A1 (de) * | 2006-12-13 | 2008-06-19 | Martin Schleske | Verfahren zur Verbesserung der akustischen Eigenschaften von Fichtenklangholz für Musikinstrumente |
US7763784B2 (en) * | 2007-01-03 | 2010-07-27 | Luttwak Joseph E | Stringed musical instruments and methods of making thereof |
US7795513B2 (en) * | 2007-01-03 | 2010-09-14 | Luttwak Joseph E | Stringed musical instruments, and methods of making the same |
US20080202309A1 (en) * | 2007-02-22 | 2008-08-28 | Wiswell John R | Musical instrument and method of construction therefor |
CN101393551B (zh) * | 2007-09-17 | 2011-03-23 | 鸿富锦精密工业(深圳)有限公司 | 专利全文检索的索引建立系统及方法 |
US7595442B2 (en) * | 2007-09-27 | 2009-09-29 | Thomas Elgin Grover | Ergonomic drumstick |
US7759566B2 (en) * | 2007-10-26 | 2010-07-20 | Joseph Regh | Tailoring critical properties of wood-mass, lateral and transverse stiffness, and damping-for use in musical instruments |
US20090139384A1 (en) * | 2007-11-29 | 2009-06-04 | Robert Bramucci | Index finger mounted guitar pick |
US7687695B2 (en) * | 2008-01-28 | 2010-03-30 | Dejule Michael Clement | Anti-wolf-note resonator assembly for a string instrument and method of assembling the same |
JP5593613B2 (ja) * | 2009-02-12 | 2014-09-24 | ヤマハ株式会社 | 音響用木質材料及びその製造方法並びにアコースティック楽器 |
WO2011008045A2 (ko) * | 2009-07-16 | 2011-01-20 | Oh Hyeon Su | 악기의 공명강화 방법 및 그 악기 |
CN102097087A (zh) * | 2010-07-08 | 2011-06-15 | 赵振伟 | 一种古筝音板 |
CN102486919A (zh) * | 2010-12-01 | 2012-06-06 | 侯凌云 | 提琴的声学构型 |
WO2012082932A2 (en) * | 2010-12-15 | 2012-06-21 | Jesse Savage | Soundboards and methods of manufacturing soundboard materials |
CN108039161A (zh) * | 2010-12-28 | 2018-05-15 | 安德里亚斯·赫林格 | 改善弦乐器声音品质的元件 |
US8450587B2 (en) * | 2011-08-16 | 2013-05-28 | Mcp Ip, Llc | Bracing system for stringed instrument |
US9978345B2 (en) * | 2012-04-16 | 2018-05-22 | Nicholas Joseph Shopa | Piano plate assembly and method of manufacturing same |
US9208756B2 (en) | 2013-04-22 | 2015-12-08 | Troy Isaac | Musical instrument with aggregate shell and foam filled core |
CN103268761B (zh) * | 2013-05-08 | 2015-07-29 | 天津华韵乐器有限公司 | 一种短碳纤维增强树脂基复合材料琴箱手风琴 |
CN203465930U (zh) * | 2013-09-03 | 2014-03-05 | 肯豁贸易有限公司 | 声弦乐器音箱板结构 |
JP6156053B2 (ja) * | 2013-10-22 | 2017-07-05 | ヤマハ株式会社 | 弦楽器用板材の製造方法 |
JP6146258B2 (ja) * | 2013-10-22 | 2017-06-14 | ヤマハ株式会社 | 弦楽器用板材の製造方法 |
US9911401B2 (en) * | 2014-12-09 | 2018-03-06 | Aero 3 Guitars | Electric guitar |
US10210846B1 (en) | 2016-02-25 | 2019-02-19 | II Robert Linn Bailey | Acoustic plate for a stringed instrument having a soundboard |
US10657931B2 (en) | 2018-03-16 | 2020-05-19 | Fender Musical Instruments Corporation | Lightweight body construction for stringed musical instruments |
JP7124368B2 (ja) * | 2018-03-20 | 2022-08-24 | ヤマハ株式会社 | 弦楽器のボディ及び弦楽器 |
US11482201B1 (en) | 2021-05-13 | 2022-10-25 | Marimba One, Inc. | Materials and fabrication method for percussive musical instruments |
US11776514B1 (en) * | 2022-03-11 | 2023-10-03 | Santiago Lattanzio | Hybrid material construction of string instruments to reduce weight |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4364990A (en) * | 1975-03-31 | 1982-12-21 | The University Of South Carolina | Construction material for stringed musical instruments |
US4353862A (en) * | 1980-05-12 | 1982-10-12 | Kaman Aerospace Corporation | Method for making sound board |
US4348933A (en) * | 1980-10-09 | 1982-09-14 | Currier Piano Company, Inc. | Soundboard assembly for pianos or the like |
US4429608A (en) * | 1981-07-20 | 1984-02-07 | Kaman Charles H | Stringed musical instrument top |
DE3433207A1 (de) * | 1983-09-09 | 1985-04-18 | Nippon Gakki Seizo K.K., Hamamatsu, Shizuoka | Resonanzboden fuer musikinstrumente |
FR2598843B1 (fr) | 1986-05-15 | 1989-02-10 | Centre Nat Rech Scient | Structure composite pour table d'harmonie d'instruments a cordes et son procede de fabrication |
US4969381A (en) * | 1987-07-31 | 1990-11-13 | Kuau Technology, Ltd. | Composite-materials acoustic stringed musical instrument |
FR2649525B1 (fr) * | 1989-07-05 | 1991-10-11 | Centre Nat Rech Scient | Instrument de musique a archet en materiau composite |
US5333527A (en) * | 1991-08-26 | 1994-08-02 | Richard Janes | Compression molded composite guitar soundboard |
JPH06348255A (ja) * | 1993-06-04 | 1994-12-22 | Fujigen Kk | エレキギター |
GB2289366B (en) * | 1994-05-13 | 1998-04-29 | Joseph Harold Stephens | Musical instruments |
US5905219A (en) | 1996-01-17 | 1999-05-18 | Westheimer; Jack L. | Stringed musical instrument body and neck composition and method of making body and neck |
JP4055962B2 (ja) * | 1996-03-11 | 2008-03-05 | ヤマハ株式会社 | ピアノの響板 |
US5895872A (en) | 1996-08-22 | 1999-04-20 | Chase; Douglas S. | Composite structure for a stringed instrument |
-
2001
- 2001-08-14 EP EP01119531A patent/EP1182641B1/de not_active Expired - Lifetime
- 2001-08-14 EP EP01119532A patent/EP1182642B1/de not_active Expired - Lifetime
- 2001-08-14 DE DE20113495U patent/DE20113495U1/de not_active Expired - Lifetime
- 2001-08-14 AT AT01119532T patent/ATE309597T1/de not_active IP Right Cessation
- 2001-08-14 AT AT01119531T patent/ATE309596T1/de not_active IP Right Cessation
- 2001-08-14 DE DE50107961T patent/DE50107961D1/de not_active Expired - Lifetime
- 2001-08-14 DE DE50107960T patent/DE50107960D1/de not_active Expired - Lifetime
- 2001-08-23 US US09/935,972 patent/US6610915B2/en not_active Expired - Fee Related
- 2001-08-23 US US09/935,973 patent/US6737568B2/en not_active Expired - Fee Related
- 2001-08-23 US US09/935,975 patent/US6770804B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ATE309597T1 (de) | 2005-11-15 |
DE50107961D1 (de) | 2005-12-15 |
US6737568B2 (en) | 2004-05-18 |
EP1182642A3 (de) | 2003-11-26 |
US20020066354A1 (en) | 2002-06-06 |
EP1182642A2 (de) | 2002-02-27 |
EP1182641A3 (de) | 2003-09-10 |
ATE309596T1 (de) | 2005-11-15 |
EP1182642B1 (de) | 2005-11-09 |
DE50107960D1 (de) | 2005-12-15 |
US6610915B2 (en) | 2003-08-26 |
EP1182641A2 (de) | 2002-02-27 |
US20020069743A1 (en) | 2002-06-13 |
US20020066353A1 (en) | 2002-06-06 |
US6770804B2 (en) | 2004-08-03 |
DE20113495U1 (de) | 2001-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1182641B1 (de) | Resonanzplatte in Faserverbund-Bauweise | |
DE3038939C2 (de) | ||
DE10084334B3 (de) | Saiten-Musikinstrument | |
DE602005004777T2 (de) | Schallkörper für akustische gitarren | |
DE7509710U (de) | Mitschwingender staender fuer musikinstrumente | |
DE3326006A1 (de) | Schwing- und/oder reflexionsfaehiger festkoerper fuer geraete und einrichtungen zur erzeugung, abstrahlung, verteilung bzw. weiterleitung von schallschwingungen | |
EP0050314A2 (de) | Schwingkörper, insbesondere Resonanzkörper für Klangerzeugungsgeräte | |
DE69719889T2 (de) | Schlaginstrument mit Klangstaben zur klare Tonerregung einer exakten Tonskale | |
EP4134945B1 (de) | Stimmplatten-anordnung für ein handzuginstrument, stimmstock-anordnung für ein handzuginstrument, sowie handzuginstrument | |
EP2817798B1 (de) | Tasteninstrument | |
Ono | Transient response of wood for musical instruments and its mechanism in vibrational property | |
DE2424277A1 (de) | Saite fuer musikinstrumente | |
DE69932401T2 (de) | Saitenmusikinstrument aus Bambusplatten | |
DE2906987C2 (de) | Anordnung für die elektrische Wiedergabe des Klanges eines Saiteninstrumentes | |
DE427305C (de) | Resonanzkoerper fuer Musikinstrumente mit ausgeglichener Klangverstaerkung | |
DE102004007613B3 (de) | Streichinstrument | |
EP0045462A2 (de) | Resonanz- und/oder Schwingkörper für Klangerzeugungsgeräte | |
DE674889C (de) | Bandfilter fuer Formantkreise in elektrischen Musikinstrumenten | |
DE19720201A1 (de) | Chordophon | |
DE202004007402U1 (de) | Saiteninstrument | |
DE10328233A1 (de) | Leiste - Saitenraster - Vorrichtung, Verfahren zur Erzeugung von Teiltonklängen | |
DE202012104814U1 (de) | Resonanzboden für Klaviere mit Masseelement | |
AT504014B1 (de) | Saiteninstrument | |
DE4135015A1 (de) | Verfahren zum herstellen und abstimmen eines musikinstrumentes | |
DE10322650B3 (de) | Frei schwingendes Saitensystem für alle traditionell akustischen und neuzeitlich modernen, elektrisch / elektronisch betriebenen Saitenmusikinstrumente |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20030926 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SCHLESKE, MARTIN |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHLESKE, MARTIN |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051109 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051109 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051109 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50107960 Country of ref document: DE Date of ref document: 20051215 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060209 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060410 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060810 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060814 |
|
BERE | Be: lapsed |
Owner name: SCHLESKE, MARTIN Effective date: 20060831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060814 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090827 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091029 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100814 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50107960 Country of ref document: DE Effective date: 20110301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110301 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100814 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090914 Year of fee payment: 9 |