EP0088917B1 - Microsonde par laser pour spécimens solides, à laquelle sont aménagées une optique d'observation, une optique de lumière laser et une optique ionique d'un même côté d'un support de spécimen - Google Patents

Microsonde par laser pour spécimens solides, à laquelle sont aménagées une optique d'observation, une optique de lumière laser et une optique ionique d'un même côté d'un support de spécimen Download PDF

Info

Publication number
EP0088917B1
EP0088917B1 EP83101796A EP83101796A EP0088917B1 EP 0088917 B1 EP0088917 B1 EP 0088917B1 EP 83101796 A EP83101796 A EP 83101796A EP 83101796 A EP83101796 A EP 83101796A EP 0088917 B1 EP0088917 B1 EP 0088917B1
Authority
EP
European Patent Office
Prior art keywords
sample
laser
lens means
observation
laser microprobe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83101796A
Other languages
German (de)
English (en)
Other versions
EP0088917A1 (fr
Inventor
Walter Bank
Peter Feigl
Hans-Josef Dr. Heinen
Franz Prof. Dr. Hillenkamp
Rainer Dr. Nitsche
Bruno Schueler
Henning Vogt
Reiner Dr. Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold Heraeus GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Heraeus GmbH filed Critical Leybold Heraeus GmbH
Publication of EP0088917A1 publication Critical patent/EP0088917A1/fr
Application granted granted Critical
Publication of EP0088917B1 publication Critical patent/EP0088917B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]

Definitions

  • Laser micro-probe for solid-state samples in which observation optics, laser light optics and ion optics are arranged on the same side of a sample holder.
  • the invention relates to a laser microprobe for solid-state samples, in which observation optics and laser light optics as well as ion optics are arranged on the same side of a sample holder and in which a time-of-flight mass spectrometer is used as a mass analyzer.
  • Solid samples are to be understood as absorbing, conducting or non-conducting samples.
  • bulk samples has also become established.
  • Laser micro probes allow analysis of sample areas on the order of a few ⁇ m. It is therefore desirable to be able to observe and excite the sample with high local resolution.
  • the laser microprobe should have the highest possible absolute and relative detection sensitivity and either work almost non-destructively or allow layer analyzes with great depth resolution.
  • Time-of-flight mass spectrometers have proven to be advantageous in this regard for laser microprobes because they are sensitive and provide information about large mass ranges extremely quickly.
  • DE-OS 2734918 is a laser microprobe that is only suitable for transparent samples, in which illuminants are provided on the side of the sample opposite the laser light optics, which are displaceably arranged together with the ion optics. This measure makes it possible to view the transparent sample not only in incident light, but also in transmitted light through the laser light optics also used for observation.
  • This DE-OS deals exclusively with the possibility of viewing transmitted light through transparent samples and not with the problem of assigning device parts in laser micro probes for solid samples, for which the transmitted light observation is not possible.
  • This arrangement does have the advantage that the objective used to observe and excite the sample can be arranged closer to the sample than with oblique observation and excitation.
  • the disadvantage is that the The laser bombardment of the ions to be analyzed and to be analyzed must be redirected either “around the sample” or “around the lens” to the inlet opening of a mass analyzer. This is done in the subject of DE-OS 2922128 with the aid of an energy filter of the electrostatic mirror type with cylinder geometry, with which the ions emerging from the sample at different angles are focused on the input of the mass analyzer. With such a deflection, there are considerable differences in transit time for ions of the same mass which emerge from the sample surface at different angles.
  • time-of-flight mass spectrometer as a mass analyzer is therefore unsuitable for a device of this type, since due to the time-of-flight differences already existing when entering the time-of-flight tube, there is no definite start time, which results in poor resolution for the time-of-flight mass spectrometry.
  • it is known cf. "A coaxial combined electrostatic objective and anode lens for microprobe mass analyzers", Vacuum, Vol. 22, No 11, pages 619 ff) that it is difficult to achieve the accuracies desired in laser micro probes with such electrostatic deflection systems achieve.
  • a minimum distance between the sample and the objective must be maintained so that the resolution that can be achieved when observing the sample is not optimal.
  • the present invention has for its object to provide a laser microprobe for solid samples of the type mentioned with the best compromise of the assignment of the individual components to the sample holder or to the sample.
  • each of the systems - sample observation, laser focusing device and ion suction - can be adjusted and optimized on its own.
  • an optimal assignment of the observation objective to the sample in the immediate vicinity and perpendicular to the sample surface
  • the ion-optical components which must be arranged as close as possible to the sample in the measuring position, do not interfere.
  • optimal assignments can be selected for the laser light lens and for the electrodes used to extract the ions.
  • the focusing of a laser beam on an inclined surface is also with a somewhat longer focal length with a high ... (etc. page 5 ff of the originally submitted documents).
  • the oblique arrangement of the ion optics would result in deterioration of the measurement results due to the differences in transit time.
  • An oblique arrangement of the observation lens would not only mean a deterioration in resolution, but also a partially blurred field of view.
  • the observation of the sample is of particular importance in laser microanalysis, since microscopic examination of the craters that occur during laser excitation, in particular the crater walls, is often of interest. Since different lenses are available for laser light and for observation, these can be optimally adapted to the wavelengths used in each case.
  • the sample is labeled 1, the sample holder 2, the observation lens 3, the laser lens 4 and the axes of these lenses 5 and 6.
  • the upstream in the time-of-flight tube 7 with the downstream ion detector 8 is formed by tubular lenses and comprises three tube sections 11, 12 and 13 on a common axis 14.
  • the sample holder can be adjusted in the x, y and z directions (represented schematically by the Coordinate cross 10).
  • the observation objective 3 has an optimal assignment to the sample 1, i.e. it is very close to the sample 1 and its axis 5 is perpendicular to the sample surface.
  • the light necessary for illuminating the sample is generated by the lamp 15 and reflected in the observation path with the aid of the partially transparent mirror 16.
  • the light emanating from the sample 1 is directed with the aid of the mirror 17 in the direction (arrow 18) of a microscope tube (not shown). By switching on suitable apertures (not shown), the sample can be observed in the bright and dark fields.
  • the axis 5 of the observation objective 3 represents an extension of the axis 19 of the time-of-flight tube 7.
  • the lenses 3 and 4, the mirrors 16 and 17 and the ion optics 9 are mounted on a carriage, not shown in the schematic FIGS. 1 and 2, and can be moved laterally in accordance with the double arrow 21. 2 shows the measurement position in which the axis 14 of the ion optics 9 represents an extension of the axis 19 of the time-of-flight tube 7.
  • the laser objective 4 is assigned to the sample 1, ie its axis 6 intersects with the axis 14 of the ion optics 9 on the surface of the sample 1.
  • the pulse laser 22 serves to excite the sample 1 with laser light pulses, the light of which is generated by means of the mirror 23 is deflected into the axis 6 of the lens 4.
  • the ions resulting from the excitation are sucked off by the first electrode 11 of the ion optics 9 in the direction of the time-of-flight tube 7. Since the axis 14 of the ion optics 9 is perpendicular (angle a) on the sample surface, the time-of-flight mass spectrometer operation is possible in an optimal manner.
  • the axis 6 of the laser objective 4 forms an angle ⁇ with the sample surface which is less than 90 °. In mechanically advantageous arrangements, this angle can be 45 ° to 70 °, so that even the disadvantages associated with oblique laser light incidence appear little.
  • 20 and 30 still refer to optical devices (partially transparent plates, light source observation optics), by means of which observation of the sample 1 by the laser objective 4 in the measurement position is possible.
  • FIG. 3 shows an exemplary embodiment in which, in contrast to FIGS. 1 and 2, the sample holder 2 is designed to be movable, that is to say rotatable, while the other components are arranged in a fixed manner.
  • the measuring position is shown.
  • the sample holder is designed as a plate and rotatable about the axis 24. In the observation position, the sample assumes the position shown in dashed lines and labeled 1 1 .
  • the exact positioning of the sample in its two positions can be achieved with the aid of stops 25 (FIG. 4).
  • FIGS. 5 and 6 show an exemplary embodiment of a carriage 26 and its suspension 27.
  • This comprises a U-shaped component 28 with guide rods 29, to which corresponding sleeves 31 and 32 which pass through the carriage 26 are assigned.
  • the slide 26 can be moved back and forth between two end positions by means of the cylinder-piston device 33 and the pull rod 34 (double arrow 21).
  • the point of engagement of the pull rod 34 on the carriage 26 is only shown in FIG. 6 and is designated 35.
  • the entire system is mounted on flange 36.
  • FIG. 5 shows the observation position in which the observation objective 3 is assigned to the sample 1 with its axis 5.
  • the light serving to illuminate the sample is supplied from below (arrow 37).
  • the mirror 16 is not shown separately.
  • the light reflected by sample 1 is deflected several times within the slide and fed to the microscope tube (not shown) (arrow 18).
  • corresponding bores and mirrors are accommodated in the slide block 26, but their representation has been omitted.
  • the light path was only drawn with a dash-dot line.
  • the measuring position is achieved in that the slide 26 is moved in accordance with the double arrow 21. In this position, the axes 6 and 14 of the laser objective 4 or the ion optics 9 intersect in the area of the surface of the stationary sample 1 facing these components.
  • the laser light is also supplied via several bores in the slide 26 with corresponding mirrors. Only the mirror 23 is shown; otherwise the path of the laser light is also only a dot-dash line drawn and provided with the arrow 38.
  • additional optical devices can be provided which allow the sample 1 to be observed in the measuring position by the laser objective 4.
  • the desired analysis location is first selected in the observation position with the aid of the observation optics 3 by adjusting the sample in the x, y and z directions.
  • the position of the observation optics is not affected by other components, so that an optimal representation of the analysis location is possible via the observation objective.
  • After the relative movement into the measuring position it is ensured that the laser beam is focused on the desired analysis location with the required lateral and axial accuracy and that the ion-optical components are also aligned on this location.
  • the observation lens does not interfere because it is no longer near the sample in the measuring position. Overall, resolutions and image qualities can be achieved, such as those are common in reflected metal microscopy.
  • the laser lens 4 is displaceable with the other components. If the laser lens 4 arranged obliquely to the sample surface does not interfere in the observation position, then the displaceability of the laser lens can be dispensed with. For example, be arranged so firmly that it is permanently assigned to the fixed sample - except for the adjustment option.
  • This design option has the advantage that an absolutely exact positioning of the ion optics, which can only be displaced with the observation optics, can be dispensed with in the measurement position, since such a precise assignment of the inlet opening of the ion optics to the analysis location is not necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Electron Sources, Ion Sources (AREA)

Claims (14)

1. Micro-sonde à laser pour échantillons de corps solides, dans laquelle une optique d'observation, une optique de lumière laser et une optique ionique sont disposées du même côté d'un support d'échantillon et dans laquelle on utilise comme analyseur de masse un spectromètre de masse à temps de vol, caractérisée par les particularités suivantes.
a) le support d'échantillon (2), avec l'échantil-Ion (1), d'une part, et au moins l'optique ionique (9) ainsi que l'optique d'observation (3) d'autre part, peuvent se déplacer l'un par rapport à l'autre entre une position d'observation et une position de mesure;
b) dans la position d'observation (5) de l'optique d'observation (3) est perpendiculaire à la surface de l'échantillon (1);
c) dans la position de mesure, l'axe (14) de l'optique ionique (9) est perpendiculaire à la surface de l'échantillon (1), tandis que l'axe (6) de l'optique laser (4) forme un angle p <90° avec la surface de l'échantillon, les deux axes se coupant sur la surface de l'échantillon (1);
d) des moyens de butée (25 et 41, 42 respectivement) sont montés sur le support d'échantillon mobile (2) et, respectivement sur un élément mobile (26) qui porte les optiques, et réglés de telle manière qu'une région de l'échantillon qui est choisie au moyen de l'optique d'observation (3) dans la position d'observation, se trouve au foyer de l'optique (4) de la lumière laser dans la position de mesure.
2. Micro-sonde à laser selon la revendication 1, caractérisée en ce qu'elle comprend en outre des moyens (20, 30) permettant d'observer l'échantillon (1) dans la position de mesure.
3. Micro-sonde à laser selon la revendication 1 ou la revendication 2, caractérisée en ce que le déplacement relatif est un déplacement en rotation.
4. Micro-sonde à laser selon la revendication 3, caractérisée en ce que l'échantillon (1) est disposé sur un support d'échantillon tournant (2).
5. Micro-sonde à laser selon la revendication 1 ou la revendication 2, caractérisée en ce que le déplacement relatif est un déplacement en translation.
6. Micro-sonde à laser selon la revendication 5, caractérisée en ce qu'un chariot (26) qui est monté à l'aide de barres de guidage (29) dans un élément (28) en forme de U, porte l'optique d'observation (3), l'optique à lumière laser (4) ainsi que l'optique ionique (9).
7. Micro-sonde à laser selon la revendication 6, caractérisée en ce qu'elle comprend des butées réglables sur les deux côtés du chariot (26).
8. Micro-sonde à laser selon la revendication 7, caractérisée en ce que les butées sont composées chacune d'une plaque de butée (41,42) fixée au chariot (26) et de trois vis (46) montées dans les branches (28) de l'élément en forme de U.
9. Micro-sonde à laser selon la revendication 8, caractérisée en ce qu'aux trois vis (46), sont combinées trois régions (43, 44, 45) de la surface de butée formées sur la plaque de butée (41 ou 42 respectivement) et qui présentent des configurations différentes.
10. Micro-sonde à laser selon la revendication 9, caractérisée en ce qu'une surface de butée (43) présente la forme d'un perçage conique et une deuxième surface de butée (44) a la forme d'une fente conique, tandis que la troisième surface de butée (45) est de configuration plane.
11. Micro-sonde à laser selon l'une des revendications 7 à 10, caractérisée en ce que toutes les surfaces de butée sont trempées.
12. Micro-sonde à laser selon l'une des revendications précédentes, caractérisée en ce que les trajets optiques des rayons sont tracés, par un guidage géométrique et par des formations d'images intermédiaires appropriées, de telle manière que, dans la position d'observation, la zone à analyser puisse former une image nette à travers l'optique d'observation et que, dans la position de mesure, elle forme une image nette à travers l'optique laser, dans un tube porte-oculaire commun.
13. Micro-sonde à laser selon l'une des revendications précédentes, caractérisée en ce que l'échantillon (1) ou le support d'échantillon (2) est monté réglable dans les directions (x, y et z).
14. Micro-sonde à laser selon la revendication 13, caractérisée en ce que, lorsque l'échantillon se déplace, l'unité de réglage de l'échantillon qui agit dans les directions (x, y et z) accompagne le mouvement en totalité ou en partie.
EP83101796A 1982-03-10 1983-02-24 Microsonde par laser pour spécimens solides, à laquelle sont aménagées une optique d'observation, une optique de lumière laser et une optique ionique d'un même côté d'un support de spécimen Expired EP0088917B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823208618 DE3208618A1 (de) 1982-03-10 1982-03-10 Lasermikrosonde fuer festkoerperproben, bei der eine beobachtungsoptik, eine laserlichtoptk und iene ionenoptik auf derselben seite einer probenhalterung angeordnet sind
DE3208618 1982-03-10

Publications (2)

Publication Number Publication Date
EP0088917A1 EP0088917A1 (fr) 1983-09-21
EP0088917B1 true EP0088917B1 (fr) 1986-11-20

Family

ID=6157831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101796A Expired EP0088917B1 (fr) 1982-03-10 1983-02-24 Microsonde par laser pour spécimens solides, à laquelle sont aménagées une optique d'observation, une optique de lumière laser et une optique ionique d'un même côté d'un support de spécimen

Country Status (3)

Country Link
EP (1) EP0088917B1 (fr)
JP (1) JPS58169765A (fr)
DE (2) DE3208618A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8707516D0 (en) * 1987-03-30 1987-05-07 Vg Instr Group Surface analysis
USRE39353E1 (en) 1994-07-21 2006-10-17 Applera Corporation Mass spectrometer system and method for matrix-assisted laser desorption measurements
US5498545A (en) * 1994-07-21 1996-03-12 Vestal; Marvin L. Mass spectrometer system and method for matrix-assisted laser desorption measurements
CN107895684B (zh) * 2017-12-14 2024-03-26 广州禾信康源医疗科技有限公司 离子源及质谱仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2141387C3 (de) * 1971-08-18 1975-12-11 Ernst Dr. 8000 Muenchen Remy Verfahren zur auf Mikrobereiche beschränkten Verdampfung, Zerstörung, Anregung und/oder Ionisierung von Probenmaterial sowie Anordnung zur Durchführung des Verfahrens
DE2703047C2 (de) * 1977-01-26 1986-11-06 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Verfahren zur Erzeugung unterschiedlicher Massenspektren einer Probe aus festem Material
DE2739828C2 (de) * 1977-09-03 1986-07-03 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Einrichtung zur Analyse von Proben
DE2734918A1 (de) * 1977-08-03 1979-06-21 Leybold Heraeus Gmbh & Co Kg Einrichtung zur analyse von proben
DE2922128A1 (de) * 1979-05-31 1980-12-11 Strahlen Umweltforsch Gmbh Ionenquelle fuer einen massenanalysator

Also Published As

Publication number Publication date
DE3367822D1 (en) 1987-01-08
JPS58169765A (ja) 1983-10-06
EP0088917A1 (fr) 1983-09-21
DE3208618A1 (de) 1983-09-22

Similar Documents

Publication Publication Date Title
EP1248947B1 (fr) Procede et dispositif pour caracteriser un liquide de culture
DE102010034666B4 (de) Röntgenanalysevorrichtung und Röntgenanalyseverfahren
DE2852978C3 (de) Vorrichtung zur spektroskopischen Bestimmung der Geschwindigkeit von in einer Flüssigkeit bewegten Teilchen
DE102006050600B4 (de) Spektrometer zur Oberflächenanalyse und Verfahren dafür
DE102011055294B4 (de) Mikroskopische Einrichtung und Verfahren zur dreidimensionalen Lokalisierung von punktförmigen Objekten in einer Probe
DE2456452A1 (de) Vorrichtung zur zerstoerungsfreien untersuchung von stoffen, besonders von heterogenen oberflaechen, mittels bestrahlung
EP0166328A2 (fr) Procédé et dispositif pour produire l&#39;image d&#39;un objet ou du diagramme de diffraction d&#39;un objet par filtrage d&#39;énergie des électrons avec un microscope électronique à transmission
DE2606481C3 (de) Fluorometer
DE2739828A1 (de) Einrichtung zur analyse von proben
EP0088917B1 (fr) Microsonde par laser pour spécimens solides, à laquelle sont aménagées une optique d&#39;observation, une optique de lumière laser et une optique ionique d&#39;un même côté d&#39;un support de spécimen
DE2309181A1 (de) Mit elektronenstrahlabtastung arbeitende analysevorrichtung
DE10233549B4 (de) Scanmikroskop mit Manipulationslichtstrahl und Verfahren zur Scanmikroskopie
DE19849597A1 (de) Nephelometrische Detektionseinheit mit optischer In-Prozeß-Kontrolle
DE2508523C3 (de) Verfahren zur Analyse von biologischen Zellen oder strukturierten Partikeln ähnlicher Größenordnung
DE1204350B (de) Elektronenmikroskop
EP1504251A1 (fr) Systeme et procede pour analyser des echantillons chimiques et/ou biologiques
DE2338481C2 (de) Vorrichtung zur schnellen Messung der zeitlichen Änderung der Strahlungsintensität
DE2701523A1 (de) Verfahren und vorrichtung zur zaehlung und klassifizierung von teilchen
DE102005000840B4 (de) Verfahren und Vorrichtung zur Elementanalyse mittels Laser-Emissionsspektrometrie
DE2922128C2 (fr)
EP3292392B1 (fr) Procédé de cytométrie et unité cytomètre
DE102017130072A1 (de) Impulsauflösendes Photoelektronenspektrometer und Verfahren zur impulsauflösenden Photoelektronenspektroskopie
DE2734918A1 (de) Einrichtung zur analyse von proben
EP1163505A1 (fr) Dispositif pour analyser des elements contenus dans des echantillons de liquides sous forme de gouttelettes
EP1386139A2 (fr) Microscope pour analyse de la fluctuation de fluorescence et module de mesure ou module de balayage de la fluctuation de fluorescence et procede de mesure de la fluctuation de fluorescence ainsi que procede et dispositif d&#39;alignement d&#39;un microscope pour analyse de la fluctuation de fluorescence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830224

AK Designated contracting states

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3367822

Country of ref document: DE

Date of ref document: 19870108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: LEYBOLD AKTIENGESELLSCHAFT TE HANAU A.D. MAIN, BON

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910228

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST