EP1160349A1 - Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke - Google Patents

Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke Download PDF

Info

Publication number
EP1160349A1
EP1160349A1 EP00111129A EP00111129A EP1160349A1 EP 1160349 A1 EP1160349 A1 EP 1160349A1 EP 00111129 A EP00111129 A EP 00111129A EP 00111129 A EP00111129 A EP 00111129A EP 1160349 A1 EP1160349 A1 EP 1160349A1
Authority
EP
European Patent Office
Prior art keywords
phase
gas atmosphere
nitrogen
workpieces
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00111129A
Other languages
English (en)
French (fr)
Other versions
EP1160349B1 (de
Inventor
Wolfgang Dr. Lerche
Bernd Dr. Edenhofer
Michael Dr. Lohrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Priority to EP00111129A priority Critical patent/EP1160349B1/de
Priority to AT00111129T priority patent/ATE274073T1/de
Priority to DE50007480T priority patent/DE50007480D1/de
Publication of EP1160349A1 publication Critical patent/EP1160349A1/de
Application granted granted Critical
Publication of EP1160349B1 publication Critical patent/EP1160349B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Definitions

  • the invention relates to a method for heat treatment of metallic Workpieces, especially for carburizing or carbonitriding Ferrous materials. It also relates to a device with which one can carry out such procedure.
  • thermochemical heat treatment To create defined workpiece properties, such as a high one Wear resistance or fatigue strength, metallic workpieces become one subjected to thermochemical heat treatment.
  • the result of Heat treatment is the enrichment of carburizing or carbonitriding Surface layer of the workpieces with carbon and / or nitrogen, due to the changed material composition of the workpieces after a subsequent hardening to give the required mechanical properties.
  • the treatment result is of particular influence general process parameters pressure, temperature and treatment time in primarily the composition of the enrichment of the boundary layer Carbon and / or nitrogen causing gas atmosphere. It can be about be required to add a reducing agent to the gas atmosphere in order to obtain a impermissibly high oxidation of the surface of the workpieces due to the Loading the workpieces in a heat treatment furnace due to the to avoid inevitable air entry noticeable oxygen.
  • the prior art also includes a number of procedures known to the composition of the gas atmosphere in terms of to adjust the desired treatment outcome.
  • the gas atmosphere is in Depending on the carburizing temperature in its carburizing effect on the adapt to the respective requirements.
  • This is a common practice So-called saturation compensation method, in which during a Enrichment phase the maximum possible amount of carbon in the Gas atmosphere is provided to saturate the surface layer with Reach carbon in a short time.
  • the exchange of substances with the gas atmosphere restricted or prevented by either using a gas atmosphere reduced carbon supply set or the gas atmosphere evacuated or is exchanged for an inert gas.
  • EP-A-0 080 124 describes a case hardening process known metallic workpieces, in which by pulsating addition carbon-containing gas components achieved a high carbon potential gradient becomes. The supply of the carbon-containing gas takes place in several cycles instead of and is interrupted as soon as saturation occurs in the boundary layer Carbon is reached.
  • GB-A-2 202 238 discloses a method for Carburizing workpieces, in which the enrichment phase and the Diffusion phase periodically until a desired carburization depth is reached alternate to the desired carbon content of the surface layer and the target carburization depth largely independent of each other and in to achieve as short a time as possible.
  • a disadvantage of all these processes is that they are not always satisfactory Treatment outcome. This is mainly due to the fact that during a diffusion phase following the enrichment phase or Temperature compensation phase no longer has any direct influence on the There is carbon content in the surface layer. This comes in particular Dimensions to be taken into account when there are small amounts of carbon dioxide or Water vapor are in the gas atmosphere, for example due to a Air entry at leaks of a heat treatment furnace are formed and which cause an increased degradation of the carbon in the surface layer.
  • those used to regulate carbon levels during the Process gases used in the enrichment phase oxygen-containing components, such as carbon monoxide, carbon dioxide or Water vapor due to the partial pressure of oxygen in the outside Edge area of the carburized edge layer an undesirable edge oxidation cause.
  • the invention is based, a method and a task To create device for heat treatment of metallic workpieces which to avoid carbide formation on the surface of the treating workpieces in a comparatively simple way an improved Treatment result.
  • Such a procedure adopts the knowledge that one can achieve improved treatment results of the workpieces if both during the enrichment phase and during the diffusion phase the carbon content of the boundary layer by varying that of the gas atmosphere supplied volume flows of nitrogen and hydrocarbon in one predetermined interval between a lower limit and an upper limit is set.
  • Nitrogen is reduced and the proportion of hydrocarbon is increased high carbon supply in the gas atmosphere, which in a relatively short Time the carbon content of the boundary layer up to the specified upper limit enriches.
  • the temperature to which heating takes place in the heating phase, the length of time for which the workpieces are kept at this temperature during the compensation phase, the temperatures which are set in the enrichment phase and the diffusion phase, and the amounts of nitrogen supplied in the respective process stages and carbon depend primarily on the material of the workpieces to be treated, the specific composition of the gas atmosphere required to achieve the desired carbon content of the surface layer and the desired treatment success, such as the desired carburization depth. Since the process parameters of the material properties depend on the workpieces to be treated, can be obtained from publicly available databases, such as the Calphad (Cal culation of pha se d iagrams), Sweden, necessary for a particular steel composition parameter values with respect to the desired carbon content in the Remove surface layer.
  • the amounts of nitrogen and Hydrocarbon in the gas atmosphere during the enrichment phase and / or the diffusion phase advantageously varies such that the Upper limit of the carbon content of the surface layer slightly below the due to carbide formation occurring at the prevailing temperature marked saturation of austenite.
  • the upper limit of Carbon content of the surface layer can be so during the diffusion phase be chosen to meet the requirements of one of the following Cooling phase takes place corresponding hardening process.
  • a particularly advantageous procedure is also given if the workpieces during the heating phase to one for carburizing or Carbonitrieren favorable temperature between 750 ° C and 1050 ° C to be heated.
  • a carbon content of the surface layer is also of particular advantage during the heating phase in the range between 0.2 wt .-% and 0.5 wt .-%. Possibly existing oxide or passive layers on the workpieces are eliminated in this way or at least converted so that a uniform diffusion of carbon into the material is favored.
  • a reduced temperature during the enrichment phase during the diffusion phase be useful.
  • a particularly advantageous procedure is also given when unsaturated hydrocarbons of the type C n H 2n , preferably alkenes such as ethylene (C 2 H 4 ) and propylene (C 3 H 6 ), saturated hydrocarbons of the type C n H 2n + 2 , preferably alkanes such as ethane (C 2 H 6 ) and propane (C 3 H 8 ), or alkynes such as acetylene (C 2 H 2 ) are added to the gas atmosphere.
  • alkynes in particular which are distinguished by a low proportion of hydrogen, offer the advantage that no further fission products are produced and the proportion of hydrogen in the gas atmosphere accordingly remains low.
  • a reducing agent preferably hydrogen
  • a reducing agent is advantageously added to the gas atmosphere in the case of oxygen present in the gas atmosphere, which results, for example, from an air entry at leaks in a heat treatment furnace constant or variable amount added.
  • the time and the amount of reducing agent added depend on the circumstances in each case.
  • the supply of the amounts of nitrogen and hydrocarbon into the gas atmosphere is regulated or controlled in a database-dependent manner as a function of a characteristic value representing the carbon content in the surface layer, preferably the carbonation index K c .
  • the database-related control is advantageous if a characteristic value representing the carbon content in the surface layer is not available, for example due to measurement difficulties.
  • the regulation of the supply as a function of a characteristic value representing the carbon content in the surface layer enables the desired carbon content of the surface layer to be set precisely, without the particular size of the surface of the workpieces to be treated being important.
  • the workpieces are expediently removed during the cooling phase a reducing or neutral gas atmosphere or in a liquid Quench medium cooled to room temperature.
  • a device for heat treating metallic workpieces which has a heating chamber in which the workpieces can be heated and exposed to a gas atmosphere containing nitrogen and a hydrocarbon, and is characterized in that means are provided with which the supply the amounts of nitrogen and hydrocarbon in the gas atmosphere as a function of a characteristic value representative of the carbon content in the surface layer, preferably the carbonation index K c , can be regulated or controlled in a database-related manner.
  • the method according to the invention can be carried out in a reliable manner.
  • the Heating chamber is hermetically sealed to prevent air from entering and thus avoid oxygen in the gas atmosphere.
  • the heating chamber be filled with an inert gas, preferably nitrogen, is flushable, so that regardless of the volume of the heating chamber, the content of Oxygen in the atmosphere of the heating chamber after introduction of the treating workpieces in a comparatively short time to ⁇ 1% by volume reducible and undesirable oxidation of the workpieces to be treated this is avoidable.
  • the time t is on the abscissa and the temperature ⁇ on the ordinate, the carbon content w c resulting in the surface layer of workpieces to be treated, and the volume flows of hydrogen V ⁇ H2 supplied to a gas atmosphere for this purpose , Nitrogen V ⁇ N 2 , ammonia V ⁇ NH3 and the hydrocarbon acetylene V ⁇ C 2 H 2 removed.
  • the heat treatment method shown in Fig. 1 is primarily used for carburizing metallic workpieces, which can consist of different steels. The entire process can be divided into five phases. In a first phase, the heating phase A, the workpieces are heated to a carburizing temperature ⁇ of, for example, 930 ° C.
  • the heat treatment furnace used for this purpose an atmosphere furnace, was flushed with nitrogen in a short time after the workpieces had been introduced, and was then flooded with a gas atmosphere containing nitrogen and acetylene.
  • the size of the volume flows of nitrogen V ⁇ N 2 and acetylene V ⁇ C 2 H 2 supplied to the gas atmosphere is such that an edge layer with a carbon content w c of approx. 0.35% by weight is established on the workpieces.
  • the supply of the amounts of nitrogen V ⁇ N 2 and acetylene V ⁇ C 2 H 2 into the gas atmosphere is regulated depending on a characteristic value representing the carbon content w c in the surface layer, which is determined by a measuring device.
  • a constant volume flow of hydrogen V ⁇ H 2 of approximately 0.3 m 3 / h is also supplied to the gas atmosphere during the heating phase A in order to bring the gas atmosphere into a sufficiently reducing state.
  • a compensation phase B following the heating-up phase A the workpieces are kept at the temperature ⁇ reached at the end of the heating-up phase A of approx. 930 ° C. for approx. 20 min.
  • the quantities of nitrogen V ⁇ N 2 and acetylene V ⁇ C 2 H 2 fed into the gas atmosphere are further regulated in such a way that a carbon content w c in the surface layer of the workpieces of approx. 0.35% by weight results.
  • the volume flow of hydrogen V ⁇ H 2 is reduced to a value of less than 0.2 m 3 / h.
  • the volume flows of nitrogen V ⁇ N 2 and acetylene V ⁇ C 2 H 2 supplied to the gas atmosphere are varied such that a carbon content w c of the boundary layer varies in an interval between a lower limit G u of approx. 0.7% by weight and an upper limit G o of approx. 1.2% by weight.
  • the upper limit G o of approx. 1.2 wt At the temperature ⁇ of approx. 930 ° C which continues to exist in the enrichment phase C, the upper limit G o of approx. 1.2 wt.
  • the volume flow of nitrogen V ⁇ N 2 is reduced in a first section and the volume flow of acetylene V ⁇ C 2 H 2 is increased.
  • the volume flow of nitrogen V ⁇ N 2 is increased again in a second section to reach the lower limit G u , whereas the volume flow of acetylene V ⁇ C 2 H 2 is reduced.
  • the first and second sections are repeated alternately within the enrichment phase C, whereby an adaptation of the enrichment of the surface layer with carbon is achieved in accordance with the absorption capacity of the workpieces, which depends on the respective material.
  • the duration and therefore the respective size of the volume flows of nitrogen V ⁇ N 2 and acetylene V ⁇ C 2 H 2 during the first and second sections is uneven, such as the differently steep flanks of the curve of the carbon content w c in Fig. 1 can be seen.
  • the system and process-adapted volume flow of hydrogen V ⁇ H 2 is increased to approx. 0.2 m 3 / h during the enrichment phase C.
  • the enrichment phase C is followed by a diffusion phase D in which the temperature ⁇ is reduced to approximately 880 ° C. With regard to a subsequent hardening process, the upper limit G o is reduced to approximately 0.8% by weight.
  • the thermodynamic equilibrium between the gas atmosphere and the surface layer of the workpieces to be treated is adjusted by varying the volume flows of nitrogen V ⁇ N2 and acetylene V ⁇ C 2 H 2 supplied to the gas atmosphere in such a way that first and second sections the carbon content w c of the boundary layer lies in the interval between the lower limit G u of approximately 0.7% by weight and the upper limit G o of approximately 0.8% by weight.
  • the system and process-adapted volume flow of hydrogen V lagen H 2 is reduced again during the diffusion phase D to a value below 0.2 m 3 / h.
  • the workpieces are cooled to room temperature during a cooling phase E following the diffusion phase D.
  • the process described above is characterized by the volumetric flow control of the amounts of nitrogen V ⁇ N 2 and acetylene V 2 C 2 H 2 supplied to the gas atmosphere in the individual process stages, which results in an improved treatment result compared to conventional carburizing processes.
  • the main reason for this is that the carbon supply in the gas atmosphere can be adapted in this way according to the material and the surface of the workpieces to be treated and thus the absorption capacity of the surface layer.
  • the possibility to provide alternating first and second sections of different carbon contents w c during the enrichment phase C and the diffusion phase D also contributes to this result to a particular degree.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Details (AREA)

Abstract

Ein Verfahren zur Wärmebehandlung metallischer Werkstücke besteht aus folgenden Verfahrensschritten: a) Erwärmen der Werkstücke auf eine bestimmte Temperatur (<IMAGE>) in einer Stickstoff und einen Kohlenwasserstoff enthaltenden Gasatmosphäre während einer Aufheizphase (A), wobei die Zufuhr der Mengen an Stickstoff (V˙N2 ) und Kohlenwasserstoff (V˙C2H2) in die Gasatmosphäre derart geregelt wird, dass sich auf den Werkstücken eine Randschicht mit einem Kohlenstoffgehalt (wc) innerhalb eines vorgegebenen Bereichs bildet; b) Halten der Werkstücke auf der am Ende der Aufheizphase (A) erreichten Temperatur () für eine bestimmte Zeitdauer während einer sich anschließenden Ausgleichsphase (B), wobei durch die der Gasatmosphäre zugeführten Mengen an Stickstoff (V˙N2) und Kohlenwasserstoff (V˙C2H2) der Kohlenstoffgehalt (wc) der Randschicht weiterhin innerhalb des vorgegebenen Bereichs liegt; c) Variieren der Mengen an Stickstoff (V˙N2) und Kohlenwasserstoff (V˙C2H2) in der Gasatmosphäre während einer sich an die Ausgleichsphase (B) anschließenden Anreicherungsphase (C) und einer hierauf folgenden Diffusionsphase (D), wobei jeweils zunächst in einem ersten Abschnitt zum Erreichen einer vorgegebenen Obergrenze (Go) des Kohlenstoffgehalts (wc) der Randschicht der Anteil an Stickstoff (V˙N2) reduziert und der Anteil an Kohlenwasserstoff (VC2H2) erhöht wird und nachfolgend in einem zweiten Abschnitt zum Erreichen einer vorgegebenen Untergrenze (Gu) des Kohlenstoffgehalts (wc) der Randschicht der Anteil an Stickstoff (V˙N2 ) erhöht und der Anteil an Kohlenwasserstoff (V˙C2H2) reduziert wird; d) Abkühlen der Werkstücke auf Raumtemperatur während einer sich an die Diffusionsphase (D) anschließenden Abkühlungsphase (E). <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Wärmebehandlung metallischer Werkstücke, insbesondere zum Aufkohlen oder Carbonitrieren von Eisenwerkstoffen. Sie bezieht sich ferner auf eine Vorrichtung, mit der sich ein solches Verfahren durchführen lässt.
Zum Erzeugen von definierten Werkstückeigenschaften, wie etwa einer hohen Verschleiß- oder Wechselfestigkeit, werden metallische Werkstücke einer thermochemischen Wärmebehandlung unterzogen. Das Ergebnis der Wärmebehandlung ist beim Aufkohlen oder Carbonitrieren die Anreicherung der Randschicht der Werkstücke mit Kohlenstoff und/oder Stickstoff, um aufgrund der veränderten Werkstoffzusammensetzung den Werkstücken nach einem anschließenden Härten die geforderten mechanischen Eigenschaften zu verleihen.
Von besonderem Einfluss auf das Behandlungsergebnis ist neben den allgemeinen Prozessparametern Druck, Temperatur und Behandlungsdauer in erster Linie die Zusammensetzung einer die Anreicherung der Randschicht mit Kohlenstoff und/oder Stickstoff bewirkenden Gasatmosphäre. So kann es etwa erforderlich sein, der Gasatmosphäre ein Reduktionsmittel beizugeben, um eine unzulässig hohe Oxidation der Oberfläche der Werkstücke durch den sich beim Beladen der Werkstücke in einen Wärmebehandlungsofen aufgrund des unvermeidlichen Lufteintritts bemerkbar machenden Sauerstoff zu vermeiden.
Im Stand der Technik sind darüber hinaus eine Reihe von Verfahrensweisen bekannt, um die Zusammensetzung der Gasatmosphäre in Hinsicht auf das angestrebte Behandlungsergebnis anzupassen. Die Gasatmosphäre ist dabei in Abhängigkeit von der Aufkohlungstemperatur in ihrer Aufkohlungswirkung an die jeweiligen Erfordernisse anzupassen. Eine übliche Verfahrensweise ist das sogenannte Sättigungs-Ausgleichs-Verfahren, bei dem während einer Anreicherungsphase die maximal mögliche Kohlenstoffmenge in der Gasatmosphäre bereitgestellt wird, um eine Sättigung der Randschicht mit Kohlenstoff in kurzer Zeit zu erreichen. Zum Erhalt des gewünschten Kohlenstoffgehalts in der Randschicht wird dann während einer sich anschließenden Diffusionsphase der Stoffaustausch mit der Gasatmosphäre eingeschränkt oder unterbunden, indem entweder eine Gasatmosphäre mit herabgesetztem Kohlenstoffangebot eingestellt oder die Gasatmosphäre evakuiert beziehungsweise gegen ein Inertgas ausgetauscht wird.
Ein hierauf basierendes Verfahren offenbart die DE-A-31 39 622, wobei die Anreicherungsphase dabei durch unterschiedliche Regelung des Kohlenstoffpegels der Gasatmosphäre in eine erste und eine zweite Periode unterteilt ist. Während der ersten Periode wird das maximal mögliche Kohlenstoffpotentialgefälle zwischen Gasatmosphäre und der Randschicht zur Beschleunigung des Stoffübergangs und damit der Diffusion ausgenutzt. Mit Beginn der zweiten Periode wird das Kohlenstoffpotentialgefälle zur Vermeidung einer schädlichen Carbidbildung verringert und der Kohlenstoffpegel der Gasatmosphäre soweit abgesenkt, dass während der weiteren Diffusionsphase eine vorbestimmte Grenze des Kohlenstoffgehaltes der Randschicht nicht überschritten wird.
Überdies ist aus der EP-A-0 080 124 ein Verfahren zum Einsatzhärten metallischer Werkstücke bekannt, bei dem durch pulsierende Zugabe kohlenstoffhaltiger Gaskomponenten ein hohes Kohlenstoffpotentialgefälle erreicht wird. Die Zufuhr des kohlenstoffhaltigen Gases findet dabei in mehreren Zyklen statt und wird jeweils unterbrochen, sobald in der Randschicht eine Sättigung mit Kohlenstoff erreicht ist. Daneben offenbart die GB-A-2 202 238 ein Verfahren zum Aufkohlen von Werkstücken, bei dem sich die Anreicherungsphase und die Diffusionsphase bis zum Erreichen einer angestrebten Aufkohlungstiefe periodisch abwechseln, um den gewünschten Kohlenstoffgehalt der Randschicht und die angestrebte Aufkohlungstiefe weitgehend unabhängig voneinander und in möglichst kurzer Zeit zu erreichen.
Nachteilig bei all diesen Verfahren ist ein nicht immer befriedigendes Behandlungsergebnis. Dies ist vor allem darauf zurückzuführen, dass während einer sich an die Anreicherungsphase anschließenden Diffusionsphase oder Temperaturausgleichsphase keine unmittelbare Einflussnahme mehr auf den Kohlenstoffgehalt der Randschicht besteht. Dieser Umstand kommt in besonderem Maße dann zum Tragen, wenn sich geringe Anteile an Kohlendioxid oder Wasserdampf in der Gasatmosphäre befinden, die zum Beispiel aufgrund eines Lufteintritts an Leckstellen eines Wärmebehandlungsofens gebildet werden und die einen verstärkten Abbau des Kohlenstoffs in der Randschicht hervorrufen. Darüber hinaus enthalten die zur Regelung des Kohlenstoffpegels während der Anreicherungsphase eingesetzten Prozessgase erhebliche Anteile an sauerstoffhaltigen Komponenten, wie etwa Kohlenmonoxid, Kohlendioxid oder Wasserdampf, die aufgrund des Partialdruckes von Sauerstoff im äußeren Randbereich der aufgekohlten Randschicht eine unerwünschten Randoxidation verursachen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Wärmebehandlung metallischer Werkstücke zu schaffen, mit denen sich bei Vermeidung einer Carbidbildung auf der Oberfläche der zu behandelnden Werkstücke auf vergleichsweise einfache Weise ein verbessertes Behandlungsergebnis erzielen lässt.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zur Wärmebehandlung metallischer Werkstücke, insbesondere zum Aufkohlen oder Carbonitrieren von Eisenwerkstoffen, gelöst, das folgende Verfahrensschritte aufweist:
  • a) Erwärmen der Werkstücke auf eine bestimmte Temperatur in einer Stickstoff und einen Kohlenwasserstoff enthaltenden Gasatmosphäre während einer Aufheizphase, wobei die Zufuhr der Mengen an Stickstoff und Kohlenwasserstoff in die Gasatmosphäre derart geregelt wird, dass sich auf den Werkstücken eine Randschicht mit einem Kohlenstoffgehalt innerhalb eines vorgegebenen Bereichs bildet;
  • b) Halten der Werkstücke auf der am Ende der Aufheizphase erreichten Temperatur für eine bestimmte Zeitdauer während einer sich anschließenden Ausgleichsphase, wobei durch die mit der Gasatmosphäre zugeführten Mengen an Stickstoff und Kohlenwasserstoff der Kohlenstoffgehalt der Randschicht weiterhin innerhalb des vorgegebenen Bereichs liegt;
  • c) Variieren der Mengen an Stickstoff und Kohlenwasserstoff in der Gasatmosphäre während einer sich an die Ausgleichsphase anschließenden Anreicherungsphase und einer hierauf folgenden Diffusionsphase, wobei jeweils zunächst in einem ersten Abschnitt zum Erreichen einer vorgegebenen Obergrenze des Kohlenstoffgehalts der Randschicht der Anteil an Stickstoff reduziert und der Anteil an Kohlenwasserstoff erhöht wird und nachfolgend in einem zweiten Abschnitt zum Erreichen einer vorgegebenen Untergrenze des Kohlenstoffgehalts der Randschicht der Anteil an Stickstoff erhöht und der Anteil an Kohlenwasserstoff reduziert wird;
  • d) Abkühlen der Werkstücke auf Raumtemperatur während einer sich an die Diffusionsphase anschließenden Abkühlungsphase.
  • Ein solches Verfahren macht sich die Erkenntnis zu Eigen, dass sich ein verbessertes Behandlungsergebnis der Werkstücke dann erreichen lässt, wenn sowohl während der Anreicherungsphase als auch während der Diffusionsphase der Kohlenstoffgehalt der Randschicht durch Variieren der der Gasatmosphäre zugeführten Volumenströme an Stickstoff und Kohlenwasserstoff gezielt in einem vorgegebenen Intervall zwischen einer Untergrenze und einer Obergrenze eingestellt wird. Indem jeweils zunächst in einem ersten Abschnitt der Anteil an Stickstoff reduziert und der Anteil an Kohlenwasserstoff erhöht wird, ergibt sich ein hohes Kohlenstoffangebot in der Gasatmosphäre, das in verhältnismäßig kurzer Zeit den Kohlenstoffgehalt der Randschicht bis zu der vorgegebenen Obergrenze anreichert. Durch die nachfolgende Erhöhung des Anteils an Stickstoff und Reduzierung des Anteils an Kohlenwasserstoff in einem zweiten Abschnitt verringert sich das Kohlenstoffpotentialgefälle zwischen Gasatmosphäre und der Randschicht mit der Folge, dass der Kohlenstoffgehalt der Randschicht infolge der Diffusion des Kohlenstoffs in das Innere der Werkstücke auf die vorgegebene Untergrenze absinkt. Auf diese Weise lässt sich ein hinsichtlich der Oberfläche der zu behandelnden Werkstücke optimiertes Kohlenstoffangebot in der Gasatmosphäre bereitstellen, während es zugleich möglich ist, eine unerwünschte Carbid- oder Rußbildung auf der Oberfläche der Werkstücke zu vermeiden.
    Die Temperatur, auf die in der Aufheizphase erwärmt wird, die Zeitdauer, für welche die Werkstücke auf dieser Temperatur während der Ausgleichsphase gehalten werden, die Temperaturen, die in der Anreicherungsphase und der Diffusionsphase eingestellt werden, und die in den jeweiligen Verfahrensstadien zugeführten Mengen an Stickstoff und Kohlenstoff richten sich vor allem nach dem Werkstoff der zu behandelnden Werkstücke, der zum Erreichen des angestrebten Kohlenstoffgehalts der Randschicht erforderlichen spezifischen Zusammensetzung der Gasatmosphäre und dem angestrebten Behandlungserfolg, etwa der gewünschten Aufkohlungstiefe. Da die Prozessparameter von den Werkstoffeigenschaften der zu behandelnden Werkstücke abhängen, lassen sich aus allgemein zugänglichen Datenbanken, wie etwa der Calphad (Calculation of phase diagrams), Stockholm, die für eine bestimmte Stahlzusammensetzung notwendigen Parameterwerte in Hinsicht auf den angestrebten Kohlenstoffgehalt in der Randschicht entnehmen.
    Besonders vorteilhaft ist es, durch eine abwechselnde Wiederholung der ersten und zweiten Abschnitte während der Anreicherungsphase und/oder der Diffusionsphase die Anreicherung der Randschicht mit Kohlenstoff entsprechend dem von dem jeweiligen Werkstoff abhängenden Aufnahmevermögen der Werkstücke anzupassen. In Hinsicht auf die beim Carbonitrieren erforderliche Freisetzung von diffusionsfähigem Stickstoff kann es zudem von Vorteil sein, während der Anreicherungsphase und/oder der Diffusionsphase der Gasatmosphäre Ammoniak, vorzugsweise in einer Größenordnung von 2 Vol.-% bis 20 Vol.-% der Gesamtbegasungsrate, zuzusetzen. Als vorteilhaft hat sich ferner herausgestellt, die Mengen an Stickstoff und Kohlenwasserstoff in der Gasatmosphäre während der Anreicherungsphase und der Diffusionsphase derart zu variieren, dass die Untergrenze des Kohlenstoffgehalts der Randschicht zwischen 0,5 Gew.-% und 0,8 Gew.-% liegt. Bei solch einem Kohlenstoffgehalt der Randschicht ist der Anteil an Stickstoff in der Gasatmosphäre noch ausreichend hoch, um eine sichere Wärmebehandlung zu gewährleisten.
    Um eine unerwünschte Carbid- oder Rußbildung auf der Oberfläche der Werkstücke definitiv auszuschließen, werden die Mengen an Stickstoff und Kohlenwasserstoff in der Gasatmosphäre während der Anreicherungsphase und/oder der Diffusionsphase vorteilhafterweise derart variiert, dass die Obergrenze des Kohlenstoffgehalts der Randschicht geringfügig unterhalb der durch eine bei der jeweils herrschenden Temperatur auftretenden Carbidbildung gekennzeichneten Sättigung von Austenit liegt. Die Obergrenze des Kohlenstoffgehalts der Randschicht kann dabei während der Diffusionsphase so gewählt werden, dass sie den Erfordernissen eines in der nachfolgenden Abkühlungsphase stattfindenden Härteprozesses entspricht.
    Eine besonders vorteilhafte Verfahrensführung ist außerdem dann gegeben, wenn die Werkstücke während der Aufheizphase auf eine für ein Aufkohlen oder Carbonitrieren günstige Temperatur zwischen 750°C und 1050°C erwärmt werden. Von besonderem Vorteil ist zudem ein Kohlenstoffgehalt der Randschicht während der Aufheizphase im Bereich zwischen 0,2 Gew.-% und 0,5 Gew.-%. Möglicherweise auf den Werkstücken vorhandene Oxid- oder Passivschichten werden auf diese Weise beseitigt oder zumindest so umgewandelt, dass eine gleichmäßige Diffusion des Kohlenstoffs in den Werkstoff begünstigt wird. Zu diesem Zweck ist es überdies nützlich, die Werkstücke während der Ausgleichsphase für eine Zeitdauer von 0,1 h bis 1 h auf der am Ende der Aufheizphase erreichten Temperatur zu halten. Im Hinblick auf eine dem angestrebten Behandlungserfolg entsprechende Verfahrensführung kann außerdem eine bezüglich der Anreicherungsphase reduzierte Temperatur während der Diffusionsphase zweckdienlich sein.
    Eine besonders vorteilhafte Verfahrensführung ist ferner dann gegeben, wenn ungesättigte Kohlenwasserstoffe des Typs CnH2n, vorzugsweise Alkene wie etwa Ethylen (C2H4) und Propylen (C3H6), gesättigte Kohlenwasserstoffe des Typs CnH2n+2, vorzugsweise Alkane wie etwa Ethan (C2H6) und Propan (C3H8), oder Alkine wie etwa Acetylen (C2H2) der Gasatmosphäre beigegeben werden. Vornehmlich Alkine, die sich durch einen geringen Anteil an Wasserstoff auszeichnen, bieten den Vorteil, dass keine weiteren Spaltprodukte erzeugt werden und der Anteil an Wasserstoff in der Gasatmosphäre dementsprechend gering bleibt. Um bei gegebenenfalls in der Gasatmosphäre vorhandenem Sauerstoff, der beispielsweise von einem Lufteintritt an Leckstellen eines Wärmebehandlungsofens herrührt, einen reduzierenden und damit eine Oxidation der zu behandelnden Werkstücke vermeidenden Zustand der Gasatmosphäre zu erhalten, wird in vorteilhafter Weise ein Reduktionsmittel, vorzugsweise Wasserstoff, der Gasatmosphäre in konstanter oder variabler Menge beigegeben. Der Zeitpunkt und die Menge der Zufuhr an Reduktionsmittel richten sich dabei nach den jeweils vorhandenen Umständen.
    In einer besonders vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens, wird die Zufuhr der Mengen an Stickstoff und Kohlenwasserstoff in die Gasatmosphäre in Abhängigkeit von einem den Kohlenstoffgehalt in der Randschicht repräsentierenden Kennwert, vorzugsweise der Kohlungskennzahl Kc, geregelt oder datenbankbezogen gesteuert. Die datenbankbezogene Steuerung ist dann von Vorteil, wenn ein den Kohlenstoffgehalt in der Randschicht repräsentierender Kennwert etwa aufgrund messtechnischer Schwierigkeiten nicht zur Verfügung steht. Die Regelung der Zufuhr in Abhängigkeit von einem den Kohlenstoffgehalt in der Randschicht repräsentierenden Kennwert hingegen ermöglicht eine genaue Einstellung des angestrebten Kohlenstoffgehalts der Randschicht, und zwar ohne dass es in besonderem Maße auf die jeweilige Größe der Oberfläche der zu behandelnden Werkstücke ankommt. Die über den Kohlenstoffgehalt in der Randschicht Aufschluss gebende Kohlungskennzahl Kc wird beispielsweise durch den Quotienten des Partialdrucks von Methan (pCH4) und des Quadrats des Partialdrucks von Wasserstoff (pH2 2) errechnet (KC = pCH4 / pH2 2).
    Zweckmäßigerweise werden die Werkstücke während der Abkühlungsphase in einer reduzierenden oder neutralen Gasatmosphäre oder in einem flüssigen Abschreckmedium auf Raumtemperatur abgekühlt.
    Zur Lösung der obigen Aufgabe wird außerdem eine Vorrichtung zur Wärmebehandlung metallischer Werkstücke vorgeschlagen, die eine Heizkammer, in der die Werkstücke erwärmbar und einer Stickstoff und einen Kohlenwasserstoff enthaltenden Gasatmosphäre aussetzbar sind, aufweist und sich dadurch auszeichnet, dass Mittel vorgesehen sind, mit denen die Zufuhr der Mengen an Stickstoff und Kohlenwasserstoff in die Gasatmosphäre in Abhängigkeit von einem den Kohlenstoffgehalt in der Randschicht repräsentierenden Kennwert, vorzugsweise der Kohlungskennzahl Kc, regelbar oder datenbankbezogen steuerbar ist. Mit solch einer Vorrichtung lässt sich das erfindungsgemäße Verfahren in zuverlässiger Weise durchführen.
    In Hinsicht auf ein Carbonitrieren der zu behandelnden Werkstücke sind zweckmäßigerweise zudem Mittel vorgesehen, mit denen die Zufuhr der Menge an Ammoniak regelbar oder datenbankbezogen steuerbar ist.
    In Weiterbildung dieser Vorrichtung wird ferner vorgeschlagen, dass die Heizkammer hermetisch abschließbar ausgebildet ist, um das Eindringen von Luft und damit Sauerstoff in die Gasatmosphäre zu vermeiden. Schließlich wird vorgeschlagen, dass die Heizkammer mit einem Inertgas, vorzugsweise Stickstoff, spülbar ist, so dass unabhängig vom Volumen der Heizkammer der Gehalt an Sauerstoff in der Atmosphäre der Heizkammer nach Einbringen der zu behandelnden Werkstücke in vergleichsweise kurzer Zeit auf < 1 Vol.-% reduzierbar und eine unerwünschte Oxidation der zu behandelnden Werkstücke hierdurch vermeidbar ist.
    Einzelheiten und weitere Vorteile der Gegenstände der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispieles. In der zugehörigen Zeichnung zeigt die einzige Figur:
       Ein den Verlauf von Temperatur, Kohlenstoffgehalt und verschiedener Volumenströme über der Zeit veranschaulichendes Diagramm.
    Bei dem in Fig. 1 dargestellten Diagramm sind auf der Abszisse die Zeit t und auf der Ordinate die Temperatur ϑ, der sich in der Randschicht zu behandelnder Werkstücke ergebende Kohlenstoffgehalt wc, und die einer Gasatmosphäre zu diesem Zweck zugeführten Volumenströme an Wasserstoff V ˙H2 , Stickstoff V ˙N 2, Ammoniak V ˙NH3 und dem Kohlenwasserstoff Acetylen V ˙C 2 H 2 abgetragen. Das in Fig. 1 gezeigte Wärmebehandlungsverfahren dient vornehmlich zum Aufkohlen metallischer Werkstücke, die aus unterschiedlichen Stählen bestehen können. Der gesamte Verfahrensablauf lässt sich in fünf Phasen untergliedern. In einer ersten Phase, der Aufheizphase A, werden die Werkstücke auf eine Aufkohlungstemperatur ϑ von zum Beispiel 930°C erwärmt. Der zu diesem Zweck verwendete Wärmebehandlungsofen, ein Atmosphärenofen, ist nach Einbringen der Werkstücke in kurzer Zeit mit Stickstoff gespült und anschließend mit einer Stickstoff und Acetylen enthaltenden Gasatmosphäre geflutet worden. Die Größe der der Gasatmosphäre zugeführten Volumenströme an Stickstoff V ˙N 2 und Acetylen V ˙C 2 H 2 ist derart, dass sich auf den Werkstücken eine Randschicht mit einem Kohlenstoffgehalt wc von ca. 0,35 Gew.-% einstellt. Die Zufuhr der Mengen an Stickstoff V ˙N 2 und Acetylen V ˙C 2 H 2 in die Gasatmosphäre wird dabei in Abhängigkeit von einem den Kohlenstoffgehalt wc in der Randschicht repräsentierenden Kennwert geregelt, der durch ein Messgerät ermittelt wird. Als Messgerät dient ein in dem Wärmebehandlungsofen angeordneter Drahtsensor, wie er in dem Aufsatz von K.-H. Weissohn in HTM 49 (1994) 2, Seite 118 bis 122 beschrieben ist. Wie Fig. 1 ferner erkennen lässt, wird der Gasatmosphäre während der Aufheizphase A zudem ein konstanter Volumenstrom an Wasserstoff V ˙H 2 von ca. 0,3 m3/h zugeführt, um die Gasatmosphäre in einen ausreichend reduzierenden Zustand zu versetzen.
    Während einer auf die Aufheizphase A folgenden Ausgleichsphase B werden die Werkstücke auf der am Ende der Aufheizphase A erreichten Temperatur ϑ von ca. 930 °C für ca. 20 min gehalten. Die dabei in die Gasatmosphäre zugeführten Mengen an Stickstoff V ˙N 2 und Acetylen V ˙C 2 H 2 werden weiterhin so geregelt, dass sich ein Kohlenstoffgehalt wc in der Randschicht der Werkstücke von ca. 0,35 Gew.-% ergibt. Der Volumenstrom an Wasserstoff V ˙H 2 wird hingegen auf einen Wert von weniger als 0,2 m3/h verringert.
    In einer sich an die Ausgleichsphase B anschießenden Anreicherungsphase C werden die der Gasatmosphäre zugeführten Volumenströme an Stickstoff V ˙N 2 und Acetylen V ˙C 2 H 2 derart variiert, dass sich ein Kohlenstoffgehalt wc der Randschicht in einem Intervall zwischen einer Untergrenze Gu von ca. 0,7 Gew.-% und einer Obergrenze Go von ca. 1,2 Gew.-% einstellt. Bei der in der Anreicherungsphase C fortgesetzt herrschenden Temperatur ϑ von ca. 930 °C liegt die Obergrenze Go von ca. 1,2 Gew.-% unterhalb der für unlegierte Einsatzstähle durch eine auftretende Carbid- und Rußbildung gekennzeichneten Sättigungsgrenze von Austenit. Um zunächst die Obergrenze Go zu erreichen, wird in einem ersten Abschnitt der Volumenstrom an Stickstoff V ˙N 2 reduziert und der Volumenstrom an Acetylen V ˙C 2 H 2 erhöht. Sobald der Kohlenstoffgehalt wc die Obergrenze Go erreicht hat, wird zum Erreichen der Untergrenze Gu in einem zweiten Abschnitt der Volumenstrom an Stickstoff V ˙N 2 wieder erhöht, wohingegen der Volumenstrom an Acetylen V ˙C 2 H 2 reduziert wird. Die ersten und zweiten Abschnitte werden innerhalb der Anreicherungsphase C abwechselnd wiederholt, wodurch eine Anpassung der Anreicherung der Randschicht mit Kohlenstoff entsprechend dem von dem jeweiligen Werkstoff abhängenden Aufnahmevermögen der Werkstücke erreicht wird. Zu diesem Zweck ist zudem die Dauer und damit die jeweilige Größe der Volumenströme an Stickstoff V ˙N 2 und Acetylen V ˙C 2 H 2 während den ersten und zweiten Abschnitten ungleichmäßig, wie den unterschiedlich steilen Flanken der Kurve des Kohlenstoffgehalts wc in Fig. 1 zu entnehmen ist. Der anlagen- und prozessangepasste Volumenstrom an Wasserstoff V ˙H 2 wird während der Anreicherungsphase C auf ca. 0,2 m3/h erhöht.
    Auf die Anreicherungsphase C folgt eine Diffusionsphase D, bei der die Temperatur ϑ auf ca. 880°C verringert wird. In Hinsicht auf einen nachfolgenden Härteprozess wird die Obergrenze Go auf ca. 0,8 Gew.-% herabgesetzt. Entsprechend der Vorgehensweise während der Anreicherungsphase C wird das thermodynamische Gleichgewicht zwischen der Gasatmosphäre und der Randschicht der zu behandelnden Werkstücke durch Variieren der der Gasatmosphäre zugeführten Volumenströme an Stickstoff V ˙N2 und Acetylen V ˙C 2 H 2 in ersten und zweiten Abschnitten derart eingestellt, dass der Kohlenstoffgehalt wc der Randschicht im Intervall zwischen der Untergrenze Gu von ca. 0,7 Gew.-% und der Obergrenze Go von ca. 0,8 Gew.-% liegt. Der anlagen- und prozessangepasste Volumenstrom an Wasserstoff V ˙H 2 wird während der Diffusionsphase D erneut auf einen Wert unterhalb von 0,2 m3/h vermindert. Schließlich werden die Werkstücke während einer der Diffusionsphase D nachfolgenden Abkühlungsphase E auf Raumtemperatur abgekühlt.
    Findet anstelle eines reinen Aufkohlungsprozesses ein Carbonitrieren statt, kann - wie in Fig. 1 ersichtlich - der Gasatmosphäre während der Anreicherungsphase C und der Diffusionsphase D zusätzlich Ammoniak V ˙NH 3 zugeführt werden, wobei sich die Menge an zugeführtem Ammoniak V ˙NH 3 in einer Größenordnung von 2 Vol.-% bis 20 Vol.-% der Gesamtbegasungsrate bewegt.
    Das zuvor beschriebene Verfahren zeichnet sich durch die volumenstrommäßige Regelung der der Gasatmosphäre zugeführten Mengen an Stickstoff V ˙N 2 und Acetylen V ˙C 2 H 2 in den einzelnen Verfahrensstadien aus, wodurch ein im Vergleich mit herkömmlichen Aufkohlungsverfahren verbessertes Behandlungsergebnis erzielt wird. Ursächlich hierfür ist vor allem, dass das Kohlenstoffangebot in der Gasatmosphäre auf diese Weise entsprechend dem Werkstoff und der Oberfläche der zu behandelnden Werkstücke und damit dem Aufnahmevermögen der Randschicht anpassbar ist. Nicht zuletzt trägt zu diesem Ergebnis in besonderem Maße auch die Möglichkeit bei, abwechselnde erste und zweite Abschnitte unterschiedlicher Kohlenstoffgehalte wc während der Anreicherungsphase C und der Diffusionsphase D vorzusehen.
    Bezugszeichenliste
    A
    Aufheizphase
    B
    Ausgleichsphase
    C
    Anreicherungsphase
    D
    Diffusionsphase
    E
    Abkühlungsphase
    t
    Zeit
    ϑ
    Temperatur
    wc
    Kohlenstoffgehalt
    Go
    Obergrenze Kohlenstoffgehalt
    Gu
    Untergrenze Kohlenstoffgehalt
    V ˙C 2 H 2
    Volumenstrom Acetylen
    V ˙N 2
    Volumenstrom Stickstoff
    V ˙H 2
    Volumenstrom Wasserstoff
    V ˙NH 3
    Volumenstrom Ammoniak

    Claims (17)

    1. Verfahren zur Wärmebehandlung metallischer Werkstücke, insbesondere zum Aufkohlen oder Carbonitrieren von Eisenwerkstoffen, bestehend aus folgenden Verfahrensschritten:
      a) Erwärmen der Werkstücke auf eine bestimmte Temperatur (ϑ) in einer Stickstoff und einen Kohlenwasserstoff enthaltenden Gasatmosphäre während einer Aufheizphase (A), wobei die Zufuhr der Mengen an Stickstoff (V ˙N 2) und Kohlenwasserstoff (V ˙C 2 H 2) in die Gasatmosphäre derart geregelt wird, dass sich auf den Werkstücken eine Randschicht mit einem Kohlenstoffgehalt (wc) innerhalb eines vorgegebenen Bereichs bildet;
      b) Halten der Werkstücke auf der am Ende der Aufheizphase (A) erreichten Temperatur (ϑ) für eine bestimmte Zeitdauer während einer sich anschließenden Ausgleichsphase (B), wobei durch die mit der Gasatmosphäre zugeführten Mengen an Stickstoff (V ˙N 2) und Kohlenwasserstoff (V ˙C 2 H 2) der Kohlenstoffgehalt (wc) der Randschicht weiterhin innerhalb des vorgegebenen Bereichs liegt;
      c) Variieren der Mengen an Stickstoff (V ˙N 2) und Kohlenwasserstoff (V ˙C 2 H 2) in der Gasatmosphäre während einer sich an die Ausgleichsphase (B) anschließenden Anreicherungsphase (C) und einer hierauf folgenden Diffusionsphase (D), wobei jeweils zunächst in einem ersten Abschnitt zum Erreichen einer vorgegebenen Obergrenze (Go) des Kohlenstoffgehalts (wc) der Randschicht der Anteil an Stickstoff (V ˙N 2) reduziert und der Anteil an Kohlenwasserstoff (V ˙C 2 H 2) erhöht wird und nachfolgend in einem zweiten Abschnitt zum Erreichen einer vorgegebenen Untergrenze (Gu) des Kohlenstoffgehalts (wc) der Randschicht der Anteil an Stickstoff (V ˙N 2) erhöht und der Anteil an Kohlenwasserstoff (V ˙C 2 H 2) reduziert wird;
      d) Abkühlen der Werkstücke auf Raumtemperatur während einer sich an die Diffusionsphase (D) anschließenden Abkühlungsphase (E).
    2. Verfahren nach Anspruch 1, gekennzeichnet durch eine abwechselnde Wiederholung der ersten und zweiten Abschnitte während der Anreicherungsphase (C) und/oder der Diffusionsphase (D).
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass während der Anreicherungsphase (C) und/oder der Diffusionsphase (D) der Gasatmosphäre Ammoniak (V ˙NH 3), vorzugsweise in einer Größenordnung von 2 Vol.-% bis 20 Vol.-% der Gesamtbegasungsrate, zugesetzt wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Mengen an Stickstoff (V ˙N 2) und Kohlenwasserstoff (V ˙C 2 H 2) in der Gasatmosphäre während der Anreicherungsphase (C) und der Diffusionsphase (D) derart variiert werden, dass die Untergrenze (Gu) des Kohlenstoffgehalts (wc) der Randschicht zwischen 0,5 Gew.-% und 0,8 Gew.- % liegt.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mengen an Stickstoff (V ˙N 2) und Kohlenwasserstoff (V ˙C 2 H 2) in der Gasatmosphäre während der Anreicherungsphase (C) derart variiert werden, dass die Obergrenze (Go) des Kohlenstoffgehalts (wc) der Randschicht geringfügig unterhalb der durch eine bei der jeweils herrschenden Temperatur (ϑ) auftretenden Carbidbildung gekennzeichneten Sättigung von Austenit liegt.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Werkstücke während der Aufheizphase (A) auf eine Temperatur (ϑ) zwischen 750°C und 1050°C erwärmt werden.
    7. Verfahren nach einem der Ansprüche 1 bis 6, gekennzeichnet durch einen Kohlenstoffgehalt (wc) der Randschicht während der Aufheizphase (A) im Bereich zwischen 0,2 Gew.-% und 0,5 Gew.-%.
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Werkstücke während der Ausgleichsphase (B) für eine Zeitdauer von 0,1 h bis 1 h auf der am Ende der Aufheizphase (A) erreichten Temperatur (ϑ) gehalten werden.
    9. Verfahren nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine bezüglich der Anreicherungsphase (C) reduzierte Temperatur (ϑ) während der Diffusionsphase (D).
    10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ungesättigte Kohlenwasserstoffe des Typs CnH2n, vorzugsweise Alkene wie etwa Ethylen (C2H4) und Propylen (C3H6), gesättigte Kohlenwasserstoffe des Typs CnH2n+2, vorzugsweise Alkane wie etwa Ethan (C2H6) und Propan (C3H8), oder Alkine wie etwa Acetylen (C2H2) der Gasatmosphäre beigegeben werden.
    11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein Reduktionsmittel, vorzugsweise Wasserstoff (V ˙H 2), der Gasatmosphäre in konstanter oder variabler Menge beigegeben wird.
    12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Zufuhr der Mengen an Stickstoff (V ˙N 2) und Kohlenwasserstoff (V ˙C 2 H 2) in die Gasatmosphäre in Abhängigkeit von einem den Kohlenstoffgehalt (wc) in der Randschicht repräsentierenden Kennwert, vorzugsweise der Kohlungskennzahl Kc, geregelt oder datenbankbezogen gesteuert wird.
    13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Werkstücke während der Abkühlungsphase (E) in einer reduzierenden oder neutralen Gasatmosphäre oder in einem flüssigen Abschreckmedium auf Raumtemperatur abgekühlt werden.
    14. Vorrichtung zur Wärmebehandlung metallischer Werkstücke, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 13, mit einer Heizkammer, in der die Werkstücke erwärmbar und einer Stickstoff und einen Kohlenwasserstoff enthaltenden Gasatmosphäre aussetzbar sind,
      dadurch gekennzeichnet, dass Mittel vorgesehen sind, mit denen die Zufuhr der Mengen an Stickstoff (V ˙N 2) und Kohlenwasserstoff (V ˙C 2 H 2) in die Gasatmosphäre in Abhängigkeit von einem den Kohlenstoffgehalt (wc) in der Randschicht repräsentierenden Kennwert, vorzugsweise der Kohlungskennzahl Kc, regelbar oder datenbankbezogen steuerbar ist.
    15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass Mittel vorgesehen sind, mit denen die Zufuhr der Menge an Ammoniak (V ˙NH 3) regelbar oder datenbankbezogen steuerbar ist.
    16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die Heizkammer hermetisch abschließbar ausgebildet ist.
    17. Vorrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Heizkammer mit einem Inertgas, vorzugsweise Stickstoff, spülbar ist.
    EP00111129A 2000-05-24 2000-05-24 Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke Expired - Lifetime EP1160349B1 (de)

    Priority Applications (3)

    Application Number Priority Date Filing Date Title
    EP00111129A EP1160349B1 (de) 2000-05-24 2000-05-24 Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
    AT00111129T ATE274073T1 (de) 2000-05-24 2000-05-24 Verfahren und vorrichtung zur wärmebehandlung metallischer werkstücke
    DE50007480T DE50007480D1 (de) 2000-05-24 2000-05-24 Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP00111129A EP1160349B1 (de) 2000-05-24 2000-05-24 Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke

    Publications (2)

    Publication Number Publication Date
    EP1160349A1 true EP1160349A1 (de) 2001-12-05
    EP1160349B1 EP1160349B1 (de) 2004-08-18

    Family

    ID=8168822

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00111129A Expired - Lifetime EP1160349B1 (de) 2000-05-24 2000-05-24 Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke

    Country Status (3)

    Country Link
    EP (1) EP1160349B1 (de)
    AT (1) ATE274073T1 (de)
    DE (1) DE50007480D1 (de)

    Cited By (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2003097893A1 (de) * 2002-05-15 2003-11-27 Linde Aktiengesellschaft Verfahren und vorrichtung zur wärmebehandlung metallischer werkstücke
    WO2004040033A1 (en) * 2002-10-31 2004-05-13 Seco/Warwick Sp. Z O.O. Method for under-pressure carburizing of steel workpieces
    WO2005038076A1 (fr) * 2003-10-14 2005-04-28 Etudes Et Constructions Mecaniques Procede et four de cementation basse pression
    FR2884523A1 (fr) * 2005-04-19 2006-10-20 Const Mecaniques Sa Et Procede et four de carbonitruration a basse pression
    WO2008083031A1 (en) * 2006-12-26 2008-07-10 Praxair Technology, Inc. Method of optimizing an oxygen free heat treating process
    WO2012048669A1 (de) 2010-10-11 2012-04-19 Ipsen International Gmbh Verfahren und einrichtung zum aufkohlen und carbonitrieren von metallischen werkstoffen
    WO2016046265A1 (de) * 2014-09-24 2016-03-31 Robert Bosch Gmbh Verfahren zur behandlung eines eisenwerkstoffs und behandelter eisenwerkstoff
    US10280500B2 (en) 2010-04-23 2019-05-07 Robert Bosch Gmbh Process for carbonitriding metallic components

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0080124A2 (de) * 1981-11-20 1983-06-01 Linde Aktiengesellschaft Verfahren zum Einsatzhärten metallischer Werkstücke
    US5139584A (en) * 1989-07-13 1992-08-18 Solo Fours Industriels Sa Carburization process
    DE19704871C1 (de) * 1997-02-10 1998-10-15 Will Haertetechnik Gmbh Verfahren zum Härten von Hohlwellen und nach diesem Verfahren hergestellte Hohlwellen
    FR2777911A1 (fr) * 1998-04-28 1999-10-29 Aubert & Duval Sa Procede de carbonitruration a basse pression de pieces en alliage metallique

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0080124A2 (de) * 1981-11-20 1983-06-01 Linde Aktiengesellschaft Verfahren zum Einsatzhärten metallischer Werkstücke
    US5139584A (en) * 1989-07-13 1992-08-18 Solo Fours Industriels Sa Carburization process
    DE19704871C1 (de) * 1997-02-10 1998-10-15 Will Haertetechnik Gmbh Verfahren zum Härten von Hohlwellen und nach diesem Verfahren hergestellte Hohlwellen
    FR2777911A1 (fr) * 1998-04-28 1999-10-29 Aubert & Duval Sa Procede de carbonitruration a basse pression de pieces en alliage metallique

    Cited By (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2003097893A1 (de) * 2002-05-15 2003-11-27 Linde Aktiengesellschaft Verfahren und vorrichtung zur wärmebehandlung metallischer werkstücke
    WO2004040033A1 (en) * 2002-10-31 2004-05-13 Seco/Warwick Sp. Z O.O. Method for under-pressure carburizing of steel workpieces
    WO2005038076A1 (fr) * 2003-10-14 2005-04-28 Etudes Et Constructions Mecaniques Procede et four de cementation basse pression
    FR2884523A1 (fr) * 2005-04-19 2006-10-20 Const Mecaniques Sa Et Procede et four de carbonitruration a basse pression
    WO2006111683A1 (fr) 2005-04-19 2006-10-26 Etudes Et Constructions Mecaniques Procede et four de carbonitruration a basse pression
    US8303731B2 (en) 2005-04-19 2012-11-06 Ecm Technologies Low pressure carbonitriding method and device
    WO2008083031A1 (en) * 2006-12-26 2008-07-10 Praxair Technology, Inc. Method of optimizing an oxygen free heat treating process
    US10280500B2 (en) 2010-04-23 2019-05-07 Robert Bosch Gmbh Process for carbonitriding metallic components
    WO2012048669A1 (de) 2010-10-11 2012-04-19 Ipsen International Gmbh Verfahren und einrichtung zum aufkohlen und carbonitrieren von metallischen werkstoffen
    WO2016046265A1 (de) * 2014-09-24 2016-03-31 Robert Bosch Gmbh Verfahren zur behandlung eines eisenwerkstoffs und behandelter eisenwerkstoff

    Also Published As

    Publication number Publication date
    EP1160349B1 (de) 2004-08-18
    DE50007480D1 (de) 2004-09-23
    ATE274073T1 (de) 2004-09-15

    Similar Documents

    Publication Publication Date Title
    EP0049530B1 (de) Verfahren und Vorrichtung zum Aufkohlen metallischer Werkstücke
    DE2450879A1 (de) Verfahren zur waermebehandlung von eisenmetallen
    DE2657644A1 (de) Gasmischung zum einfuehren in einen eisenmetallbehandlungsofen
    DE2934930C2 (de)
    EP1160349B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
    DE2754801A1 (de) Verfahren und vorrichtung zur erzeugung eines - insbesondere blattartigen - materials aus nicht oxydierbarem stahl
    EP0662525B1 (de) Verfahren zur Vermeidung von Randoxidation beim Aufkohlen von Stählen
    EP1019561B1 (de) Verfahren und vorrichtung zum gemeinsamen oxidieren und wärmebehandeln von teilen
    EP1786935A1 (de) VERFAHREN ZUR WäRMEBEHANDLUNG VON WERKST]CKEN AUS STAHL ODER GUSSEISEN
    EP0080124B1 (de) Verfahren zum Einsatzhärten metallischer Werkstücke
    DE3019830C2 (de) Verfahren zum Aufkohlen und Erwärmen von Werkstücken aus Stahl in geregelter Ofenatmospähre
    WO2012048669A1 (de) Verfahren und einrichtung zum aufkohlen und carbonitrieren von metallischen werkstoffen
    EP1122330B1 (de) Verfahren und Verwendung einer Vorrichtung zum Nitrocarburieren von Eisenwerkstoffen
    EP1122331A1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren von höher legierten Stählen
    DE3139622C2 (de) Verfahren zur Gasaufkohlung von Stahl und Vorrichtung zu seiner Durchführung
    DE19523956A1 (de) Verfahren zur Karburierungs- oder Karbonitrierungsbehandlung von Stählen
    DE2109997C3 (de) Verfahren zum Oberflächeniegieren, insbesondere Inchromieren von Eisenwerkstoffen
    DE632935C (de) Verfahren und Einrichtung zur Oberflaechenkohlung von Eisen und Stahl
    DE60217344T2 (de) Verfahren zum abschrecken von stahl mittels druckluft
    DE3120509C2 (de) Verfahren zum Gasnitrieren von Werkstücken aus Stahl
    DE2408984C3 (de) Verfahren zur Erzeugung definierter Nitrierschichten auf Eisen und Eisenlegierungen in einer sauerstoffhaltigen Gasatmosphäre und Anordnung zur Herstellung und Konstanthaltung der dafür erforderlichen Ausgangsgasgemische
    DE3017937C2 (de) Diffusionssinterverfahren in Stickstoff-Atmosphäre
    DE245183C (de)
    DE2263603A1 (de) Verfahren zur einsatzhaertung bzw. zur einsatzaufkohlung
    DE603265C (de) Verfahren zur Herstellung eines stetig induktiv belasteten elektrischen Fernmeldeleiters

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20001123

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    Kind code of ref document: A1

    Designated state(s): AT CH DE ES FR GB IT LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20020625

    AKX Designation fees paid

    Free format text: AT CH DE ES FR GB IT LI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE ES FR GB IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040818

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50007480

    Country of ref document: DE

    Date of ref document: 20040923

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041129

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20041203

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050519

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20060515

    Year of fee payment: 7

    Ref country code: CH

    Payment date: 20060515

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060519

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20060522

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: IPSEN INTERNATIONAL GMBH

    Free format text: IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE) -TRANSFER TO- IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE)

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070524

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070531

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070524

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20080131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070524

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140521

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50007480

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151201