EP0693562B1 - Verfahren und Vorrichtung zur Wärmebehandlung von profiliertem Walzgut - Google Patents

Verfahren und Vorrichtung zur Wärmebehandlung von profiliertem Walzgut Download PDF

Info

Publication number
EP0693562B1
EP0693562B1 EP95890136A EP95890136A EP0693562B1 EP 0693562 B1 EP0693562 B1 EP 0693562B1 EP 95890136 A EP95890136 A EP 95890136A EP 95890136 A EP95890136 A EP 95890136A EP 0693562 B1 EP0693562 B1 EP 0693562B1
Authority
EP
European Patent Office
Prior art keywords
cooling
rolled stock
intensity
increased
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95890136A
Other languages
English (en)
French (fr)
Other versions
EP0693562A1 (de
Inventor
Georg Dipl.-Ing. Prskawetz
Peter Dipl.-Ing. Dr. Pointner
Alfred Dipl.-Ing. Dr. Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Rail Technology GmbH
Original Assignee
Voestalpine Schienen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Schienen GmbH filed Critical Voestalpine Schienen GmbH
Publication of EP0693562A1 publication Critical patent/EP0693562A1/de
Application granted granted Critical
Publication of EP0693562B1 publication Critical patent/EP0693562B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Definitions

  • the invention relates to methods for the heat treatment of profiled Rolled stock, in particular of running or railroad tracks, with increased Heat dissipation of parts of the profile surface when cooling from the Gamma area of the iron base material, where in (the) desired Cross-sectional area (s), especially in the head area of rails, a Conversion into a fine pearlitic structure with increased strength, in particular increased abrasion resistance and increased heat and optionally a Deformation or bending due to thermal distortion of the rolling stock, especially the rail, perpendicular to the longitudinal axis when cooling Room temperature, especially after a structural change in the (in) intensified cooled cross-sectional area (s), reduced, preferably substantially avoided and increased rigidity and flexural fatigue strength of the rolling stock can be achieved.
  • the invention further relates to a device for the heat treatment of profiled rolling stock, in particular driving or railroad tracks, consisting of essentially from at least one supply area for the rolling stock on Roller table, with a rolling stock positioning device, a cooling treatment area, with facilities for partial heat dissipation with high intensity from the Surface of the rolling stock and a final cooling area for cooling the rolling stock to room temperature as well as storage, cross transport, holding and manipulation means.
  • the invention is concerned with a profiled rolling stock, in particular a driving or railroad track consisting of a rail head with at least partially pearlitic structure, a rail foot and a bridge between the rail head and the rail foot.
  • Profiled rolling stock in particular driving or railroad tracks, is or are mostly made of iron-based alloys with a content in% by weight of C 0.4 to 1.0, Si 0.1 to 1.2, Mn 0.5 to 3.5, optionally Cr to 1.5 and others Alloy elements with concentrations below 1%, balance iron and manufacturing-related impurities. Because of the usual Dimensions, e.g. with a weight of 30 to 100 kg / m, and the result The resulting ratio of the cross-section to the circumference of the rails is at a Cooling of the rolling stock from the forming heat in still air, e.g.
  • the slow cooling because of a conversion of the Microstructure from an austenitic to a ferrite which may have ferrite fractions rough pearlitic structure.
  • the materials mentioned above with the above structure have a hardness in the range from 250 HB to 350 HB.
  • rails should be in the field, e.g. for the formation of bumpless route or Multiple lengths, be easy to weld, so that alloying measures to increase the hardness or strength and toughness of the material Welding problems due to mostly only feasible to a small extent and with one heat treatment tailored to the composition of the steel are expedient (DE-C 3 446 794, EP-B-0187904. EP-B-0186373). Also from Such processes have not become economically viable on a larger scale proven.
  • the invention seeks to remedy the problem and aims to eliminate the Disadvantages of the known types of manufacture specify a new method with which profiled rolling stock with particularly advantageous usage properties can be produced. Furthermore, it is an object of the invention, in particular a device to provide for carrying out the method and a rolling stock, in particular a rail to train for the highest demands.
  • the goal is achieved in a generic method in that the rolling stock with an average temperature of at most 1100 ° C, but at least of 750 ° C, in the longitudinal direction with plastic shaping straight, is brought in an aligned state in the transverse direction and held, and in a first step of cooling the rolling stock, balancing it to a temperature of below 860 ° C, to a lowest temperature of 5 to 120 ° C above the Ar 3 temperature of the alloy with the same local cooling intensity, essentially by radiation in still air is allowed to cool, whereupon in a second step of cooling for a structural transformation into a martensite-free, fine pearlitic structure, heat is extracted from the rolling stock in the longitudinal direction with locally essentially the same, seen in cross-section with widely varying intensity, and the cooling intensity in at least one zone on the circumference of the profile ized rolling stock is enlarged, the greater cooling intensity (ies) being assigned to the area (s) with a high volume fraction based on the surface or with a high mass concentration and / or those with a locally
  • the rolling stock is aligned in a plastic shape and that this is done in a temperature range between 750 ° C and 1100 ° C. Temperatures lower than 750 ° C, as has been found, can lead to a partially elastic bend with deviations from a straight orientation and consequently to inhomogeneous cooling intensity in the longitudinal direction of the rail. Rolled material temperatures of over 1100 ° C usually cause the austenite grains to grow or form coarse grains, which can ultimately adversely affect the material properties.
  • This compensatory cooling is carried out to a temperature of 5 ° C to 120 ° C above the Ar 3 temperature of the alloy in order to create favorable conditions for a partial transformation of the structure into a fine pearlitic structural shape in parts of the cross section.
  • the Ar 3 temperature is the temperature at which a conversion of the gamma lattice into the alpha lattice of the alloy occurs at a cooling rate of 3 ° C / min. begins.
  • a cooling of the rolling stock with an intensity of the heat removal which is essentially the same in the longitudinal direction and seen in cross-section with a circumferentially different extent is known per se. However, it is important to assign the areas with increased cooling intensity of the surface to the mass concentration of the rolling stock.
  • a compensating cooling and setting of a symmetrical temperature distribution and an assignment of the cooling areas a cooling speed different over the cross-sectional areas in the longitudinal direction of the rolling stock can be kept essentially the same. It is important to adjust the size of the cooling rate with which the intended area of the rolling stock is brought to the transition temperature by measures known per se.
  • the heat treatment after a hot deformation of the rolling stock with a degree of deformation of 1.8 to 8% in the last pass is carried out at a temperature of at least 750 ° C. and at most 1050 ° C. from the hot forming heat.
  • a final deformation with a degree of deformation or a reduction in cross-sectional area of 1.8 to 8% brings about a favorable austenite grain refinement if the deformation takes place in a temperature range from 770 ° C to 1050 ° C.
  • the part of the rolling stock which has the highest mass concentration is preferred has, optionally the head of the rail, cooled in the immersion process, At the same time, this is also intended for increased cooling Rolled part (s), with lower mass concentration by means with lower Cooling intensity heat is extracted.
  • the size of the cooling intensity, especially the Composition of the cooling liquid for immersion cooling set in this way is that in the temperature range of 800 ° C to 450 ° C a cooling of the zone near the surface of the immersed part, essentially with 1.6 to 2.4 ° C / sec.
  • This cooling rate is also economical Reasons preferred because when a desired quality of the Rolled product requires a short cooling time in the second step and thus a high throughput can be achieved.
  • the zone opposite the web is cooled with increased intensity. It has been in the sense of improvement the long-term properties were found to be particularly favorable if the Surface zone opposite the web with increased cooling intensity in the is essentially symmetrical to the web axis and laterally limited.
  • Particular dimensional stability can be achieved if the cooling intensity on the surface of the profiled rolling stock, in particular the rail, is set in such a way that the zones in which the conversion of the gamma structure takes place during cooling are essentially parallel symmetrical and / or parallel to neutral plane, and / or concentrically to the center of gravity or to the center of gravity of the cross-sectional area.
  • the rolling stock of which a part, based on the cross section, is immersed in a cooling liquid in a plunge pool, during the cooling in the longitudinal direction relative to the cooling liquid container or immersion tank and / or that at least in the time in which part of the rolling stock is immersed in the cooling liquid, this is subjected to an oscillation.
  • a device of the type mentioned at the outset for an integral solution to the problems in the production of profiled profiles with special properties Rolled stock is characterized according to the invention in that the roller table in Provision area a rolling stock positioning known per se and means for Axial alignment of the profiled rolling stock with plastic Has the same shape, a transverse transport device for a Alignment of the rolling stock substantially perpendicular to it Axis from the staging area to the cooling treatment area, in which area a device known per se for hardening a Rolled goods using coolant in a plunge pool with holding and Manipulation devices and a controllable additional cooling device for one intensified cooling of at least one further area of the rolling stock are arranged and the final cooling area a tray for the rolling stock for cooling the same to room temperature.
  • a Axially aligned transfer of the profiled rolling stock into a cooling area through a straight-line transverse transport is to avoid a Communication device of great importance.
  • a manipulation device is provided with which a takeover and a Hold, immersion in a coolant pool or hardening of parts of the rolling stock and a transfer to a final cooling area can be carried out. It can be used for intensified cooling of other cross-sectional areas at least one additional cooling device can be provided.
  • the additional cooling device is on the rolling stock can be adjusted and its cooling intensity can be regulated, and thus another local heat dissipation can be set according to the procedure.
  • An embodiment is also advantageous in which the additional cooling device Parts to form a local in longitudinal or Axis direction of the rolling stock in substantially uninterrupted, transversely limited coolant flow possesses and, if necessary, means for preventing an increased Has heat removal of the surface (s) adjacent to the cooled surface.
  • This makes it possible to form clearly defined cooling zones and next to them to exclude lying areas from intensified heat extraction or in this to form a lower material hardness, with another Embodiment corresponding to the additional cooling device as a pressure run or Spray cooling is formed.
  • the homogeneity of hardness and strength values in the longitudinal direction of the profiled Rolled stock can be further increased if the rolled stock is in the coolant in the longitudinal axis direction relative to the plunge pool and / or relative to Additional cooling device is movable and / or when at the plunge pool and / or in the cooling liquid itself are arranged by means of which the Coolant can be moved turbulently and / or vibrated. It it was found that relative movements and also oscillatory movements or Pressure waves between the cooling medium and the workpiece the local cooling intensity create equal and advantageous remuneration conditions.
  • a rail manufactured by a previously mentioned method, if necessary produced in a device described above has a cross section in the upper Area of the head high material strength values and hardness, which values in lower head area in the bridge and in the peripheral parts of the foot lowered are.
  • In the central area on the base of the foot compared to the peripheral area Parts and the web may have increased hardness values of the material and achieved particularly uniform quality characteristics, being symmetrical to Main axis of the cross-sectional profile or symmetrical to the vertical axis of the Rail cross-section are set substantially the same material hardness values.
  • Such a rail shows even under heavy loads such as high Axle loads and / or high frequency of use and / or low curve radii Range improved utility properties.
  • a Roller table 21 a profiled rolling stock like a rail through for example retractable buffers or the like (not shown) positioned.
  • the rail 1 is then aligned in a straight line, one centering form of the straightening means, which also corrects a vertical curvature, is advantageous.
  • the rolling stock 1 is transversely transported via a storage in a cooling area B and a recording in one Manipulation device with holding means 24, wherein a support at a Shipment is to be provided in such a way that no bending transversely to the longitudinal axis he follows.
  • the rolling stock or the rail 1 is by means of Holding means 24 in a cooling liquid 37, which is in a plunge pool 38 located, partially introduced. It is important that the distance of the surface the rail 1 to the wall of the plunge pool over the length on both sides the same is large, also for intensification and in particular for equalization a cooling intensity of a rolling stock surface advantageously the rolling stock 1 in the plunge pool 38 or in the cooling medium 37 in the longitudinal direction to an extent of for example 0.5 to 5 m can be movable.
  • the cooling medium 37 or on Plunge pools can also be attached to vibration generators (not shown) be used, which the cooling medium in a the cooling intensity advantageous influencing vibration with a frequency of, for example, 100 to 800 / min move.
  • a such additional cooling device can be a water 32 and an air 33 supply have and one on a surface part of a rolling stock or the foot of the Train directed spray stream 31.
  • a rail 1 according to the invention has three areas with different structure or hardness, the transitions are continuously trained.
  • the rail head 11 is a fine pearlitic zone 111 with hardness values between 340 and 390 HB, possibly up to 425 HB, given which down into a zone 112 of lower hardness, for example from 300 to 340 HB.
  • Hardness values are accordingly 280 set up to 320 HB.
  • the rail base 13 is in the peripheral areas 132 as in the web 12 a pearlitic structure with a coarser structure or lamella formation and a hardness of 280 to 320 HB. Through this structure and the material properties with the low hardness values becomes a crack or Break initiation largely avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

Die Erfindung bezieht sich auf Verfahren zur Wärmebehandlung von profiliertem Walzgut, insbesondere von Fahr- bzw. Eisenbahnschienen, mit erhöhter Wärmeabfuhr von Teilen der Profiloberfläche bei einer Abkühlung aus dem Gamma-Gebiet des Eisenbasiswerkstoffes, wobei im ( in den) gewünschten Querschnittsbereich(en), insbesondere im Kopfbereich von Schienen, eine Umwandlung in ein feinperlitisches Gefüge mit erhöhter Festigkeit, insbesondere erhöhter Abriebfestigkeit und erhöhter Wärte erfolgt und gegebenenfalls eine Verformung bzw. Verbiegung durch thermisch bedingten Verzug des Walzgutes, insbesondere der Schiene, senkrecht zur Längsachse bei einer Abkühlung auf Raumtemperatur, insbesondere nach einer Gefügeumwandlung im (in den) verstärkt gekühlten Querschnittsbereich(en), verringert, vorzugsweise im wesentlichen vermieden und erhöhte Steifigkeit und Biegewechselfestigkeit des Walzgutes erreicht werden.
Weiters betrifft die Erfindung eine Vorrichtung zur Wärmebehandlung von profiliertem Walzgut, insbesondere Fahr- bzw. Eisenbahnschienen, bestehend im wesentlichen aus mindestens einem Bereitstellungsbereich für das Walzgut am Rollgang, mit einer Walzgutpositioniereinrichtung, einem Abkühlbehandlungsreich, mit Einrichtungen zur partiellen Wärmeabfuhr mit hoher Intensität von der Oberfläche des Walzgutes und einem Endkühlbereich zur Kühlung des Walzgutes auf Raumtemperatur sowie Ablage-, Quertransport-, Halte- und Manipulationsmittel.
Schließlich befaßt sich die Erfindung mit einem profiliertem Walzgut, insbesondere einer Fahr-oder Eisenbahnschine, bestehend aus einem Schienenkopf mit zumindest teilweise perlitischer Gefügestruktur, einem Schienenfuß und einem Steg zwischen Schienenkopf und Schienenfuß.
Profiliertes Walzgut, insbesondere Fahr- bzw. Eisenbahnschienen, wird bzw. werden zumeist aus Eisenbasislegierungen mit Gehalten an in Gew.-% C 0,4 bis 1,0, Si 0,1 bis 1,2, Mn 0,5 bis 3,5, gegebenenfalls an Cr bis 1,5 sowie weiteren Legierungselementen mit Konzentrationen unter 1 %, Rest Eisen und herstellungsbedingte Verunreinigungen hergestellt. Auf Grund der üblichen Dimensionen, z.B. mit einem Gewicht von 30 bis 100 kg/m, und dem daraus sich ergebenden Verhältnis von Querschnitt zu Umfang von Schienen erfolgt bei einer Abkühlung des Walzgutes aus der Umformhitze an ruhender Luft, z.B. auf Kühlbetten und dgl., der langsamen Abkühlung wegen eine Umwandlung des Gefüges von einer austenitischen in eine, gegebenenfalls Ferritanteile aufweisende grobperlitischen Struktur. Die eingangs genannten Werkstoffe mit obiger Struktur weisen dabei eine Härte im Bereich von 250 HB bis 350 HB auf.
Ein Steigen des Verkehrsaufkommens und größere Achslasten sowie der Wunsch, bei Eisenbahnschienen deren Haltbarkeit im praktischen Einsatz zu verbessern, führte zu einer Vielzahl von Vorschlägen, die Festigkeit und die Verschleißbeständigkeit des Materials zu erhöhen. Dabei können günstigere bzw. verbesserte Materialeigenschaften mit einer Härte von 400 HB und höher durch Wärmebehandlung und/oder durch legierungstechnische Maßnahmen erzielt werden.
Schienen sollen jedoch am Feld, u.a. zur Bildung von stoßfreien Strecken- bzw. Mehrfachlängen, gut schweißbar sein, so daß legierungstechnische Maßnahmen zur Erhöhung der Härte bzw. Festigkeit und Zähigkeit des Materials der Schweißprobleme wegen meist nur im geringen Umfang durchführbar und mit einer auf die Zusammensetzung des Stahles abgestimmten Wärmebehandlung zielführend sind ( DE-C 3 446 794, EP-B- 0187904. EP-B-0186373). Auch aus wirtschaftlichen Gründen haben sich derartige Verfahren nicht in größerem Maßstab bewährt.
Um die Gebrauchseigenschaften von Schienen und Weichenteilen aus den eingangs genannten Werkstoffen zu erhöhen, ist es, wie der Fachmann weiß, möglich, durch eine thermische Vergütungsbehandlung eine feinperlitische Materialstruktur einzustellen. Dabei ist es wichtig, bei der Abkühlung von der Austenitisierungstemperatur entsprechende Abkühlbedingungen bzw. Abkühlraten einzustellen. In der EP-B-0293002 wird beispielsweise hiefür vorgeschlagen, nach einer anfänglich hohen Kühlintensität eine praktisch isotherme Gefügeumwandlung des Werkstoffes bei ca. 530 °C durchzuführen. Aus der DE-OS-2 820 784 ist weiters bekannt geworden, eine Härtung von Schienen mit bestimmter Zusammensetzung in siedendem Wasser durchzuführen und durch Zusätze sowie Bewegungsmaßnahmen eine gewünschte Kühlintensität zur Einstellung eines feinperlitischen Gefügezustandes zu erreichen.
Es wurde gemäß AT-PS-323 224 schon angeregt, Schienen mit einer homogenen feinen Perlitstruktur bei einer ausgewählten Legierung durch Anwendung bestimmter Kühlungsparameter, z.B. einer Abkühlgeschwindigkeit zwischen 10 und 20 ° C/sec bis auf eine Temperatur von höchstens 550°C, herzustellen. Obige Maßnahmen haben jedoch den Nachteil gemeinsam, daß eine gleiche Kühlintensität der Oberfläche, je nach Massenkonzentration des Walzprofiles, unterschiedliche Abkühlungsgeschwindigkeiten und Gefügeausbildungen in den oberflächennahen Zonen bewirken kann und daß oft aufwendige Vorkehrungen getroffen werden müssen, um ungewollte örtliche Gefügeausbildungen bzw. Materialeigenschaften, insbesondere eine übermäßige Härte und Sprödigkeit, in vornehmlich auf Biegung beanspruchten Teilen der Schiene zu vermeiden.
Vielfach wurde auch vorgeschlagen, gezielt eine heterogene Mikrostruktur im Querschnitt einer Schiene und zwar den jeweiligen Beanspruchungen entsprechend einzustellen. Aus der DE-C-3 006 695 ist beispielsweise ein Verfahren bekannt, nach welchem aus der Walzhitze durch Abkühlung der Schiene eine Umwandlung im gesamten Querschnitt bewirkt wird, wonach der Kopf der Schiene, insbesondere durch induktive Erwärmung, reaustenitisiert und anschließend gehärtet wird. Weiters wurde gemäß WO 94/02652 vorgeschlagen, den Schienenkopf bis zu einer Oberflächentemperatur zwischen 450 und 550 ° C in ein Kühlmittel mit besonders eingestellter Kühlintensität abzukühlen und dadurch in diesem ein feinperlitisches Gefüge zu bewirken. Für eine derartige Behandlung ist eine Vorrichtung zum hängenden Härten von Schienen entsprechend der DE-C-4 003 363 geeignet.
Eine inhomogene Kühlung über den Querschnitt von profiliertem Walzgut kann aber zu Krümmungen bzw. Abweichungen von der Geradheit bei Raumtemperatur führen. Zur Vermeidung dieses Nachteiles wurde vorgeschlagen ( DE-A-4 237 991), Schienen hängend , vorzugweise mit dem Kopf nach unten, auf einem Kühlbett zu transportieren bzw. abzukühlen, wobei jedoch eine gezielte Ausbildung einer heterogenen Gefügestruktur über den Querschnitt kaum möglich ist.
Allen bisher bekannten Verfahren und Vorrichtungen ist der Nachteil gemeinsam, daß diese bei der Herstellung von profiliertem Walzgut zwar auf begrenzten Gebieten bzw. betreffend einzelne Verfahrensschritte durchaus zielführende Lösungen angeben, daß jedoch eine befriedigende Bewältigung der Gesamtproblematik bei einer wirtschaftlichen Herstellung von qualitativ hochwertigen langen Schienen mit besonderen Güteeigenschaften nicht aufgezeigt werden kann.
Hier will die Erfindung Abhilfe schaffen und setzt sich zum Ziel, bei Beseitigung der Nachteile der bekannten Herstellarten ein neues Verfahren anzugeben, mit welchem profiliertes Walzgut mit besonders vorteilhaften Gebrauchseigenschaften herstellbar ist. Weiters ist es Aufgabe der Erfindung, eine Vorrichtung insbesondere zur Durchführung des Verfahrens bereitzustellen und ein Walzgut, insbesondere eine Schiene, für höchste Beanspruchungen auszubilden.
Das Ziel wird bei einem gattungsgemäßen Verfahren dadurch erreicht, daß das Walzgut mit einer durchschnittlichen Temperatur von höchstens 1100°C, mindestens jedoch von 750 °C, in deren Längsrichtung bei plastischer Formgebung gerade ausgerichtet, in ausgerichtetem Zustand in Querrichtung verbracht und gehalten wird, und in einem ersten Schritt der Abkühlung des Walzgutes dieses ausgleichend auf eine Temperatur von unter 860 °C, bis zu einer niedrigsten Temperatur von 5 bis 120 °C über der Ar3-Temperatur der Legierung mit gleicher örtlicher Kühlintensität, im wesentlichen durch Strahlung an ruhender Luft abkühlen gelassen wird, worauf in einem zweiten Schritt der Abkühlung für eine Gefügeumwandlung in eine martensitfreie feinperlitische Struktur dem Walzgut in Längsrichtung mit örtlich im wesentlicher gleicher, im Querschnitt gesehen mit umfänglich unterschiedlicher, Intensität Wärme entzogen und die Kühlintensität in mindestens einer Zone am Umfang des profilierten Walzgutes vergrößert ausgebildet wird, wobei die größere(n) Kühlintensität(en) dem(den) Bereich(en) mit hohem Volumsanteil bezogen auf die Oberfläche oder mit hoher Massenkonzentration und/oder jenen mit örtlich hoher Temperatur des Walzgutes zugeordnet wird(werden) und der(die) Bereich(e) mit derart erhöhter Abkühlungsgeschwindigkeit auf Umwandlungstempertur gebracht wird(werden), bei welchen Kühlbedingungen ein martensitfreies feinperlitisches Gefüge gebildet wird, wonach in einem Folgeschritt mit gleicher örtlicher Kühlintensität die Abkühlung bis Raumtemperatur durchgeführt wird.
Es ist wichtig, daß eine gerade Ausrichtung des Walzgutes bei plastischer Formgebung erfolgt und dies in einem Temperaturbereich zwischen 750 °C und 1100 °C durchgeführt wird. Niedrigere Temperaturen als 750 °C können, wie gefunden wurde, zu einer teilelastischen Biegung mit Abweichungen von einer geraden Ausrichtung und in der Folge zu inhomogener Kühlintensität in Längsrichtung der Schiene führen. Walzguttemperaturen von über 1100 °C bewirken meist ein Wachstum der Austenitkörner bzw. eine Grobkornbildung, wodurch letztlich die Materialeigenschaften nachteilig beeinflußt werden können. Ausgehend von einem gerade ausgerichteten Walzgut hat es sich für eine Ausbildung eines in Längsrichtung gleichmäßig eingestellten feinperlitischen Bereiches vom Querschnitt als wichtig erwiesen, daß das Walzgut gehalten und in einem ersten Schritt der Abkühlung ausgleichend auf eine Temperatur von unter 860 °C mit gleicher örtlicher Kühlintensität abkühlen gelassen wird. Dabei kann einerseits eine örtliche Inhomogenität der Temperaturverteilung in Längsrichtung, welche gegebenenfalls durch ein stellenweises Aufliegen an einer Quertransporteinrichtung verursacht ist, ausgeglichen werden, andererseits wird eine achssymmetrische oder zentrischsymmetrische Temperaturverteilung im Querschnitt des profilierten Walzgutes eingestellt und dadurch dessen Geradheit stabilisiert. Diese ausgleichende Abkühlung wird auf eine Temperatur von 5° C bis 120 ° C über die Ar3-Temperatur der Legierung durchgeführt, um günstige Bedingungen für eine partielle Umwandlung des Gefüges in eine feinperlitische Strukturform in Teilen des Querschnittes zu schaffen. Dabei ist die Ar3Temperatur jene Temperatur, bei welcher eine Umwandlung des Gamma-Gitters in das Alpha-Gitter der Legierung bei einer Abkühlungsgeschwindigkeit von 3°C/min. beginnt.
Ein Abkühlen des Walzgutes mit einer in Längsrichtung im wesentlichen gleicher, im Querschnitt gesehen mit umfänglich unterschiedlicher, Intensität des Wärmeentzuges ist an sich bekannt. Es ist jedoch wichtig, die Bereiche mit vergrößerter Kühlintensität der Oberfläche der Massenkonzentration des Walzgutes entsprechend zuzuordnen. In Verbindung mit einer geraden Ausrichtung, einer ausgleichenden Abkühlung und Einstellung einer symmetrischen Temperaturverteilung und einer Zuordnung der Abkühlbereiche kann eine über die Querschnittsbereiche unterschiedliche Abkühlgeschwindigkeit in Längsrichtung des Walzgutes im wesentlichen gleich gehalten werden. Es ist dabei wichtig, die Größe der Abkühlgeschwindigkeit, mit welcher der vorgesehene Bereich des Walzgutes auf Umwandlungstemperatur gebracht wird, durch an sich bekannte Maßnahmen einzustellen. Wie in Bild 3, einem dem Fachmann geläufigen Zeit-Temperatur-Umwandlungsschaubild einer Legierung mit bestimmter Zusammensetzung ersichtlich ist, werden bei höheren Abkühlraten von der Ar3-Temperatur, z.B. die Kurven c und d, im Gefüge Martensitanteile gebildet, wodurch der Werkstoff zwar eine höhere Härte annimmt, jedoch wesentlich an Elastizität verliert und höhere Bruchgefahr aufweist und eine vorgesehene Verwendung nicht mehr möglich ist. Geringe Abkühlraten, z.B. der Kurve h bewirken eine grobperlitische, weiche Gefügestruktur. Es ist somit wichtig, die örtlichen Abkühlraten derart hoch einzustellen, daß bei einer Umwandlung eine Martensitbildung in jedem Fall vermieden wird, jedoch ein feinperlitisches Gefüge im Bereich der erhöhten Kühlintensität entsteht. Nach einer vollständigen Gefügeumwandlung wird , um eine Verbiegung des Walzgutes zu verringern bzw. im wesentlichen zu vermeiden, dieses mit gleicher örtlicher Kühlintensität auf Raumtemperatur gebracht.
Besonders vorteilhaft ist es, wenn die Wärmebehandlung nach einer Warmverformung des Walzgutes mit einem Verformungsgrad von 1,8 bis 8% im letzten Stich bei einer Temperatur von mindestens 750°C und höchstens 1050 °C aus der Warmumformhitze durchgeführt wird. Eine Endverformung mit einem Verformungsgrad bzw. einer Querschnittsflächenverminderung von 1,8 bis 8% bewirkt eine günstige Austenitkornfeinung, wenn die Umformung in einem Temperaturbereich von 770 °C bis 1050 °C erfolgt. Geringere Umformgrade als 1,8 verursachen, wie sich gezeigt hat, stellenweise ein besonders starkes Grobkorn bzw. Kornwachstum, hingegen bewirken größere Umformungen als 8% eine starke Temperaturerhöhung in zentralen-bzw. Innenbereichen offensichtlich auf Grund von freiwerdender Umformenergie, wodurch örtlich Gefügeinhomogenitäten bewirkt und Qualitätsnachteile verursacht werden können.
Im Hinblick auf einen Erhalt von weitgehend gerade ausgerichtetem bzw. achsfluchtendem Walzgut nach einer Abkühlung auf Raumtemperatur und insbesondere auf erhöhte Steifigkeit und Biegewechselfestigkeit aufweisende Schienen ist es von großem Vorteil, wenn im zweiten Schritt der Abkühlung die Kühlintensität in zwei oder mehreren Zonen am Umfang des profilierten Walzgutes vergrößert ausgebildet wird.. Dadurch können in mehreren oberflächennahen Bereichen einer Querschnittsfläche eine höhere Härte und eine höhere Festigkeit des Werkstoffes durch eine feinere Perlitstruktur des Gefüges erreicht werden. Bei einer Beanspruchung des Walzgutes auf Biegung, bei welcher die von der neutralen Faser oder Nullinie am weitesten entfernt liegenden Querschnittszonen die größten Spannungen aufweisen, ist es nun möglich, zumindest zwei dieser peripheren Zonen mit höherer Festigkeit auszubilden. Bei einer Schiene kann dabei, wie gefunden wurde, auch die Rißbruchzähigkeit des Materials im Fußbereich erhöht werden.
Bevorzugt wird der Teil des Walzgutes, der die höchste Massenkonzentration aufweist, gegebenenfalls der Kopf der Schiene, im Tauchverfahren abgekühlt, wobei gleichzeitig dem(den) weiters für eine verstärkte Kühlung vorgesehenen Walzgutteil(en), mit geringerer Massenkonzentration durch Mittel mit geringerer Kühlintensität Wärme entzogen wird. Mit einer derartigen Vorgangsweise können einer Bildung eines hohen inneren Spannungszustandes und einem thermischen Verzug eines Walzgutes entgegengewirkt werden.
Um bei den eingangs genannten Eisenbasislegierungen eine nachteilige Martensitbildung zu vermeiden und eine feine Perlitstruktur des Gefüges zu erreichen, ist es von Vorteil, wenn die Größe der Kühlintensität, insbesondere die Zusammensetzung der Kühlflüssigkeit für die Tauchabkühlung derart eingestellt wird, daß im Temperaturbereich von 800 °C bis 450 °C eine Abkühlung der oberflächennahen Zone, des eingetauchten Teiles, im wesentlichen mit 1,6 bis 2,4 °C/sec, erreicht wird. Diese Abkühlgeschwindigkeit ist auch aus wirtschaftlichen Gründen bevorzugt, weil bei einem Erreichen einer gewünschten Güte des Walzerzeugnisses eine kurze Abkühlzeit im zweiten Schritt erforderlich und somit ein hoher Durchsatz erreichbar sind.
Für eine Minimierung der Krümmung hat es sich als vorteilhaft erwiesen, wenn bei profiliertem Walzgut mit T-förmigem Querschnittsbereich, wie dies zum Beispiel am Fuß einer Eisenbahnschiene gegeben ist, die dem Steg gegenüberliegende Zone mit erhöhter Intensität gekühlt wird. Dabei hat es sich im Sinne einer Verbesserung der Langzeiteigenschaften als besonders günstig herausgestellt, wenn die dem Steg gegenüberliegende Oberflächenzone mit erhöhter Kühlintensität im wesentlichen symmetrisch zur Stegachse ausgebildet und lateral begrenzt wird.
Wenn weiters eine erhöhte Kühlintensität der bezüglich einer Massenkonzentration oder einer Stegeinmündung distalen Bereiche des Querschnittes des profilierten Walzgutes vermieden und/oder diese Bereiche vor einem vermehrten Wärmeentzug geschützt oder zumindest kurzzeitig gewärmt werden, ist es möglich, in den Walzgutkanten ein Gefüge mit gleicher oder geringerer Materialfestigkeit einzustellen. Überraschenderweise wird dadurch eine Bruchgefahr insbesondere bei stoßweise und/oder bei wechselnder Dauerbelastung des Walzmateriales gesenkt.
Besondere Formstabilität kann erreicht werden, wenn die Kühlintensität an der Oberfläche des profilierten Walzgutes, insbesondere der Schiene, derart eingestellt wird, daß die Zonen, in denen die Umwandlung des Gamma-Gefüges bei der Abkühlung erfolgt, im wesentlichen parallel symmetrisch und/oder parallel zur neutralen Ebene, und/oder konzentrisch zur Schwerpunktslinie bzw. zum Schwerpunkt der Querschnittsfläche ausgebildet werden.
Um in Längsrichtung eine im wesentlichen vollkommen gleiche örtliche Kühlintensität zu erreichen und den Wärmeübergang in das Kühlmedium stabil zu halten, kann erfindungsgemäß vorgesehen sein, daß das Walzgut, von welchem, bezogen auf den Querschnitt, ein Teil in eine Kühlflüssigkeit in einem Tauchbecken eingetaucht wird, während der Abkühlung in dieser in Längsrichtung relativ zum Kühlflüssigkeitsbehältnis bzw. Tauchbecken bewegt wird und/oder daß zumindest in der Zeit, in welcher ein Teil des Walzgutes in die Kühlflüssigkeit eingetaucht ist, diese mit einer Schwingung beaufschlagt wird. Diese Maßnahmen, wie gefunden wurde, verbessern entscheidend die Homogenität der erreichten Güte.
Eine Vorrichtung der eingangs genannten Art zur integralen Lösung der Probleme bei einer Herstellung von besondere Eigenschaften aufweisenden profiliertem Walzgut ist erfindungsgemäß dadurch gekennzeichnet, daß der Rollgang im Bereitstellungsbereich eine an sich bekannte Walzgutpositionierung und Mittel zur achsfluchtenden Ausrichtung des profilierten Walzgutes bei plastischer Formgebung desselben aufweist, eine Quertransporteinrichtung für ein achsfluchtendes Verbringen des Walzgutes im wesentlichen senkrecht zu dessen Achse vom Bereitstellungsbereich in den Abkühlungsbehandlungsbereich besitzt, bei welchem Bereich eine an sich bekannte Vorrichtung zum Härten eines Walzgutes mittels Kühlflüssigkeit in einem Tauchbecken mit Halte- und Manipulationseinrichtungen und eine regelbare Zusatzkühleinrichtung für ein intensiviertes Abkühlen von mindestens einem weiteren Bereich des Walzgutes angeordnet sind und der Endkühlbereich eine Ablage für das Walzgut zur Kühlung desselben auf Raumtemperatur aufweist.
Es wurde erkannt, daß eine achsfluchtende Ausrichtung, insbesondere bei einer, den Querschnitt betreffend, partiellen bzw. in Teilbereichen durchzuführenden Vergütung eines profilierten Walzgutes wichtig ist. Durch eine Verhinderung einer über die gesamte Länge oder in Teilbereichen dieser vorliegenden Krümmung können die vorbestimmten Abkühlungsbedingungen oder die Abkühlintensitäten des Walzgutes, in Achsrichtung gesehen, gleich gehalten werden, so daß Festigkeits- bzw. Härteunterschiede entlang einer Erzeugenden des Profiles ausgeschaltet sind. Untersuchungen haben ergeben, daß unterschiedliche Abstände zur Wand eines Kühlmittelbehältnisses und/oder zur Sprühkühlungsachse überproportionale Abweichungen der Härte- und Festigkeitswerte bewirken können. Bei einer Ausrichtung ist es weiters wichtig, daß das Walzgut durch entsprechende Einrichtungen einer plastischen Formgebung unterworfen wird, um elastische Rückstellungen in eine gegebenenfalls teilgekrümmte Form zu vermeiden. Eine achsfluchtende Verbringung des profilierten Walzgutes in einen Abkühlungsbereich durch einen geradlinigen Quertransport ist zur Vermeidung einer Nachrichtvorrichtung von großer Wichtigkeit. Zusätzlich dazu ist im Abkühlbereich eine Manipulationsvorrichtung vorgesehen, mit welcher eine Übernahme und ein Halten, ein Eintauchen in ein Kühlflüssigkeitsbecken bzw. Härten von Teilbereichen des Walzgutes sowie ein Übergeben in einen Endkühlbereich durchführbar ist. Dabei kann für intensivierte Kühlung von weiteren Querschnittsbereichen mindestens eine Zusatzkühleinrichtung vorgesehen sein.
In Weiterbildung der Vorrichtung ist von Vorteil, wenn die Zusatzkühleinrichtung an das Walzgut anstellbar und deren Kühlintensität regelbar ist und damit eine weitere örtliche Wärmeabfuhr, dem Verfahren entsprechend, eingestellt werden kann.
Vorteilhaft ist auch eine Ausführungsform, bei welcher die Zusatzkühleinrichtung Teile zur Ausbildung eines lokalen in Längs-bzw. Achsrichtung des Walzgutes im wesentlichen ununterbrochenen in Querrichtung begrenzten Kühlmittelstromes besitzt und gegebenenfalls Mittel zur Verhinderung eines verstärkten Wärmeentzuges der der gekühlten Fläche benachbarten Fläche(n) aufweist. Dadurch ist es möglich, scharf begrenzt Kühlzonen auszubilden und daneben liegende Bereiche von einem intensivierten Wärmeentzug auszuschließen bzw. in diesen eine geringere Materialhärte auszubilden, wobei einer weiteren Ausführungsform entsprechend die Zusatzkühleinrichtung als Drucklauf- oder Sprühkühlung ausgebildet ist.
Die Homogenität der Härte und Festigkeitswerte in Längsrichtung des profilierten Walzgutes kann weiter gesteigert werden, wenn das Walzgut in der Kühlflüssigkeit in Längsachsrichtung relativ zum Tauchbecken und/oder relativ zur Zusatzkühleinrichtung bewegbar ist und/oder, wenn am Tauchbecken und/oder in der Kühlflüssigkeit selbst Einrichtungen angeordnet sind, durch welche die Kühlflüssigkeit turbulent bewegbar und/oder in Schwingung versetzbar ist. Es wurde gefunden, daß Relativbewegungen und auch Schwingungsbewegungen oder Druckwellen zwischen Kühlmedium und Werkstück die örtliche Kühlintensität vergleichmäßigen und vorteilhafte Vergütungsbedingungen schaffen.
Eine Schiene, hergestellt nach einem vorher genannten Verfahren, gegebenenfalls hergestellt in einer oben beschriebenen Vorrichtung weist im Querschnitt im oberen Bereich des Kopfes hohe Materialfestigkeitswerte und- härte auf, welche Werte im unteren Kopfbereich im Steg und in den peripheren Teilen des Fußes abgesenkt sind. Im zentrischen Bereich an der Fußgrundfläche, verglichen mit den peripheren Teilen und dem Steg werden gegebenenfalls erhöhte Härtewerte des Werkstoffes und besonders gleichmäßige Gütemerkmale erreicht, wobei symmetrisch zur Hauptachse des Querschnittprofiles bzw. symmetrisch zur senkrechten Achse des Schienenquerschnittes im wesentlichen gleiche Materialhärtewerte eingestellt sind. Eine derartige Schiene weist auch bei erschwerten Beanspruchungen wie hohen Achslasten und/oder hohe Benutzungsfrequenz und/oder geringe Kurvenradien der Strecke verbesserte Gebrauchseigenschaften auf.
Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert.
Es zeigen
  • Fig. 1 eine Ablaufdarstellung zur Wärmebehandlung von Schienen
  • Fig. 2 eine Schiene im Querschnitt
  • Fig. 3 ein Zeit-Temperatur-Umwandlungsschaubild eines Schienenwerkstoffes
  • Wie in Fig. 1 schematisch dargestellt, wird in einem Bereitstellungsbereich A am Rollgang 21 ein profiliertes Walzgut wie eine Schiene durch zum Beispiel einfahrbare Puffer oder dgl. (nicht dargestellt) positioniert. Durch Richtmittel 22 und 23 wird darauf die Schiene 1 gerade fluchtend ausgerichtet, wobei eine zentrierende Form der Richtmittel, welche auch eine vertikale Krümmung korrigiert, vorteilhaft ist. Nach einer Ausrichtung des Walzgutes 1 erfolgt ein Quertransport über eine Ablage in einen Abkühlungsbereich B und eine Aufnahme in einer Manipulationseinrichtung mit Haltemitteln 24, wobei eine Abstützung bei einer Verbringung derart vorzusehen ist, daß keine Verbiegung quer zur Längsachse erfolgt. In an sich bekannter Weise wird das Walzgut bzw. die Schiene 1 mittels Haltemitteln 24 in eine Kühlflüssigkeit 37, welche sich in einem Tauchbecken 38 befindet, teilweise eingebracht. Dabei ist wichtig, daß der Abstand der Oberfläche der Schiene 1 zur Wandung des Tauchbeckens über die Länge beidseitig gleich groß ist, wobei auch zur Intensivierung und insbesondere zur Vergleichmäßigung einer Kühlintensität einer Walzgutoberfläche in vorteilhafter Weise das Walzgut 1 im Tauchbecken 38 bzw. im Kühlmedium 37 in Längsrichtung in einem Ausmaß von zum Beispiel 0,5 bis 5 m bewegbar sein kann. Im Kühlmedium 37 oder am Tauchbecken angebracht können auch Schwingungserzeuger (nicht dargestellt) eingesetzt sein, welche das Kühlmedium in eine die Kühlintensität vorteilhaft beeinflussende Schwingung mit einer Frequenz von zum Beispiel 100 bis 800/min versetzten.
    Auf einen Flachteil eines Walzprofiles, gegebenenfalls auf den Fuß 13 einer Schiene 1 kann eine Zusatzkühlung 3 gesetzt oder eingebracht werden. Eine derartige Zusatzkühleinrichtung kann eine Wasser-32 und eine Luft-33-Zuführung aufweisen und einen auf einen Oberflächenteil eines Walzgutes bzw. den Fuß der Schiene gerichteten Sprühstrom 31 ausbilden. Um in den peripheren Teilen 132 eine geringere Kühlintensität einzustellen und nur in einem zentralen Bereich 131 einer Walzgut- oder Schienenfußfläche eine Zone mit erhöhter Materialhärte auszubilden, kann es vorteilhaft sein, zum Beispiel mittels einer Absaugvorrichtung einen Kühlmittelaustrag vorzusehen.
    Nach einer Abkühlung eines in ein Kühlmittel 37 eingetauchten und eines insbesondere diesem gegenüberliegenden von einem Sprühstrom 31 beaufschlagten Teiles eines Walzgutes, insbesondere einer Schiene 1, unter die Umwandlungstemperatur des Werkstoffes mit einer feinperlitisches Gefüge bewirkenden Intensität, zum Beispiel gemäß Fig. 3 auf ca. 500 °C mit einer Abkühlrate entsprechend Kurve f, kann diese in einem Endkühlbereich C auf eine Ablage 25 zur Kühlung auf Raumtemperatur gebracht werden.
    Wie in Fig. 2 dargestellt ist, besitzt eine erfindungsgemäße Schiene 1 drei Bereiche mit unterschiedlicher Gefügestruktur bzw. Härte, wobei die Übergänge kontinuierlich ausgebildet sind. Im Schienenkopf 11 ist eine feinperlitische Zone 111 mit Härtewerten zwischen 340 und 390 HB, gegebenenfalls bis 425 HB, gegeben, welche nach unten in eine Zone 112 mit geringerer Härte, zum Beispiel von 300 bis 340 HB, übergeht. Im anschließenden Steg 12, welcher im praktischen Einsatz hohe Zähigkeit aufweisen muß, sind dementsprechend Härtewerte von 280 bis 320 HB eingestellt. Im Schienenfuß 13 ist in den peripheren Bereichen 132 wie im Steg 12 ein perlitisches Gefüge mit gröberer Struktur bzw. Lamellenausbildung und einer Härte von 280 bis 320 HB gegeben. Durch diese Gefügeausbildung und die Materialeigenschaften mit den geringen Härtewerten wird eine Riß- oder Bruchinitiation weitgehend vermieden. Zentrisch bodenseitig am Fuß 13 hingegen ist ein Bereich 131 mit erhöhter Materialfestigkeit und Härtewerten von 300 bis 350 HB und höher gebildet. Eine derartige erfindungsgemäße Verteilung der mechanischen Materialeigenschaften über den Querschnitt einer Schiene bewirkt, wie gefunden wurde, eine hohe Stabilität und ein vorteilhaftes Langzeitverhalten insbesondere bei erschwerten Bedingungen.

    Claims (17)

    1. Verfahren zur Wärmebehandlung von profiliertem Walzgut, insbesondere von Fahr-bzw. Eisenbahnschienen, mit erhöhter Wärmeabfuhr von Teilen der Profiloberfläche bei einer Abkühlung aus dem Gamma-Gebiet des Eisenbasiswerkstoffes, wobei im ( in den) gewünschten Querschnittsbereich(en), insbesondere im Kopfbereich von Schienen, eine Umwandlung in ein feinperlitisches Gefüge mit erhöhter Festigkeit, insbesondere erhöhter Abriebfestigkeit, und erhöhter Härte erfolgt und gegebenenfalls eine Verformung bzw. Verbiegung durch thermisch bedingten Verzug des Walzgutes, insbesondere der Schiene senkrecht zur Längsachse bei einer Abkühlung auf Raumtemperatur, insbesondere nach einer Gefügeumwandlung im (in den) verstärkt gekühlten Querschnittsbereich(en), verringert, vorzugsweise im wesentlichen vermieden und erhöhte Steifigkeit und Biegewechselfestigkeit des Walzgutes erreicht werden, dadurch gekennzeichnet, daß das Walzgut mit einer durchschnittlichen Temperatur von höchstens 1100°C ,mindestens jedoch von 750°C, in deren Längsrichtung bei plastischer Formgebung gerade ausgerichtet, in ausgerichtetem Zustand in Querrichtung verbracht und gehalten wird, und in einem ersten Schritt der Abkühlung des Walzgutes dieses ausgleichend auf eine Temperatur von unter 860°C bis zu einer niedrigsten Temperatur von 5 bis 120°C über der Ar3-Temperatur der Legierung mit gleicher örtlicher Kühlintensität, im wesentlichen durch Strahlung an ruhender Luft, abkühlen gelassen wird, worauf in einem zweiten Schritt der Abkühlung für eine Gefügeumwandlung in eine martensitfreie feinperlitische Struktur dem Walzgut in Längsrichtung mit örtlich im wesentlichen gleicher, im Querschnitt gesehen mit umfänglich unterschiedlicher, Intensität Wärme entzogen und die Kühlintensität in mindestens einer Zone am Umfang des profilierten Walzgutes vergrößert ausgebildet wird, wobei die größere(en) Kühlintensität(en) dem(den) Bereich(en) mit hohem Volumsanteil bezogen auf die Oberfläche oder mit hoher Massenkonzentration und/oder jenen mit örtlich hoher Temperatur des Walzgutes zugeordnet wird (werden) und der(die) Bereich(e) mit derart erhöhter Abkühlungsgeschwindigkeit auf Umwandlungstemperatur gebracht wird(werden), bei welchen Kühlbedingungen ein martensitfreies feinperlitisches Gefüge gebildet wird, wonach in einem Folgeschritt mit gleicher örtlicher Kühlintensität die Abkühlung bis auf Raumtemperatur durchgeführt wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Wärmebehandlung nach einer Warmverformung des Walzgutes mit einem Verformungsgrad von 1,8 bis 8% im letzten Stich bei einer Temperatur von mindestens 770 °C und höchstens 1050 °C aus der Warmumformhitze durchgeführt wird.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im zweiten Schritt der Abkühlung die Kühlintensität in zwei oder in mehreren Zonen am Umfang des profilierten Walzgutes vergrößert ausgebildet wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Teil des profilierten Walzgutes, der die höchste Massenkonzentration aufweist, im Tauchverfahren abgekühlt wird, wobei gleichzeitig dem(den) weiters für eine verstärkte Kühlung vorgesehenen Walzgutteil(en), mit geringerer Massenkonzentration durch Mittel mit geringerer Kühlintensität Wärme entzogen wird.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Größe der Kühlintensität, insbesondere die Zusammensetzung der Kühlflüssigkeit für die Tauchabkühlung derart eingestellt wird, daß im Temperaturbereich von 800°C bis 450°C eine Abkühlung der oberflächennahen Zone des eingetauchten Teiles im wesentlichen mit 1,6 bis 2,4°C/sec erreicht wird.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei profiliertem Walzgut mit T-förmigem Querschnittsbereich, wie dies zum Beispiel am Fuß einer Eisenbahnschiene gegeben ist, die dem Steg gegenüberliegende Zone mit erhöhter Intensität gekühlt wird.
    7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die dem Steg gegenüberliegende Oberflächenzone mit erhöhter Kühlintensität im wesentlichen symmetrisch zur Stegachse ausgebildet und lateral begrenzt wird.
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß eine erhöhte Kühlintensität der bezüglich einer Massenkonzentration oder einer Stegeinmündung distalen Bereiche des Querschnittes des profilierten Walzgutes vermieden und/oder diese Bereiche vor einem vermehrten Wärmeentzug geschützt oder zumindest kurzzeitig gewärmt werden.
    9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Kühlintensität an der Oberfläche des profilierten Walzgutes derart eingestellt wird, daß die Zonen, in denen die Umwandlung des Gamma-Gefüges bei der Abkühlung erfolgt, im wesentlichen parallel symmetrisch und/oder parallel zur neutralen Ebene und/oder konzentrisch zur Schwerpunktslinie bzw. zum Schwerpunkt der Querschnittsfläche ausgebildet werden.
    10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Walzgut, von welchem , bezogen auf den Querschnitt, ein Teil in eine Kühlflüssigkeit in einem Tauchbecken eingetaucht wird, während der Abkühlung in dieser in Längsrichtung relativ zum Kühlflüssigkeitsbehältnis bzw. Tauchbecken bewegt wird.
    11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zumindest in der Zeit, in welcher ein Teil des Walzgutes in die Kühlflüssigkeit eingetaucht ist, diese mit einer Schwingung beaufschlagt wird.
    12. Vorrichtung zur Wärmebehandlung von profiliertem Walzgut, insbesondere Fahr- bzw. Eisenbahnschienen mit erhöhter Wärmeabfuhr von Teilen der Profiloberfläche bei einer Abkühlung aus dem Gamma-Gebiet des Eisenbasiswerkstoffes, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 11, bestehend im wesentlichen aus mindestens einem Bereitstellungsbereich (A) für das Walzgut (1) am Rollgang (21), mit einer Walzgutpositioniereinrichtung, einem Abkühlbehandlungsbereich (B), mit Einrichtungen zur partiellen Wärmeabfuhr mit hoher Intensität von der Oberfläche des Walzgutes (1) und einem Endkühlbereich (C) zur Kühlung des Walzgutes (1) auf Raumtemperatur sowie Quertransport-, Halte- und Manipulationsmittel, dadurch gekennzeichnet daß der Rollgang (21) im Bereitstellungsbereich (A) eine an sich bekannte Walzgutpositioniereinrichtung und Mittel ( 22, 23) zur achsfluchtenden Ausrichtung des profilierten Walzgutes (1) bei plastischer Formgebung desselben aufweist, eine Quertransporteinrichtung für ein achsfluchtendes Verbringen des Walzgutes (1) im wesentlichen senkrecht zu dessen Achse vom Bereitstellungsbereich (A) in den Abkühlungsbehandlungsbereich (B) besitzt, in welchem Bereich (B) eine an sich bekannte Vorrichtung zum Härten eines Walzgutes mittels Kühlflüssigkeit (37) in einem Tauchbecken (38) mit Halte- und Manipulationseinrichtungen (24) und eine regelbare Zusatzkühleinrichtung (3) für ein intensiviertes Abkühlen von mindestens einem weiteren Bereich des Walzgutes angeordnet sind und der Endkühlbereich (C) eine Ablage (25) für das Walzgut (1) zur Kühlung desselben auf Raumtemperatur aufweist.
    13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Zusatzkühleinrichtung (3) an das Walzgut (1) anstellbar und deren Kühlintensität regelbar ist.
    14. Vorrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß die Zusatzkühleinrichtung (3) Teile zur Ausbildung eines lokalen in Längs-bzw. Achsrichtung des Walzgutes (1) im wesentlichen ununterbrochenen in Querrichtung begrenzten Kühlmittelstromes (31) besitzt und gegebenenfalls Mittel (34) zur Verhinderung eines verstärkten Wärmeentzuges der der gekühlten Fläche benachbarten Fläche(n) aufweist.
    15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß die Zusatzkühleinrichtung als Druckluft- oder Sprühkühlung ausgebildet ist.
    16. Vorrichtung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß das Walzgut (1) in der Kühlflüssigkeit (37) in Längsachsrichtung relativ zum Tauchbecken (38) und/oder relativ zur Zusatzkühleinrichtung (3) bewegbar ist.
    17. Vorrichtung nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß am Tauchbecken (38) und/oder in der Kühlflüssigkeit (37) selbst Einrichtungen angeordnet sind, durch welche die Kühlflüssigkeit (37) turbulent bewegbar und/oder in Schwingung versetzbar ist.
    EP95890136A 1994-07-19 1995-07-13 Verfahren und Vorrichtung zur Wärmebehandlung von profiliertem Walzgut Expired - Lifetime EP0693562B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    AT1431/94 1994-07-19
    AT0143194A AT402941B (de) 1994-07-19 1994-07-19 Verfahren und vorrichtung zur wärmebehandlung von profiliertem walzgut
    AT143194 1994-07-19

    Publications (2)

    Publication Number Publication Date
    EP0693562A1 EP0693562A1 (de) 1996-01-24
    EP0693562B1 true EP0693562B1 (de) 2000-03-29

    Family

    ID=3513759

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95890136A Expired - Lifetime EP0693562B1 (de) 1994-07-19 1995-07-13 Verfahren und Vorrichtung zur Wärmebehandlung von profiliertem Walzgut

    Country Status (19)

    Country Link
    EP (1) EP0693562B1 (de)
    JP (1) JP3811865B2 (de)
    KR (1) KR100372402B1 (de)
    CN (1) CN1045214C (de)
    AT (2) AT402941B (de)
    AU (1) AU702091B2 (de)
    BR (1) BR9503367A (de)
    CA (1) CA2154090C (de)
    CZ (1) CZ290866B6 (de)
    DE (1) DE59508080D1 (de)
    ES (1) ES2145247T3 (de)
    HR (1) HRP950386B1 (de)
    HU (1) HU218230B (de)
    PL (1) PL178079B1 (de)
    RU (1) RU2101369C1 (de)
    SI (1) SI9500230B (de)
    SK (1) SK282161B6 (de)
    TW (1) TW300920B (de)
    UA (1) UA34469C2 (de)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT407057B (de) * 1996-12-19 2000-12-27 Voest Alpine Schienen Gmbh Profiliertes walzgut und verfahren zu dessen herstellung
    AT409268B (de) * 2000-05-29 2002-07-25 Voest Alpine Schienen Gmbh & C Verfahren und einrichtung zum härten von schienen
    DE10148305A1 (de) 2001-09-29 2003-04-24 Sms Meer Gmbh Verfahren und Anlage zur thermischen Behandlung von Schienen
    KR20090017686A (ko) 2004-01-09 2009-02-18 신닛뽄세이테쯔 카부시키카이샤 레일 제조 방법
    JP5169030B2 (ja) * 2007-06-08 2013-03-27 日産自動車株式会社 焼入れ方法および焼入れ装置
    AT505930B1 (de) * 2008-02-04 2009-05-15 Voestalpine Schienen Gmbh Einrichtung zum härten von schienen
    EP2253394B1 (de) 2008-02-27 2018-04-04 Nippon Steel & Sumitomo Metal Corporation Kühlsystem und kühlverfahren zum walzen von stahl
    DE102012020844A1 (de) * 2012-10-24 2014-04-24 Thyssenkrupp Gft Gleistechnik Gmbh Verfahren zur thermomechanischen Behandlung von warmgewalzten Profilen
    JP6137093B2 (ja) * 2014-09-18 2017-05-31 Jfeスチール株式会社 レールの冷却方法および冷却設備
    CA3130062C (en) 2019-03-15 2023-09-26 Nippon Steel Corporation Railway rail

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2087346A (en) * 1930-08-21 1937-07-20 United States Steel Corp Method of producing steel rails
    FR2109121A5 (de) 1970-10-02 1972-05-26 Wendel Sidelor
    DE2439338C2 (de) * 1974-08-16 1980-08-28 Fried. Krupp, Huettenwerke Ag, 4630 Bochum Verfahren zur Wärmebehandlung von Schienen aus der Walzhitze
    BE854834A (fr) * 1977-05-18 1977-09-16 Centre Rech Metallurgique Procede de fabrication de rails a caracteristiques ameliorees
    DE3006695C2 (de) 1980-02-22 1988-12-01 Klöckner-Werke AG, 4100 Duisburg Verfahren zum Wärmebehandeln von Schienen
    US4486248A (en) * 1982-08-05 1984-12-04 The Algoma Steel Corporation Limited Method for the production of improved railway rails by accelerated cooling in line with the production rolling mill
    LU84417A1 (fr) * 1982-10-11 1984-05-10 Centre Rech Metallurgique Procede perfectionne pour la fabrication de rails et rails obtenus par ce procede
    DE3446794C1 (de) 1984-12-21 1986-01-02 BWG Butzbacher Weichenbau GmbH, 6308 Butzbach Verfahren zur Waermebehandlung perlitischer Schienenstaehle
    EP0186373B1 (de) * 1984-12-24 1990-09-12 Nippon Steel Corporation Verfahren und Vorrichtung zum Wärmebehandeln von Schienen
    US4886558A (en) * 1987-05-28 1989-12-12 Nkk Corporation Method for heat-treating steel rail head
    US4895605A (en) * 1988-08-19 1990-01-23 Algoma Steel Corporation Method for the manufacture of hardened railroad rails
    DE4003363C1 (en) 1990-02-05 1991-03-28 Voest-Alpine Industrieanlagenbau Ges.M.B.H., Linz, At Hardening rails from rolling temp. - using appts. with manipulator engaging rail from exit roller table with support arms positioned pivotably on each side
    AT399346B (de) 1992-07-15 1995-04-25 Voest Alpine Schienen Gmbh Verfahren zum w[rmebehandeln von schienen
    DE4237991A1 (de) 1992-11-11 1994-05-19 Schloemann Siemag Ag Verfahren und Vorrichtung zur Abkühlung von warmgewalzten Profilen insbesondere von Schienen

    Also Published As

    Publication number Publication date
    CA2154090C (en) 2005-01-11
    SK90195A3 (en) 1996-03-06
    KR100372402B1 (ko) 2003-05-09
    DE59508080D1 (de) 2000-05-04
    EP0693562A1 (de) 1996-01-24
    AU702091B2 (en) 1999-02-11
    ATE191241T1 (de) 2000-04-15
    HUT72292A (en) 1996-04-29
    JPH08170120A (ja) 1996-07-02
    CA2154090A1 (en) 1996-01-20
    CZ186195A3 (en) 1996-02-14
    JP3811865B2 (ja) 2006-08-23
    CN1123331A (zh) 1996-05-29
    HU9502162D0 (en) 1995-09-28
    PL309657A1 (en) 1996-01-22
    TW300920B (de) 1997-03-21
    ATA143194A (de) 1997-02-15
    RU2101369C1 (ru) 1998-01-10
    AT402941B (de) 1997-09-25
    HRP950386B1 (en) 2000-02-29
    BR9503367A (pt) 1996-09-10
    SI9500230B (en) 2001-12-31
    HRP950386A2 (en) 1997-04-30
    HU218230B (hu) 2000-06-28
    AU2334995A (en) 1996-02-01
    CN1045214C (zh) 1999-09-22
    ES2145247T3 (es) 2000-07-01
    CZ290866B6 (cs) 2002-11-13
    SK282161B6 (sk) 2001-11-06
    SI9500230A (en) 1997-02-28
    UA34469C2 (uk) 2001-03-15
    PL178079B1 (pl) 2000-02-29

    Similar Documents

    Publication Publication Date Title
    DE69427189T2 (de) Hochfeste, abriebsresistente schiene mit perlitstruktur und verfahren zu deren herstellung
    EP0849368B1 (de) Profiliertes Walzgut und Verfahren zu dessen Herstellung
    DE2439338C2 (de) Verfahren zur Wärmebehandlung von Schienen aus der Walzhitze
    EP2573194B1 (de) Verfahren und vorrichtung zur wärmebehandlung von schienen
    EP0693562B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von profiliertem Walzgut
    DE2919156A1 (de) Verfahren zur herstellung von hochwertigen schienen mit hoher schweissbarkeit
    EP1412543B1 (de) Verfahren zur kühlung von werkstücken insbesondere von profilwalzprodukten aus schienenstählen
    WO2017133867A1 (de) Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes
    EP1160341B1 (de) Verfahren und Einrichtung zum Härten von Schienen
    AT410549B (de) Vorrichtung zum vergüten von walzgut mit grosser länge
    DE3728498C2 (de) Vorrichtung zur Wärmebehandlung von Schienen
    US6224694B1 (en) Method for heat-treating profiled rolling stock
    EP0725152B1 (de) Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen
    WO2008077166A2 (de) Verfahren und vorrichtung zur wärmebehandlung von metallischen langprodukten
    EP0925855A2 (de) Vorrichtung zum kontrollierten Abkühlen von warmgewalzten Profilen, insbesondere Trägern, direkt aus der Walzhitze
    DE3501522C1 (de) Verfahren zur Herstellung eigenspannungsarmer Stahlschienen mittels Rollenrichten
    DE102012017143B3 (de) Verfahren zum Herstellen eines Bauteils mit bainitischem Gefüge und entsprechendes Bauteil
    DE102011051682B4 (de) Verfahren und Vorrichtung zum Behandeln eines Stahlprodukts sowie Stahlprodukt
    EP0190448A1 (de) Verfahren zur Verminderung der Eigenspannungen rollengerichteter Stahlschienen
    EP0542951B1 (de) Verfahren zum vergüten eines schienenfahrzeugrades
    DE3927276A1 (de) Verfahren zum haerten von stahl mit hilfe fluessiger kuehlmedien
    EP0507762A2 (de) Verfahren zur Herstellung eines Herzstückes
    DD143630A1 (de) Verfahren zur herstellung von hochfestem federdraht

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

    AX Request for extension of the european patent

    Free format text: LT PAYMENT 950721;SI PAYMENT 950721

    RAX Requested extension states of the european patent have changed

    Free format text: LT PAYMENT 950721;SI PAYMENT 950721

    17P Request for examination filed

    Effective date: 19960306

    17Q First examination report despatched

    Effective date: 19990305

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

    AX Request for extension of the european patent

    Free format text: LT PAYMENT 19950721;SI PAYMENT 19950721

    LTIE Lt: invalidation of european patent or patent extension
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000329

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000329

    REF Corresponds to:

    Ref document number: 191241

    Country of ref document: AT

    Date of ref document: 20000415

    Kind code of ref document: T

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000329

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59508080

    Country of ref document: DE

    Date of ref document: 20000504

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000629

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000629

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2145247

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000731

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000731

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    BERE Be: lapsed

    Owner name: VOEST-ALPINE SCHIENEN G.M.B.H.

    Effective date: 20000731

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20140722

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140721

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140721

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20140721

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20140721

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20140611

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20140728

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20140731

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59508080

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20150712

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 191241

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20150713

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20151026

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20150712

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20150714