EP1141761A1 - Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop - Google Patents

Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop

Info

Publication number
EP1141761A1
EP1141761A1 EP00971409A EP00971409A EP1141761A1 EP 1141761 A1 EP1141761 A1 EP 1141761A1 EP 00971409 A EP00971409 A EP 00971409A EP 00971409 A EP00971409 A EP 00971409A EP 1141761 A1 EP1141761 A1 EP 1141761A1
Authority
EP
European Patent Office
Prior art keywords
optical tweezers
microscope
optical
focus
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP00971409A
Other languages
German (de)
English (en)
French (fr)
Inventor
Ronald Wendenburg
Anja Hoffmann
Karl Otto Greulich
Shamci Monajembashi
Volker Uhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik AG
Original Assignee
Carl Zeiss Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Jena GmbH filed Critical Carl Zeiss Jena GmbH
Publication of EP1141761A1 publication Critical patent/EP1141761A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes

Definitions

  • the invention allows the spatial fixation of microscopic objects in the laser scanning microscope, even while moving the object plane, for example during image acquisition. This means that even moving objects can be imaged sharply.
  • Optical tweezers have proven to be an interesting tool for a number of biological work techniques.
  • the combination of laser scanning microscopes with laser microtechnologies suggests an expansion of the experimental possibilities.
  • LSM images of moving objects especially inside unopened cells, often do not produce satisfactory images because many subcellular structures move during the scan time.
  • the optical tweezers are ideal for gentle (vital) fixation.
  • a spatially defined displacement of fixed objects is possible with the optical tweezers.
  • Application examples for the use of compensated optical tweezers in the laser scanning microscope are the examination of organisms, for example chloroplasts, or the holding of objects moved by motor proteins. In the latter case, force measurements are even possible under suitable conditions.
  • moving objects for example particles in suspension or certain organelles, cannot be imaged sharply without being fixed by compensated optical tweezers.
  • Optical tweezers coupled through the lens have their focus in the object plane. If the object plane is shifted in parallel by the three-dimensional image acquisition process ("scanning"), the focus of the optical tweezers is also displaced. This means that objects which are held by the optical tweezers are also displaced. However, this is undesirable during image acquisition Therefore the Displacement of the object plane can be compensated for by a suitable device in the beam path of the optical tweezers.
  • the invention is always necessary in laser scanning microscopes from different manufacturers when the optical tweezers are coupled in through the lens and the third dimension in the image acquisition by moving the lens or the stage or another method that focuses the optical tweezers relative to the sample postponed, developed.
  • the sample is no longer freely accessible from above, which, for example, makes applications with microinjection or temperature control devices very difficult, if not impossible.
  • the latter also applies to structures in which the optical fixing of particles is carried out by glass fibers provided with microlenses, which are guided directly onto the sample.
  • there are problems with the sterility of the sample since the glass fibers have to be immersed in thicker layers of liquid if particles are to be fixed on the underside of the liquid.
  • FIG. 1 shows a schematic representation of the effect of the invention
  • Figure 2 the application in a microscope like a laser scanning -
  • the optical tweezers are
  • Microscope objective guided into the object plane It is adjusted so that microscopic particles located in the object plane are held, that is, the focus of the optical tweezers is in the object plane.
  • the object plane In the three-dimensional image acquisition by a laser scanning microscope, however, the object plane must be shifted in parallel in order to open up the third dimension protruding from the object plane. This also shifts the focus of the optical tweezers, which leads to an undesired shift of the fixed particles. Without compensation for this shift, three-dimensional objects held by the optical tweezers cannot be recorded in three-dimensional resolution.
  • z-compensation Compensation for the displacement of the object plane, hereinafter referred to as z-compensation, consists of variable optical elements which are inserted in the beam path of the optical tweezers and which compensate for the movement of the object plane.
  • the z-compensation effects a compensating movement of the optical tweezers which takes place simultaneously with the movement of the object plane, so that the position of the fixed object in the sample is retained.
  • the compensation is implemented via an electromechanically displaceable optical element in the coupling system of the optical tweezers.
  • the exact position of the object plane is taken from the control electronics of the laser scanning microscope during the image acquisition process. Accordingly, the displaceable optical element in the coupling system of the optical tweezers is moved under computer control, so that the position of the fixed object relative to the sample is retained. In principle, it is not necessary to take the position of the object plane from the control electronics of the laser scanning microscope, since the position of the relevant optical elements can also be detected electromechanically or optically. However, this is associated with a greater effort.
  • the z-compensation can be combined with the microscope holder on the optical fiber.
  • the result is a compact unit with a minimum of optical elements.
  • the object to be examined is scanned in various xy sections.
  • the object plane is between the cuts by the laser Scanning microscope moved.
  • the position of the focus of the optical tweezers is brought back to the starting point by manually shifting the additional optical element located in the beam path of the optical tweezers. This process is repeated for each xy section.
  • the z-compensation described here also allows the coupling of a so-called multitrap, an optical tweezer, in which one or more laser beams are directed onto several objects for fixation. This can also be done by using a scanner mirror to alternate a beam at a high frequency is directed onto several objects in such a way that they remain fixed, even if the laser beam does not permanently irradiate the corresponding object.
  • a laser microbeam can be coupled in compensated (a laser microbeam is a short-pulsed laser beam that is coupled into a microscope to perform micromaterial processing).
  • the same optics as for the optical tweezers can be used for the coupling of the laser micro beam.
  • a z-compensated laser micro-beam enables precise material processing during image acquisition, for example to examine the light-material interaction in detail.
  • Figure 2 shows a microscopic beam path with a sample P, an objective O and a tube lens TL.
  • a laser beam L1 which scans the sample P in the x / y direction, is coupled in via a deflection mirror US via a scan lens SL and an x / y scanner SC as well as a deflection mirror US1 and a dichroic beam splitter ST1.
  • the beam focus in the sample is here shifted by the objective O in Z-
  • Height is adjusted via a control unit AS so that the sample can be scanned at different Z positions.
  • the radiation coming from the sample passes in the opposite way via the
  • an HBO - is connected via a further steel divider ST2 and a lens L.
  • Lighting can be coupled.
  • corresponding pulsing optics 01, 02 are used to continue pulsing via the beam splitter ST2 and a further beam splitter ST3
  • Laser beam L2 for optical cutting and another laser beam L3 coupled as optical tweezers (Optical Tweezer).
  • the light coupling can be an indirect coupling via light guides, to which collimation optics are arranged.
  • Axis changes the beam focus position of the respective laser in sample P.
  • correction optics 01, 02 are in the variant V1 along the optical
  • the position of the focus within the sample can be changed in a defined manner in the Z direction.
  • an object held with the optical tweezers can always be advantageous at the same point in the lens when the lens shifts in the Z direction
  • Cutting laser L2 can be moved accordingly and thus the position of the cut can be chosen as desired and also decoupled from the position of laser L3.
  • a common displaceable correction lens 03 is provided for the lasers L2, L3.
  • decoupling of the movement of L2 and L3 can be achieved by means of different optics which can additionally be inserted into the beam path of the laser L2.
  • multibeam tweezer i.e. tweezers that use one or more laser beams to hold several
  • Objects can be used, possible.
  • Scanner mirror is directed in high frequency onto several objects in such a way that they can be held simultaneously (C.Hoyer, S.Monajembashi, K.O. Greulich:
  • Organelles can often not be focused because they move during image acquisition. Sharp, three-dimensional images are only possible through the use of compensated optical tweezers that enable the fixation of the organelles during image acquisition. In this way, cell organelles such as chloroplasts or mitochondria can be fixed in living cells and depicted sharply in three dimensions. Organelles that normally do not move, such as secretory vesicles or the gravesceptor, can be deflected from the original position with the optical tweezers and the response of the cell (reorganization) can be examined three-dimensionally. The cytoskeleton dynamics in living cells can also be examined by deflection from the resting position.
  • Spheroids can be manipulated and examined three-dimensionally as an in-vivo model for tissue using z-compensated optical tweezers in a laser scanning microscope.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Lens Barrels (AREA)
EP00971409A 1999-11-10 2000-11-02 Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop Ceased EP1141761A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19954933 1999-11-10
DE19954933A DE19954933A1 (de) 1999-11-10 1999-11-10 Anordnung zur Einkopplung einer optischen Pinzette und/oder eines Bearbeitungsstrahles in ein Mikroskop
PCT/EP2000/010808 WO2001035150A1 (de) 1999-11-10 2000-11-02 Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop

Publications (1)

Publication Number Publication Date
EP1141761A1 true EP1141761A1 (de) 2001-10-10

Family

ID=7929118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00971409A Ceased EP1141761A1 (de) 1999-11-10 2000-11-02 Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop

Country Status (5)

Country Link
US (1) US6850363B1 (ja)
EP (1) EP1141761A1 (ja)
JP (1) JP2003514252A (ja)
DE (1) DE19954933A1 (ja)
WO (1) WO2001035150A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233549B4 (de) 2002-07-23 2021-10-14 Leica Microsystems Cms Gmbh Scanmikroskop mit Manipulationslichtstrahl und Verfahren zur Scanmikroskopie
DE10247249A1 (de) 2002-10-10 2004-04-22 Leica Microsystems Heidelberg Gmbh Scanmikroskop mit einem Spiegel zur Einkopplung eines Manipulationslichtstrahls
US7800750B2 (en) * 2003-09-19 2010-09-21 The Regents Of The University Of California Optical trap utilizing a reflecting mirror for alignment
JP2007512148A (ja) * 2003-09-19 2007-05-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ピボット回転する光ファイバを利用した光ビーム平行移動装置及び方法
US7586684B2 (en) 2005-01-21 2009-09-08 New York University Solute characterization by optoelectronkinetic potentiometry in an inclined array of optical traps
DE102005046638C5 (de) 2005-09-29 2024-02-15 Leica Microsystems Cms Gmbh Scanmikroskop und Verfahren zur Probenmanipulation mit einem Manipulationslichtstrahl in einem Scanmikroskop
KR101157176B1 (ko) * 2005-12-20 2012-06-20 삼성전자주식회사 세포 또는 바이러스의 농축 또는 정제용 미세유동장치 및방법
US7718953B2 (en) * 2006-04-12 2010-05-18 University Of Delaware Electromagnetic/optical tweezers using a full 3D negative-refraction flat lens
US7847238B2 (en) 2006-11-07 2010-12-07 New York University Holographic microfabrication and characterization system for soft matter and biological systems
PL2100127T3 (pl) 2006-11-20 2017-06-30 Nanotemper Technologies Gmbh Szybka termooptyczna charakterystyka cząstek
EP2240613B1 (en) * 2008-02-06 2013-09-11 Ludwig-Maximilians-Universität München Thermo-optical characterisation of nucleic acid molecules
US8174742B2 (en) 2008-03-14 2012-05-08 New York University System for applying optical forces from phase gradients
EP2291637B1 (en) * 2008-05-20 2020-01-08 NanoTemper Technologies GmbH Method and device for measuring thermo-optical characteristics of particles in a solution
CN102365543A (zh) 2009-01-16 2012-02-29 纽约大学 用全息视频显微术的自动实时粒子表征和三维速度计量
DE102010027720A1 (de) * 2010-04-14 2011-10-20 Carl Zeiss Microlmaging Gmbh Verfahren und Vorrichtungen zur Positions- und Kraftdetektion
EP3218690B1 (en) 2014-11-12 2022-03-09 New York University Colloidal fingerprints for soft materials using total holographic characterization
DK3414517T3 (da) 2016-02-08 2021-12-13 Univ New York Holografisk karakterisering af proteinaggregater
US11506877B2 (en) 2016-11-10 2022-11-22 The Trustees Of Columbia University In The City Of New York Imaging instrument having objective axis and light sheet or light beam projector axis intersecting at less than 90 degrees
DE102018213965A1 (de) * 2018-08-20 2020-02-20 Universität Ulm Vorrichtung und Verfahren zur Detektion einer räumlichen Streckung von mindestens einer adhärenten biologischen Zelle
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
CN113136324A (zh) * 2020-01-19 2021-07-20 中国科学院青岛生物能源与过程研究所 耦合装置及显微-光镊单细胞分选系统和其分选方法
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206742A (ja) * 1996-11-21 1998-08-07 Olympus Optical Co Ltd レーザ走査顕微鏡

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289378A (en) * 1978-06-21 1981-09-15 Ernst Remy Apparatus for adjusting the focal point of an operating laser beam focused by an objective
DE3214268A1 (de) * 1982-04-17 1983-10-20 Fa. Carl Zeiss, 7920 Heidenheim Optisches justierelement
US5022743A (en) * 1987-03-27 1991-06-11 The Board Of Trustees Of The Leland Stanford Junior University Scanning confocal optical microscope
KR900002716B1 (ko) * 1987-11-26 1990-04-23 재단법인한국전자 통신연구소 레이져묘화기의 집광광학장치
GB2231681B (en) * 1989-05-05 1993-04-21 Hatfield Polytechnic Optical microscopes
JP3129471B2 (ja) * 1991-06-01 2001-01-29 科学技術振興事業団 マルチビーム微粒子操作方法
JPH052136A (ja) * 1991-06-24 1993-01-08 Nikon Corp 微粒子の観察方法及びそれに使用される顕微鏡
DE4300698A1 (de) * 1993-01-13 1994-07-14 Raimund Schuetze Vorrichtung und Verfahren zur Handhabung, Bearbeitung und Beobachtung kleiner Teilchen, insbesondere biologischer Teilchen
JP3339244B2 (ja) * 1995-02-23 2002-10-28 株式会社ニコン 落射蛍光顕微鏡
DE19616216A1 (de) * 1996-04-23 1997-10-30 P A L M Gmbh Verfahren und Vorrichtung zur Gewinnung von laserdissektierten Partikeln wie biologische Zellen bzw. Zellorganellen, Chromosomenteilchen etc.
US5952651A (en) * 1996-06-10 1999-09-14 Moritex Corporation Laser manipulation apparatus and cell plate used therefor
US6075643A (en) * 1997-10-24 2000-06-13 Olympus Optical Co., Ltd. Reflected fluorescence microscope with multiple laser and excitation light sources
DE19801139B4 (de) * 1998-01-14 2016-05-12 Till Photonics Gmbh Punktabtastendes Luminiszenz-Mikroskop
WO2000057231A1 (fr) * 1999-03-19 2000-09-28 Olympus Optical Co., Ltd. Microscope confocal a balayage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206742A (ja) * 1996-11-21 1998-08-07 Olympus Optical Co Ltd レーザ走査顕微鏡
US6094300A (en) * 1996-11-21 2000-07-25 Olympus Optical Co., Ltd. Laser scanning microscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0135150A1 *

Also Published As

Publication number Publication date
JP2003514252A (ja) 2003-04-15
US6850363B1 (en) 2005-02-01
DE19954933A1 (de) 2001-05-17
WO2001035150A1 (de) 2001-05-17

Similar Documents

Publication Publication Date Title
WO2001035150A1 (de) Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop
EP0977069B2 (de) Verfahren und Anordnung zur konfokalen Mikroskopie
DE102005053669B4 (de) Probenmanipulationsvorrichtung
DE102013213781A1 (de) Verfahren und optische Anordnung zum Manipulieren und Abbilden einer mikroskopischen Probe
WO2014009080A1 (de) Mikroskop
DE102012017920B4 (de) Optikanordnung und Lichtmikroskop
EP2181352B1 (de) Mikroskop mit innenfokussierung
DE102006034906A1 (de) Laser-Scanning-Mikroskop und Verfahren zu seinem Betrieb
DE102017119478A1 (de) Optische Anordnung zum Scannen von Anregungsstrahlung und/oder Manipulationsstrahlung in einem Laser-Scanning-Mikroskop und Laser-Scanning-Mikroskop
WO2018166744A1 (de) Anordnung, mikroskop und verfahren zur tirf-mikroskopie
WO2019038404A1 (de) Optische anordnung zum scannen von anregungsstrahlung und/oder manipulationsstrahlung in einem laser-scanning-mikroskop und laser-scanning-mikroskop
EP1678545B1 (de) Mikroskop mit evaneszenter probenbeleuchtung
DE102014110575B4 (de) Mikroskop und Verfahren zum optischen Untersuchen und/oder Manipulieren einer mikroskopischen Probe
DE102017119480A1 (de) Optische Anordnung zum Scannen von Anregungsstrahlung und/oder Manipulationsstrahlung in einem Laser-Scanning-Mikroskop und Laser-Scanning-Mikroskop
DE102016117675B4 (de) Mikroskop mit einem Beleuchtungsmodul
EP1019769B1 (de) Konfokales theta-mikroskop
EP3516440B1 (de) Mikroskopsystem
DE102015114756B4 (de) Spiegelvorrichtung
DE10058100B4 (de) Verfahren und eine Anordnung zur Abtastung mikroskopischer Objekte mit einer Scaneinrichtung
WO2015128447A1 (de) Lasermikrodissektionssystem und lasermikrodissektionsverfahren
DE102016120312B3 (de) Verfahren zum Beleuchten von Fokuspositionen objektseitig eines Objektivs eines Mikroskops und Mikroskop
DE102014203656B4 (de) Lasermikrodissektionsverfahren und Verwendung eines Lasermikrodissektionssystems
DE102021107821B4 (de) Lichtblatt-fluoreszenzmikroskop und verfahren zur tomographischen darstellung
DE202010017304U1 (de) Mikroskop
DE102006045130B4 (de) Laserscanning-Mikroskopieverfahren zur Analyse des Bleichverhaltens einer Probe sowie dazu ausgebildetes Laserscanning-Mikroskop und Computerprogrammprodukt hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MICHELMANN, ANJA

Inventor name: WENDENBURG, RONALD

Inventor name: GREULICH, KARL, OTTO

Inventor name: UHL, VOLKER

Inventor name: MONAJEMBASHI, SHAMCI

17Q First examination report despatched

Effective date: 20070920

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090702