EP1163505A1 - Dispositif pour analyser des elements contenus dans des echantillons de liquides sous forme de gouttelettes - Google Patents

Dispositif pour analyser des elements contenus dans des echantillons de liquides sous forme de gouttelettes

Info

Publication number
EP1163505A1
EP1163505A1 EP01909494A EP01909494A EP1163505A1 EP 1163505 A1 EP1163505 A1 EP 1163505A1 EP 01909494 A EP01909494 A EP 01909494A EP 01909494 A EP01909494 A EP 01909494A EP 1163505 A1 EP1163505 A1 EP 1163505A1
Authority
EP
European Patent Office
Prior art keywords
droplet
laser light
analysis
shaped liquid
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01909494A
Other languages
German (de)
English (en)
Inventor
Heinrich Schwenke
Joachim Knoth
Eckard Jantzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Galab Products GmbH
GKSS Forshungszentrum Geesthacht GmbH
Original Assignee
Galab Products GmbH
GKSS Forshungszentrum Geesthacht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galab Products GmbH, GKSS Forshungszentrum Geesthacht GmbH filed Critical Galab Products GmbH
Publication of EP1163505A1 publication Critical patent/EP1163505A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/162Direct photo-ionisation, e.g. single photon or multi-photon ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components

Definitions

  • the invention relates to a device for analyzing elements contained in liquids.
  • Multi-element analysis of the smallest sample volumes in the range of ⁇ l and less is currently a major challenge in analytical chemistry.
  • the demand for analyzes of the smallest sample quantities is also constantly increasing, especially in the biochemical and pharmaceutical industries.
  • the methods most frequently used according to the prior art for the simultaneous analysis of a large number of elements are the so-called ICP-OES (Inductively Coupled Pl as a-Optical Emission Spectrometry) and the so-called ICP-MS (Induc- tively Coupled Plasma-Mass Spectrometry).
  • ICP-OES Inductively Coupled Pl as a-Optical Emission Spectrometry
  • ICP-MS Induc- tively Coupled Plasma-Mass Spectrometry
  • Both methods have the major disadvantage that heated gases are used to excite the sample.
  • the heating gases have the disadvantageous effect that the sample is diluted considerably and that the detection sensitivity is reduced by the dilution factor.
  • Another disadvantage, which influences the sensitivity of the sample arises with spectrometric detection due to cross interference of the gas present in high excess.
  • a laser light source is provided, by means of which the laser light can be applied to the liquid sample which can be introduced in droplets in an analysis space in order to generate a plasma of the liquid sample, the plasma emitted light and / or sample material can be given to an analysis device.
  • the advantage of the solution according to the invention is essentially that the analysis can be carried out directly and without further dilution of the sample.
  • the plasma in the form of a plasma bubble optically represents a point source which provides ideal conditions for coupling the emission lines into an analysis device or an upstream optical system.
  • the point source is only a few ⁇ in size.
  • Another advantage of the solution according to the invention is that essentially available means such as laser light sources and spectrometers of the most varied types can be used.
  • the droplet-shaped liquid samples are supplied by a metering device.
  • Dosing devices of this type are also commercially available and can, for example, produce droplet-shaped liquid samples in the pico- to nanoliter.
  • a plurality of droplet-shaped liquid samples supplied one after the other can be "shot down", so to speak, one after the other by means of the laser light, so that the analytical result can be confirmed by a plurality of samples examined immediately one after the other with regard to the accuracy of the analysis.
  • the laser light can advantageously be applied to the droplet-shaped liquid sample in the form of a pulse, the length of the pulse and possibly a pulse repetition rate depending on the expected element spectra being determinable or adjustable.
  • the laser light in the form of a pulse sequence to the droplet-like liquid sample, i.e. the emission flashes of the plasma can be accumulated in the downstream analysis device, whereby a more precise, more revealing analysis of the elements or the molecules is possible.
  • the energy of the laser light can be selected such that the plasma has, for example, a temperature of 10 ° K and that preferably the energy of the laser light can be measured such that the plasma has an expansion in the range of 50 microns. It has been found that if these parameters are observed, a qualitatively and quantitatively high-quality analysis of the sample is possible by means of spectroscopic devices known per se for analysis methods.
  • the laser light emerging from the laser light source is advantageously passed through a focusing device, for example in the form of a focusing lens, before it occurs on the liquid sample.
  • a focusing device for example in the form of a focusing lens
  • the analysis device can, however, preferably also be an emission spectrometer, by means of which the emission radiation of the atomized sample atoms or ionized elements is analyzed by optical spectrometry.
  • the laser pulse is preferably synchronized with the emission spectrometer, as a result of which the background in the signals obtained is reduced. 1
  • the analysis device can also be a mass spectrometer in which the small plasma cloud generated by the “bombardment” by means of laser light of the droplet-shaped liquid sample can be introduced directly into the mass spectrometer due to the fact that the atoms in the plasma are completely ionized.
  • TOF-MS time of flight
  • FIG. 1 shows a device according to a first embodiment, in which the analysis device is designed in the form of a mass spectrometer, and
  • FIG. 2 shows a device in which the analysis device is designed in the form of an optical emission spectrometer.
  • the device 10 for analyzing droplet-shaped liquid samples 11, in which elements are contained which represent the object actually to be examined, comprises a laser light source 12, cf. Fig. 1.
  • the laser light source 12 generates laser light 13 in a suitable manner.
  • the laser light 13 is directed to a focusing device 18, here, for example, in the form of a focusing lens.
  • the focused laser light 13 is directed onto a droplet-shaped liquid sample 11.
  • the energy of the laser light is predetermined such that a plasma 15 of the droplet-shaped liquid sample 11 is generated.
  • the liquid sample 11 is then virtually present as plasma bubbles.
  • the plasma 15 has, for example, a temperature in the range of 10 ° K and the extent of the plasma washing 15 is in the range of 50 ⁇ m and less.
  • the plasma 15 emits light 16, which in turn is given to a focusing device 19, FIG. 2, which can be designed, for example, in the form of a converging lens.
  • the bundled emitted light 16 is passed to an analysis device 17, where it is qualitatively and quantitatively evaluated by means of spectroscopic methods.
  • the analysis device 17 is designed, for example, in the form of an optical emission spectrometer, FIG. 2.
  • the droplet-shaped liquid samples 11 are supplied by a metering device 22 which is aligned with the laser light 13 such that the droplet-shaped liquid samples traverse the focal point of the focusing device 18.
  • the device 22 can be formed by a conventional metering device.
  • the device 22 can, however, also be produced by means of a modern separation process, such as, for example, an HPLC process (high pressure liquid chroatography).
  • HPLC process high pressure liquid chroatography
  • the laser light 13 itself can be applied to the liquid sample 11 in the form of individual pulses, the pulse length and possibly a pulse repetition rate being adjustable. However, it is also possible to apply the laser light 13 to the liquid sample 11 in the form of a pulse sequence, possibly repeating itself in a suitable time.
  • a sequence of predeterminable amount of droplet-shaped liquid samples 11 can also be passed through the analysis space 14.
  • the devices 10 according to FIG. 1 and according to FIG. 2 differ essentially in that, in the case of FIG. 1, a mass spectrometer eter (TOF mass spectrometer) is used.
  • TOF mass spectrometer When using a mass spectrometer as the analysis device 17, sample material 16 is directed onto the mass spectrometer.
  • the emission light coming from the plasma 15 is passed to an analysis device 17 in the form of an optical spectrometer (OES spectrometer), by means of which the light emission of the plasma 15 according to the methods of optical emission spectrometry is used directly for element analysis is being used .
  • OES spectrometer optical spectrometer

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

L'invention concerne un dispositif (10) servant à analyser des éléments contenus dans des échantillons de liquide (11). Ce dispositif comprend une source lumineuse (12) qui permet d'exposer à une lumière laser (13) un échantillon de liquide (11) sous forme de gouttelettes, pouvant être placé dans une zone d'analyse (14), pour produire un plasma (15) de l'échantillon de liquide (11). La lumière (16) et/ou la matière (16) émises par le plasma (15) peuvent être acheminées à une unité d'analyse (17).
EP01909494A 2000-01-25 2001-01-18 Dispositif pour analyser des elements contenus dans des echantillons de liquides sous forme de gouttelettes Ceased EP1163505A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10002970 2000-01-25
DE2000102970 DE10002970B4 (de) 2000-01-25 2000-01-25 Vorrichtung zur Analyse von in tröpfchenförmigen Flüssigkeitsproben enthaltenen Elementen
PCT/DE2001/000196 WO2001055700A1 (fr) 2000-01-25 2001-01-18 Dispositif pour analyser des elements contenus dans des echantillons de liquides sous forme de gouttelettes

Publications (1)

Publication Number Publication Date
EP1163505A1 true EP1163505A1 (fr) 2001-12-19

Family

ID=7628584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909494A Ceased EP1163505A1 (fr) 2000-01-25 2001-01-18 Dispositif pour analyser des elements contenus dans des echantillons de liquides sous forme de gouttelettes

Country Status (3)

Country Link
EP (1) EP1163505A1 (fr)
DE (1) DE10002970B4 (fr)
WO (1) WO2001055700A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115791758A (zh) * 2023-02-09 2023-03-14 合肥金星智控科技股份有限公司 一种电解液中金属元素快速检测装置及检测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361903A1 (de) * 2003-12-22 2005-07-28 Carl Zeiss Jena Gmbh Verfahren zur spektroskopischen Analyse einer biologischen oder chemischen Substanz
US8912007B2 (en) 2013-01-22 2014-12-16 Tecan Trading Ag Optical measuring apparatus and method for the analysis of samples contained in liquid drops
DE102016113771B4 (de) 2016-07-26 2019-11-07 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Analysevorrichtung für gasförmige Proben und Verfahren zum Nachweis von Analyten in einem Gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008120A1 (fr) * 1990-10-29 1992-05-14 Macquarie University Cytometrie en flux a laser impulsionnel
US5681752A (en) * 1995-05-01 1997-10-28 The Regents Of The University Of California Method and apparatus for determining the size and chemical composition of aerosol particles
US5999250A (en) * 1997-03-17 1999-12-07 Tsi Corporation System for detecting fluorescing components in aerosols

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093336A (ja) * 1983-10-26 1985-05-25 Mitsubishi Electric Corp レ−ザ微量分析装置
US4925307A (en) * 1984-05-01 1990-05-15 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for the spectrochemical analysis of liquids using the laser spark
US5285064A (en) * 1987-03-06 1994-02-08 Extrel Corporation Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
JP2564404B2 (ja) * 1989-09-20 1996-12-18 株式会社日立製作所 質量分析方法
US5379103A (en) * 1993-05-06 1995-01-03 Apti, Inc. Method and apparatus for in situ detection of minute amounts of trace elements
DE19724238A1 (de) * 1997-06-09 1998-12-10 Basf Ag Verfahren zur Bestimmung der Grenzflächenadsorption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008120A1 (fr) * 1990-10-29 1992-05-14 Macquarie University Cytometrie en flux a laser impulsionnel
US5681752A (en) * 1995-05-01 1997-10-28 The Regents Of The University Of California Method and apparatus for determining the size and chemical composition of aerosol particles
US5999250A (en) * 1997-03-17 1999-12-07 Tsi Corporation System for detecting fluorescing components in aerosols

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0155700A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115791758A (zh) * 2023-02-09 2023-03-14 合肥金星智控科技股份有限公司 一种电解液中金属元素快速检测装置及检测方法

Also Published As

Publication number Publication date
DE10002970B4 (de) 2004-09-16
WO2001055700A1 (fr) 2001-08-02
DE10002970A1 (de) 2001-08-02

Similar Documents

Publication Publication Date Title
DE112011103405B4 (de) Funkenemissions-Teilchendetektor
DE4032491C2 (de) Massenspektroskopisches Verfahren und massenspektroskopische Vorrichtung
DE69311124T2 (de) Verfahren zur reduzierung von interferenzen in plasmaquellen-massenspektrometern
EP2042863B1 (fr) Analyse de mélanges de matière
DE4341699A1 (de) Verfahren und Vorrichtung zur Flugzeitspektrometrie
DE69910986T2 (de) Analysator für atmosphärische Teilchen
DE102005027260A1 (de) Verfahren und Vorrichtung zur Qualitätsbestimmung einer Schweißnaht oder einer thermischen Spritzschicht und Verwendung
DE112016007051B4 (de) Ionenanalysevorrichtung
DE112014002850B4 (de) Massenspektrometer und Steuerverfahren für Massenspektrometer
DE69127989T2 (de) Massenspektrometer für neutrale gesputterte Atome, die mit Laser ionisiert sind
DE19635645A1 (de) Hochauflösende Ionendetektion für lineare Flugzeitmassenspektrometer
WO2001055700A1 (fr) Dispositif pour analyser des elements contenus dans des echantillons de liquides sous forme de gouttelettes
DE102008048085B4 (de) Unterscheidung von Enantiomeren mit Hilfe der breitbandigen Femtosekunden-Circulardichroismus-Massenspektrometrie
DE102007026441A1 (de) Massenspektrometer
EP0084086A2 (fr) Microsonde à laser
DE2028805A1 (de) Verfahren und Einrichtung zum Trennen, Anreichern, Feststellen und Messen von Gasspuren
EP0088917B1 (fr) Microsonde par laser pour spécimens solides, à laquelle sont aménagées une optique d'observation, une optique de lumière laser et une optique ionique d'un même côté d'un support de spécimen
DE3490595C2 (de) Verfahren und Einrichtung zur Oberflächenanalyse
DE102005000840B4 (de) Verfahren und Vorrichtung zur Elementanalyse mittels Laser-Emissionsspektrometrie
DE102018116305B4 (de) Dynamischer Ionenfilter zur Reduzierung hochabundanter Ionen
DE102016112629B3 (de) Verfahren zur Analyse von Gasen mittels der Gaschromatographie
DE10002969A1 (de) Vorrichtung zur Analyse von in Flüssigkeitsproben enthaltenen Elementen
DE10325735B4 (de) Vorrichtung und Verfahren zur Analyse einer Materialbibliothek
DE10248055B4 (de) Methode zur Anregung optischer Atom-Emission und apparative Vorrichtung für die spektrochemische Analyse
DE2010174C3 (de) Verfahren und Vorrichtung zur Analyse des Ausgangs eines Chromatographen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20050203