EP1171252A1 - Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen - Google Patents

Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen

Info

Publication number
EP1171252A1
EP1171252A1 EP00914010A EP00914010A EP1171252A1 EP 1171252 A1 EP1171252 A1 EP 1171252A1 EP 00914010 A EP00914010 A EP 00914010A EP 00914010 A EP00914010 A EP 00914010A EP 1171252 A1 EP1171252 A1 EP 1171252A1
Authority
EP
European Patent Office
Prior art keywords
workpiece
forming
heat
temperature
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00914010A
Other languages
English (en)
French (fr)
Other versions
EP1171252B1 (de
Inventor
Hansruedi Huwiler
Ursula Weidig
Kurt Steinhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUAG Components AG
Original Assignee
RUAG Munition
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUAG Munition filed Critical RUAG Munition
Priority to EP00914010A priority Critical patent/EP1171252B1/de
Publication of EP1171252A1 publication Critical patent/EP1171252A1/de
Application granted granted Critical
Publication of EP1171252B1 publication Critical patent/EP1171252B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/06Swaging presses; Upsetting presses
    • B21J9/08Swaging presses; Upsetting presses equipped with devices for heating the work-piece
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the present invention relates to a method according to the preamble of claim 1.
  • the deformability of a material is therefore understood to mean the maximum change in shape that it can endure without breaking.
  • This ability to change shape is characterized by the change in fracture shape or by the tensile strength values determined from tensile tests such as elongation at break and constriction.
  • the fracture shape change is determined in model tests, tensile, compression or torsion tests, whereby the fracture shape change basically corresponds to the logarithmic elongation at break. Proceeding from this, it is an object of the present invention to provide a method which enables the degrees of deformation to be increased without the workpiece quality suffering as a result.
  • the dimensional accuracy and surface quality should correspond to that of cold forming.
  • the method should allow, in connection with subsequent operations, to switch off, simplify or reduce the cost of individual method steps, such as re-pressing, hardening, polishing, cutting or cutting etc.
  • the invention is based on the knowledge that the deformation capacity is not a pure material property but also depends on the process conditions.
  • the cold forming or its resulting hardening can be influenced in a targeted manner Temperature curve on the workpiece can be optimized.
  • the heat treatment before, during and after the transverse extrusion can be carried out using means known per se, such as induction heating, flame or laser.
  • the preheating of the workpiece can be carried out inductively, while the targeted introduction of process heat on the press takes place by means of a laser beam of high energy that is guided in a timely and targeted manner.
  • Inductive heating is particularly advantageous in the case of rotationally symmetrical components which are subjected to a later turning and / or grinding operation.
  • the depth of penetration of the heat can be set very precisely by time-dependent control of the frequency of the induction current, so that the transition areas between cold and hot forming can be clearly delimited, cf. Claim 5.- This allows the desired temperature profile to be specified.
  • the heat dissipation can also be controlled by cooled grippers etc. Cooling by water has been preserved; however, it can also be supplemented by subsequent air cooling so that the press is dry when the press is removed. Similar means could be used for further processing of the compact in further process stages, which among other things would considerably improve the throughput time and the energy costs.
  • Fig. 4 shows the implementation of simultaneous cold and hot forming on a hydraulic press, shown m the process steps I - IV and
  • Fig. 5 shows an inventive device for controlled heating of the blank.
  • a blank 100 is heated in its central region 40 by a heat source 30 above its recrystallization temperature. In this case or subsequently, it is placed with its shaft in a die 20 and gripped by a punch 10 on its shaft diameter and deformed with a force F, so that an axially symmetrical collar (flange) is created.
  • the blank 100 is shown individually and provided with dimension lines; the shaft diameter is dl, the lower shaft diameter d2 and the length L0.
  • FIG. 1 creates a pressure 100 'according to FIG. 3, which serves, for example, as a gear shaft.
  • a pressure 100 ' which serves, for example, as a gear shaft.
  • Forming temperature 20 ° C in the cold area resp.
  • a collar diameter D 117 mm
  • a collar width of S2 9.6 mm
  • the workpiece was compressed to a length Ll of 470 mm.
  • the area of material forming S1 is 250 mm
  • the local degree of deformation of cold extrusion is a maximum of 1.2
  • the local degree of deformation of hot extrusion is a maximum of 2.0.
  • the yield stress during cold forming was
  • the yield stress during hot forming was 225 MPa, at the maximum.
  • the dynamic softening processes are exploited locally, whereby the material's ability to change shape remains almost unchanged during the entire forming process.
  • the hardening behavior is modified locally so that the shape change capacity is adapted to the shape change to be achieved. So there is a "tailoring" of the material properties to the forming process. In this way, local degrees of deformation can be made much larger than 1.0 without intermediate annealing. Since the method essentially remains a cold cross extrusion, a comparable accuracy of the final shape and a desired increase in strength are ensured. By adjusting the selected local temperature and controlled cooling, an in sufficient strength of the hot or semi-hot-formed bundle can be produced in practice.
  • Hydro- and aerodynamic means are available for cooling and / or for maintaining the desired temperature gradients.
  • FIG. 4 A commercially available robot 60 with an axis of rotation 61 and two articulated arms 62 and 63 and a controlled hydraulic telescopic arm 64 carries a heater 30 with an induction coil which is connected to a
  • Blank 100 grips and is partially heated by a shifting stroke V.
  • the blank 100 has previously been brought - by the same robot 60 - into the die 20 of a notoriously known hydraulic press 90. Underneath is an ejection cylinder 92; The press die 10 is arranged above the blank 100 and is operatively connected to a press cylinder 91. - This stage of the process is designated I and relates to partial heating.
  • Process stage III shows the final pressing at max. Print; The blank 100 has become the pressing 100 '.
  • process stage IV the die travels back to its starting position, while cooling tongs 50, which move with a water and an air supply is equipped to cool the heated part of the press lmgs 100 '.
  • the cooling tongs 50 are constructed in a manner known per se and have an articulated guide 51 which is compatible with the robot 60.
  • FIG. 5 shows a preferred variant of an inductive heater 30 by means of an induction coil 30 ', which is fed via a three-phase frequency converter 70, characterized by the phases R, S, T.
  • the mains frequency is denoted by f 1 (the variable frequency f "controlled by a frequency control signal S is supplied to the induction coil 30 'at a constant current ⁇ ⁇ .
  • the frequency control signal S is preferably generated by a program control which takes into account all the parameters of the blank 100 and the press film 100 'to be generated when controlling the heating process.
  • the local degree of deformation is adapted to the desired deformation or can be optimized. Leave it thus producing workpieces that have a homogeneous solidification despite different shape changes.
  • Another advantage is that reproducible, rotationally symmetrical spatial shapes can be achieved from a simple blank, without preforming or without an additional die.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Verfahren zur Massivumformung von axial-symmetrischen metallischen Bauteilen
Die vorliegende Erfindung bezieht sich auf ein Verfahren nach dem Oberbegriff des Anspruchs 1.
Aus der Verfahrenstechnik sind zahlreiche Umformverfahren bekannt, wobei diese entweder am warmen oder am kalten Werkstück erfolgen. Notorisch bekannt ist u.a. das Fliesspressen gemass dem Oberbegriff des Anspruchs 1.
Die bekannten Massivumformungen stossen beim Querfliesspressen unter Raumtemperatur rasch an Verfahrensgrenzen, d.h. bei hohen Umformgraden kommt es zu Einschnürungen beispielsweise am Rand eines Bundes, hervorgerufen durch die dort herrschenden tangentialen Zugspannungen, was zum Ver- sagen des Werkstücks durch Aufreissen fuhrt. Bei geringen Spalthöhen können Werkstofftrennungen im Bereich der Fliess-Scheide auftreten, wobei in dieser Zone die lokale Formänderung derart hoch ist, dass das Formänderungsvermögen des Werkstoffs erschöpft wird und kein Kaltverschweis- sen mehr möglich ist.
Unter dem Formänderungsvermögen eines Werkstoffs wird daher die maximale Formänderung verstanden, die dieser ertragt ohne dass ein Bruch entsteht. Charakterisiert wird dieses Formänderungsvermögen über die Bruchformanderung oder über die aus Zugversuchen ermittelten Zahigkeitskennwerte wie Bruchdehnung und Einschnürung. Die Bruchformanderung wird in Modellversuchen, Zug-, Druck- oder Torsionsversuchen ermittelt, wobei die Bruchformanderung grundlegend betrachtet der logarithmischen Bruchdehnung entspricht. Davon ausgehend ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zu schaffen, welches eine Erhöhung der Umformgrade ermöglicht, ohne dass die Werkstuckqualitat darunter leidet.
Ebenfalls ist es Aufgabe der Erfindung, durch die Umformung die Werkstoffeigenschaften positiv zu beeinflussen, um nachfolgende Wärmebehandlungen in ihrer Zahl zu reduzieren oder gar zu eliminieren. Die Massgenauigkeit und Oberflachengüte soll derjenigen des Kaltumformens entsprechen.
Im weiteren soll das Verfahren erlauben, in Verbindung mit Folge-Operationen einzelne Verfahrensschritte, wie Nachpressen, Harten, Polieren, Spanen oder Schneiden etc., auszuschalten, zu vereinfachen oder zu verbilligen.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 ge- lost.
Die Erfindung geht von der Erkenntnis aus, dass das Formänderungsvermögen keine reine Werkstoffeigenschaft ist sondern auch von den Verfahrensbedingungen abhangt.
Erfindungsgemass erfolgt daher eine lokale Anpassung des Formänderungsvermögens an die gewünschte Verformung mittels einer gezielten Erwärmung des Werkstucks, wobei eine Kombination von Kalt- und Warmumformung erfolgt, welche die Vorteile der guten Umformung am warmen Werkstuck mit den Vorteilen des Kaltumformens, wie Materialverfestigung, Massge- nauigkeit und hohe Oberflachengute vereinigt.
Gemass Anspruch 2 kann das Kaltumformen bzw. dessen resultierende Verfestigung durch einen gezielt beeinflussten Temperaturverlauf am Werkstuck optimiert werden.
Durch Fuhrung des Abkuhlvorgangs nach dem Querfliesspressen lasst sich zudem die Festigkeit des Werkstucks lokal nochmals verbessern, Anspruch 3.
Die Wärmebehandlung vor, wahrend und nach dem Querfliesspressen kann mit an sich bekannten Mitteln, wie Induktionsheizung, Flamme oder Laser, erfolgen.
Beispielsweise kann die Vorwarmung des Werkstucks induktiv durchgeführt werden, wahrend die gezielte Einbringung von Prozesswarme auf der Presse, durch einen zeitlich und zielgerecht geführten Laserstrahl hoher Energie, erfolgt.
Insbesondere bei rotationssymmetrischen Bauteilen, welche einer spateren Dreh- und/oder Schleifoperation unterzogen werden, ist eine induktive Erwärmung gemass Anspruch 4 gun- stig.
Die Eindringtiefe der Wärmeeinwirkung lasst sich durch eine zeitabhängige Steuerung der Frequenz des Induktionsstromes sehr präzise einstellen, so dass die Ubergangsbereiche zwischen Kalt- und Warmumformung scharf abgrenzbar sind, vgl. Anspruch 5.- Dadurch lasst sich das gewünschte Temperatur- profil vorgeben.
Ebenfalls kann die Warmeabfuhr durch gekühlte Greifer etc. gesteuert werden. Bewahrt hat sich eine Kühlung durch Wasser; sie kann aber auch durch eine anschliessende Luftkuh- lung ergänzt werden, so dass die Presse bereits bei der Entnahme des Presslmgs trocken ist. Gleichartige Mittel konnten zur Weiterverarbeitung des Presslings in weiteren Verfahrensstufen eingesetzt werden, was u.a. die Durchlaufzeit und die Energiekosten betrachtlich verbessern wurde.
Nachfolgend werden anhand von Zeichnungen Ausfuhrungsbei- spiele der Erfindung diskutiert, welche durch Versuche und rechnerische Nachprüfung (Simulation) erhärtet sind.
Es zeigen:
Fig. 1 eine Prinzipdarstellung des erfindungsge assen Verfahrens,
Fig. 2 einen Rohling, vorbereitet für das Querpressen,
Fig. 3 den resultierenden Pressung,
Fig. 4 die Umsetzung der simultanen Kalt- und Warmumformung auf eine hydraulische Presse, dargestellt m den Verfahrensschritten I - IV und
Fig. 5 eine erfindungsgemasse Vorrichtung zur gesteuerten Erwärmung des Rohlings.
Gemass Fig. 1 wird ein Rohling 100 in seinem mittleren Bereich 40 durch eine Wärmequelle 30 ber seine Rekristalli- sationstemperatur erwärmt. Dabei oder anschliessend wird er mit seinem Schaft in eine Matrize 20 gestellt und durch einen Stempel 10 an seinem Wellendurchmesser gefasst und mit einer Kraft F verformt, so dass ein axial-symmetrischer Bund (Flansch) entsteht. In Fig. 2 ist der Rohling 100 einzeln dargestellt und mit Masslinien versehen; der Wellendurchmesser betragt dl, der untere Schaftdurchmesser d2 und die Lange L0.
Durch das in Fig. 1 aufgezeigte Verfahren entsteht ein Pressung 100' gemass Fig. 3, welcher beispielsweise als Getriebewelle dient. Durch das Querfliesspressen hat sich die ursprungliche Lange L0 auf Ll reduziert, in einem Be¬ reich der Materialumformung Sl sind an der Welle Materialverdickungen feststellbar; gepresst wurde ein Bund mit ei- nem Durchmesser D und einer Bundbreite S2.
Gewählt wurden folgende Parameter:
Werkstoff C15 (1.0441)
Umformtemperatur: 20 °C im kalten Bereich resp.
1000 °C im erwärmten Bereich
Lange L0 = 565 mm
Wellendurchmesser dl - 75, 5 mm
Schaftdurchmesser d2 = 50 mm
Erzielt wurden:
Ein Bunddurchmesser D = 117 mm Eine Bundbreite von S2 = 9,6 mm Das Werkstuck wurde auf eine Lange Ll von 470 mm gestaucht . Der Bereich der Materialumformung Sl betragt 250 mm Der lokale Umformgrad des Kaltfliesspressens betragt maximal 1,2
Der lokale Umformgrad des Warmfliesspressens beträgt maximal 2,0 Die Fliess-Spannung bei der Kaltumformung betrug
806 MPa, im Maximum.
Die Fliess-Spannung bei der Warmumformung betrug 225 MPa, im Maximum.
Die numerische Simulation erfolgte mittels der Software MSC/SuperForge 1.0 (Fa. MacNeal-Schwendler GmbH, München)
Bei der Warmumformung wird eine Verfestigung durch die dynamischen Entfestigungsvorgange weitgehendst verhindert; die Verteilung der Fliess-Spannung ist homogen.
Durch die erfindungsgemässe partielle Erwärmung werden die dynamischen Entfestigungsvorgange gezielt ortlich ausgenutzt, wodurch das Formänderungsvermögen des Werkstoffs wahrend des gesamten Umformvorganges nahezu unverändert bleibt.
Das Verfestigungsverhalten wird lokal modifiziert, so dass das Formänderungsvermögen der zu erzielenden Formänderung angepasst wird. Also erfolgt ein "Massschneidern" der Werkstoffeigenschaft an den Umformvorgang. Damit werden dann lokale Umformgrade sehr viel grosser als 1,0 ohne Zwischen- gluhungen möglich. Da das Verfahren im wesentlichen ein Kaltquerfliesspressen bleibt, ist eine vergleichbare Genauigkeit der Endform und eine erwünschte Festigkeitssteigerung gewahrleistet. Durch Anpassen der gewählten lokalen Temperatur und einer kontrollierten Abkühlung kann eine in praxi ausreichende Festigkeit des warm- oder halbwarmumge- formten Bundes erzeugt werden.
Zur Abkühlung und/oder zur Aufrechterhaltung der gewünschten Temperaturgefälle bieten sich hydro- und aerodynamische Mittel an.
Die praktische Umsetzung des erfindungsgemassen Verfahrens ist in Fig. 4 dargestellt. Ein handelsüblicher Roboter 60 mit einer Drehachse 61 und zwei Gelenkarmen 62 bzw. 63 und einem gesteuerten hydraulischen Teleskoparm 64 trägt eine Heizung 30 mit einer Induktionsspule, welche über einen
Rohling 100 greift und diesen durch einen Verschiebehub V gezielt partiell erwärmt.
Der Rohling 100 ist vorgängig - durch denselben Roboter 60 - in die Matrize 20 einer notorisch bekannten hydraulischen Presse 90 verbracht worden. Darunter befindet sich ein Aus- stosszylinder 92; über dem Rohling 100 ist der Press-Stempel 10 angeordnet und mit einem Presszylinder 91 in Wirkverbindung. - Diese Verfahrensstufe ist mit I bezeichnet und betrifft die partielle Erwärmung.
Daneben ist in der Verfahrensstufe II der Beginn des Pressvorgangs dargestellt; der Hydraulikkolben des Presszylin- ders 91 wird in Pfeilrichtung nach unten verfahren.
Die Verfahrensstufe III zeigt das Fertigpressen bei max . Druck; aus dem Rohling 100 ist der Pressung 100' geworden.
In der Verfahrensstufe IV verfahrt die Matrize wieder in ihre Ausgangsposition, wahrend eine Kuhlzange 50, die mit einer Wasser- und einer Luftzufuhr ausgerüstet ist, die erwärmte Partie des Presslmgs 100' abkühlt.
Die Kuhlzange 50 ist m an sich bekannter Weise aufgebaut und weist eine Gelenkfuhrung 51 auf, welche zum Roboter 60 kompatibel ist. Eingezeichnet sind zudem eine Mediumzufuhr 52, ein Mediumabfluss 53 sowie das zugefuhrte Kuhlmedium M und das abgesaugte Medium M' .
In Fig. 5 ist eine bevorzugte Variante einer induktiven Heizung 30 mittels einer Induktionsspule 30' dargestellt, welche über einen dreiphasigen Frequenzwandler 70, charakterisiert durch die Phasen R, S, T, gespeist ist. Die Netzfrequenz ist mit f1( bezeichnet, die durch ein Frequenz- steuerungs-Signal S, kontrollierte variable Frequenz f„ ist bei konstantem Strom ικ der Induktionsspule 30' zugeführt.
Das Frequenzsteuerungs-Signal S wird vorzugsweise durch eine Programmsteuerung generiert, welche sämtliche Parameter des Rohlings 100 und des zu erzeugenden Presslmgs 100' bei der Steuerung des Erwarmungsvorgangs berücksichtigt.
Fig. 4 und 5 zeigen deutlich, dass das erfmdungsgemasse Verfahren für eine Serienfertigung von Bauteilen sehr geeignet ist und deren Gestehungskosten - aufgrund der erzielten hohen Umformgrade - beträchtlich reduziert bzw. Nachbearbeitungsvorgange verkürzt und Materialeinsparungen eronngt .
Durch die vorgangig dargestellte Emflussnahme auf das Verfestigungsverhalten mit Hilfe eines vorbestimmten Tempera- turprofils wird der lokale Umformgrad an die gewunscnte Umformung angepasst, bzw. lasst sich optimieren. Es lassen sich somit Werkstucke herstellen, die trotz unterschiedlicher Formanderungen eine homogene Verfestigung aufweisen.
Ein weiterer Vorteil besteht darin, dass aus einem einfachen Rohling, ohne vorformen bzw. ohne eine zusatzliche Ma- trize, reproduzierbare rotationssymmetrische Raumformen erzielbar sind.
Mittels einer axialen Stauchkraft und über das vorgewählte Temperaturprofil eingestellte lokale Formänderungswiderstände, können diese gewünschten Raumformen geschaffen wer- den.- Die Matrize und der Stempel haben einzig eine Zentrier- und Kalibrierfunktion.
Werkstofftechnisch betrachtet, wird das erforderliche Profil unterschiedlicher Formänderungswiderstände über unterschiedliche Fliess-Spannungen erzielt.
Es hat sich gezeigt, dass durch eine entsprechende Temperaturverteilung über einer Querschnittsflache von hohlen Rohlingen Dorne ( Innenkorper) überflüssig sind, da die erzielte Verteilung der Formänderungswiderstände über dem Querschnitt die Fliessrichtung des Werkstoffs exakt bestimmt.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Massivumformung von axial symmetrischen metallischen Bauteilen durch Fliesspressen an einem partiell erwärmten Werkstück, wobei dieses endseitig in einer Matrize gefuhrt ist und durch einen Press- Stempel fliessgepresst wird, dadurch gekennzeichnet, dass einzig der Bereich des durch Querfliessen zu bildenden Bundes auf eine Temperatur, welche über der Rekristallisationstemperatur liegt, erwärmt wird, wobei diese Temperatur während des Umformvorganges aufrecht erhalten bleibt, und dass dabei in einem durch die Matrize und den Stempel gebildeten axialen Zwischenraum das Formänderungsverhalten des Werkstoffs durch eine gezielte Wärmeeinwirkung an die Umformung angepasst wird, so dass eine simultane Warm- und Kaltumformung des Werkstoffs, mit partieller Kaltverfestigungen, resultiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zumindest während des Erwärmens des Werkstucks die neben dem Bereich maximaler Umformung vorhandenen Bereiche gekühlt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Werkstück nach dem Fliesspressen partiell und kontrolliert abgekühlt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur gezielten Wärmeeinwirkung eine Induktionsspule eingesetzt wird, welche durch einen konstanten Strom (ik), während vorgegebener Zeit, die Wärmeeinwirkung auf das rohe Bauteil steuert.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass durch eine variable Frequenz (fv) die Eindring- tiefe der Wärmeeinwirkung gesteuert wird.
EP00914010A 1999-04-16 2000-04-12 Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen Expired - Lifetime EP1171252B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00914010A EP1171252B1 (de) 1999-04-16 2000-04-12 Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99810319 1999-04-16
EP99810319A EP1046440A1 (de) 1999-04-16 1999-04-16 Verfahren zur Massivumformung von axial-symmetrischen metallischen Bauteilen
EP00914010A EP1171252B1 (de) 1999-04-16 2000-04-12 Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen
PCT/CH2000/000212 WO2000062956A1 (de) 1999-04-16 2000-04-12 Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen

Publications (2)

Publication Number Publication Date
EP1171252A1 true EP1171252A1 (de) 2002-01-16
EP1171252B1 EP1171252B1 (de) 2003-11-05

Family

ID=8242776

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99810319A Withdrawn EP1046440A1 (de) 1999-04-16 1999-04-16 Verfahren zur Massivumformung von axial-symmetrischen metallischen Bauteilen
EP00914010A Expired - Lifetime EP1171252B1 (de) 1999-04-16 2000-04-12 Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP99810319A Withdrawn EP1046440A1 (de) 1999-04-16 1999-04-16 Verfahren zur Massivumformung von axial-symmetrischen metallischen Bauteilen

Country Status (5)

Country Link
EP (2) EP1046440A1 (de)
AT (1) ATE253422T1 (de)
AU (1) AU3548700A (de)
DE (1) DE50004335D1 (de)
WO (1) WO2000062956A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009982A1 (de) 2009-02-23 2010-08-26 Unikassel Transfer Gmbh Metakus - Anwendungszentrum Metallformgebung Verfahren zur Herstellung innen- und außenprofilierter Werkstücke

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865949B1 (fr) * 2004-02-11 2006-05-19 Commissariat Energie Atomique Presse hybride pour le formage de pieces de fortes dimensions
DE102007001515B4 (de) * 2007-01-10 2009-10-29 Gesenkschmiede Schneider Gmbh Verfahren zum Herstellen eines Ventils mit mindestens einem Flügel, sowie danach hergestelltes Ventil
DE102010053119A1 (de) * 2010-12-01 2012-06-06 Robert Bosch Gmbh Verfahren zur Herstellung einer Gewindespindel mit großem Lagersitz
CN102120293A (zh) * 2010-12-30 2011-07-13 江苏森威集团有限责任公司 一种电枢轴的精密锻造加工方法
CN102357552A (zh) * 2011-08-18 2012-02-22 南京通用电器有限公司 传动轴压方及制造传动轴的方法
WO2016103316A1 (ja) * 2014-12-22 2016-06-30 株式会社日立製作所 熱間据込み鍛造用の素材形状
CN105750840A (zh) * 2016-04-21 2016-07-13 苏州市东盛锻造有限公司 三通锻件的锻造方法
CN105903871A (zh) * 2016-04-21 2016-08-31 苏州市东盛锻造有限公司 羊头的锻造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1408570A (fr) * 1964-09-22 1965-08-13 Hasenclever Ag Maschf Presse électrique à refouler pour pièces brutes en forme de tiges chauffées par effet joule
US3399290A (en) * 1965-07-23 1968-08-27 Gen Motors Corp Iridium heading process
JPS59130641A (ja) * 1983-01-15 1984-07-27 Akira Yusa 端部に膨大部を有する金属棒の製造方法及び装置
DE3474524D1 (en) * 1984-04-11 1988-11-17 Hitachi Ltd Method and apparatus for increasing thickness of tubular member
DE19746235A1 (de) * 1996-11-02 1998-05-07 Volkswagen Ag Verfahren zur Herstellung eines Tellerventiles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0062956A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009982A1 (de) 2009-02-23 2010-08-26 Unikassel Transfer Gmbh Metakus - Anwendungszentrum Metallformgebung Verfahren zur Herstellung innen- und außenprofilierter Werkstücke

Also Published As

Publication number Publication date
EP1171252B1 (de) 2003-11-05
AU3548700A (en) 2000-11-02
EP1046440A1 (de) 2000-10-25
WO2000062956A1 (de) 2000-10-26
DE50004335D1 (de) 2003-12-11
ATE253422T1 (de) 2003-11-15

Similar Documents

Publication Publication Date Title
DE602005001600T2 (de) Verfahren zum Stauchen eines metallischen Rohlings durch Warmverarbeitung, Verfahren zur Vorbereitung eines Rohlings für ein Schmiedeverfahren gemäss dem Stauchverfahren und Vorrichtung zur Durchführung des Stauchverfahrens.
DE3742869B4 (de) Rohrförmige Stabilisatorstange und Verfahren zu deren Herstellung
EP2473297A2 (de) Verfahren und vorrichtung zur herstellung eines metallbauteils
EP2993241A1 (de) Verfahren und presse zur herstellung wenigstens abschnittsweise gehärteter blechbauteile
EP2324938A1 (de) Verfahren und Warmumformanlage zur Herstellung eines gehärteten, warm umgeformten Werkstücks
DE102012005106B4 (de) Verfahren zur Herstellung einer Hohlwelle und Vorrichtung hierfür
WO1996002336A1 (de) Verfahren und vorrichtung zum drückumformen von werkstücken
DE3828635C2 (de)
DE2003305B2 (de) Verfahren und Einrichtung zum örtlichen Anlassen einer Membranfeder
WO2012076111A2 (de) Verfahren zum umformen eines rohrabschnittes
WO2003012151A1 (de) Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen
EP1171252B1 (de) Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen
DE3106457C2 (de) Verfahren zum Herstellen einer Nockenwelle oder dergleichen, und Vorrichtung zur Durchführung eines solchen Verfahrens
DE4401674C2 (de) Verfahren sowie Vorrichtung zum Lochen von Werkstücken
EP1063029A1 (de) Verfahren und Vorrichtung zum Innendruckformen eines hohlen metallischen Werkstücks
DE102009008137B4 (de) Verfahren und Vorrichtung zum Innendruck-Umformen eines Hohlkörpers aus Metall
WO1994019124A1 (de) Verfahren und vorrichtung zur aufbringung eines temperaturprofils an für das strangpressen vorgesehenen metallblöcken
EP0893278A2 (de) Verfahren zur Herstellung eines Rades für ein Kraftfahrzeug
DE102015100801B4 (de) Stauchvorrichtung und Verfahren jeweils zum Elektrostauchen von Werkstücken
DE10308849B4 (de) Verfahren zur umformenden Herstellung form- und maßgenauer, rotationssymmetrischer Hohlkörper und Vorrichtung zur Durchführung des Verfahrens
EP0101097B1 (de) Verfahren zur Herstellung eines kaltverfestigten metallischen Werkstücks durch Schmieden oder Pressen
DE10316600A1 (de) Verfahren und Vorrichtung zum Antrieb eines Pressstempels einer Glasformmaschine
DE102011002208B4 (de) Spreizschmiedeverfahren und Vorrichtung zur Durchführung des Spreizschmiedeverfahrens
EP3689490B1 (de) Verfahren zur herstellung eines bauteils aus metall mittels innenhochdruckumformen
AT18135U1 (de) Verfahren und eine Vorrichtung zum Verschweißen von befahrbaren Komponenten eines Gleises mittels Abbrennstumpfschweißen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RUAG COMPONENTS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50004335

Country of ref document: DE

Date of ref document: 20031211

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PPS POLYVALENT PATENT SERVICE AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110503

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: RUAG COMPONENTS

Free format text: RUAG COMPONENTS#ALLMENDSTRASSE 74#3602 THUN (CH) -TRANSFER TO- RUAG COMPONENTS#ALLMENDSTRASSE 74#3602 THUN (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120425

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130430

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130701

Year of fee payment: 14

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50004335

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 253422

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50004335

Country of ref document: DE

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140412