WO2016103316A1 - 熱間据込み鍛造用の素材形状 - Google Patents

熱間据込み鍛造用の素材形状 Download PDF

Info

Publication number
WO2016103316A1
WO2016103316A1 PCT/JP2014/083878 JP2014083878W WO2016103316A1 WO 2016103316 A1 WO2016103316 A1 WO 2016103316A1 JP 2014083878 W JP2014083878 W JP 2014083878W WO 2016103316 A1 WO2016103316 A1 WO 2016103316A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
radius
curvature
height
convex
Prior art date
Application number
PCT/JP2014/083878
Other languages
English (en)
French (fr)
Inventor
允晶 洪
高大 牧山
哲也 谷上
レミ 向瀬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016565615A priority Critical patent/JP6303028B2/ja
Priority to PCT/JP2014/083878 priority patent/WO2016103316A1/ja
Publication of WO2016103316A1 publication Critical patent/WO2016103316A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting

Definitions

  • the present invention is a technology related to a material shape for hot upset forging.
  • the purpose of hot forging is not only to reduce the molding load. By applying a large deformation by hot forging, it is possible to eliminate shrinkage cavities generated inside the metal material by casting.
  • the crystal grains are refined by processing heat treatment by forging. This is called crystal grain refinement by recrystallization. Fine crystal grains prevent the development of cracks and improve the toughness of the material.
  • Forging methods can be broadly divided into die forging, which uses a forging die, and free forging, where a workpiece is set on a jig and molded with a hammer.
  • the One of the categories of this free forging process is upset forging.
  • “Upsetting” is a molding method in which the pressure is increased in the axial direction to reduce the height and simultaneously increase the cross section. In upsetting forging, if the upper and lower dies for press working are shared, the production cost of molds corresponding to products such as die forging can be reduced, and upsetting forging is performed for each compression shaft of the multi-axis forging method. And so on.
  • forged sample 20 is generally bulged outwardly in the circumferential direction by forging sample 20 after processing, for example, by subjecting forged sample 10 having a cylindrical shape to compression processing 40 as shown in FIG. 2.
  • a phenomenon (this is called Barreling) occurs. This is because the axial distribution of the diameter of the forged sample after processing is not uniform, and the central portion swells and becomes large. For this reason, in the next process, processing steps such as cutting, grinding, and polishing the bulging portion (valering portion) are necessary.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-231357 discloses a method for predicting the shape of a forged sample after upsetting using a finite element method in multi-stage hot forging, for example, the height of a round bar-shaped initial material.
  • the upsetting shape such as the end diameter after upsetting from the relationship between the weight and diameter
  • molding defects such as cracks and cracks due to turning up of the sample due to defective setting of the sample in the mold in the next process A method for preventing this is disclosed.
  • Non-Patent Document 1 describes a method for estimating a load (work hardening curve) including a large strain region in which strain exceeds 1.0 in upsetting processing or uniaxial compression processing.
  • Patent Document 1 discloses a method of predicting a material shape after upsetting by a finite element method in a hot bar forging process or a uniaxial compression process in which a material shape to be charged is a round bar shape. It is described that. It describes a method for predicting the maximum diameter, minimum diameter, height, barreling shape, that is, side deflection shape, etc. after installation from the relationship between the initial height, weight and diameter of the round bar. According to this method, it is described that a defect at the time of mold setting in the next process can be prevented by estimating the deformed shape after upsetting from the shape information and pressing force of the initial material.
  • the method as in Patent Document 1 merely estimates the shape after deformation from the round bar shape, and does not mention a method for controlling the deformation shape.
  • the deformed shape due to the round bar shape is deformed into a shape in which the side surface is bent or a shape accompanied by ballering, and an asymmetric deformation having a different peripheral diameter occurs in the axial direction of the deformed shape.
  • the machining allowance increases, the material yield decreases, and the processing time increases.
  • the region where the strain distribution is non-uniform becomes large due to the ballering deformation, there is a problem that the quality of the hot forged product cannot be predicted.
  • Non-Patent Document 1 since the material shape for estimating the load in the large strain region where the strain exceeds 1.0 is required to increase the compression rate, the center portion in the axial direction is not a round bar.
  • a dumbbell-shaped test piece having a cylindrical portion at the upper and lower ends is used to prevent constriction and slippage from occurring at the upper and lower end surfaces of the sample.
  • the influence of friction with the tool during deformation is eliminated by restraining the cylindrical parts of the upper and lower ends of the dumbbell-shaped test piece. It is described that it is possible to estimate the load (work hardening curve).
  • the material shape is a shape intended to eliminate the influence of friction with the tool at the time of compressive deformation, and is a portion that can be sandwiched between the constriction and the mold at the center. It has a shape having upper and lower cylindrical portions.
  • the shape prediction after compression deformation it is described that there is a valering deformation as in the above-mentioned Patent Document 1, and that the constriction portion by the die of the cylindrical portion occurs.
  • the main object of the present invention is to provide a material shape that can be uniformly deformed with a uniform circumferential diameter in the axial direction with respect to upsetting or uniaxial compression in hot forging. It is. In particular, it is to provide a technique capable of improving the material yield of the next process by uniformly deforming.
  • the material shape for hot upset forging is a columnar material having a circular upper end surface and a lower end surface that is axisymmetric with respect to the central axis, and includes a central axis.
  • the outer shape of the side connecting the upper end side and the lower end side is, from the upper end side, the first convex curvature, the second convex curvature, the first concave curvature, the second concave curvature,
  • a shape extending to the lower end side is formed by a continuation of the outer shape having the third convex curvature and the fourth convex curvature, and the first convex curvature radius and the second convex curvature radius.
  • Each ratio value obtained by dividing each value of the first concave curvature radius, the second concave curvature radius, the third convex curvature radius, and the fourth convex curvature radius by the material height. was configured to be in a range greater than 0.37 and less than 0.68.
  • points between the outer shapes having the first convex curvature and the second convex curvature are the first maximum radius of the material, and the first recess curvature and the second recess.
  • the radius at the point between the outer shapes each having a curvature, or before and after the point where the tangent direction of the outer shape of the side of the cross-sectional shape coincides with the central axis direction is the minimum radius of the material, and the third
  • the shape of the material is determined from the point on the outer shape that is the first maximum radius of the material with respect to the total height of the material.
  • the ratio of the height to the upper end and the ratio of the height from the point on the outer shape that is the second maximum radius of the material to the total height of the material to the lower end of the material is greater than 0.15. And in a range smaller than 0.2.
  • the first shape of the material is determined from the point on the outer shape that is the minimum radius of the material with respect to the total height of the material.
  • the outer shape that is the minimum radius of the material from the ratio of the height to the point on the outer shape that becomes the maximum radius and the point on the outer shape that becomes the second maximum radius of the material with respect to the total height of the material.
  • the ratio of the height to the point was configured to be in a range larger than 0.3 and smaller than 0.37.
  • the deformed shape in the hot upset forging process, has no valering deformation in the circumferential direction in the axial direction, and becomes a uniform shape in the axial direction.
  • the amount of the cutting material is reduced because the burring portion is eliminated, and the production cost can be reduced while the material yield is improved.
  • the material shape of the present invention by introducing one constriction at the center, a convex peak from the top, and a convex peak from the bottom, for conventional upset forging with the same height and the same maximum diameter as the round bar shape
  • the weight of the material can be reduced with respect to the round bar of Patent Document 1 which is the material shape, and the press load can be reduced by about 10% at the same compression rate, and the production cost can be reduced.
  • the horizontal axis is uniform It is a natural logarithm of deformability
  • the vertical axis is a graph plotting each radius of curvature value divided by the material height.
  • the vertical axis is a value obtained by dividing the parameters A12 and A18 of the material shape before processing by the material height
  • the horizontal axis is a graph plotted with the natural logarithm of uniform deformability.
  • the vertical axis is a value obtained by dividing the raw material shape parameters A14 and A16 by the material height
  • the horizontal axis is a graph obtained by plotting the natural logarithm of uniform deformability.
  • the horizontal axis is the log (minimum radius / maximum radius) value of the material
  • the vertical axis is the log of the deformed shape (uniform It is a graph plotted by the (deformability) value. It is a figure explaining the deformation
  • the object of the present invention is that when the material shape after processing in the hot upset forging process is finished into the product shape in the next step, the processing cost is reduced most when the material shape after processing is cylindrical. It is determined that the shape is closer to the shape, and a material shape for upsetting forging that should be thrown in before machining that is suitable for bringing the material shape after processing closer to the cylindrical shape is proposed.
  • FIG. 2 shows a processed raw material 20 having a barreling shape (bulged portion) 30 by processing a cylindrical material 10 that has been frequently introduced in a conventional hot upset forging process. Yes. Observing this hot upset forging process, after the start of compression 40, it first begins to bulge from the central part of the cylindrical material, and then gradually begins to bulge from a position closer to the upper and lower ends.
  • FIG. 3 a model of the material shape before processing for making the material shape after processing in the hot upset forging process closest to the cylindrical shape is shown in FIG.
  • the model shown in FIG. 3 is a columnar body that is rotationally symmetric about a central axis 50 in the height direction (Z-axis), and is an XZ composed of a horizontal X-axis orthogonal to the central axis 50 (Z-axis).
  • the cross section of the right half from the central axis 50 when the model is cut in a plane is shown.
  • each of the Z axis height is AL
  • the upper end surface radius is A10
  • the lower end surface radius is A17
  • the curvature formed by the outline of the side surface in the cross-sectional view is the curvature radius R1 sequentially from the upper end surface side.
  • the height of the curvature of the side surface outline to each inflection point is composed of height parameters A12, A141, A142, A161, A162, and A18 sequentially from the upper end surface side.
  • the inflection point A23 on the outline on the side surface of the cross-sectional view of the model is at a height of about AL / 2, and the radius of the model at the inflection point A23 is A13, which is the smallest radius in the model. Value. (If the inflection point has the same curvature on both sides, it is not called an inflection point.
  • FIG. 4 illustrates a method for evaluating the result of the deformed shape when upsetting forging or uniaxial forging is performed on a model sample in which parameters are specifically defined.
  • a barring deformation F10 in which the vicinity of the center F20 of the material is bent occurs during deformation. Due to the occurrence of the ballering deformation F10, the radius of the central portion F20 is increased, and a difference between the radius F21 of the upper end surface portion and the radius F11 of the central portion is generated in the axial direction, and the uniform deformability is lowered.
  • FIG. 4 is a schematic diagram of a cross-section of the deformed shape F0 after upset forging and a method for evaluating uniform deformability.
  • the evaluation direction of uniform deformability is evaluated by measuring the change in radius with respect to the axial direction. The closer the value is to 1, the higher the uniform deformation.
  • the height AF of the deformed material the height 1/2 of AF is F1
  • the height 3/4 of AF is F2.
  • the radius corresponding to the half height AF of F1 is F11
  • the radius corresponding to the height F2 of 3/4 of AF is F12
  • the uniform deformability is evaluated by the value of the ratio F12 / F11 of F12 to F11. To do.
  • both the parameters A12 and A18 of the material shape before processing shown in FIG. 3 have a ⁇ parameter value / total height AL ⁇ value larger than 0.15 and smaller than 0.20. It was found that the deformed shape after processing can be accommodated in the range of ⁇ 0.015 ⁇ Log (uniform deformation property) ⁇ 0 ⁇ by being within the range.
  • FIG. 1 shows a material shape that is proposed based on experimental verification of each shape parameter of the material shape model before processing initially assumed in FIG. It is a columnar material shape that is rotationally symmetric with respect to a central axis that coincides with the Z axis, and FIG.
  • the proposed shape is characterized by having a cross-sectional outer shape in which a peak, a valley, and a peak are continuous in the central axis direction.
  • the radius A10 of the upper end A20 is not called an inflection point if the curvature on both sides of the inflection point is the same as the specific point A21 on the outline (in this case, the tangential direction of the outline of the cross-sectional shape is A point that coincides with the Z-axis direction is adopted (hereinafter referred to as “specific point”), and is smaller than the radius A11, and the upper end A20 and the specific point A21 always have a convex curvature (curvature radius R1).
  • the value is characterized in that the ratio R1 / AL of the curvature radius R1 with respect to the total height AL of the columnar material is greater than 0.37 and less than 0.68.
  • the radius A11 at the position of the specific point A21 is the maximum radius of the material shape.
  • the height A12 of the upper end portion A20 and the maximum diameter portion (specific point A21) is characterized in that A12 / AL is larger than 0.15 and smaller than 0.2 with respect to the material height AL.
  • There is a specific point A23 at a position on the outline that is a height A14 A141 + A142 below the specific point A21 in the Z-axis direction.
  • the radius A13 at the specific point A23 is the minimum radius of the entire material, and the specific point A23 is located at a height that is 1 ⁇ 2 of the total height AL of the material.
  • the specific point A21 of the outer shape position having the maximum radius and the specific point A23 of the outer shape position having the minimum radius always have a curvature.
  • the specific point A21 having the maximum radius and the specific point A23 having the minimum radius have a height of A14 in the Z-axis direction, and have the maximum radius with the inflection point A22 located at the outer shape position 1 ⁇ 2 of the height A14.
  • the specific point A21 has a convex curvature (curvature radius R2), which is characterized in that the ratio R2 / AL of the curvature radius R2 to the total height AL of the material is larger than 0.37 and smaller than 0.68.
  • the curvatures of R1 and R2 need to match.
  • the inflection point A22 and the specific point A23 have a concave curvature (curvature radius R3).
  • the value R3 / AL of the curvature radius R3 with respect to the total height AL of the material is larger than 0.37 and is 0.68. It is characterized by being smaller.
  • the height A14 A141 + A142 between the specific point A21 having the maximum radius and the specific point A23 having the minimum radius indicates that the ratio of A14 / AL to the total height AL of the material is larger than 0.30 and smaller than 0.37.
  • There is a height A16 A161 + A162 between a specific point A23 having a minimum radius and a specific point A25 having a lower maximum radius A15.
  • curvature radius R4 there is a concave curvature (curvature radius R4) between the inflection point A24 corresponding to the half of the height A16 and the specific point A23, and the value is equal to the curvature radius R4 with respect to the total height AL of the material.
  • the ratio R4 / AL is greater than 0.37 and less than 0.68.
  • the curvatures of R3 and R4 need to match.
  • curvature radius R5 there is a convex curvature (curvature radius R5) between the inflection point A24 and the specific point A25, and the value is a ratio R5 / AL of the curvature radius R5 to the total height AL of the material greater than 0.37. It is characterized by being smaller than 0.68.
  • the height of A16 is characterized in that the value of A16 / AL is larger than 0.30 and smaller than 0.37 with respect to the total height AL of the material.
  • the height between the specific point A25 having the lower maximum radius and the lower end A26 is A18, and there is always a convex curvature (curvature radius R6) between the specific point A25 and the lower end A26. It is characterized by that.
  • the curvature between the specific point A25 and the lower end A26 is characterized in that the ratio R6 / AL of the curvature radius R6 is greater than 0.37 and less than 0.68 with respect to the total height AL of the material.
  • the curvatures of R5 and R6 need to match.
  • the height A18 between the specific point A25 and the lower end A26 is characterized in that the value of A18 / AL is larger than 0.15 and smaller than 0.2 with respect to the total material height AL.
  • the upper end surface radius A10 and the lower end surface radius A17 are the same value.
  • FIG. 9 shows the ratio of the maximum radius A11 and the minimum radius A13 of the material shape before processing: Log (minimum radius / maximum radius) using the material shape proposed in Example 1 and other materials to be compared.
  • Log minimum radius / maximum radius
  • FIG. 9 shows the ratio of the maximum radius A11 and the minimum radius A13 of the material shape before processing: Log (minimum radius / maximum radius) using the material shape proposed in Example 1 and other materials to be compared.
  • the horizontal shape of the material after processing is shown on the graph of Log (minimum radius / maximum radius) and the vertical axis of Log (uniform deformation). It was evaluated by plotting.
  • M1 was evaluated by the deformed shape after upsetting forging using the dumbbell-shaped test piece shape adopted in Non-Patent Document 1, and M3 was installed using the round bar steel shape adopted in Patent Document 1. It is the result evaluated by the deformation
  • M2 and M4 are examples of results obtained by evaluating the deformed shape after upset forging using the material shape proposed in the first embodiment. The results of M1 to M4 will be described in detail in Examples 3 to 7.
  • the vertical axis is the value of Log (uniform deformation), and a value greater than 0 means that the radius of F2 is larger than the radius of F1 (see FIG. 4), and there is a high possibility that buckling will occur in the deformed shape.
  • Log (uniform deformation) has an upper limit of 0.
  • Log (uniform deformability) is less than -0.015, the ballering shape F10 occurs, and the radius of F11 is 1.5% or more larger than the radius of F12, and the uniform deformability is poor.
  • FIG. 10 shows a deformed shape after upsetting forging using a dumbbell-shaped test piece shape adopted in Non-Patent Document 1 corresponding to M1 in FIG. 9 of Example 2.
  • 10A shows the material shape before deformation of Non-Patent Document 1
  • FIG. 10B shows the deformation shape after upsetting forging.
  • the material shape of Non-Patent Document 1 is that the cross-sectional shape in the axial direction from the upper end portion L0 is a cylindrical peripheral portion L2 and a valley portion L4, and the upper end radius L1 and the lower end radius L3 are the maximum of the material. It becomes the diameter.
  • the cylindrical peripheral portions L2 and L6 are portions that are sandwiched between the step portions of the dies K11 and K12, and the radius of the point L5 on the outline of the height 1 ⁇ 2 with respect to the total material height LH is the minimum radius L7. .
  • the lower end also has the same structure as above.
  • FIG. 10B shows a deformed shape after upsetting forging using the material shape of Non-Patent Document 1.
  • the cylindrical peripheral portions L2 and L6 at the upper and lower end portions sandwiched between the dies K11 and K12 are restrained by the dies K11 and K12 during upsetting forging, so that no deformation occurs. Concentrated deformation occurs in a portion that is not constrained by a mold other than L2 and L6.
  • the outer peripheral central portion L5 having the minimum radius L7 before processing is intensively deformed,
  • the burring portion generation area increases like L14 which is the central portion of the deformed shape.
  • FIG. 11 (c) shows the shape after non-patent document 1 is compressed by upsetting forging so that the material height after processing is reduced by 50%, 60% and 70%, respectively. It is sectional drawing of a deformed shape.
  • FIG.11 (d) uses the raw material shape of this invention proposed in Example 1, and the material height after a process is reduced by 50%, 60%, and 70% by upset forging, respectively.
  • Cross-sectional views of deformed shapes after compression are arranged correspondingly.
  • FIG. 12 shows a sectional view of a deformed shape after upset forging using the material shape of the present invention corresponding to M4 shown in FIG. FIG. 12A satisfies all the shape conditions of the material shape of the present invention proposed in the first embodiment.
  • FIG. 13 is a comparative diagram for evaluating the cutting material amount reduction by the material shape of the present invention.
  • (a) is a forged product shape P1 “an example of a turbine foil shape”
  • (b) is a deformed shape P2 “shape of Example 4” after upsetting forging according to the material shape of the present invention
  • (c) is a buckling.
  • (d) is a deformed shape P4 after upset forging using the material shape adopted in Non-Patent Document 1.
  • “Shape”, (e) is a deformed shape P5 “shape of M3 of Example 2” after upsetting forging using the conventional round bar steel targeted in Patent Document 1 as a material.
  • P1 Based on the forged product shape P1, P1 is overlapped with P2, P3, P4, P5 to evaluate the amount of cutting material for finishing the deformed shape after upsetting forging into the forged product shape P1, and it is extra than the product shape
  • the thickness was calculated and the amount of cutting material was evaluated.
  • the deformed heights PL12, PL13, PL14, and PL15 after upset forging are substantially the same as the forged product height PL11 including the surface finishing allowance of the upper and lower end surfaces.
  • the deformed shape P3 has a portion where the diameter becomes smaller than the forged product shape P1 due to the occurrence of buckling PL3 in which the center of the side surface of the material is recessed toward the inner diameter side during deformation, and the product cannot be removed. become.
  • the cylindrical portions PL21 and PL22 are not deformed along with the deformation, and the post-deformation height PL2 is insufficient with respect to the end height PL1 of the forged product, so that the product cannot be removed.
  • the deformed shape P5 has a cutting area to be cut up to the forged product shape P1 (the cutting amount is converted in the cross-sectional area) due to the occurrence of a barring shape PL4 in which the center of the side surface of the material is bent toward the outer shape during deformation.
  • the cutting area to be cut from the deformed shape P2 due to the raw material shape of the present invention to the forged product shape P1 will be larger.
  • FIG. 14 shows the evaluation results of the amount of material to be cut to the forged product shape P1 based on the deformed material shape compared to FIG. It is the result by relative evaluation when the amount of cutting material from the deformed shape P5 processed from the raw material shape of Patent Document 1 using the conventional shape (round bar steel) is 1.
  • a value higher than 1 is a result of increasing the amount of cutting material as compared with the conventional upset forging shape P5, and a value lower than 1 is a result of reducing the amount of cutting material as compared with the conventional upsetting forged shape P5.
  • a negative value indicates that the forged product shape cannot be obtained.
  • the value of the deformed material shape P2 is 0.8, the value of P3 is -0.15, the value of P4 is -0.1, and the value of P5 is 1. Since the shape P2 after deformation from the material shape of the present invention does not have the ballering shape PL4 at the time of deformation, the cutting amount at the side end portion is smaller than the shape P5 after deformation from the material shape of Patent Document 1, thereby cutting material The amount can be reduced.
  • a material shape is used in which the curvature of the concave portion is smaller than the total height AL of the material with the curvature radii R3, R4 ratios R3 / AL, R4 / AL being smaller than 0.37.
  • a buckling PL3 is generated in the central portion, and therefore the forged product shape P1 cannot be obtained, and thus becomes a negative value.
  • the deformed shape P4 obtained by upsetting and forging the material shape used in Non-Patent Document 1 does not deform the cylindrical portions PL11 and PL12 at the upper and lower end portions, so the height of the side end portion PL1 of the forged product shape P1 is high. Therefore, the side end height PL2 of P4 is low, and the forged product shape cannot be obtained. From this result, the amount of cutting material can be reduced by the shape P2 after deformation from the raw material shape of the present invention, which can contribute to the reduction of manufacturing cost.
  • FIG. 15 is an example corresponding to M2 shown in FIG. 9 of Example 2, and is an example of a deformed shape after upsetting forging using a material shape that deviates from the material shape condition of the present invention.
  • FIG. 12 shows the conditions of the first embodiment showing the material shape condition of the present invention, “the specific point A23 having the minimum radius and the specific point A25 having the lower maximum radius have a height of A16, which is 1 / of the height A16.
  • the material shape shown in FIG. 15 has a concave curvature (curvature radius R3) between the inflection point A22 and the specific point A23, and a concave shape between the specific point A23 and the inflection point A24.
  • curvature radius R4 is smaller than the value defined in the first embodiment, and the ratios R3 / AL and R4 / AL of the curvature radii R3 and R4 with respect to the total height AL of the material are smaller than 0.37
  • the occurrence of the buckling Z2 in which the specific point A23 having the minimum radius is recessed in the center portion is characteristic in that uniform deformability is lost.
  • FIG. 16 is an example corresponding to M3 shown in FIG. 9 of Example 2, and is an example of a deformed shape after upsetting forging using a conventional round bar steel, which is the subject of Patent Document 1, as a material.
  • the material shape of the conventional round bar steel has the same radius C1 from the upper end to the lower end, During upsetting forging, deformation concentrates in the vicinity of C2, which is 1 ⁇ 2 of the total material height CL, and (b) a barring shape C4 is generated in the vicinity of the center portion C3 of the deformed shape. From this result, the uniform deformability is smaller than ⁇ 0.015 as in M3 of Example 2, and there is no uniform deformability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

熱間据込み鍛造用の素材形状を、上端面と下端面が円形で中心軸(50)に対して軸対称の柱状素材であり、中心軸(50)を含む断面形状において、上端辺と下端辺とを結ぶ側辺の外形形状が、上端辺側より第1の凸部曲率(R1)、第2の凸部曲率(R2)、第1の凹部曲率(R3)、第2の凹部曲率(R4)、第3の凸部曲率(R5)及び第4の凸部曲率(R6)をそれぞれ有する外形形状の連続によって下端辺側に至る形状を成し、これら凸部曲率又は凹部曲率の曲率半径の各値を素材高さ(AL)で割った値が0.37より大きく0.68より小さい範囲であり、第1の凸部曲率(R1)と第2の凸部曲率(R2)との間で側辺の外形形状の接線方向が中心軸方向と一致する点における半径が素材の最大半径となり、第1の凹部曲率(R3)と第2の凹部曲率(R4)との間で側辺の外形形状の接線方向が中心軸と一致する点における半径が素材の最小半径となるよう構成する。

Description

熱間据込み鍛造用の素材形状
 本発明は、熱間据込み鍛造用の素材形状に関する技術である。
 金属材料の加工において、鍛造は金属に大きな変形を与えるため、金属材料の変形抵抗を減少させるために再結晶温度以上の高温に加熱して成形する熱間鍛造が、大型製品の鍛造には多く行われる。
 熱間鍛造を行う目的は成形荷重を下げることだけではない。熱間鍛造で大変形を加えることで、鋳造で金属材料内部に生じた引け巣を無くすことが出来る。また鍛造による加工熱処理により結晶粒が微細化する。このことを再結晶による結晶粒の微細化と呼ぶ。微細な結晶粒は亀裂の進展を防止し材料の靭性の向上につながる。
 鍛造方法は大きく分けて、鍛造用金型を用いて鍛造する型鍛造(die forging)と、加工物を治具などにセットして、ハンマー等で成形する自由鍛造(free forging)に大別される。この自由鍛造加工の分類の1つに据え込み鍛造がある。「据え込み」とは、軸方向に加圧して高さを減少させると同時に断面を増大させる成形方法である。据え込み鍛造は、プレス加工用の上下の金型を共用すれば、型鍛造のような製品対応の金型の製作コストを抑えられ、多軸鍛造法の各圧縮軸ごとに据え込み鍛造を行うなど多用されている。
 据え込み鍛造により、図2に示すように例えば円柱形状の加工前の鍛造試料10を圧縮加工40をすることにより加工後の鍛造試料20には、一般に鍛造試料が周方向の外部に膨出する現象(これをバレリング[Barreling]と呼ぶ)が生ずる。これは、加工後の鍛造試料の直径の軸方向の分布が均一ではなく、中央部が膨らんで大きくなっている。このため、次工程では、膨出部(バレリング部)を切削、研削、研磨するなどの加工工程が必要となっている。
 特許文献1(特開2006-231377号公報)には、多段熱間鍛造において、据え込み加工後の鍛造試料の形状を有限要素法を用いて予測する方法、例えば丸棒形状の初期素材の高さ、重量および直径の関係から据込み後の端部径など据込み加工形状を予測することにより、次工程における試料の金型内セット不良による試料のまくれ等による折込み傷、亀裂等の成形不良を防止する方法を開示している。
 非特許文献1には、据え込み加工あるいは単軸圧縮加工において、ひずみが1.0を超える大ひずみ域を含む荷重(加工硬化曲線)を推定するための方法が記載されている。
特開2006-231377号公報
宇佐神正玄、外1名、「大ひずみ域成形解析のための加工硬化曲線の推定(第2報)」平成26年度塑性加工春季講演会p.253-254
 前記特許文献1には、熱間鍛造加工での据え込み加工あるいは単軸圧縮加工において、投入される素材形状が丸棒形状であり、据え込み加工後の素材形状を有限要素法により予測する方法であると記載している。丸棒材の初期高さ、重量および直径の関係から据込み後の最大径、最小径、高さ、バレリング(Barreling)形状、つまり側面たわみ形状などを予測する方法が記載されている。この方法では、初期素材の形状情報およびプレス力から据え込み加工後の変形形状を見積もることにより次工程における金型セット時の不良を防ぐことができると記載されている。しかし、特許文献1のような方式では、丸棒形状から変形後の形状を見積もるだけであり、変形形状を制御するための方法について言及されていない。据え込み鍛造工程において、丸棒形状による変形後の形状は側面がたわむような変形あるいはバレリングを伴う形状に変形し、変形形状の軸方向において周径が異なる非対称変形が発生する。例えば、バレリング部を切削加工により、製品形状に仕上げる場合、削り代が多くなり材料歩留りが低下すると共に加工時間の上昇になる。また、バレリング変形を有することにより、ひずみ分布が非均一な領域が大きくなるため、熱間鍛造品の品質予測が不可能な問題がある。
 前記非特許文献1が開示する技術では、ひずみが1.0を超える大ひずみ域の荷重を推定するための素材形状は圧縮率を高める必要があるため、丸棒材ではなく軸方向の中心部にくびれと、試料の上下端面ですべりが起こらないように抑制するための上下端の円筒部を有するダンベル型の試験片を用いている。そして、圧縮変形時、端面での摩擦の影響を排除するため、ダンベル型試験片の上下端の円筒部を拘束することにより変形時の工具との摩擦の影響を排除して、大ひずみ域までの荷重(加工硬化曲線)を推定することが可能であると記載している。しかし、非特許文献1のような方式は、素材形状は圧縮変形時の工具との摩擦の影響を排除することを目的とした形状であると共に、中心部にくびれと金型に挟める部分である上下端の円筒部を有する形状である。圧縮変形後の形状予測については前記特許文献1と同様にバレリング変形があり、円筒部の金型による拘束部にめり込みが発生すると記載されている。また、変形後の形状を制御するための方法については記載されていない問題がある。
 以上を鑑み、本発明の主な目的は、熱間鍛造における据え込み加工あるいは単軸圧縮加工に関して、変形後の素材形状が軸方向の周径が均一な均一変形ができる素材形状を提供することである。特に、均一変形させることにより、次工程の材料歩留りが向上できる技術を提供することである。
 上記課題を解決するために本発明では、熱間据込み鍛造用の素材形状を、上端面と、下端面が円形で、中心軸に対して軸対称の柱状素材であり、中心軸を含む断面形状において、上端辺と、下端辺とを結ぶ側辺の外形形状が、上端辺側より、第1の凸部曲率、第2の凸部曲率、第1の凹部曲率、第2の凹部曲率、第3の凸部曲率、及び第4の凸部曲率をそれぞれ有する外形形状の連続によって、下端辺側へ至る形状を成し、前記第1の凸部曲率半径、前記第2の凸部曲率半径、前記第1の凹部曲率半径、前記第2の凹部曲率半径、前記第3の凸部曲率半径、及び前記第4の凸部曲率半径の各値を前記素材高さで割った各割合の値は、0.37より大きく、及び0.68より小さい範囲にあるように構成した。
 また、上記課題を解決するために本発明では、前記熱間据込み鍛造用の素材形状において、前記第1の凸部曲率と前記第2の凸部曲率とをそれぞれ有する外形形状の間の点、またはその前後において、前記断面形状の側辺の外形形状の接線方向が中心軸方向と一致する点における半径は素材の第1の最大半径となり、前記第1の凹部曲率と前記第2の凹部曲率とをそれぞれ有する外形形状の間の点、またはその前後において、前記断面形状の側辺の外形形状の接線方向が中心軸方向と一致する点における半径は素材の最小半径となり、前記第3の凸部曲率と前記第4の凸部曲率とをそれぞれ有する外形形状の間の点、またはその前後において、前記断面形状の側辺の外形形状の接線方向が中心軸方向と一致する点における半径は素材の第2の最大半径となるように構成した。
 また、上記課題を解決するために本発明では、前記熱間据込み鍛造用の素材形状において、前記素材の全高さに対する前記素材の第1の最大半径となる外形形状上の点から前記素材の上端部までの高さの割合、及び前記素材の全高さに対する前記素材の第2の最大半径となる外形形状上の点から前記素材の下端部までの高さの割合は、0.15より大きく、及び0.2より小さい範囲にあるように構成した。
 また、上記課題を解決するために本発明では、前記熱間据込み鍛造用の素材形状において、前記素材の全高さに対する前記素材の最小半径となる外形形状上の点から前記素材の第1の最大半径となる外形形状上の点までの高さの割合、及び前記素材の全高さに対する前記素材の第2の最大半径となる外形形状上の点から前記素材の最小半径となる外形形状上の点までの高さの割合は、0.3より大きく、及び0.37より小さい範囲にあるように構成した。
 本発明の代表的な素材形状によれば、熱間据込み鍛造工程に関して、変形形状が軸方向に周径にバレリング変形がなく、軸方向に均一形状となる。
  例えば、据え込み鍛造工程後、次工程において切削加工により製品形状に仕上げる場合、バレリング部が無くなるため、切削材料量が少なくなり、材料の歩留り向上と共に生産コスト低減ができる。
 本発明の素材形状では、中央部に一つのくびれと上部から凸形状の山部、下部から凸形状の山部の導入により、丸棒形より同じ高さ、同じ最大径の従来据え込み鍛造用素材形状である特許文献1の丸棒に対して素材の重量を低減することができと共に同じ圧縮率においてプレス荷重が10%程度低減でき、生産コストの低減ができる。
本発明の熱間据込み鍛造用素材形状を示す断面図である。 据え込み鍛造により円柱試料の周方向の外部にバレリング(膨出部)が生ずることを説明する図である。 本発明で検討した熱間据込み鍛造用素材形状のモデルの断面図である。 据え込み鍛造後の変形形状の断面の模式図および均一変形性の評価方法を説明する図である。 凸部曲率半径R1,R2,R5,R6、凹部曲率半径R3,R4をそれぞれ個別に、または関連付けて変えて作成した試料を据え込み鍛造加工を実施後の変形形状の結果を、横軸は均一変形性の自然対数値で、縦軸は各曲率半径値を素材高さで割った値でプロットしたグラフである。 縦軸には加工前の素材形状のパラメータA12、A18を素材高さで割った値で、横軸は均一変形性の自然対数値でプロットしたグラフである。 縦軸には加工前の素材形状のパラメータA14、A16を素材高さで割った値で、横軸は均一変形性の自然対数値でプロットしたグラフである。 (a) バレリング形状が発生している場合の加工後の変形形状の例、(b) 座屈形状が発生している場合の加工後の変形形状の例、(c) 本発明の素材形状を使用して据え込み鍛造後の変形形状の例、を示した図である。 本発明の素材形状、及びその他の比較対象の素材を用いて据え込み鍛造を実施した結果を、横軸は素材のLog(最小半径/最大半径)値により、縦軸は変形形状のLog(均一変形性)値によりプロットしたグラフである。 非特許文献1において採用しているダンベル型の試験片形状を用いて据え込み鍛造後の変形形状を説明する図である。 (c) 非特許文献1の素材形状を用いて、据え込み鍛造により、加工後の素材高さがそれぞれ50%減、60%減、70%減となる圧縮を行った後の変形形状の断面図、(d) 本発明の素材形状を用いて、据え込み鍛造により、加工後の素材高さがそれぞれ50%減、60%減、70%減となる圧縮を行った後の変形形状の断面図である。 本発明の素材形状を用いて据え込み鍛造後の変形形状の断面図である。 本発明の素材形状による切削材料量低減の評価を行うための比較図である。 図13に比較する各変形後の素材形状に基づき、鍛造製品形状P1まで切削すべき材料量の評価結果を示す図である。 本発明の素材形状条件から外れた素材形状を用いて据え込み鍛造後の変形形状の例を説明する図である。 特許文献1で対象としている従来の丸棒鋼を素材に使用して据え込み鍛造後の変形形状の例を説明する図である。
 以下、本発明の一実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一符号を付し、その繰り返しの説明は省略する。
 本発明が対象とするのは、熱間据え込み鍛造工程において加工後の素材形状が、次工程において製品形状に仕上げる場合に最も加工代が少なく済ませられるのは、前記加工後の素材形状が円筒形状により近いものであればよいと判断して、加工後の素材形状を円筒形状により近づけるために適した加工前に投入すべき据え込み鍛造用素材形状を提案するものである。
 図2に示すのは、従来の熱間据え込み鍛造工程において多く投入されている円筒形状の素材10を加工して、バレリング形状(膨出部)30を有した加工後の素材20を得ている。この熱間据え込み鍛造工程を観察すると、圧縮40開始後、最初に円筒形状の素材の中央部よりふくれ始めて、それから徐々に上下端部に近いところよりふくれ始めている。
 そこで、熱間据え込み鍛造工程で加工後の素材形状を最も円筒形状に近くするための加工前の素材形状のモデルを、図3に示す。図3に示すモデルは、高さ方向(Z軸)の中心軸50回りに回転対称の柱状体であって、前記中心軸50(Z軸)と直交する水平方向のX軸より成るX-Z平面でモデルを切断した場合の中心軸50から右半分の断面を表す。
 モデルは、Z軸高さがAL、上端面半径がA10、下端面半径がA17の各パラメータ、および、断面図上における側面の外形線が成す曲率が、上端面側より順次、曲率半径R1の凸部曲率、曲率半径R2の凸部曲率、曲率半径R3の凹部曲率、曲率半径R4の凹部曲率、曲率半径R5の凸部曲率、曲率半径R6の凸部曲率の連続のパラメータで構成されている。そして、側面の外形線の曲率の各変曲点までの高さを上端面側より順次、A12,A141,A142,A161,A162,A18の高さパラメータで構成されている。
  さらに、モデルの断面図の側面側の外形線上の変曲点A23は、ほぼAL/2の高さにあり、変曲点A23におけるモデルの半径はA13であり、本モデルの中で最も小さい半径値となる。(変曲点の両側の曲率が同じとなれば変曲点とは呼ばない。その場合は、断面形状の外形線の接線方向がZ軸方向と一致する点を採用する。)
 本願発明者は、前記素材形状のモデル(図3)の各パラメータを種々変えて、後述する熱間据え込み鍛造加工試験により加工された素材形状を評価した。
  図4は、パラメータを具体的に定義したモデルの試料を据え込み鍛造、あるいは単軸鍛造を実施した際の変形形状の結果の評価方法を説明する。
 棒形状による据え込み鍛造では変形時、素材の中央部F20近辺がたわむようなバレリング変形F10が発生する。バレリング変形F10が発生することにより、中央部F20の半径が大きくなり、軸方向に対して上端面部の半径F21と中央部の半径F11の差が発生し、均一変形性が低下する。
 図4は据え込み鍛造後の変形形状F0の断面の模式図および均一変形性の評価方法である。均一変形性の評価方向は軸方向に対する半径の変化を測定し、その割合により評価する。その値は1に近いほど高均一変形性であると判断する。
  例えば、変形後の素材の高さAFに対してAFの1/2の高さはF1、AFの3/4の高さはF2である。AFの1/2の高さF1に対応する半径はF11、AFの3/4の高さF2に対応する半径はF12であり、F11に対するF12の割合F12/F11の値により均一変形性を評価する。
 図5,6,7は、図3に示す加工前の素材形状のモデルの各パラメータに種々の値を適用して試料を作成して、据え込み鍛造加工を実施後の変形形状の結果に基いて、変形形状の均一変形性を評価して、各図の上にプロットして、破線で示す分布の傾向を得ている。なお、各図上には、代表点のみを残してプロットしてある。
  各図の横軸は均一変形性の自然対数値で表し、左縦軸は図3の一部のパラメータの変化に着目して、該パラメータの値を全高さALとの比率で表して縦軸にプロットした場合である。
 図5の場合は、凸部曲率半径R1,R2,R5,R6、凹部曲率半径R3,R4をそれぞれ個別に、または関連付けて変えて作成した試料を据え込み鍛造加工を実施後の変形形状の結果を、横軸は均一変形性の自然対数値で表し、左縦軸は変化をさせた凸部曲率半径R1,R2,R5,R6、凹部曲率半径R3,R4のいずれかの加工前の素材形状のパラメータの値を全高さALで割った値を表している。
 図5において、横軸Log(均一変形性)の値が0より大きい値の場合、それは図8(b)に示すように、加工後の変形形状に座屈が発生して、変形後の素材の1/2の高さでの半径F11よりも3/4の高さでの半径F12の方が大きくなる場合である。本実施例では、加工後の変形形状に座屈が発生する場合{Log(均一変形性) > 0}の加工前の素材形状のパラメータ値は対象には入れないこととする。
  また、図8(a)に示すように、バレリング形状が発生していると判定する基準は、加工後の変形形状が{Log(均一変形性) < -0.015}となる場合と定義して、それに該当する(バレリング形状が発生する)加工前の素材形状のパラメータ値を持つ試料は、本実施例では対象には入れないこととする。
 その結果、図5では、加工前の素材形状の凸部曲率半径R1,R2,R5,R6、凹部曲率半径R3,R4の全ての{パラメータ値/全高さAL}を、0.37より大きく、0.68より小さい範囲に収めることにより、加工後の変形形状を、{-0.015<Log(均一変形性) <0}の範囲に収めることが出来ると判った。
 図5,6,7において、符号M2,M3,M4を付したプロット点の例は、図8に示す加工後の代表的な変形形状となる場合であり、実施例4,6,7において後述する。
 また、図6では同様に、図3に示す加工前の素材形状のパラメータA12と、A18のいずれも、{パラメータ値/全高さAL}の値を、0.15より大きく、0.20より小さい範囲に収めることにより、加工後の変形形状を、{-0.015<Log(均一変形性) <0}の範囲に収めることが出来ると判った。
 また、図7では同様に、図3に示す加工前の素材形状のパラメータA14(=A141+A142)と、A16(=A161+A162)のいずれも、{パラメータ値/全高さAL}の値を、0.15より大きく、0.20より小さい範囲に収めることにより、加工後の変形形状を、{-0.015<Log(均一変形性) <0}の範囲に収めることが出来ると判った。
 本実施例において提案するのは、熱間据込み鍛造工程において投入すべき素材形状であって、以下に示す形状を有することを特徴とする。
  図1に、図3において最初に仮定した加工前の素材形状のモデルの各形状パラメータを実験による検証に基いて提案する素材形状を示す。Z軸と一致する中心軸に対して回転対称な柱状の素材形状であり、図1ではZ軸-X軸平面で切断した断面の中心軸より右半分の断面図を示す。
 本提案形状は、中心軸方向に山部、谷部、山部が連続する断面の外形形状を持つことを特徴とする。
  例えば、上端部A20の半径A10は、外形線上の特定点A21(変曲点の両側の曲率が同じとなれば変曲点とは呼ばない。その場合は、断面形状の外形線の接線方向がZ軸方向と一致する点を採用する。その点を以後、「特定点」と呼ぶ。)における半径A11より小さく、上端部A20と特定点A21には必ず凸形状の曲率(曲率半径R1)があり、その値は柱状素材の全高さALに対して曲率半径R1の割合R1/ALが0.37より大きく0.68より小さいことを特徴とする。ここで特定点A21位置における半径A11は本素材形状の最大半径となる。
 上端部A20と最大径部(特定点A21)との高さA12は、素材高さALに対してA12/ALが0.15より大きく0.2より小さいことを特徴とする。
  特定点A21よりZ軸方向の下方に高さA14=A141+A142離れた外形線上の位置に特定点A23がある。特定点A23における半径A13は素材全体の最小半径となり、特定点A23は素材全高さALの1/2の高さに位置する。最大半径を有する外形位置の特定点A21と最小半径を有する外形位置の特定点A23には必ず曲率が存在することを特徴とする。
 最大半径を有する特定点A21と最小半径を有する特定点A23にはZ軸方向にA14の高さがあり、高さA14の1/2の外形位置に位置する変曲点A22と最大半径を有する特定点A21には凸形状の曲率(曲率半径R2)があり、その値は素材の全高さALに対して曲率半径R2の割合R2/ALは0.37より大きく0.68より小さいことを特徴とする。
  ただし、R1の曲率とR2の曲率を滑らかにするためにR1とR2の曲率は一致する必要がある。
 変曲点A22と特定点A23には凹形状の曲率(曲率半径R3)があり、その値は素材の全高さALに対して曲率半径R3の割合R3/ALは0.37より大きく0.68より小さいことを特徴とする。
  最大半径を有する特定点A21と最小半径を有する特定点A23との高さA14=A141+A142は、素材の全高さALに対してA14/ALの割合が0.30より大きく0.37より小さいことを特徴とする。
  最小半径を有する特定点A23と下側の最大半径A15を有する特定点A25との間には高さA16=A161+A162がある。高さA16の1/2の位置にあたる変曲点A24と特定点A23との間には凹形状の曲率(曲率半径R4)があり、その値は素材の全高さALに対して曲率半径R4の割合R4/ALは0.37より大きく0.68より小さいことを特徴とする。ただし、R3の曲率とR4の曲率を滑らかにするためにR3とR4の曲率は一致する必要がある。
 変曲点A24と特定点A25との間には凸形状の曲率(曲率半径R5)があり、その値は素材の全高さALに対して曲率半径R5の割合R5/ALは0.37より大きく0.68より小さいことを特徴とする。
  A16の高さは素材の全高さALに対してA16/ALの値が0.30より大きく0.37より小さいことを特徴とする。
 下側の最大半径を有する特定点A25と下端部A26との間の高さはA18であり、特定点A25と下端部A26との間には必ず凸形状の曲率(曲率半径R6)が存在することを特徴とする。特定点A25と下端部A26との間の曲率は素材の全高さALに対して曲率半径R6の割合R6/ALは0.37より大きく0.68より小さいことを特徴とする。
  ただし、R5の曲率とR6の曲率を滑らかにするためにR5とR6の曲率は一致する必要がある。
  特定点A25と下端部A26との間の高さA18は素材全高さALに対してA18/ALの値が0.15より大きく0.2より小さいことを特徴とする。
  例えば本実施例では、上端面半径A10と下端面半径A17とは同じ値である。
 以上に述べた各パラメータの条件を満たす素材を据え込み鍛造工程に投入した場合には、図8(c)に示すように中心軸方向に径の分布が均一な加工後の変形形状が得られる。
 図9は、実施例1で提案した素材形状、及びその他の比較対象の素材を用いて、加工前の素材形状の最大半径A11および最小半径A13の割合:Log(最小半径/最大半径)を変えた試料に対して、据え込み鍛造を実施した場合に、加工後の素材の外形の均一性を、横軸はLog(最小半径/最大半径)、縦軸はLog(均一変形性)のグラフ上にプロットして評価したものである。
 M1は非特許文献1において採用しているダンベル型の試験片形状を用いて据え込み鍛造後の変形形状により評価した結果、M3は特許文献1において採用している丸棒鋼の形状を用いて据え込み鍛造後の変形形状により評価した結果である。
  M2、M4は実施例1において提案した素材形状を用いて据え込み鍛造後の変形形状により評価した結果の例である。前記のM1~M4の結果については実施例3~7にて詳細に説明する。
 縦軸はLog(均一変形性)の値であり、0より大きい値はF2の半径がF1の半径より大きいこととなり(図4参照)、変形形状に座屈が発生する可能性が高いため、Log(均一変形性)は0を上限とする。
  また、Log(均一変形性)が-0.015より小さい値はバレリング形状F10が発生し、F12の半径よりF11の半径は1.5%以上大きいこととなり、均一変形性が悪い。
 これらの結果により、実施例1の形状条件において、最大半径と最小半径の割合Log(最小半径/最大半径)の値が-0.1より大きく、及び-0.035より小さい素材形状の場合、Log(均一変形性)が0より小さく、及び-0.015より大きくなり、本発明の素材形状はM7の範囲において均一変形が可能となる。
 図10は、実施例2の図9においてM1に対応する非特許文献1において採用しているダンベル型の試験片形状を用いて据え込み鍛造後の変形形状である。図10(a)は非特許文献1の変形前の素材形状、(b)は据え込み鍛造後の変形形状である。
  図10(a)において、非特許文献1の素材形状は、上端部L0から軸方向の断面形状は円筒周辺部L2、谷部L4があり、上端部半径L1および下端部半径L3が素材の最大径となる。円筒周辺部L2、L6は据え込み鍛造の場合に金型K11、K12の段差部に挟める部分となり、素材全高さLHに対する高さ1/2の外形線上の点L5の半径が最小半径L7となる。下端部も上記と同じ構造となる。
 図10(b)は非特許文献1の素材形状を用いて据え込み鍛造後の変形形状を示す。金型K11、K12に挟まれた上下端部の円筒周辺部L2、L6は据え込み鍛造時、金型K11、K12に拘束されるため変形が全く発生しない。L2,L6以外の金型に拘束されてない部分に集中的な変形が発生し、特に非特許文献1の素材形状は加工前の最小半径L7を有する外周中央部L5が集中的に変形し、変形後形状の中央部であるL14のようにバレリング部発生領域が増加することとなる。この結果から実施例2のM1のようにLog(均一変形性)が-0.015より小さくなり、均一変形性がないことが特徴である。
  また、変形率を増加してもL14部のみ変形が発生し、拘束部L2、L6は変形しないことが特徴である。
 図11(c)は、非特許文献1の素材形状を用いて、据え込み鍛造により、加工後の素材高さがそれぞれ50%減、60%減、70%減となる圧縮を行った後の変形形状の断面図である。また、図11(d)は、実施例1において提案した本発明の素材形状を用いて、据え込み鍛造により、加工後の素材高さがそれぞれ50%減、60%減、70%減となる圧縮を行った後の変形形状の断面図を、対応させて配列している。
 熱間据え込み鍛造では、素材の全高さに対して変形後の高さが50%以下になるまで圧縮する。今回の検討では、前記の両者とも素材の全高さに対して変形後の高さが50~30%における変形形状を比較したものである。非特許文献1の形状の場合、図11(C)に示すように上下端部の円筒部L2,L6が金型に拘束され変形が起こらないことにより、圧縮率を上げる(変形後の高さが小さくなる)と共にバレリング変形も大きくなる傾向となる。一方、図11(D)に示す本発明素材形状(実施例1)では、圧縮率を上げてもバレリング変形を起こさないことが特徴となる。
  これらの結果から、本発明の素材形状により、据え込み鍛造において均一変形が可能となることが明らかになる。
 図12は、実施例2の図9に示すM4に対応する本発明の素材形状を用いて据え込み鍛造後の変形形状の断面図を示す。
  図12(a)は、実施例1に提案した本発明の素材形状の形状条件をすべて満足する。据え込み鍛造によって、図12(b)に示す通り、素材全高さDLの1/2の高さの外形位置D1にバレリング形状を発生することなく、平行形状D2に変形することにより、Z軸方向に対する半径の変化が均一となり、均一変形が可能であることが特徴である。
 図13は、本発明の素材形状による切削材料量低減の評価を行うための比較図である。
  (a)は鍛造製品形状P1「タービンホイル形状の一例」であり、(b)は本発明の素材形状による据え込み鍛造後の変形形状P2「実施例4の形状」、(c)は座屈が発生した変形形状例P3「実施例2のM2の形状」、(d)は非特許文献1で採用している素材形状を使用して、据え込み鍛造後の変形形状P4「実施例3の形状」、(e)は特許文献1で対象としている従来の丸棒鋼を素材に使用して据え込み鍛造後の変形形状P5「実施例2のM3の形状」である。
 鍛造製品形状P1に基づき、据え込み鍛造後の変形形状から鍛造製品形状P1に仕上げるための切削材料量について評価するため、P1と、P2、P3、P4、P5とを重ね合い、製品形状より余分な肉厚を算出し、切削材料量について評価した。据え込み鍛造後の変形形状の高さPL12、PL13、PL14、PL15は、上下端面の表面仕上げ代を入れてほぼ鍛造製品高さPL11と同じである。
 変形形状P3は、変形時、素材の側面の中心部が内径側にめり込むような座屈PL3が発生することにより、直径が鍛造製品形状P1より小さくなる部分が発生して、製品が取れないことになる。
 変形形状P4は、変形と共に円筒部PL21,PL22が変形しないため、鍛造製品の端部高さPL1に対して変形後の高さPL2が足りないため、製品が取れないこととなる。
 変形形状P5は、変形時に素材の側面の中心部が外形側にたわむようなバレリング形状PL4の発生により、鍛造製品形状P1まで切削すべき切削面積(断面形状の領域で切削量を換算する)が本発明の素材形状による変形形状P2から鍛造製品形状P1まで切削すべき切削面積より広くなることとなる。
 図14は、図13に比較する各変形後の素材形状に基づき、鍛造製品形状P1まで切削すべき材料量の評価結果を示す。従来の形状(丸棒鋼)を使用する特許文献1の素材形状から加工した変形形状P5からの切削材料量を1とした場合の相対評価による結果である。1より高い値は従来の据え込み鍛造形状P5より、切削材料量が増加する結果であり、1より低い値は従来の据え込み鍛造形状P5より、切削材料量が低減できる結果である。マイナス値は鍛造製品形状が取れないことを示す。
 評価結果から、変形後の素材形状P2の値は0.8、P3の値は-0.15、P4の値は-0.1、P5の値は1となる。
  本発明の素材形状から変形後の形状P2は、変形時、バレリング形状PL4が無いため、特許文献1の素材形状から変形後の形状P5より側面端部の切削量が小さくなり、これにより切削材料量が低減できる。
 本発明の素材形状の形状条件において、凹部の曲率が素材の全高さALに対して曲率半径R3、R4の割合R3/AL、R4/ALが0.37より小さい素材形状を使用して、据え込み鍛造を実施した変形後の形状P3では、中央部に座屈PL3が発生しているため鍛造製品形状P1が取れないことからマイナス値となる。
 非特許文献1で使用している素材形状を据え込み鍛造を実施した変形後の形状P4は、上下端部の円筒部PL11、PL12が変形しないため、鍛造製品形状P1の側面端部PL1の高さよりP4の側面端部高さPL2が低く鍛造製品形状が取れないことからマイナス値となる。この結果から、本発明の素材形状から変形後の形状P2により切削材料量が低減でき、製造コスト低減に貢献可能となる。
 図15は、実施例2の図9に示されるM2に対応する例で、本発明の素材形状条件から外れた素材形状を用いて据え込み鍛造後の変形形状の例である。
  図12は本発明の素材形状条件を示す実施例1の条件「最小半径を有する特定点A23と下側の最大半径を有する特定点A25にはA16の高さがあり、高さA16の1/2の高さに位置する外形線上の変曲点A24と特定点A23との間には凹形状の曲率があり、その値は素材の全高さALに対して曲率半径R4の割合R4/ALは0.37より大きく0.68より小さいことを特徴とする。」を満たしている。
 それに対して、図15に示す素材形状は、変曲点A22と特定点A23との間の凹形状の曲率(曲率半径R3)と、特定点A23と変曲点A24との間の凹形状の曲率(曲率半径R4)とが、実施例1で定義された値より小さく、素材の全高さALに対して曲率半径R3、R4の割合R3/AL、R4/ALは0.37より小さい場合、据え込み鍛造を実施時、最小半径を有する特定点A23が中央部に凹むような座屈Z2が発生することにより、均一変形性が無くなることが特徴である。
 図16は、実施例2の図9に示されるM3に対応する例で、特許文献1で対象としている従来の丸棒鋼を素材に使用して据え込み鍛造後の変形形状の例である。  (a)従来の丸棒鋼の素材形状は上端部から下端部までの半径C1が同じであり、
据え込み鍛造時に、素材全高さCLの1/2となるC2近辺に変形が集中し、(b)変形形状の中心部C3近辺にバレリング形状C4が発生する。この結果から実施例2のM3のように均一変形性が-0.015より小さくなり、均一変形性がないことが特徴である。
10 円柱形状の加工前の鍛造試料
20 加工後の鍛造試料
30 膨出部(バレリング部)
40 据え込み鍛造による圧縮加工
50 中心軸
A10 上端面半径
A11 本発明の素材形状の第1の最大半径
A12 上端部A20と最大径部(特定点A21)との高さ
A13 特定点A23における本発明の素材形状の最小半径
A14 最大半径を有する特定点A21と最小半径を有する特定点A23の間の高さ
A141 凸部曲率R1と凸部曲率R2との間の変曲点と、凸部曲率R2と凹部曲率R3との間の変曲点との高さ
A142 凸部曲率R2と凹部曲率R3との間の変曲点と、凹部曲率R3と凹部曲率R4との間の変曲点との高さ
A15 本発明の素材形状の第2の最大半径
A16 最小半径を有する特定点A23と下側の最大半径A15を有する特定点A25との間の高さ
A161 凹部曲率R3と凹部曲率R4との間の変曲点と、凹部曲率R4と凸部曲率R5との間の変曲点との高さ
A162 凹部曲率R4と凸部曲率R5との間の変曲点と、凸部曲率R5と凸部曲率R6との間の変曲点との高さ
A17 下端面半径
A18 下側の最大半径を有する特定点A25と下端部A26との間の高さ
A20 上端部
A21 第1の最大半径を有する特定点
A22 変曲点(曲率半径R2の凸部曲率と曲率半径R3の凹部曲率との境界点)
A23 最小半径を有する特定点
A24 変曲点(曲率半径R4の凹部曲率と曲率半径R5の凸部曲率との境界点)
A25 第2の最大半径を有する特定点
A26 下端部
AF 変形後の素材の高さ
AL 素材全高さ
C1 丸棒鋼の素材の半径
C2 素材全高さCLの1/2の高さの位置
C3 変形形状の中心部
C4 バレリング形状
D1 素材全高さDLの1/2の高さの外形位置
D2 平行形状
DL 素材全高さ
F0 据え込み鍛造後の変形形状
F1 変形後の素材の高さAFの1/2の高さ
F10 バレリング変形
F11 変形後の素材の高さF1に対応する半径
F12 変形後の素材の高さF2に対応する半径
F2 変形後の素材の高さAFの3/4の高さ
F20 変形後の素材の中央部
F21 上端面部の半径
K11,K12 金型
L1 上端部半径
L2 円筒周辺部
L3 下端部半径
L4 谷部
L5 外周中央部
L6 円筒周辺部
L7 加工前の最小半径
LH 加工前素材高さ
M1 非特許文献1において採用しているダンベル型の試験片形状を用いて据え込み鍛造後の変形形状の例
M2 本発明の素材形状条件から外れた素材形状を用いて据え込み鍛造後の変形形状の例
M3 特許文献1において採用している丸棒鋼の形状を用いて据え込み鍛造後の変形形状
M4 本発明の素材形状を用いて据え込み鍛造後の変形形状の例
M7 本発明の素材形状を用いて、加工後の変形形状において半径の均一変形が可能な範囲
P1 鍛造製品形状「タービンホイル形状の一例」
P2 本発明の素材形状による据え込み鍛造後の変形形状
P3 座屈が発生した変形形状例
P4 非特許文献1で採用している素材形状を使用して、据え込み鍛造後の変形形状
P5 特許文献1で対象としている従来の丸棒鋼を素材に使用して据え込み鍛造後の変形形状
PL1 鍛造製品の端部高さ
PL11 鍛造製品高さ
PL12,PL13,PL14,PL15 各素材の据え込み鍛造後の変形形状の高さ
PL2 変形形状P4の変形後の高さ
PL21,PL22 変形形状P4の円筒部
PL3 変形形状P3の素材の側面の中心部の座屈
PL4 変形形状P5のバレリング形状
R1 曲率半径(凸部曲率)
R2 曲率半径(凸部曲率)
R3 曲率半径(凹部曲率)
R4 曲率半径(凹部曲率)
R5 曲率半径(凸部曲率)
R6 曲率半径(凸部曲率)
Z2 座屈

Claims (8)

  1.  熱間据込み鍛造用の素材形状であって、
     上端面と、下端面が円形で、中心軸に対して軸対称の柱状素材であり、
     中心軸を含む断面形状において、上端辺と、下端辺とを結ぶ側辺の外形形状が、上端辺側より、第1の凸部曲率、第2の凸部曲率、第1の凹部曲率、第2の凹部曲率、第3の凸部曲率、及び第4の凸部曲率をそれぞれ有する外形形状の連続によって、下端辺側へ至る形状を成し、
     前記第1の凸部曲率半径、前記第2の凸部曲率半径、前記第1の凹部曲率半径、前記第2の凹部曲率半径、前記第3の凸部曲率半径、及び前記第4の凸部曲率半径の各値を前記素材高さで割った各割合の値は、0.37より大きく、及び0.68より小さい範囲にあることを特徴とする熱間据込み鍛造用の素材形状。
  2.  前記第1の凸部曲率と前記第2の凸部曲率とにより、前記上端辺と、下端辺とを結ぶ前記断面形状の側辺の外形形状に山部が形成され、
     前記第1の凹部曲率と前記第2の凹部曲率とにより、前記山部に続けて、前記側辺の外形形状に谷部が形成され、
     前記第3の凸部曲率と前記第4の凸部曲率とにより、前記谷部に続けて、前記側辺の外形形状に山部が形成されることを特徴とする請求項1に記載の熱間据込み鍛造用の素材形状。
  3.  前記第1の凸部曲率と前記第2の凸部曲率とをそれぞれ有する外形形状の間の点、またはその前後において、前記断面形状の側辺の外形形状の接線方向が中心軸方向と一致する点における半径は素材の第1の最大半径となり、
     前記第1の凹部曲率と前記第2の凹部曲率とをそれぞれ有する外形形状の間の点、またはその前後において、前記断面形状の側辺の外形形状の接線方向が中心軸方向と一致する点における半径は素材の最小半径となり、
     前記第3の凸部曲率と前記第4の凸部曲率とをそれぞれ有する外形形状の間の点、またはその前後において、前記断面形状の側辺の外形形状の接線方向が中心軸方向と一致する点における半径は素材の第2の最大半径となることを特徴とする請求項1に記載の熱間据込み鍛造用の素材形状。
  4.  前記素材の全高さに対する前記素材の第1の最大半径となる外形形状上の点から前記素材の上端部までの高さの割合、及び前記素材の全高さに対する前記素材の第2の最大半径となる外形形状上の点から前記素材の下端部までの高さの割合は、0.15より大きく、及び0.2より小さい範囲にあることを特徴とする請求項3に記載の熱間据込み鍛造用の素材形状。
  5.  前記素材の全高さに対する前記素材の最小半径となる外形形状上の点から前記素材の第1の最大半径となる外形形状上の点までの高さの割合、及び前記素材の全高さに対する前記素材の第2の最大半径となる外形形状上の点から前記素材の最小半径となる外形形状上の点までの高さの割合は、0.3より大きく、及び0.37より小さい範囲にあることを特徴とする請求項3に記載の熱間据込み鍛造用の素材形状。
  6.  前記第1の凸部曲率半径と前記第2の凸部曲率半径とが同じ値であり、
     前記第1の凹部曲率半径と前記第2の凹部曲率半径とが同じ値であり、及び
     前記第3の凸部曲率半径と前記第4の凸部曲率半径とが同じ値であることを特徴とする請求項1に記載の熱間据込み鍛造用の素材形状。
  7.  前記第1の凸部曲率半径、前記第2の凸部曲率半径、前記第3の凸部曲率半径、及び前記第4の凸部曲率半径とが同じ値であり、並びに
     前記素材の最小半径となる外形形状上の点が、前記素材の全高さの1/2の高さに位置することを特徴とする請求項6に記載の熱間据込み鍛造用の素材形状。
  8.  前記第1、または第2の最大半径と前記最小半径との割合(最小半径/最大半径)の自然対数値Log(最小半径/最大半径)が、-0.1より大きく、及び-0.035より小さいことを特徴とする請求項3に記載の熱間据込み鍛造用の素材形状。
PCT/JP2014/083878 2014-12-22 2014-12-22 熱間据込み鍛造用の素材形状 WO2016103316A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016565615A JP6303028B2 (ja) 2014-12-22 2014-12-22 熱間据込み鍛造用の素材
PCT/JP2014/083878 WO2016103316A1 (ja) 2014-12-22 2014-12-22 熱間据込み鍛造用の素材形状

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083878 WO2016103316A1 (ja) 2014-12-22 2014-12-22 熱間据込み鍛造用の素材形状

Publications (1)

Publication Number Publication Date
WO2016103316A1 true WO2016103316A1 (ja) 2016-06-30

Family

ID=56149420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083878 WO2016103316A1 (ja) 2014-12-22 2014-12-22 熱間据込み鍛造用の素材形状

Country Status (2)

Country Link
JP (1) JP6303028B2 (ja)
WO (1) WO2016103316A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533192A (ja) * 2017-09-15 2020-11-19 中国原子能科学研究院China Institute Of Atomic Energy 異形金属の構築成形方法
CN115446239A (zh) * 2022-08-23 2022-12-09 武汉理工大学 一种镦粗成型装备以及镦粗成型方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112692096B (zh) * 2020-12-16 2022-07-08 西部钛业有限责任公司 一种弧形tc4钛合金板坯的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116357A (ja) * 1973-12-05 1975-09-11
JPS514048A (ja) * 1974-07-01 1976-01-13 Nippon Steel Corp Suekomikakohoho
WO2000062956A1 (de) * 1999-04-16 2000-10-26 Sm Schweizerische Munitionsunternehmung Ag Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen
JP2003266140A (ja) * 2002-03-15 2003-09-24 Daido Steel Co Ltd 熱間据込鍛造方法
JP2009289018A (ja) * 2008-05-29 2009-12-10 Sanyo Special Steel Co Ltd 円形鍛造品の据え込み形状予測方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116357A (ja) * 1973-12-05 1975-09-11
JPS514048A (ja) * 1974-07-01 1976-01-13 Nippon Steel Corp Suekomikakohoho
WO2000062956A1 (de) * 1999-04-16 2000-10-26 Sm Schweizerische Munitionsunternehmung Ag Verfahren zur massivumformung von axial-symmetrischen metallischen bauteilen
JP2003266140A (ja) * 2002-03-15 2003-09-24 Daido Steel Co Ltd 熱間据込鍛造方法
JP2009289018A (ja) * 2008-05-29 2009-12-10 Sanyo Special Steel Co Ltd 円形鍛造品の据え込み形状予測方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533192A (ja) * 2017-09-15 2020-11-19 中国原子能科学研究院China Institute Of Atomic Energy 異形金属の構築成形方法
JP6993499B2 (ja) 2017-09-15 2022-01-13 中国原子能科学研究院 異形金属の構築成形方法
CN115446239A (zh) * 2022-08-23 2022-12-09 武汉理工大学 一种镦粗成型装备以及镦粗成型方法

Also Published As

Publication number Publication date
JP6303028B2 (ja) 2018-03-28
JPWO2016103316A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
CN111163875B (zh) 变形极限的评价方法、破裂预测方法及冲压模具的设计方法
JP4935713B2 (ja) プレス品のせん断縁における成形可否判別方法
US10639698B2 (en) Shearing method
KR102007106B1 (ko) 버링 가공 방법
CN110997172B (zh) 金属板的剪切加工面上的变形极限的评价方法、裂纹预测方法以及压制模具的设计方法
JP6512191B2 (ja) 金型の設計方法およびプレス成形品の製造方法
JP6303028B2 (ja) 熱間据込み鍛造用の素材
JP6819832B1 (ja) 伸びフランジ割れ評価方法、金属板の選定方法、プレス金型の設計方法、部品形状の設計方法、及びプレス部品の製造方法
TWI711498B (zh) 成形材製造方法及該成形材
WO2017149955A1 (ja) プレス成形品の製造方法
JP6384108B2 (ja) ロール成形方法
JP5672215B2 (ja) 表面加工割れ感受性評価方法およびその装置
EP3417990B1 (en) Manufacturing method of metal member
Safari Two point incremental forming of a complicated shape with negative and positive dies
WO2020145063A1 (ja) 金属板のせん断加工方法及びプレス部品の製造方法
JP2009050859A (ja) 2つの部品、例えばインナー部品とアウター部品の製造方法
KR20140062390A (ko) 관형 금속재료의 결정립 미세화 방법
US11097330B2 (en) Method for producing a formed component having a dimensionally accurate wall region
Lambiase Prediction of geometrical profile in slit rolling pass
JP2006110621A (ja) アルミニウム合金製型鍛造品の製造方法及び温間型鍛造用アルミニウム合金製予備成形品
Lisiecki et al. Numerical modelling of the multi-stage production process of large-size rings rolling for the shipbuilding industry including analysis of internal discontinuities
RU2506136C1 (ru) Способ штамповки эластичной средой
JP6493331B2 (ja) プレス成形品の製造方法
Mohammed Effect of Forming Method on the Behavior of the Drawing Process of a Complex Shape
RU2626253C2 (ru) Способ формообразования листовых деталей двоякой кривизны

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908927

Country of ref document: EP

Kind code of ref document: A1