WO2001035150A1 - Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop - Google Patents

Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop Download PDF

Info

Publication number
WO2001035150A1
WO2001035150A1 PCT/EP2000/010808 EP0010808W WO0135150A1 WO 2001035150 A1 WO2001035150 A1 WO 2001035150A1 EP 0010808 W EP0010808 W EP 0010808W WO 0135150 A1 WO0135150 A1 WO 0135150A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical tweezers
microscope
optical
focus
arrangement according
Prior art date
Application number
PCT/EP2000/010808
Other languages
English (en)
French (fr)
Inventor
Ronald Wendenburg
Anja Hoffmann
Karl Otto Greulich
Shamci Monajembashi
Volker Uhl
Original Assignee
Carl Zeiss Jena Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Jena Gmbh filed Critical Carl Zeiss Jena Gmbh
Priority to EP00971409A priority Critical patent/EP1141761A1/de
Priority to US09/869,951 priority patent/US6850363B1/en
Priority to JP2001536624A priority patent/JP2003514252A/ja
Publication of WO2001035150A1 publication Critical patent/WO2001035150A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes

Definitions

  • the invention allows the spatial fixation of microscopic objects in the laser scanning microscope, even while moving the object plane, for example during image acquisition. This means that even moving objects can be imaged sharply.
  • Optical tweezers have proven to be an interesting tool for a number of biological work techniques.
  • the combination of laser scanning microscopes with laser microtechnologies suggests an expansion of the experimental possibilities.
  • LSM images of moving objects especially inside unopened cells, often do not produce satisfactory images because many subcellular structures move during the scan time.
  • the optical tweezers are ideal for gentle (vital) fixation.
  • a spatially defined displacement of fixed objects is possible with the optical tweezers.
  • Application examples for the use of compensated optical tweezers in the laser scanning microscope are the examination of organisms, for example chloroplasts, or the holding of objects moved by motor proteins. In the latter case, force measurements are even possible under suitable conditions.
  • moving objects for example particles in suspension or certain organelles, cannot be imaged sharply without being fixed by compensated optical tweezers.
  • Optical tweezers coupled through the lens have their focus in the object plane. If the object plane is shifted in parallel by the three-dimensional image acquisition process ("scanning"), the focus of the optical tweezers is also displaced. This means that objects which are held by the optical tweezers are also displaced. However, this is undesirable during image acquisition Therefore the Displacement of the object plane can be compensated for by a suitable device in the beam path of the optical tweezers.
  • the invention is always necessary in laser scanning microscopes from different manufacturers when the optical tweezers are coupled in through the lens and the third dimension in the image acquisition by moving the lens or the stage or another method that focuses the optical tweezers relative to the sample postponed, developed.
  • the sample is no longer freely accessible from above, which, for example, makes applications with microinjection or temperature control devices very difficult, if not impossible.
  • the latter also applies to structures in which the optical fixing of particles is carried out by glass fibers provided with microlenses, which are guided directly onto the sample.
  • there are problems with the sterility of the sample since the glass fibers have to be immersed in thicker layers of liquid if particles are to be fixed on the underside of the liquid.
  • FIG. 1 shows a schematic representation of the effect of the invention
  • Figure 2 the application in a microscope like a laser scanning -
  • the optical tweezers are
  • Microscope objective guided into the object plane It is adjusted so that microscopic particles located in the object plane are held, that is, the focus of the optical tweezers is in the object plane.
  • the object plane In the three-dimensional image acquisition by a laser scanning microscope, however, the object plane must be shifted in parallel in order to open up the third dimension protruding from the object plane. This also shifts the focus of the optical tweezers, which leads to an undesired shift of the fixed particles. Without compensation for this shift, three-dimensional objects held by the optical tweezers cannot be recorded in three-dimensional resolution.
  • z-compensation Compensation for the displacement of the object plane, hereinafter referred to as z-compensation, consists of variable optical elements which are inserted in the beam path of the optical tweezers and which compensate for the movement of the object plane.
  • the z-compensation effects a compensating movement of the optical tweezers which takes place simultaneously with the movement of the object plane, so that the position of the fixed object in the sample is retained.
  • the compensation is implemented via an electromechanically displaceable optical element in the coupling system of the optical tweezers.
  • the exact position of the object plane is taken from the control electronics of the laser scanning microscope during the image acquisition process. Accordingly, the displaceable optical element in the coupling system of the optical tweezers is moved under computer control, so that the position of the fixed object relative to the sample is retained. In principle, it is not necessary to take the position of the object plane from the control electronics of the laser scanning microscope, since the position of the relevant optical elements can also be detected electromechanically or optically. However, this is associated with a greater effort.
  • the z-compensation can be combined with the microscope holder on the optical fiber.
  • the result is a compact unit with a minimum of optical elements.
  • the object to be examined is scanned in various xy sections.
  • the object plane is between the cuts by the laser Scanning microscope moved.
  • the position of the focus of the optical tweezers is brought back to the starting point by manually shifting the additional optical element located in the beam path of the optical tweezers. This process is repeated for each xy section.
  • the z-compensation described here also allows the coupling of a so-called multitrap, an optical tweezer, in which one or more laser beams are directed onto several objects for fixation. This can also be done by using a scanner mirror to alternate a beam at a high frequency is directed onto several objects in such a way that they remain fixed, even if the laser beam does not permanently irradiate the corresponding object.
  • a laser microbeam can be coupled in compensated (a laser microbeam is a short-pulsed laser beam that is coupled into a microscope to perform micromaterial processing).
  • the same optics as for the optical tweezers can be used for the coupling of the laser micro beam.
  • a z-compensated laser micro-beam enables precise material processing during image acquisition, for example to examine the light-material interaction in detail.
  • Figure 2 shows a microscopic beam path with a sample P, an objective O and a tube lens TL.
  • a laser beam L1 which scans the sample P in the x / y direction, is coupled in via a deflection mirror US via a scan lens SL and an x / y scanner SC as well as a deflection mirror US1 and a dichroic beam splitter ST1.
  • the beam focus in the sample is here shifted by the objective O in Z-
  • Height is adjusted via a control unit AS so that the sample can be scanned at different Z positions.
  • the radiation coming from the sample passes in the opposite way via the
  • an HBO - is connected via a further steel divider ST2 and a lens L.
  • Lighting can be coupled.
  • corresponding pulsing optics 01, 02 are used to continue pulsing via the beam splitter ST2 and a further beam splitter ST3
  • Laser beam L2 for optical cutting and another laser beam L3 coupled as optical tweezers (Optical Tweezer).
  • the light coupling can be an indirect coupling via light guides, to which collimation optics are arranged.
  • Axis changes the beam focus position of the respective laser in sample P.
  • correction optics 01, 02 are in the variant V1 along the optical
  • the position of the focus within the sample can be changed in a defined manner in the Z direction.
  • an object held with the optical tweezers can always be advantageous at the same point in the lens when the lens shifts in the Z direction
  • Cutting laser L2 can be moved accordingly and thus the position of the cut can be chosen as desired and also decoupled from the position of laser L3.
  • a common displaceable correction lens 03 is provided for the lasers L2, L3.
  • decoupling of the movement of L2 and L3 can be achieved by means of different optics which can additionally be inserted into the beam path of the laser L2.
  • multibeam tweezer i.e. tweezers that use one or more laser beams to hold several
  • Objects can be used, possible.
  • Scanner mirror is directed in high frequency onto several objects in such a way that they can be held simultaneously (C.Hoyer, S.Monajembashi, K.O. Greulich:
  • Organelles can often not be focused because they move during image acquisition. Sharp, three-dimensional images are only possible through the use of compensated optical tweezers that enable the fixation of the organelles during image acquisition. In this way, cell organelles such as chloroplasts or mitochondria can be fixed in living cells and depicted sharply in three dimensions. Organelles that normally do not move, such as secretory vesicles or the gravesceptor, can be deflected from the original position with the optical tweezers and the response of the cell (reorganization) can be examined three-dimensionally. The cytoskeleton dynamics in living cells can also be examined by deflection from the resting position.
  • Spheroids can be manipulated and examined three-dimensionally as an in-vivo model for tissue using z-compensated optical tweezers in a laser scanning microscope.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Lens Barrels (AREA)

Abstract

Anordnung zur Einkopplung mindestens eines Strahles (L3) einer optischen Pinzette zum Einfangen von Teilchen und/oder eines Bearbeitungsstrahles (L2) in einen mikroskopischen Strahlengang, vorzugsweise in einem Laser-Scanning-Mikroskop (O, SC), wobei Mittel (AS) zur frei einstellbaren Veränderung der Lage des Strahlfokus der optischen Pinzette und/oder des Bearbeitungsstrahles bezüglich der Veränderung der Fokusposition des Mikroskopes vorgesehen sind.

Description

Titel:
Anordnung zur Einkopplung einer optischen Pinzette und/oder eines
Bearbeitungsstrahles in ein Mikroskop
Die Erfindung erlaubt die räumliche Fixierung von mikroskopischen Objekten im Laser Scanning Mikroskop, auch während Verschiebung der Objektebene, zum Beispiel bei der Bildaufnahme. Somit können auch sich bewegende Objekte scharf abgebildet werden.
Hintergrund der Erfindung
Für eine Reihe von biologischen Arbeitstechniken hat sich die optische Pinzette als interessantes Arbeitswerkzeug erwiesen. Die Kombination von Laser Scanning Mikroskopen mit Lasermikrotechniken läßt eine Erweiterung der experimentellen Möglichkeiten erwarten.
LSM-Aufnahmen sich bewegender Objekte, vor allem im Inneren ungeöffneter Zellen, ergeben oft nicht zufriedenstellende Bilder, da sich viele subzelluläre Strukturen während der Scanzeit bewegen. Die optische Pinzette läßt sich hier ideal zur schonenden (Vital-) Fixierung einsetzen. Weiterhin ist mit der optischen Pinzette eine räumlich definierte Verschiebung von fixierten Objekten möglich. Anwendungsbeispiele für den Einsatz einer kompensierten optischen Pinzette im Laser Scanning Mikroskop sind die Untersuchung von Organelien, zum Beispiel Chloroplasten, oder das Festhalten von durch Motorproteine bewegten Objekten. Im letzten Fall sind unter geeigneten Bedingungen sogar Kraftmessungen möglich. Grundsätzlich können bewegliche Objekte, beispielsweise Partikel in Suspension oder bestimmte Organellen, ohne Fixierung durch eine kompensierte optische Pinzette, nicht scharf abgebildet werden.
Eine durch das Objektiv eingekoppelte optische Pinzette hat ihren Fokus in der Objektebene. Wird durch den dreidimensionalen Bildaufnahmevorgang ( Scannen") die Objektebene parallel verschoben, so verschiebt sich der Fokus der optischen Pinzette mit. Dies führt dazu, daß Objekte, die durch die optische Pinzette gehalten werden, ebenfalls verschoben werden. Dies ist jedoch während der Bildaufnahme unerwünscht. Deshalb muß die Verschiebung der Objektebene durch eine geeignete Einrichtung im Strahlengang der optischen Pinzette kompensiert werden. Die Erfindung ist immer dann bei Laser Scanning Mikroskopen verschiedener Hersteller notwendig, wenn die optische Pinzette durch das Objektiv eingekoppelt wird und die dritte Dimension bei der Bildaufnahme durch Verschieben des Objektivs oder des Objekttischs oder einer anderen Methode, die den Fokus der optischen Pinzette relativ zur Probe verschiebt, erschlossen wird.
Die Einkopplung der optischen Pinzette in ein inverses Mikroskop über ein zweites hochaperturiges Objektiv, das die optische Pinzette von der anderen Seite der Probe einkoppelt (K. Visscher, G. J. Brakenhoff: Single Beam Optical Trapping Integrated in a Confocal Microscope for Biological Applications. Cytometry 12:486-491 (1991 )), macht eine kompensierte Bewegung der optischen Pinzette zwar überflüssig, dafür muß sich die Probe aber zwischen zwei Deckgläsern befinden und darf eine gewisse Dicke nicht überschreiten. Weiterhin schränkt diese Art der Einkopplung konventionelle mikroskopische Anwendungen ein, da das Objektiv für die optische Pinzette an der Stelle plaziert ist, an der sich im inversen Mikroskop der Durchlichtstrahlengang befindet. Darüber hinaus ist die Probe von oben nicht mehr uneingeschränkt frei zugänglich, was zum Beispiel Anwendungen mit Mikroinjektions- oder Temperiereinrichtungen sehr erschwert, wenn nicht sogar unmöglich macht. Letzteres gilt auch für Aufbauten, bei denen das optische Fixieren von Partikeln durch mit Mikrolinsen versehenen Glasfasern erfolgt, die direkt auf die Probe geführt werden. Hinzu kommen Probleme mit der Sterilität der Probe, da die Glasfasern in dickere Flüssigkeitsschichten eintauchen müssen, wenn Partikel an der Unterseite der Flüssigkeit fixiert werden sollen.
Beschreibung
Abbildung 1 zeigt eine schematische Darstellung der Wirkung der Erfindung,
Abbildung 2 die Anwendung in einem Mikroskop wie einem Laser-Scanning -
Mikroskop.
Im für die Erfindung relevanten Aufbau wird die optische Pinzette durch das
Mikroskopobjektiv in die Objektebene geführt. Sie ist so justiert, daß sich in der Objektebene befindliche mikroskopische Partikel gehalten werden, das heißt, der Fokus der optischen Pinzette liegt in der Objektebene. Bei der dreidimensionalen Bildaufnahme durch ein Laser Scanning Mikroskop muß die Objektebene jedoch parallel verschoben werden, um die aus der Objektebene heraus ragende dritte Dimension zu erschließen. Dadurch verschiebt sich auch der Fokus der optischen Pinzette, was zu einer unerwünschten Verschiebung der fixierten Partikel führt. Ohne Kompensation dieser Verschiebung können dreidimensionale Objekte, die durch die optische Pinzette gehalten werden, nicht dreidimensional aufgelöst aufgenommen werden. Eine Kompensation der Verschiebung der Objektebene, im Folgenden z-Kompensation genannt, besteht aus variablen optischen Elementen, die in der Strahlengang der optischen Pinzette eingefügt werden und die die Bewegung der Objektebene kompensieren. Die z-Kompensation bewirkt eine zur Bewegung der Objektebene simultan ablaufende kompensierende Bewegung der optischen Pinzette, so daß die Position des fixierten Objekts in der Probe erhalten bleibt.
Realisiert wird die Kompensation über ein elektromechanisch verschiebbares optisches Element im Einkoppelsystem der optischen Pinzette. Die exakte Position der Objektebene wird der Steuerelektronik des Laser Scanning Mikroskops während des Bildaufnahmevorgangs entnommen. Entsprechend wird das verschiebbare optische Element im Einkoppelsystem der optischen Pinzette rechnergesteuert verfahren, so daß die Position des fixierten Objekts relativ zur Probe erhalten bleibt. Es ist prinzipiell nicht notwendig, die Position der Objektebene der Steuerelektronik des Laser Scanning Mikroskops zu entnehmen, da die Position der relevanten optischen Elemente auch elektromechanisch oder optisch detektiert werden kann. Dies ist allerdings mit einem größeren Aufwand verbunden. Wenn der Strahlengang für die optische Pinzette vom Laser zum Mikroskop über Lichtleiter er olgt, kann die z-Kompensation mit der mikroskopseitigen Halterung des Lichtleiters kombiniert werden. Es entsteht dann eine kompakte Einheit mit einem Minimum an optischen Elementen. Es besteht auch die Möglichkeit, die z-Kompensation manuell vorzunehmen. Dazu wird das zu untersuchende Objekt in verschiedenen x-y-Schnitten abgetastet. Zwischen den Schnitten wird die Objektebene durch das Laser Scanning Mikroskop verschoben. Vor der Aufnahme des nächsten Schnitts wird die Position des Fokus der optischen Pinzette durch manuelles Verschieben des im Strahlengang der optischen Pinzette befindlichen zusätzlichen optischen Elements wieder an den Ausgangspunkt gebracht. Dieser Vorgang wird für jeden x-y-Schnitt wiederholt. Durch die oben beschriebene rechnergesteuerte elektromechanische Verschiebung des Kompensationselements wird jedoch während der dreidimensionalen Bildaufnahme Zeit gespart, was bei kurzlebigen Präparaten von entscheidender Bedeutung sein kann. Es soll jedoch die z-Kompensation an sich patentiert werden, unabhängig von ihrer technischen Ausführung.
Sollen mehrere in Flüssigkeit bewegliche Objekte untersucht werden, müssen diese alle mit einer optischen Pinzette fixiert werden. Die hier beschriebene z-Kompensation erlaubt auch das Einkoppeln einer sogenannten Multitrap", einer optischen Pinzette, bei der ein oder mehrere Laserstrahlen zur Fixierung auf mehrere Objekte gelenkt werden. Dies kann auch dadurch geschehen, daß mit Hilfe eines Scannerspiegels ein Strahl abwechselnd in hoher Frequenz auf mehrere Objekte so gelenkt wird, daß diese fixiert bleiben, auch wenn der Laserstrahl nicht permanent das entsprechende Objekt bestrahlt.
Auf gleiche Weise wie die optische Pinzette kann auch ein Lasermikrostrahl kompensiert eingekoppelt werden (Ein Lasermikrostrahl ist ein kurz gepulster Laserstrahl, der in ein Mikroskop eingekoppelt wird, um Mikromaterialbearbeitung durchzuführen). Somit kann für die Einkopplung des Lasermikrostrahls die gleiche Optik wie für die optische Pinzette verwendet werden. Ein z-kompensierter Lasermikrostrahl erlaubt präzise Materialbearbeitung während der Bildaufnahme, zum Beispiel um die Licht-Materie-Wechselwirkung im Detail zu untersuchen.
Die Abbildung 2 zeigt einen mikroskopischen Strahlengang mit einer Probe P, einem Objektiv O und einer Tubuslinse TL.
Über einen Umlenkspiegel US wird über eine Scanlinse SL und einen x/y Scanner SC sowie einen Umlenkspiegel US1 und einen dichroitischen Strahlteiler ST1 ein Laserstrahl L1 eingekoppelt, der die Probe P in x/y Richtung abscannt. Der Strahlfokus in der Probe wird hierbei durch Verschieben des Objektives O in Z-
Richtung über eine Ansteuereinheit AS höhenverstellt, so daß die Probe an unterschiedlichen Z-Positionen abgescannt werden kann.
Die von der Probe kommende Strahlung gelangt auf umgekehrten Weg über den
Stahlteiler ST1 auf eine Detektoreinheit, bestehend aus Pinholeoptik PO, Pin hole PH sowie Detektor DE.
Weiterhin ist über einen weiteren Stahlteiler ST2 und eine Linse L eine HBO -
Beleuchtung einkoppelbar.
Über den Strahlteiler ST2 und einen weiteren Strahlteiler ST3 werden weiterhin in einer Variante V1 über entsprechende Korrektionsoptiken 01 ,02 ein gepulster
Laserstrahl L2 zum optischen Schneiden und ein weiterer Laserstrahl L3 als optische Pinzette ( Optical Tweezer) eingekoppelt.
Beispielsweise kann es sich zur Lichteinkopplung um eine indirekte Einkopplung über Lichtleiter handeln, denen Kollimationsoptiken nachgeordnet sind.
Durch Verschieben der Optiken oder der Lichtleiterenden entlang der optischen
Achse ändert sich die Strahlfokusposition des jeweiligen Lasers in der Probe P.
Die Korrektionsoptiken 01 ,02 sind hierbei in der Variante V1 entlang der optischen
Achse über die Ansteuereinheit AS verschiebbar angeordnet, wobei die
Ansteuereinheit AS diese Verschiebebewegung mit der Verschiebebewegung des
Objektives abstimmen kann.
Dies erfolgt durch eine zur Verschiebung des Objektives über errechnete oder vorher abgespeicherte Korrekturwerte abgestimmte gegenläufige Bewegung mindestens des Laserstrahles L3.
Zum einen wird erreicht, daß die Lage des Fokus innerhalb Probe in Z-Richtung definiert verändert werden kann.
Zum anderen kann ein mit der optischen Pinzette festgehaltenes Objekt vorteilhaft bei Verschiebungen des Objektivs in Z-Richtung immer an derselben Stelle in der
Probe verbleiben.
Neben der Bewegung der Optik 02 für den Laser L3 kann auch die Optik 01 für den
Schneidelaser L2 entsprechend bewegt werden und dadurch die Lage des Schnittes beliebig und auch von der Lage des Lasers L3 entkoppelt gewählt werden.
In der anschließend dargestellten Variante V2 ist für die Laser L2, L3 eine gemeinsame verschiebliche Korrekturoptik 03 vorgesehen. Auch hier kann durch zusätzlich in den Strahlengang des Lasers L2 einsetzbare unterschiedliche Optiken eine Entkopplung der Bewegung von L2 und L3 erreicht werden.
Weiterhin ist hier die Verwendung eines sogenannten Multibeam-Tweezers, d.h. einer Pinzette, bei der ein oder mehrere Laserstrahlen zum Festhalten von mehreren
Objekten verwendet werden können, möglich.
Dies kann dadurch geschehen, daß der Laserstrahl L3 mit Hilfe eines
Scannerspiegels in hoher Frequenz auf mehrere Objekte so gelenkt wird, daß diese gleichzeitig festgehalten werden können ( C.Hoyer, S.Monajembashi, K.O. Greulich:
Laser Manipulation and UV induced Single molecule reactions of individual DNA molecules; Journal of Biotechnology 52 (1996), 65-73)
Anwendungsbeispiele
Organellen können häufig nicht scharf abgebildet werden, da sie sich während der Bildaufnahme bewegen. Nur durch den Einsatz einer kompensierten optischen Pinzette, die die Fixierung der Organellen während der Bildaufnahme ermöglicht, sind scharfe, dreidimensionale Abbildungen möglich. So können Zellorganellen wie zum Beispiel Chloroplasten oder Mitochondrien in lebenden Zellen fixiert und scharf dreidimensional abgebildet werden. Organellen, die sich normalerweise nicht bewegen, wie sekretorische Vesikel oder der Graviperzeptionsapparat, können mit der optischen Pinzette aus der Ursprungsposition ausgelenkt werden und die Reaktion der Zelle darauf (Reorganisation) dreidimensional untersucht werden. Durch Auslenkung aus der Ruhelage kann auch die Cytoskelettdynamik in lebenden Zellen untersucht werden.
Sphäroiden können als in-vivo Modell für Gewebe mit einer z-kompensierten optischen Pinzette im Laser Scanning Mikroskop dreidimensional manipuliert und untersucht werden.
Mit Hilfe von Vitalfarbstoffen können lebende Zellen so angefärbt werden, daß sie mit Fluoreszenzmikroskopie abgebildet werden können. Mit einer in ein konfokales Laser Scanning Mikroskop integrierten z-kompensierten optischen Pinzette sind so Untersuchungen zur Chromosomenorganisation in lebenden Zellen möglich. Ebenfalls sind mit dieser Anordnung dreidimensionale Abbildungen und Untersuchungen zum Teilungsprozeß an nichtadherenten Zellen möglich.

Claims

Patentansprüche
1.
Anordnung zur Einkopplung mindestens eines Strahles einer optischen Pinzette zum
Einfangen von Teilchen und/ oder eines Bearbeitungsstrahles in einen mikroskopischen Strahlengang, vorzugsweise in einem Laser-Scanning- Mikroskop, wobei Mittel zur frei einstellbaren Veränderung der Lage des Strahlfokus der optischen Pinzette und / oder des Bearbeitungsstrahles bezüglich der Veränderung der Fokusposition des Mikroskopes vorgesehen sind. sind.
2.
Anordnung nach Anspruch 1 , wobei zur Veränderung der Lage des Strahlfokus eine separate bewegliche Optik vorgesehen ist.
3.
Anordnung nach einem der vorangehenden Ansprüche, wobei Strahlaustritt und / oder Beleuchtungsoptik der Optischen Pinzette und/ oder des Bearbeitungsstrahles in Richtung der optischen Achse verschiebbar sind.
4.
Anordnung nach einem der vorangehenden Ansprüche , wobei die Veränderung ansteuerbar ist und eine Bewegung der optischen Pinzette und/ oder des
Bearbeitungsstrahles in Gegenrichtung zur Bewegung des Mikroskopobjektives bewirkt.
5.
Anordnung nach einem der vorangehenden Ansprüche, mit einer definierten
Ansteuerung der Verschiebung über vorgespeicherte oder errechnete Werte in
Abhängigkeit von der Fokusposition.
6.
Anordnung nach einem der vorangehenden Ansprüche, wobei mehrere optische
Pinzetten und/ oder Bearbeitungsstrahlen vorgesehen , die einzeln und/ oder gemeinsam bezüglich ihrer Fokuslage einstellbar sind
PCT/EP2000/010808 1999-11-10 2000-11-02 Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop WO2001035150A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00971409A EP1141761A1 (de) 1999-11-10 2000-11-02 Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop
US09/869,951 US6850363B1 (en) 1999-11-10 2000-11-02 System for introducing optical tweezers and/or a treatment beam into a laser scanning microscope
JP2001536624A JP2003514252A (ja) 1999-11-10 2000-11-02 光学ピンセットおよび/または加工ビームを顕微鏡内へ接続する装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19954933A DE19954933A1 (de) 1999-11-10 1999-11-10 Anordnung zur Einkopplung einer optischen Pinzette und/oder eines Bearbeitungsstrahles in ein Mikroskop
DE19954933.8 1999-11-10

Publications (1)

Publication Number Publication Date
WO2001035150A1 true WO2001035150A1 (de) 2001-05-17

Family

ID=7929118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010808 WO2001035150A1 (de) 1999-11-10 2000-11-02 Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop

Country Status (5)

Country Link
US (1) US6850363B1 (de)
EP (1) EP1141761A1 (de)
JP (1) JP2003514252A (de)
DE (1) DE19954933A1 (de)
WO (1) WO2001035150A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078759A2 (en) * 2005-01-21 2006-07-27 New York University Modulated optical tweezers
US7847238B2 (en) 2006-11-07 2010-12-07 New York University Holographic microfabrication and characterization system for soft matter and biological systems
US8174742B2 (en) 2008-03-14 2012-05-08 New York University System for applying optical forces from phase gradients
CN113136324A (zh) * 2020-01-19 2021-07-20 中国科学院青岛生物能源与过程研究所 耦合装置及显微-光镊单细胞分选系统和其分选方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233549B4 (de) 2002-07-23 2021-10-14 Leica Microsystems Cms Gmbh Scanmikroskop mit Manipulationslichtstrahl und Verfahren zur Scanmikroskopie
DE10247249A1 (de) 2002-10-10 2004-04-22 Leica Microsystems Heidelberg Gmbh Scanmikroskop mit einem Spiegel zur Einkopplung eines Manipulationslichtstrahls
EP1743160A4 (de) * 2003-09-19 2009-03-18 Univ California Office Of The Optische strahlverschiebungsvorrichtung und eine schwenkbare optische faser verwendendes verfahren
US7800750B2 (en) * 2003-09-19 2010-09-21 The Regents Of The University Of California Optical trap utilizing a reflecting mirror for alignment
DE102005046638C5 (de) 2005-09-29 2024-02-15 Leica Microsystems Cms Gmbh Scanmikroskop und Verfahren zur Probenmanipulation mit einem Manipulationslichtstrahl in einem Scanmikroskop
KR101157176B1 (ko) * 2005-12-20 2012-06-20 삼성전자주식회사 세포 또는 바이러스의 농축 또는 정제용 미세유동장치 및방법
US7718953B2 (en) * 2006-04-12 2010-05-18 University Of Delaware Electromagnetic/optical tweezers using a full 3D negative-refraction flat lens
EP3182098B1 (de) * 2006-11-20 2023-05-17 NanoTemper Technologies GmbH Schnelle thermo-optische charakterisierung von biomolekülen
WO2009098079A1 (en) * 2008-02-06 2009-08-13 Ludwig-Maximilians-Universität München Thermo-optical characterisation of nucleic acid molecules
DK2291637T3 (da) * 2008-05-20 2020-03-30 Nanotemper Tech Gmbh Fremgangsmåde og anordning til måling af termooptiske egenskaber hos partikler i en opløsning
WO2010101671A1 (en) 2009-01-16 2010-09-10 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
DE102010027720A1 (de) * 2010-04-14 2011-10-20 Carl Zeiss Microlmaging Gmbh Verfahren und Vorrichtungen zur Positions- und Kraftdetektion
ES2913524T3 (es) 2014-11-12 2022-06-02 Univ New York Huellas coloidales para materiales blandos usando caracterización holográfica total
WO2017139279A2 (en) 2016-02-08 2017-08-17 New York University Holographic characterization of protein aggregates
WO2018089839A1 (en) 2016-11-10 2018-05-17 The Trustees Of Columbia University In The City Of New York Rapid high-resolution imaging methods for large samples
DE102018213965A1 (de) * 2018-08-20 2020-02-20 Universität Ulm Vorrichtung und Verfahren zur Detektion einer räumlichen Streckung von mindestens einer adhärenten biologischen Zelle
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289378A (en) * 1978-06-21 1981-09-15 Ernst Remy Apparatus for adjusting the focal point of an operating laser beam focused by an objective
EP0092090A1 (de) * 1982-04-17 1983-10-26 Firma Carl Zeiss Optisches Justierelement
US4934799A (en) * 1987-11-26 1990-06-19 Korea Electronics & Telecom. Research Multi-lens focussing arrangement for laser graphics imaging apparatus
EP0486732A1 (de) * 1989-05-05 1992-05-27 University Of Hertfordshire Optische Mikroskope
WO1994016543A1 (de) * 1993-01-13 1994-07-21 Schuetze Raimund Vorrichtung und verfahren zur handhabung, bearbeitung und beobachtung kleiner teilchen, insbesondere biologischer teilchen
DE19801139A1 (de) * 1998-01-14 1999-07-15 Rainer Dr Uhl Punktabtastendes Luminiszenz-Mikroskop

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022743A (en) * 1987-03-27 1991-06-11 The Board Of Trustees Of The Leland Stanford Junior University Scanning confocal optical microscope
JP3129471B2 (ja) * 1991-06-01 2001-01-29 科学技術振興事業団 マルチビーム微粒子操作方法
JPH052136A (ja) * 1991-06-24 1993-01-08 Nikon Corp 微粒子の観察方法及びそれに使用される顕微鏡
JP3339244B2 (ja) * 1995-02-23 2002-10-28 株式会社ニコン 落射蛍光顕微鏡
DE19616216A1 (de) * 1996-04-23 1997-10-30 P A L M Gmbh Verfahren und Vorrichtung zur Gewinnung von laserdissektierten Partikeln wie biologische Zellen bzw. Zellorganellen, Chromosomenteilchen etc.
US5952651A (en) * 1996-06-10 1999-09-14 Moritex Corporation Laser manipulation apparatus and cell plate used therefor
JP3917731B2 (ja) * 1996-11-21 2007-05-23 オリンパス株式会社 レーザ走査顕微鏡
US6075643A (en) * 1997-10-24 2000-06-13 Olympus Optical Co., Ltd. Reflected fluorescence microscope with multiple laser and excitation light sources
WO2000057231A1 (fr) * 1999-03-19 2000-09-28 Olympus Optical Co., Ltd. Microscope confocal a balayage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289378A (en) * 1978-06-21 1981-09-15 Ernst Remy Apparatus for adjusting the focal point of an operating laser beam focused by an objective
EP0092090A1 (de) * 1982-04-17 1983-10-26 Firma Carl Zeiss Optisches Justierelement
US4934799A (en) * 1987-11-26 1990-06-19 Korea Electronics & Telecom. Research Multi-lens focussing arrangement for laser graphics imaging apparatus
EP0486732A1 (de) * 1989-05-05 1992-05-27 University Of Hertfordshire Optische Mikroskope
WO1994016543A1 (de) * 1993-01-13 1994-07-21 Schuetze Raimund Vorrichtung und verfahren zur handhabung, bearbeitung und beobachtung kleiner teilchen, insbesondere biologischer teilchen
DE19801139A1 (de) * 1998-01-14 1999-07-15 Rainer Dr Uhl Punktabtastendes Luminiszenz-Mikroskop

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAELLMAN E ET AL: "DESIGN FOR FULLY STEERABLE DUAL-TRAP OPTICAL TWEEZERS", APPLIED OPTICS,US,OPTICAL SOCIETY OF AMERICA,WASHINGTON, vol. 36, no. 10, 1 April 1997 (1997-04-01), pages 2107 - 2113, XP000690365, ISSN: 0003-6935 *
HOYER C ET AL: "Laser manipulation and UV induced single molecule reactions of individual DNA molecules", JOURNAL OF BIOTECHNOLOGY,NL,ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, vol. 52, no. 2, 10 December 1996 (1996-12-10), pages 65 - 73, XP004095273, ISSN: 0168-1656 *
See also references of EP1141761A1 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078759A2 (en) * 2005-01-21 2006-07-27 New York University Modulated optical tweezers
WO2006078759A3 (en) * 2005-01-21 2006-12-21 Univ New York Modulated optical tweezers
US8298727B2 (en) 2005-01-21 2012-10-30 New York University Multi-color holographic optical trapping
US7847238B2 (en) 2006-11-07 2010-12-07 New York University Holographic microfabrication and characterization system for soft matter and biological systems
US8431884B2 (en) 2006-11-07 2013-04-30 New York University Holographic microfabrication and characterization system for soft matter and biological systems
US8174742B2 (en) 2008-03-14 2012-05-08 New York University System for applying optical forces from phase gradients
CN113136324A (zh) * 2020-01-19 2021-07-20 中国科学院青岛生物能源与过程研究所 耦合装置及显微-光镊单细胞分选系统和其分选方法

Also Published As

Publication number Publication date
US6850363B1 (en) 2005-02-01
JP2003514252A (ja) 2003-04-15
DE19954933A1 (de) 2001-05-17
EP1141761A1 (de) 2001-10-10

Similar Documents

Publication Publication Date Title
EP1141761A1 (de) Anordnung zur einkopplung einer optischen pinzette und/oder eines bearbeitungsstrahles in ein mikroskop
EP2976669B1 (de) Verfahren und optische anordnung zum manipulieren und abbilden einer mikroskopischen probe
DE102005053669B4 (de) Probenmanipulationsvorrichtung
WO2014009080A1 (de) Mikroskop
DE102012017920B4 (de) Optikanordnung und Lichtmikroskop
EP2181352B1 (de) Mikroskop mit innenfokussierung
DE102006034906A1 (de) Laser-Scanning-Mikroskop und Verfahren zu seinem Betrieb
DE102012207240A1 (de) Laser-Mikrodissektionsgerät und -verfahren
DE102017119478A1 (de) Optische Anordnung zum Scannen von Anregungsstrahlung und/oder Manipulationsstrahlung in einem Laser-Scanning-Mikroskop und Laser-Scanning-Mikroskop
DE102017119480A1 (de) Optische Anordnung zum Scannen von Anregungsstrahlung und/oder Manipulationsstrahlung in einem Laser-Scanning-Mikroskop und Laser-Scanning-Mikroskop
WO2019038404A1 (de) Optische anordnung zum scannen von anregungsstrahlung und/oder manipulationsstrahlung in einem laser-scanning-mikroskop und laser-scanning-mikroskop
DE102014110575B4 (de) Mikroskop und Verfahren zum optischen Untersuchen und/oder Manipulieren einer mikroskopischen Probe
DE102016117675B4 (de) Mikroskop mit einem Beleuchtungsmodul
EP1019769B1 (de) Konfokales theta-mikroskop
EP3516440B1 (de) Mikroskopsystem
DE102015114756B4 (de) Spiegelvorrichtung
DE102004034988A1 (de) Lichtrastermikroskop und Verwendung
DE10058100B4 (de) Verfahren und eine Anordnung zur Abtastung mikroskopischer Objekte mit einer Scaneinrichtung
WO2015128447A1 (de) Lasermikrodissektionssystem und lasermikrodissektionsverfahren
DE102016120312B3 (de) Verfahren zum Beleuchten von Fokuspositionen objektseitig eines Objektivs eines Mikroskops und Mikroskop
DE102014203656B4 (de) Lasermikrodissektionsverfahren und Verwendung eines Lasermikrodissektionssystems
DE102021107821B4 (de) Lichtblatt-fluoreszenzmikroskop und verfahren zur tomographischen darstellung
DE202010017304U1 (de) Mikroskop
EP2047313A1 (de) Verfahren zur laser-scanning-mikroskopie und strahlvereiniger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000971409

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 536624

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000971409

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09869951

Country of ref document: US