WO2003012151A1 - Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen - Google Patents

Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen Download PDF

Info

Publication number
WO2003012151A1
WO2003012151A1 PCT/EP2002/008271 EP0208271W WO03012151A1 WO 2003012151 A1 WO2003012151 A1 WO 2003012151A1 EP 0208271 W EP0208271 W EP 0208271W WO 03012151 A1 WO03012151 A1 WO 03012151A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
temperature
workpiece
parameters
modules
Prior art date
Application number
PCT/EP2002/008271
Other languages
English (en)
French (fr)
Inventor
Klaus Küppers
Meinert Meyer
Thomas Nerzak
Uwe Plociennik
Original Assignee
Sms Meer Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7693931&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003012151(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sms Meer Gmbh filed Critical Sms Meer Gmbh
Priority to AT02776916T priority Critical patent/ATE288503T1/de
Priority to US10/485,286 priority patent/US20040187974A1/en
Priority to EP02776916A priority patent/EP1412543B1/de
Priority to KR1020047000443A priority patent/KR100583301B1/ko
Priority to DE50202183T priority patent/DE50202183D1/de
Priority to JP2003517324A priority patent/JP4174423B2/ja
Publication of WO2003012151A1 publication Critical patent/WO2003012151A1/de
Priority to US11/880,635 priority patent/US7854883B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling

Definitions

  • the invention relates to a method for cooling workpieces, in particular for cooling rolled products and here profile rolled products made of rail steels with a fine pearlitic or ferritic / pearlitic structure, the warm workpiece, i.e. Workpiece with an austenitic structure, passed through a cooling section with an entry and an exit area and subjected to a cooling process and undergoes a transformation into a pearlitic or ferritic / pearlitic structure.
  • Rail steels are mainly used for the production of rails and their connecting and fastening elements.
  • the vertical and lateral forces acting on the rail via the wheel such as normal, guiding, accelerating and braking forces, lead to very high dynamic loads in the immediate area of impact and generally to plastic deformation of the steel. These loads cause signs of wear in the form of material wear, abrasion, material breakouts, local material fatigue or cracks.
  • An improvement in the resistance of a rail to signs of wear can be achieved by increasing its yield strength and tensile strength as well as its fatigue strength in conjunction with a pearlite structure that is as fine-streaked as possible.
  • Rail steels with a ferritic-pearlitic structure have tensile strengths in a range from 700 to 900 N / mm 2 , while steels with a purely pearlitic structure achieve tensile strength values of over 900 N / mm 2 .
  • the essential properties of the rail steels are determined by the proportion of the structure of ferrite / pearlite and by their morphological formation. Both at The lamellar spacing plays a role in ferritic / pearlitic as well as in pearlitic steels.
  • the invention is based on the object of proposing a cooling method for producing workpieces, in particular rolled profile products, from rail steel, with improved mechanical properties and a finely streaked pearlite or ferrite / pearlite structure.
  • the workpiece for example a rolled or possibly extruded profile product, coming from the (rolling) heat
  • a cooling section which is composed of individual, independent cooling modules with independently adjustable cooling parameters, intermediate areas between the cooling modules for Thermal compensation or for thermal relaxation are provided with means for determining the actual temperature of the respective workpiece in these intermediate areas, and the specific cooling parameters, in particular the cooling intensity, of at least the respective subsequent cooling module depending on the respective actual temperature values of one or each intermediate area
  • a defined (surface) temperature of the workpiece can be regulated during the entire passage through the cooling section, the defined temperature of the workpiece in each case above a critical temperature at which bainitic Ge Form parts to be joined.
  • the basic idea is to regulate the cooling of a workpiece made of rail steel in a cooling section, provided that the surface temperature of the workpiece made of rail steel is cooled in such a way that the desired pearlitic or ferritic / pearlitic structure is obtained, by passing through relaxation phases and a constantly checking the Temperature conditions in preferably every intermediate area and, if necessary, regulation of the cooling parameters of the individual cooling modules ensures that the temperature does not fall below a critical temperature and thus the supercooling is not so high that bainite conversion takes place and thus undesirable bainitic structural components form.
  • the cooling process is composed of individual cooling process steps and depending on the running intermediate areas for structural relaxation from time phases of reheating and / or from time phases of thermal holding and / or from time phases of slow cooling.
  • the workpiece can go through the same time phases of relaxation in all intermediate areas or different time zones in different intermediate areas.
  • the reheating takes place either through the residual heat still present inside the workpiece and / or through external heat supply. In this way, an approximately sawtooth-like cooling curve is set, which has a favorable effect on the final structure which is established and thus on the mechanical properties. Bainite formation is counteracted by setting the parameters of the cooling section in such a way that bainite formation cannot begin at any point in the cooling process.
  • the intermediate areas are used for thermal compensation via the workpiece, in particular rolled product, or for cooling at slow cooling speeds.
  • the specific cooling parameters of the subsequent cooling zone and, at the same time, the cooling parameters of the previous cooling module are preferably regulated as a function of the respective measured actual temperature value of each intermediate area. This means that a workpiece or rolled product, insofar as it is of a predetermined target temperature, which results in a should have the correct point in time or in an intermediate range, deviates, is adjusted back to the target temperature by a specific change in the cooling parameters in the subsequent cooling module and, at the same time, the previous cooling module is adjusted for subsequent workpieces.
  • the surface temperature of the workpiece at the end of the intermediate area i.e. after the end of the area for structural relaxation.
  • the temperature measurement in the intermediate areas can also be used for quality monitoring.
  • the surface temperature measurement is carried out by means of an optical and non-contact measurement, i.e. using a pyrometer.
  • the control of the cooling parameters and here in particular the cooling intensity is preferably carried out by regulating the pressure with which the cooling medium hits the surface of the workpiece and / or by means of regulated adjustment of the temperature of the cooling medium and / or by means of regulated adjustment of the volume flow of the cooling medium by selecting the cooling nozzle geometry.
  • Cooling water is preferably used as the cooling medium.
  • the pressure control is preferably carried out by a pressure control valve in the supply line to the nozzles, which are arranged on chilled beams.
  • the cooling intensity is also possible by controlling a different number of nozzles per chilled beam or chilled beam arrangement.
  • the cooling medium ie in particular the cooling water
  • the cooling medium be preheated to such an extent before it occurs on the workpiece surface that the temperature does not fall below the suffering frost temperature or occurs very late.
  • the Leidenfrost phenomenon is the non-wetting behavior of a liquid when the temperature of the body touched is above the boiling point of the liquid. Water, for example, is protected from further evaporation by a gas skin from evaporated water and thus loses the cooling effect for a certain time.
  • the suffering frost temperature can be influenced by the cooling water flow temperature.
  • the suffering frost temperature increases with a higher cooling water supply temperature, and the cooling becomes weaker.
  • the cooling water be preheated so that the temperature does not fall below the suffering frost temperature or takes place very late. This has the advantage that the cooling becomes weaker and therefore more reproducible.
  • the temperature of the workpiece is measured before entering or upon entering the cooling section and this temperature value is used for presetting the cooling parameters in order to preset the cooling parameters of the individual cooling modules, in particular the setting of the pressure with which the cooling medium strikes the workpiece surface , to reach.
  • Figure 1 is a schematic overview of a cooling section in which the inventive method is carried out.
  • Fig. 2 is a temperature-time diagram with the cooling curves of five measuring points in or on the rail head of a conventional rail steel with about 0.8% C. and 1.0% Mn, which is subjected to a cooling process in such a way in a cooling section that the bainite temperature is not fallen below;
  • the cooling section 1 shown in FIG. 1 adjoins a profile rolling section (not shown), for example a rolling section for rail profiles made of rail steels.
  • the cooling section 1 is composed of five cooling modules 2a-e, but is not limited to this number of cooling modules.
  • the individual cooling modules 2a-e are constructed, for example, in such a way that they comprise one or more cooling beams or cooling nozzle arrangements.
  • the pressure at which the cooling water emerges from the individual nozzles can be set via a pressure control valve 3a-e.
  • the current pressure is measured using the pressure gauges 4a-e.
  • Intermediate areas 5a-e are arranged between the individual cooling modules 2a-e.
  • a pyrometer 6a-e for contactless optical measurement of the surface temperature of the rolled product located in this intermediate region is arranged at the end of each intermediate region 5a-e, the surface temperature at the rail head being measured in the case of a rail profile.
  • An additional pyrometer 6f is arranged in front of the first cooling module 2a at the beginning or entry area (12) of the cooling section 1.
  • the individual pyrometers 6a-f are connected to a computer unit 8 via signal lines 7a-g.
  • the computer unit 8 is connected via corresponding control lines 9a-e for changing the individual control valves 3a-e of the coolant nozzles.
  • the cooling medium in particular cooling water (KW)
  • KW cooling water
  • a control loop of the pressure measuring devices 4a-e with the computer unit 8 is also provided (signal lines 11ae).
  • a current surface temperature value is recorded by means of the first pyrometer 6f, for example a two-color pyrometer.
  • This first surface temperature value is forwarded to the computer unit 8, which already effects a presetting of the individual control valves for setting the cooling water pressure and the cooling water temperature as a function of this individual value.
  • the rail profile After passing through the first cooling module 2a and following the first cooling step, the rail profile enters the first intermediate area 5a, in which a relaxation phase for the structure takes place.
  • a further surface temperature measurement (TIST) is carried out using a second pyrometer 6a, for example a two-color pyrometer.
  • This recorded actual value is transferred to the computer unit 8 via the signal lines 7a and 7g and a difference calculation is carried out there between a target (T S OLL) and the actual value (TIST).
  • the target value is always above a material-specific temperature at which bainite formation can occur.
  • the setpoints are alloy-specific and can be determined from tests.
  • a guideline for this critical temperature. which should not be undercut for rail steels in a cooling process is around 450-500 ° C.
  • the subsequent one or more subsequent cooling modules are or are adjusted with regard to their cooling parameters, here the pressure of the incident cooling water, by changing the pressure control valves 3a-e.
  • the pressure values are continuously controlled as a function of the measured actual pressure values.
  • the control described is repeated depending on the temperature values recorded in each further intermediate area 5b-5e. It is preferably provided that not only the subsequent cooling module, but also the previous cooling module or modules for the subsequent rolling stock to be cooled are regulated.
  • FIGS. 2 and 3 show the cooling curves of a rail head made of a material with 0.8% carbon with regulation and without regulation with the aid of temperature-time diagrams.
  • the designation C80W60 or C80W65 makes it clear that the cooling rate in the core of the rail head (example of rail shape according to AREA 136 [delivery specification of the American Railway Engineering Association]) is less high than in the peripheral areas and that the conversion of austenite to pearlite or Ferrite-pearlite takes place at higher temperatures.
  • the temperature curve over time is determined at five different measuring points on the rail head.
  • 1 is a measuring point in the core of the rail head
  • 2 is a measuring point which is arranged 5 mm below the surface
  • 3 is a measuring point which is 5 mm below the side surface
  • 4 is a measuring point on the side surface
  • 5 is a measuring point on the head surface.
  • the simulated cooling section can be individually controlled with five modules.
  • the individual cooling curves in FIG. 2 show that a critical temperature at which bainite formation would start is never undercut.
  • the sawtooth-like cooling curve with reheating in the intermediate or compensation zones becomes clear.
  • Fig. 3 shows a comparison of a cooling section with five cooling modules, which are not individually controllable, so that there is a drop below the bainite temperature in the near-surface areas (curves 4 and 5) of the rail head.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Um insbesondere Profilwalzprodukte aus Schienenstählen mit einem feinperlitischen oder ferritisch/perlitischen Gefüge nach der Kühlung herzustellen, wird vorgeschlagen, dass das Werkstück durch eine Kühlstrecke, die sich aus einzelnen unabhängigen Kühlmodulen (2a-e) mit unabhängig einstellbaren Kühlparametern zusammensetzt, geführt wird, wobei zwischen den Kühlmodulen (2a-e) Zwischenbereiche (5a-e) zur Gefügeentspannung vorhanden sind mit Mitteln zur Ist- Temperaturbestimmung (TIST) des jeweiligen Werkstückes in diesen Zwischenbereichen (5a-e), und wobei in Abhängigkeit der jeweiligen Ist-Temperaturwerte (TIST) des Werkstückes in einem Zwischenbereich (5a-e) die spezifischen Kühlparameter, insbesondere die Kühlintensität, mindestens des jeweils nachfolgenden Kühlmoduls (2b-e) zur Gewährleistung einer definierten Temperatur des Werkstückes während des gesamten Durchlaufs der Kühlstrecke (1) geregelt werden, wobei die definierte Temperatur (TSOLL) des Werkstückes jeweils oberhalb einer kritischen Temperatur, bei der sich bainitische Gefügeanteile bilden, liegt.

Description

VERFAHREN ZUR KÜHLUNG VON WERKSTÜCKEN INSBESONDERE VON PROFTLWALZPRODUK- TEN AUS SCHIENENSTÄHLEN
Beschreibung
Die Erfindung betrifft ein Verfahren zur Kühlung von Werkstücken, insbesondere zur Kühlung von Walzprodukten und hier von Profilwalzprodukten aus Schienenstählen mit einem feinperlitischen oder ferritisch/perlitischen Gefüge, wobei das warme Werkstück, d.h. Werkstück mit austenitischem Gefüge, durch eine Kühlstrecke mit einem Eintritts- und einem Austrittsbereich geführt und einem Abkühlprozeß unterworfen wird und hierbei eine Umwandlung in ein perlitisches oder ferritisch/perlitisches Gefüge durchmacht.
Schienenstähle dienen im wesentlichen zur Herstellung von Schienen sowie deren Verbindungs- bzw. Befestigungselementen. Die über das Rad auf die Schiene einwirkenden senkrechten und seitlichen Kräfte wie Normal-, Führungs-, Be- schleunigungs- und Bremskräfte führen im unmittelbaren Einwirkungsbereich zu sehr hohen dynamischen Beanspruchungen und in der Regel zu einer plastischen Verformung des Stahls. Durch diese Belastungen entstehen Verschleißerscheinungen in Form von Materialabschiebungen, Abrieb, Materialausbrüchen, örtlicher Werkstoffermüdung oder Anrissen. Eine Verbesserung des Widerstandes einer Schiene gegen Verschleißerscheinungen kann durch eine Erhöhung ihrer Streckgrenze und Zugfestigkeit sowie ihrer Dauerfestigkeit in Verbindung mit einem möglichst feinstreifigen perlitischen Gefüge erreicht werden.
Unter normalen Abkühlbedingungen auf einem Kühlbett nach dem Stand der Technik durchlaufen Schienenstähle die Umwandlung in ein perlitisches Gefüge. Hierbei weisen Schienenstähle mit einem ferritisch-perlitischen Gefüge Zugfestigkeiten in einem Bereich von 700 bis 900 N/mm2 auf, während Stähle mit rein perli- tischer Struktur Zugfestigkeitswerte von über 900 N/mm2 erreichen. Die wesentlichen Eigenschaften der Schienenstähle werden durch den Anteil des Gefüges an Ferrit/Perlit sowie durch deren morphologische Ausbildung bestimmt. Sowohl bei den ferritisch/perlitischen als auch bei den perlitischen Stählen spielt der Lamellenabstand eine Rolle.
Der Erfindung liegt die Aufgabe zugrunde, ein Kühlverfahren vorzuschlagen zur Herstellung von Werkstücken, insbesondere Profilwalzprodukten, aus Schienenstahl, mit verbesserten mechanischen Eigenschaften und einem feinstreifigen Per- lit- bzw. Ferrit-/Perlitgefüge.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterentwicklungen sind in den Unteransprüchen beschrieben.
Verfahrensgemäß wird vorgeschlagen, daß das Werkstück, beispielsweise ein Walz- oder ggf. Strangprofilprodukt, aus der (Walz-)hitze kommend, durch eine Kühlstrecke geführt wird, die sich aus einzelnen unabhängigen Kühlmodulen mit unabhängig einstellbaren Kühlparametern zusammensetzt, wobei zwischen den Kühlmodulen Zwischenbereiche zum thermischen Ausgleich bzw. zur thermischen Entspannung vorhanden sind mit Mitteln zur Ist-Temperaturbestimmung des jeweiligen Werkstückes in diesen Zwischenbereichen, und wobei in Abhängigkeit der jeweiligen Ist-Temperaturwerte eines oder eines jeden Zwischenbereichs die spezifischen Kühlparameter, insbesondere die Kühlintensität, mindestens des jeweils nachfolgenden Kühlmoduls zur Einstellung einer definierten (Oberflächen-) Temperatur des Werkstücks während des gesamten Durchlaufs der Kühlstrecke geregelt werden, wobei die definierte Temperatur des Werkstücks jeweils oberhalb einer kritischen Temperatur, bei der sich bainitische Gefügeanteile bilden, liegt.
Grundgedanke ist damit eine Regelung der Abkühlung eines Werkstücks aus Schienenstahl in einer Kühlstrecke unter der Maßgabe, daß die Oberflächentemperatur des Werkstücks aus einem Schienenstahl so abgekühlt wird, daß sich das gewünschte perlitische bzw. ferritisch/perlitische Gefüge einstellt, wobei durch Durchlaufen von Entspannungsphasen sowie einem stetigen Überprüfen der Temperaturverhältnisse in vorzugsweise jedem Zwischenbereich und ggf. Regulierung der Kühlparameter der einzelnen Kühlmodule gewährleistet ist, daß die Temperatur nicht eine kritische Temperatur unterschreitet und damit die Unterkühlung nicht so hoch ist, daß eine Bainitumwandlung stattfindet und somit sich unerwünschte bainitische Gefügeanteile bilden.
Der Abkühlprozeß setzt sich in Abhängigkeit der durchlaufenden Kühlmodule aus einzelnen Abkühlprozeßschritten und in Abhängigkeit der durchlaufenden Zwischenbereiche zur Gefügeentspannung aus zeitlichen Phasen der Wiederaufwär- mung und/oder aus zeitlichen Phasen des thermischen Haltens und/oder aus zeitliche Phasen einer langsamen Abkühlung zusammen. Hierbei kann das Werkstück in allen Zwischenbereichen eine gleiche oder in verschiedenen Zwischenbereichen unterschiedliche zeitliche Phasen der Entspannung durchlaufen. Die Wiedererwärmung geschieht hierbei entweder durch die im Inneren des Werkstücks noch vorhandene Restwärme und/oder durch externe Wärmezufuhr. Auf diese Weise wird ein in etwa sägezahnartiger Abkühlverlauf eingestellt, der sich günstig auf das sich einstellende Endgefüge und damit die mechanischen Eigenschaften auswirkt. Der Bainitbildung wird entgegengewirkt, indem die Parameter der Kühlstrecke so eingestellt werden, daß zu keinem Zeitpunkt des Kühlprozesses die Bainitbildung einsetzen kann.
Es ist ebenfalls von der Erfindung eingeschlossen, daß die Zwischenbereiche für einen thermischen Ausgleich über das Werkstück, insbesondere Walzprodukt, oder für ein Abkühlen mit langsamen Abkühlgeschwindigkeiten genutzt werden.
Vorzugsweise werden in Abhängigkeit des jeweiligen gemessenen Ist- Temperaturwertes eines jeden Zwischenbereichs die spezifischen Kühlparameter der jeweils nachfolgenden Kühlzone und gleichzeitig die Kühlparameter des vorherigen Kühlmoduls geregelt. Dies bedeutet, daß ein Werkstück bzw. Walzprodukt, sofern es von einer vorgegebenen Soll-Temperatur, die es zu einem be- stimmten Zeitpunkt bzw. in einem Zwischenbereich aufweisen sollte, abweicht, durch eine spezifische Änderung der Kühlparameter im nachfolgenden Kühlmodul wieder auf die Soll-Temperatur eingeregelt und gleichzeitig für nachfolgende Werkstücke das vorherige Kühlmodul eingeregelt wird.
Vorzugsweise wird die Oberflächentemperatur des Werkstücks am Ende des Zwischenbereichs, d.h. nach Ende des Bereichs zur Gefügeentspannung, gemessen. Die Temperaturmessung in den Zwischenbereichen kann auch für die Qualitätsüberwachung genutzt werden.
Nach einer bevorzugten Ausführungsform erfolgt die Oberflächentemperaturmes- sung mittels einer optischen und berührungslosen Messung, d.h. mittels eines Pyrometers.
Die Regelung der Kühlparameter und hier insbesondere der Kühlintensität erfolgt bevorzugt mittels Regelung des Druckes, mit dem das Kühlmedium auf die Oberfläche des Werkstücks auftrifft, und/oder mittels regulierter Einstellung der Temperatur des Kühlmediums und/oder mittels regulierter Einstellung des Volumenstroms des Kühlmediums durch Auswahl der Kühldüsengeometrie. Als Kühlmedium kommt vorzugsweise Kühlwasser in Frage.
Die Druckregelung erfolgt vorzugsweise durch ein Druckregelventil in der Zuleitung zu den Düsen, die an Kühlbalken angeordnet sind. Die Kühlintensität ist auch durch Ansteuerung einer unterschiedlichen Anzahl an Düsen pro Kühlbalken oder Kühlbalkenanordnungen möglich.
Nach einer besonders bevorzugten Ausführungsform der Temperaturregelung des Kühlmediums wird vorgeschlagen, daß das Kühlmedium, d.h. insbesondere das Kühlwasser, vor Auftritt auf die Werkstückoberfläche soweit vorgewärmt wird, daß eine Unterschreitung der Leidenfrosttemperatur nicht oder erst sehr spät erfolgt. Unter dem Leidenfrost-Phänomen wird das nicht benetzende Verhalten einer Flüssigkeit verstanden, wenn die Temperatur des berührten Körpers oberhalb der Siedetemperatur der Flüssigkeit liegt. Wasser beispielsweise wird durch eine Gashaut aus verdampftem Wasser vor dem weiteren Verdampfen geschützt und verliert damit für eine bestimmte Zeit die Kühlwirkung. Durch die Kühlwasservorlauftemperatur kann die Leidenfrosttemperatur beeinflußt werden. Die Leidenfrosttemperatur steigt mit höherer Kühlwasservorlauftemperatur, und die Kühlung wird schwächer. Damit eine Unterschreitung der Leidenfrosttemperatur nicht oder erst sehr spät erfolgt, wird vorgeschlagen, das Kühlwasser vorzuwärmen. Dies bietet den Vorteil, daß die Kühlung schwächer wird und damit besser reproduzierbar.
Nach einem bevorzugten Verfahrensschritt wird die Temperatur des Werkstücks vor Eintritt oder beim Eintritt in die Kühlstrecke gemessen und dieser Temperaturwert zum Presetting der Kühlparameter verwendet, um eine Voreinstellung der Kühlparameter der einzelnen Kühlmodule, insbesondere die Einstellung des Drucks, mit dem das Kühlmedium auf die Werkstückoberfläche auftrifft, zu erreichen.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den Unteransprüchen und aus der nachfolgenden Beschreibung, in der die in den Figuren dargestellten Ausführungsformen der Erfindung näher erläutert werden. Dabei sind neben den oben aufgeführten Kombinationen von Merkmalen auch Merkmale alleine oder in anderen Kombinationen erfindungswesentlich. Es zeigen:
Fig. 1 eine schematische Übersicht über eine Kühlstrecke, in der das erfindungsgemäße Verfahren durchgeführt wird;
Fig. 2 ein Temperatur-Zeit-Diagramm mit den Abkühlkurven von fünf Meßpunkten in bzw. am Schienenkopf eines üblichen Schienenstahls mit etwa 0,8%C und 1 ,0% Mn, der in einer Kühlstrecke verfahrensgemäß einem solchen Kühlverlauf unterworfen wird, daß die Bainittemperatur nicht unterschritten wird;
Fig. 3 zum Vergleich ein Temperatur-Zeit-Diagramm der fünf Abkühlkurven eines ungeregelten Abkühlverlaufs mit einer Unterschreitung der Bainittemperatur.
Die in Fig. 1 gezeigte Kühlstrecke 1 schließt sich an eine Profilwalzstrecke (nicht gezeigt), beispielsweise an eine Walzstrecke für Schienenprofile aus Schienenstählen, an. Die Kühlstrecke 1 setzt sich bei der gezeigten Ausführungsform aus fünf Kühlmodulen 2a-e zusammen, ist aber nicht auf diese Anzahl an Kühlmodulen beschränkt. Die einzelnen Kühlmodule 2a-e sind beispielsweise so aufgebaut, daß sie einen oder mehrere Kühlbalken oder Kühldüsenanordnungen umfassen. Der Druck, mit dem das Kühlwasser aus den einzelnen Düsen austritt, ist über je ein Druckregelventil 3a-e einstellbar. Der aktuelle Druck wird mittels der Durck- meßgeräte 4a-e gemessen. Zwischen den einzelnen Kühlmodulen 2a-e sind Zwischenbereiche 5a-e angeordnet. Jeweils am Ende eines Zwischenbereichs 5a-e ist ein Pyrometer 6a-e zur berührungslosen optischen Messung der Oberflächentemperatur des sich in diesem Zwischenbereich befindlichen Walzproduktes angeordnet, wobei bei einem Schienenprofil die Oberflächentemperatur am Schienenkopf gemessen wird.
Vor dem ersten Kühlmodul 2a am Anfang bzw. Eintrittsbereich (12) der Kühlstrek- ke 1 ist ein zusätzliches Pyrometer 6f angeordnet. Die einzelnen Pyrometer 6a-f sind über Signalleitungen 7a-g mit einer Rechnereinheit 8 verbunden. Die Rechnereinheit 8 ist über entsprechende Steuerleitungen 9a- e zur Änderung der einzelnen Regelventile 3a-e der Kühlmitteldüsen verbunden. Das Kühlmedium, insbesondere Kühlwasser (KW), wird über ein gemeinsames Zuführrohr 10 mit Ab- leitungen 10a-e an die einzelnen Kühlmodule 2a-e geführt. Zur Einregelung der Druckwerte ist ebenfalls ein Regelkreis der Druckmeßgeräte 4a-e mit der Rechnereinheit 8 vorgesehen (Signalleitungen 11 a-e).
Nachfolgend wird der Prozeß beschrieben. Vor Eintritt eines gewalzten Profils aus Stahl, beispielsweise eine Schiene, in die Kühlstrecke wird mittels des ersten Pyrometers 6f, beispielsweise ein Zweifarben-Pyrometer, ein aktueller Oberflächen- temperaturwert aufgenommen. Dieser erste Oberflächentemperaturwert wird an die Rechnereinheit 8 weitergeleitet, die bereits in Abhängigkeit dieses individuellen Wertes eine Voreinstellung (Presetting) der einzelnen Regelventile zur Einstellung des Kühlwasserdruckes sowie der Kühlwassertemperatur bewirkt. Nach Durchlaufen des ersten Kühlmoduls 2a und erfolgtem ersten Abkühlschritt tritt das Schienenprofil in den ersten Zwischenbereich 5a ein, in dem eine Entspannungsphase für das Gefüge erfolgt. Am Ende des ersten Zwischenbereichs 5a wird mittels eines zweiten Pyrometers 6a, beispielsweise ein Zweifarben-Pyrometer, eine weitere Oberflächentemperaturmessung (TIST) vorgenommen. Dieser aufgenommene Ist-Wert wird über die Signalleitungen 7a und 7g an die Rechnereinheit 8 übergeben und dort eine Differenz-Rechnung zwischen einem Soll- (TSOLL) und dem Ist-Wert (TIST) durchgeführt. Hierbei liegt der Soll-Wert immer oberhalb einer werkstoffspezifischen Temperatur, bei der Bainitbildung eintreten kann. Die Sollwerte sind legierungsspezifisch und können aus Versuchen ermittelt werden. Ein Richtwert für diese kritische Temperatur,. die bei Schienenstählen bei einem Kühlprozeß nicht unterschritten werden sollte, liegt bei etwa 450-500°C.
Sofern eine Differenz zwischen dem Ist- und Sollwert vorliegt, wird oder werden das nachfolgende oder mehrere nachfolgende Kühlmodule hinsichtlich ihrer Kühlparameter, hier des Drucks des auftreffenden Kühlwassers, durch Änderung der Druckregelventile 3a-e eingeregelt. Hierbei wird laufend eine Regelung der Druckwerte in Abhängigkeit der gemessenen Ist-Druckwerte durchgeführt. Die beschriebene Regelung wiederholt sich in Abhängigkeit der in jedem weiteren Zwischenbereich 5b-5e aufgenommenen Temperatur-Werte. Dabei ist vorzugsweise vorgesehen, daß nicht nur das nachfolgende Kühlmodul, sondern auch das oder die vorherigen Kühlmodule für das nachfolgende zu kühlende Walzgut eingeregelt werden.
Die Fig. 2 und 3 zeigen mit Hilfe von Temperatur-Zeit-Diagrammen die Abkühlungskurven eines Schienenkopfes aus einem Werkstoff mit 0,8% Kohlenstoff mit Regelung und ohne Regelung. Die Bezeichnung C80W60 bzw. C80W65 macht deutlich, daß die Abkühlgeschwindigkeit im Kern des Schienenkopfes (Beispiel Schienenform nach AREA 136 [Liefervorschrift der American Railway Engineering Association]) weniger hoch ist als in den Randbereichen und daß dadurch im Kernbereich die Umwandlung von Austenit in Perlit bzw. Ferrit-Perlit bei höheren Temperaturen stattfindet.
Der Temperaturverlauf über die Zeit wird an fünf unterschiedlichen Meßpunkten am Schienenkopf ermittelt. Hierbei ist 1 ein Meßpunkt im Kern des Schienenkopfes, 2 ein Meßpunkt, der 5 mm unterhalb der Oberfläche angeordnet ist, 3 ein Meßpunkt, der 5 mm unterhalb der Seitenfläche angeordnet ist, 4 ein Meßpunkt auf der Seitenoberfläche sowie 5 ein Meßpunkt auf der Kopfoberfläche. Es ist ersichtlich, daß zu keiner Zeit an keinem Meßpunkt das Gefüge des Schienenkopfes durch die Abkühlung eine solche Unterkühlung erfährt, daß sich im Gefüge Bainit bilden kann.
Die simulierte Kühlstrecke ist mit fünf Modulen einzeln regelbar. Die einzelnen Abkühlungskurven in Fig. 2 zeigen, daß niemals eine kritische Temperatur, bei der Bainitbildung einsetzen würde, unterschritten wird. An den Abkühlkurven 4 und 5, die die Abkühlung an der Oberfläche des Schienenkopfes zeigen, wird der säge- zahnartige Abkühlverlauf mit einem Wiedererwärmen in den Zwischen- bzw. Ausgleichszonen deutlich. Fig. 3 zeigt im Vergleich eine Kühlstrecke mit fünf Kühlmodulen, die nicht einzeln regelbar sind, so daß es zu einem Unterschreiten der Bainittemperatur in den oberflächennahen Bereichen (Kurven 4 und 5) des Schienenkopfes kommt.
Durch das vorgeschlagene Verfahren wird erreicht, daß bei der Abkühlung von Schienenstählen aus der Walzhitze ein feinperiitisches bzw. ferritisch/periitisches Gefüge ohne die mechanischen Eigenschaften, insbesondere die Verschleißfestigkeit, negativ beeinflussende Bainitanteile eingestellt werden kann.

Claims

Patentansprüche
1. Verfahren zur Kühlung von Werkstücken, insbesondere Profilwalzprodukten, aus Schienenstählen mit einem feinperlitischen oder ferri- tisch/perlitischen Gefüge, wobei das warme Werkstück durch eine Kühlstrecke (1) mit einem Eintritts- (12) und einem Austrittsbereich geführt und einem Abkühlprozeß unterworfen wird und hierbei eine Umwandlung in ein perlitisches oder ferritisch/periitisches Gefüge durchmacht, dadurch gekennzeichnet, daß das Werkstück durch eine Kühlstrecke, die sich aus einzelnen unabhängigen Kühlmodulen (2a-e) mit unabhängig einstellbaren Kühlparametern zusammensetzt, geführt wird, wobei zwischen den Kühlmodulen (2a-e) Zwischenbereiche (5a-e) zur Gefügeentspannung vorhanden sind mit Mitteln zur Ist-Temperaturbestimmung (TIST) des jeweiligen Werkstückes in diesen Zwischenbereichen (5a-e), und wobei in Abhängigkeit der jeweiligen Ist-Temperaturwerte (TIST) des Werkstückes in einem Zwischenbereich (5a-e) die spezifischen Kühlparameter, insbesondere die Kühlintensität, mindestens des jeweils nachfolgenden Kühlmoduls (2b-e) zur Gewährleistung einer definierten Temperatur des Werkstückes während des gesamten Durchlaufs der Kühlstrecke (1) geregelt werden, wobei die definierte Temperatur (TSOLL) des Werkstückes jeweils oberhalb einer kritischen Temperatur, bei der sich bainitische Gefügeanteile bilden, liegt.
2. Verfahren zur Kühlung nach Anspruch 1 , dadurch gekennzeichnet, daß der Abkühiprozeß sich in Abhängigkeit der durchlaufenden Kühlmodule in einzelne Abkühlprozeßschritte und in Abhängigkeit der durchlaufenden Zwischenbereiche zur Gefügeentspannung in zeitliche Phasen der Wieder- aufwärmung und/oder in zeitliche Phasen des thermischen Haltens und/oder in zeitliche Phasen einer langsamen Abkühlung zusammensetzt.
3. Verfahren zur Kühlung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in Abhängigkeit des jeweiligen gemessenen Ist-Temperaturwerte (TIST) eines oder eines jeden Zwischenbereichs (5a-e) die spezifischen Kühlparameter des jeweils nachfolgenden Kühlmoduls (2b-e) und gleichzeitig die Kühlparameter des vorherigen Kühlmoduls (2a-d) geregelt werden.
4. Verfahren zur Kühlung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Oberflächentemperatur des Werkstücks am Ende des Zwischenbereichs (5a-e) gemessen wird.
5. Verfahren zur Kühlung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Ist-Temperaturmessung (TIST) mittels einer optischen und berührungslosen Messung vorgenommen wird.
6. Verfahren zur Kühlung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Regelung der Kühlparameter, insbesondere der Kühlintensität, mittels Druckregelung und/oder Temperaturregelung des Kühlmediums erreicht wird.
7. Verfahren zur Kühlung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Kühlmedium, insbesondere Kühlwasser, vor Auftritt auf die Werkstückoberfläche soweit vorgewärmt wird, daß eine Unterschreitung der Lei- denfrosttemperatur nicht oder später als bei nicht vorgewärmten Kühlmedium erfolgt.
Verfahren zur Kühlung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Temperatur des Werkstücks vor Eintritt oder beim Eintritt in die Kühlstrecke (1) gemessen wird und dieser Temperaturwert zum Presetting der Kühlparameter der einzelnen Kühlmodule verwendet wird.
PCT/EP2002/008271 2001-08-01 2002-07-25 Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen WO2003012151A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT02776916T ATE288503T1 (de) 2001-08-01 2002-07-25 Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen
US10/485,286 US20040187974A1 (en) 2001-08-01 2002-07-25 Method for cooling work pieces especially shape-rolled products from rail steel
EP02776916A EP1412543B1 (de) 2001-08-01 2002-07-25 Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen
KR1020047000443A KR100583301B1 (ko) 2001-08-01 2002-07-25 레일 강으로 된 공작물, 특히 형상 압연 제품을냉각시키는 방법
DE50202183T DE50202183D1 (de) 2001-08-01 2002-07-25 Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen
JP2003517324A JP4174423B2 (ja) 2001-08-01 2002-07-25 工作物、特にレール鋼製の形材圧延製品の冷却方法
US11/880,635 US7854883B2 (en) 2001-08-01 2007-07-23 System for cooling shape-rolled rails

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10137596.4 2001-08-01
DE10137596A DE10137596A1 (de) 2001-08-01 2001-08-01 Verfahren zur Kühlung von Werkstücken, insbesondere von Profilwalzprodukten, aus Schienenstählen

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10485286 A-371-Of-International 2002-07-25
US11/880,635 Division US7854883B2 (en) 2001-08-01 2007-07-23 System for cooling shape-rolled rails

Publications (1)

Publication Number Publication Date
WO2003012151A1 true WO2003012151A1 (de) 2003-02-13

Family

ID=7693931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008271 WO2003012151A1 (de) 2001-08-01 2002-07-25 Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen

Country Status (10)

Country Link
US (2) US20040187974A1 (de)
EP (1) EP1412543B1 (de)
JP (1) JP4174423B2 (de)
KR (1) KR100583301B1 (de)
CN (1) CN1232661C (de)
AT (1) ATE288503T1 (de)
DE (2) DE10137596A1 (de)
ES (1) ES2236592T3 (de)
RU (1) RU2266966C2 (de)
WO (1) WO2003012151A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854883B2 (en) 2001-08-01 2010-12-21 Sms Meer Gmbh System for cooling shape-rolled rails
EP2412472A4 (de) * 2009-03-27 2017-03-22 Nippon Steel & Sumitomo Metal Corporation Verfahren und vorrichtung zur kühlung eines geschweissten schienenabschnitts
JP2021171824A (ja) * 2020-04-24 2021-11-01 コックス・テヒニク・ゲーエムベーハー・ウント・コ・カーゲー 長尺製品を冷却するための装置及び当該装置を使用して長尺製品を冷却する方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009937A1 (de) * 2007-03-01 2008-09-04 Schuler Smg Gmbh & Co. Kg Verfahren zur Umformung einer Platine und Kühlvorrichtung für eine Platine
ITMI20072244A1 (it) 2007-11-28 2009-05-29 Danieli Off Mecc Dispositivo per trattamento termico di rotaie e relativo processo
ITLI20090004A1 (it) * 2009-05-21 2010-11-22 Lucchini S P A Rotaie altoresistenziali a morfologia perlitica coloniale con elevato rapporto tenacita'-resistenza a rottura ed omogeneita' di proprieta' meccaniche e tecnologiche e relativo processo di fabbricazione.
RU2447163C1 (ru) 2010-08-10 2012-04-10 Общество С Ограниченной Ответственностью "Исследовательско-Технологический Центр "Аусферр" Способ термической обработки изделий из сплавов на основе железа (варианты)
DE102010049020B4 (de) * 2010-10-21 2015-02-19 Cmi M+W Engineering Gmbh Vorrichtung zum Kühlen von auf einer Förderstrecke geförderten Metallbändern oder -blechen
RU2456352C1 (ru) 2010-11-11 2012-07-20 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Способ и устройство термической обработки рельсов
RU2484148C1 (ru) 2011-10-27 2013-06-10 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Способ и установка термической обработки рельсов
BR112014019030B1 (pt) * 2012-02-06 2022-09-20 Jfe Steel Corporation Método de resfriamento de trilhos
EP2644719A1 (de) 2012-03-28 2013-10-02 Siemens Aktiengesellschaft Steuerung einer Kühlung
RU2487178C1 (ru) * 2012-06-01 2013-07-10 Открытое акционерное общество "ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат" (ОАО "ЕВРАЗ ЗСМК") Способ термической обработки рельсов
EP2674504A1 (de) 2012-06-11 2013-12-18 Siemens S.p.A. Verfahren und System zur Wärmebehandlung von Schienen
CN102839268B (zh) 2012-08-28 2014-08-13 攀钢集团攀枝花钢铁研究院有限公司 一种贝氏体道岔钢轨的热处理方法
DE102012020844A1 (de) * 2012-10-24 2014-04-24 Thyssenkrupp Gft Gleistechnik Gmbh Verfahren zur thermomechanischen Behandlung von warmgewalzten Profilen
CN103898303B (zh) * 2012-12-31 2016-06-08 攀钢集团攀枝花钢铁研究院有限公司 一种道岔轨的热处理方法和道岔轨
FR3017880B1 (fr) * 2014-02-21 2018-07-20 Compagnie Generale Des Etablissements Michelin Procede de traitement thermique a refroidissement continu d'un element de renfort en acier pour pneumatique
CN109852782B (zh) * 2019-01-09 2020-06-16 邯郸钢铁集团有限责任公司 消除r350lht钢轨热处理黑斑的方法
EP4348148A1 (de) 2021-05-31 2024-04-10 SMS Group GmbH Forcierte luftkühlung zur kühlung von langstahlerzeugnissen
DE102021212523A1 (de) 2021-05-31 2022-12-01 Sms Group Gmbh Forcierte Luftkühlung zur Kühlung von Langstahlerzeugnissen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486248A (en) * 1982-08-05 1984-12-04 The Algoma Steel Corporation Limited Method for the production of improved railway rails by accelerated cooling in line with the production rolling mill
US4638851A (en) * 1984-04-17 1987-01-27 Mitsubishi Jukogyo Kabushiki Kaisha Cooling apparatus for metal strip
US4913747A (en) * 1984-12-24 1990-04-03 Nippon Steel Corporation Method of and apparatus for heat-treating rails
US4938460A (en) * 1987-03-19 1990-07-03 Chemetron-Railway Products, Inc. Apparatus for air quenching railway heads
EP0725152A1 (de) * 1995-02-04 1996-08-07 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen
US6185970B1 (en) * 1998-10-31 2001-02-13 Sms Schloemann-Siemag Ag Method of and system for controlling a cooling line of a mill train

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1013759B (de) 1955-12-30 1957-08-14 Siemens Ag Schutzschaltung fuer elektrische Mittel- oder Niederspannungsverteilungsanlagen
US4243441A (en) * 1979-05-09 1981-01-06 National Steel Corporation Method for metal strip temperature control
US4886558A (en) * 1987-05-28 1989-12-12 Nkk Corporation Method for heat-treating steel rail head
US6689230B1 (en) * 1995-02-04 2004-02-10 Sms Schloemann-Siemag Aktiengesellschaft Method and apparatus for cooling hot-rolled sections
DE10137596A1 (de) 2001-08-01 2003-02-13 Sms Demag Ag Verfahren zur Kühlung von Werkstücken, insbesondere von Profilwalzprodukten, aus Schienenstählen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486248A (en) * 1982-08-05 1984-12-04 The Algoma Steel Corporation Limited Method for the production of improved railway rails by accelerated cooling in line with the production rolling mill
US4638851A (en) * 1984-04-17 1987-01-27 Mitsubishi Jukogyo Kabushiki Kaisha Cooling apparatus for metal strip
US4913747A (en) * 1984-12-24 1990-04-03 Nippon Steel Corporation Method of and apparatus for heat-treating rails
US4938460A (en) * 1987-03-19 1990-07-03 Chemetron-Railway Products, Inc. Apparatus for air quenching railway heads
EP0725152A1 (de) * 1995-02-04 1996-08-07 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen
US6185970B1 (en) * 1998-10-31 2001-02-13 Sms Schloemann-Siemag Ag Method of and system for controlling a cooling line of a mill train

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854883B2 (en) 2001-08-01 2010-12-21 Sms Meer Gmbh System for cooling shape-rolled rails
EP2412472A4 (de) * 2009-03-27 2017-03-22 Nippon Steel & Sumitomo Metal Corporation Verfahren und vorrichtung zur kühlung eines geschweissten schienenabschnitts
JP2021171824A (ja) * 2020-04-24 2021-11-01 コックス・テヒニク・ゲーエムベーハー・ウント・コ・カーゲー 長尺製品を冷却するための装置及び当該装置を使用して長尺製品を冷却する方法

Also Published As

Publication number Publication date
ATE288503T1 (de) 2005-02-15
RU2004105954A (ru) 2005-03-27
KR100583301B1 (ko) 2006-05-25
JP2004537649A (ja) 2004-12-16
EP1412543B1 (de) 2005-02-02
RU2266966C2 (ru) 2005-12-27
US20100207305A9 (en) 2010-08-19
CN1232661C (zh) 2005-12-21
DE50202183D1 (de) 2005-03-10
US20080018027A1 (en) 2008-01-24
KR20040015347A (ko) 2004-02-18
ES2236592T3 (es) 2005-07-16
JP4174423B2 (ja) 2008-10-29
CN1537175A (zh) 2004-10-13
DE10137596A1 (de) 2003-02-13
US20040187974A1 (en) 2004-09-30
US7854883B2 (en) 2010-12-21
EP1412543A1 (de) 2004-04-28

Similar Documents

Publication Publication Date Title
EP1412543B1 (de) Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen
DE69431178T3 (de) Verfahren zur thermischen Oberflächenbehandlung eines Stranges
EP2416900B2 (de) Verfahren und vorrichtung zum aufbereiten von warmwalzgut
DE102006019395A1 (de) Vorrichtung und Verfahren zum Umformen von Platinen aus höher- und höchstfesten Stählen
EP2032284A1 (de) Verfahren und vorrichtung zum herstellen eines metallbandes durch stranggiessen
WO2009141207A1 (de) Verfahren und stranggiessanlage zum herstellen von dicken brammen
DE10163070A1 (de) Verfahren und Einrichtung zum kontrollierten Richten und Kühlen von aus einem Warmband-Walzwerk auslaufendem breiten Metallband, insbesondere von Stahlband oder Blech
EP1432835A2 (de) Verfahren und anlage zur thermischen behandlung von schienen
EP0820529B1 (de) Verfahren zur herstellung eines warmgefertigten langgestreckten erzeugnisses insbesondere stab oder rohr aus hochlegiertem oder übereutektoidem stahl
EP0693562B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von profiliertem Walzgut
DE3518925A1 (de) Verfahren zum kontrollierten stab- und drahtwalzen legierter staehle
DE102017127470A1 (de) Kühlbalken und Kühlprozess mit variabler Abkühlrate für Stahlbleche
WO2014063671A1 (de) Verfahren zur thermomechanischen behandlung von warmgewalzten profilen
DE19613719C1 (de) Verfahren und Anlage zur Herstellung spannungsarmer Schienen
DE2541978C3 (de) Verfahren zur Wärmebehandlung von Weichenteilen im Durchlaufverfahren
EP0925855A2 (de) Vorrichtung zum kontrollierten Abkühlen von warmgewalzten Profilen, insbesondere Trägern, direkt aus der Walzhitze
EP0362122B1 (de) Verfahren zum Warmrichten von Stahlrohren
EP0707903B1 (de) Verfahren und Vorrichtung zum Vermeiden der Unparallelität von Trägerprofilen
EP2543744A1 (de) Verfahren und Vorrichtung zum Behandeln eines Stahlprodukts sowie Stahlprodukt
DE550128C (de) Verfahren zum Herstellen von Hartkopfschienen
WO2022017690A1 (de) Giess-walz-verbundanlage zur herstellung eines warmgewalzten fertigbands aus einer stahlschmelze
DD260014A1 (de) Verfahren und einrichtung zur herstellung von stabsstahl aus einem mikrolegierten block oder knueppel
DD207162A1 (de) Thermomechanisches behandlungsverfahren beim walzen von draht auf konti-drahtstrassen
EP1046443A1 (de) Verfahren und Vorrichtung zur Formung von Metallsträngen
DE19821299A1 (de) Anordnung und Verfahren zum Erzeugen von Warmband

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020047000443

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002776916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10485286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003517324

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028151186

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 450/CHENP/2004

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2002776916

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002776916

Country of ref document: EP