EP1125127A2 - Sensor für zielanalyten unter verwendung von mikrosphären - Google Patents

Sensor für zielanalyten unter verwendung von mikrosphären

Info

Publication number
EP1125127A2
EP1125127A2 EP99945651A EP99945651A EP1125127A2 EP 1125127 A2 EP1125127 A2 EP 1125127A2 EP 99945651 A EP99945651 A EP 99945651A EP 99945651 A EP99945651 A EP 99945651A EP 1125127 A2 EP1125127 A2 EP 1125127A2
Authority
EP
European Patent Office
Prior art keywords
microspheres
sites
substrate
beads
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99945651A
Other languages
English (en)
French (fr)
Inventor
David R. Walt
Karri L. Michael
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tufts University
Original Assignee
Tufts University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tufts University filed Critical Tufts University
Publication of EP1125127A2 publication Critical patent/EP1125127A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1438Using two lasers in succession
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N2035/0097Control arrangements for automatic analysers monitoring reactions as a function of time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/90Methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/808Optical sensing apparatus

Definitions

  • optical fibers and optical fiber strands in combination with light absorbing dyes for chemical analytical determinations has undergone rapid development, particularly within the last decade.
  • optical fibers for such purposes and techniques is described by Milanovich et al., "Novel Optical Fiber Techniques For Medical Application", Proceedings of the SPIE 28th Annual International
  • one or more light absorbing dyes are located near its distal end.
  • light from an appropriate source is used to illuminate the dyes through the fiber's proximal end.
  • the light propagates along the length of the optical fiber; and a portion of this propagated light exits the distal end and is absorbed by the dyes.
  • the light absorbing dye may or may not be immobilized; may or may not be directly attached to the optical fiber itself; may or may not be suspended in a fluid sample containing one or more analytes of interest; and may or may not be retainable for subsequent use in a second optical determination.
  • fluorophores those more common compositions that emit light after absorption termed "fluorophores” and those which absorb light and internally convert the absorbed light to heat, rather than emit it as light, termed "chromophores.”
  • Fluorescence is a physical phenomenon based upon the ability of some molecules to absorb light (photons) at specified wavelengths and then emit light of a longer wavelength and at a lower energy. Substances able to fluoresce share a number of common characteristics: the ability to absorb light energy at one wavelength ⁇ ab ; reach an excited energy state; and subsequently emit light at another light wavelength, ⁇ em .
  • the absorption and fluorescence emission spectra are individual for each fluorophore and are often graphically represented as two separate curves that are slightly overlapping.
  • the same fluorescence emission spectrum is generally observed irrespective of the wavelength of the exciting light and, accordingly, the wavelength and energy of the exciting light may be varied within limits; but the light emitted by the fluorophore will always provide the same emission spectrum.
  • the strength of the fluorescence signal may be measured as the quantum yield of light emitted.
  • the fluorescence quantum yield is the ratio of the number of photons emitted in comparison to the number of photons initially absorbed by the fluorophore.
  • Dyes which absorb light energy as chromophores do so at individual wavelengths of energy and are characterized by a distinctive molar absorption coefficient at that wavelength.
  • Chemical analysis employing fiber optic strands and absorption spectroscopy using visible and ultraviolet light wavelengths in combination with the absorption coefficient allow for the determination of concentration for specific analyses of interest by spectral measurement.
  • absorbance measurement via optical fibers is to determine concentration which is calculated in accordance with Beers' law; accordingly, at a single absorbance wavelength, the greater the quantity of the composition which absorbs light energy at a given wavelength, the greater the optical density for the sample In this way, the total quantity of light absorbed directly correlates with the quantity of the composition in the sample
  • compositions and methods are desirable that allow the generation of large fiber optic arrays including microspheres that can be either encoded or decoded to allow the detection of target analytes
  • compositions comprising a substrate with a surface comprising discrete sites, and a population of microspheres distributed on the sites
  • the sites may be wells or chemically functionalized sites
  • the invention provides methods of determining the presence of a target analyte in a sample
  • the methods comprise contacting the sample with a composition comprising a substrate with a surface comprising discrete sites, and a population of microspheres comprising at least a first and a second subpopulation Each subpopulation comprises a bioactive agent and an optical signature capable of identifying the bioactive agent
  • the microspheres are distributed on the surface such that the discrete sites contain microspheres The presence or absence of the target analyte is then determined
  • the invention provides methods of making a composition
  • a composition comprising forming a surface comprising individual sites on a substrate, distributing microspheres on the surface such that the individual sites contain microspheres
  • the microspheres comprise at least a first and a second subpopulation, each comprising a bioactive agent, and an optical signature capable of identifying said bioactive agent
  • Fig 1 is a schematic diagram illustrating the optical signature encoding and chemical functionalizing of the microspheres according to the present invention
  • Fig 2 is a process diagram describing the preparation, encoding, and functionalizing of the microspheres of the present invention
  • Fig 3 is a schematic diagram illustrating a microsphere system including microspheres with different chemical functionalities and encoded descriptions of the functionalities
  • Fig 4 is a schematic diagram of the inventive fiber optic sensor and associated instrumentation and control system
  • Fig 5A and 5B are micrographs illustrating the preferred technique for attaching or affixing the microspheres to the distal end of the optical fiber bundle
  • Fig 6 is a process diagram describing well formation in the optical fiber bundle and affixation of the microspheres in the wells
  • Figs 7A and 7B are micrographs showing the array of microspheres in their corresponding wells prior and subsequent to physical agitation, tapping and air pulsing, demonstrating the electrostatic binding of the microspheres in the wells,
  • Figs 8A, 8B, and 8C are micrographs from alkaline phosphatase microspheres when exposed to fluorescein diphosphate, at the fluorescein emission wavelength, at an encoding wavelength for DilC, and at an encoding wavelength for TRC, respectively,
  • Figs 9A and 9B are micrographs showing the optical signal from ⁇ -galactosidase microspheres when exposed to fluorescein ⁇ -galactopyranoside at the fluorescein emission wavelength and at an encoding wavelength for DilC, respectively, and
  • Fig 10A and 10B are micrographs showing the optical response from rabbit antibody microspheres prior to and post, respectively, exposure to fluorescein labeled antigens
  • Fig 11 A and 11 B are micrographs depicting the optical response from beads synthesized with DNA on the bead surface, following a 10 mm hybridization with a Cy3-labeled probe complementary to the sequence of the DNA immobilized on the bead Beads were randomly distributed on A) an etched optical imaging fiber or B) a patterned polymer (polyurethane) substrate (a chip) Following hybridization with 5 nM Cy3-labeled probe, the substrates were placed in buffer for optical readout on an imaging system A) was imaged through the proximal end, with the distal (beaded) end in buffer solution B) was imaged directly from the top, through a covers p
  • Fig 12A, 12B and 12C are micrographs depicting the optical responses between different substrates
  • the substrate in A) and B) is an etched optical imaging fiber, and the substrate in C) is a chip Data were obtained as described in Fig 11 , and quantified to determine mean intensity and variability
  • the present invention is based on two synergistic inventions 1) the development of a bead-based analytic chemistry system in which beads, also termed microspheres, carrying different chemical functionalities may be mixed together while the ability is retained to identify the functionality of each bead using an optically interrogatable encoding scheme (an "optical signature"), and 2) the use of a substrate comprising a patterned surface containing individual sites that can bind or associate individual beads
  • an optical signature optically interrogatable encoding scheme
  • the present invention provides array compositions comprising at least a first substrate with a surface comprising individual sites
  • array herein is meant a plurality of bioactive agents in an array format, the size of the array will depend on the composition and end use of the array Arrays containing from about 2 different bioactive agents (i e different beads) to many millions can be made, with very large fiber optic arrays being possible
  • the array will comprise from two to as many as a billion or more, depending on the size of the beads and the substrate, as well as the end use of the array, thus very high density, high density, moderate density, low density and very low density arrays may be made
  • Preferred ranges for very high density arrays are from about 10,000,000 to about 2,000,000,000, with from about 100,000,000 to about 1 ,000,000,000 being preferred
  • High density arrays range about 100,000 to about 10,000,000, with from about 1,000,000 to about 5,000,000 being particularly preferred
  • Moderate density arrays range from about 10,000 to about 50,000 being particularly preferred, and from about 20,000 to about 30,000 being especially preferred
  • Low density arrays are generally less than 10,000, with from about 1 ,000 to about 5,000 being preferred Very low density arrays are less than 1,000, with from about 10 to about 1000 being preferred, and from about 100 to about 500 being particularly preferred
  • the compositions of the invention may not be in array format, that is, for some embodiments, compositions comprising a single bioactive agent may be made as well
  • multiple substrates may be used, either of different or identical compositions
  • large arrays may comprise a plurality of smaller substrates
  • one advantage of the present compositions is that particularly through the use of fiber optic technology, extremely high density arrays can be made.
  • beads of 200 nm can be used, and very small fibers are known, it is possible to have as many as 250,000 different fibers and beads in a 1 mm 2 fiber optic bundle, with densities of greater than 15,000,000 individual beads and fibers per 0 5 cm 2 obtainable
  • compositions comprise a substrate
  • substrate or “solid support” or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate for the attachment or association of beads and is amenable to at least one detection method
  • substrates include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc ), polysaccha ⁇ des, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, optical fiber bundles, and a variety of other polymers
  • the substrates allow optical detection and do not appreciably fluorescese
  • the substrate does not comprise an optical fiber bundle or array
  • the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well, for example, three dimensional configurations can be used, for example by embedding the beads in a porous block of plastic that allows sample access to the beads and using a confocal microscope for detection Similarly, the beads may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume
  • Preferred substrates include optical fiber bundles as discussed below, and flat planar substrates such as glass, polystyrene and other plastics and acrylics
  • At least one surface of the substrate is modified to contain discrete, individual sites for later association of microspheres
  • These sites may comprise physically altered sites, i e physical configurations such as wells or small depressions in the substrate that can retain the beads, such that a microsphere can rest in the well, or the use of other forces (magnetic or compressive), or chemically altered or active sites, such as chemically functionalized sites, electrostatically altered sites, hydrophobically/ hydrophilically functionalized sites, spots of adhesive, etc
  • the sites may be a pattern, i e a regular design or configuration, or randomly distributed
  • a preferred embodiment utilizes a regular pattern of sites such that the sites may be addressed in the X-Y coordinate plane "Pattern" in this sense includes a repeating unit cell, preferably one that allows a high density of beads on the substrate
  • these sites may not be discrete sites That is, it is possible to use a uniform surface of adhesive or chemical functionalities, for example, that allows the attachment of beads at any position That is, the surface of the substrate is modified to allow attachment of the microspheres at individual sites, whether or not those sites are contiguous or non-contiguous with other sites
  • the surface of the substrate may be modified such that discrete sites are formed that can only have a single associated bead, or alternatively, the surface of the substrate is modified and beads may go down anywhere, but they end up at discrete sites
  • the surface of the substrate is modified to contain wells, i e depressions in the surface of the substrate. This may be done as is generally known in the art using a variety of techniques, including, but not limited to, photolithography, stamping techniques, molding techniques and microetching techniques As will be appreciated by those in the art, the technique used will depend on the composition and shape of the substrate
  • the substrate is a fiber optic bundle and the surface of the substrate is a terminal end of the fiber bundle
  • wells are made in a terminal or distal end of a fiber optic bundle comprising individual fibers
  • the cores of the individual fibers are etched, with respect to the cladding, such that small wells or depressions are formed at one end of the fibers The required depth of the wells will depend on the size of the beads to be added to the wells
  • the microspheres are non-covalently associated in the wells, although the wells may additionally be chemically functionalized as is generally described below, cross-linking agents may be used, or a physical barrier may be used, i e a film or membrane over the beads
  • the surface of the substrate is modified to contain chemically modified sites, that can be used to attach, either covalently or non-covalently, the microspheres of the invention to the discrete sites or locations on the substrate "Chemically modified sites" in this context includes, but is not limited to, the addition of a pattern of chemical functional groups including ammo groups, carboxy groups, oxo groups and thiol groups, that can be used to covalently attach microspheres, which generally also contain corresponding reactive functional groups, the addition of a pattern of adhesive that can be used to bind the microspheres (either by prior chemical functionalization for the addition of the adhesive or direct addition of the adhesive), the addition of a pattern of charged groups (similar to the chemical functionalities) for the electrostatic attachment of the microspheres, i e when the microspheres comprise charged groups opposite to the sites, the addition of a pattern of chemical functional groups that renders the sites differentially hydrophobic or hydrophilic, such that the addition of similarly hydrophobic or hydrophilic microspheres under
  • compositions of the invention further comprise a population of microspheres
  • population herein is meant a plurality of beads as outlined above for arrays Within the population are separate subpopulations, which can be a single microsphere or multiple identical microspheres That is, in some embodiments, as is more fully outlined below, the array may contain only a single bead for each bioactive agent, preferred embodiments utilize a plurality of beads of each type
  • microspheres or “beads” or “particles” or grammatical equivalents herein is meant small discrete particles
  • the composition of the beads will vary, depending on the class of bioactive agent and the method of synthesis Suitable bead compositions include those used in peptide, nucleic acid and organic moiety synthesis, including, but not limited to, plastics, ceramics, glass, polystyrene, methylstyrene, acrylic polymers, paramagnetic materials, tho ⁇ a sol, carbon graphited, titanium dioxide, latex or cross-linked dextrans such as Sepharose, cellulose, nylon, cross-linked micelles and teflon may all be used "Microsphere Detection Guide” from Bangs Laboratories, Fishers IN is a helpful guide
  • the beads need not be spherical, irregular particles may be used
  • the beads may be porous, thus increasing the surface area of the bead available for either bioactive agent attachment or tag attachment
  • the bead sizes range from nanometers, i e 100 nm, to millimeters, i e 1 mm, with beads from about 0 2 micron to about 200 microns being preferred, and from about 0 5 to about 5 micron being particularly preferred, although in some embodiments smaller beads may be used
  • Fig 1 illustrates the construction of a bead or microsphere 10 according to the principles of the present invention
  • the microsphere 10 is given a bioactive agent 12, which is typically applied to the microsphere's surface
  • the bioactive agent is designed so that in the presence of the analyte(s) to which it is targeted, an optical signature of the microsphere, possibly including region surrounding it, is changed
  • a key component of the invention is the use of a substrate/bead pairing that allows the association or attachment of the beads at discrete sites on the surface of the substrate, such that the beads do not move during the course of the assay
  • Each microsphere comprises two components a bioactive agent and an optical signature
  • compositions of the invention have two primary uses
  • the compositions are used to detect the presence of a particular target analyte, for example, the presence or absence of a particular nucleotide sequence or a particular protein, such as an enzyme, an antibody or an antigen
  • the compositions are used to screen bioactive agents, i e drug candidates, for binding to a particular target analyte
  • Bioactive agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 daltons
  • Bioactive agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups
  • the bioactive agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups
  • Bioactive agents are also found among biomolecules including peptides, nucleic acids, sacchandes, fatty acids, steroids, punnes, pynmidines, derivatives, structural analogs or combinations thereof Particularly preferred are nucleic acids and proteins
  • Bioactive agents can be obtained from a wide variety of sources including libraries of synthetic or natural compounds For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, este ⁇ fication and/or amidification to produce structural analogs
  • the bioactive agents are proteins
  • protein herein is meant at least two covalently attached ammo acids, which includes proteins, polypeptides, o gopeptides and peptides
  • the protein may be made up of naturally occurring ammo acids and peptide bonds, or synthetic peptidomimetic structures
  • “ammo acid”, or “peptide residue”, as used herein means both naturally occurring and synthetic ammo acids
  • homo-phenylalanine, citrulline and norleucme are considered ammo acids for the purposes of the invention
  • the side chains may be in either the (R) or the (S) configuration
  • the ammo acids are in the (S) or L-configuration If non-naturally occurring side chains are used, non-ammo acid substituents may be used, for example to prevent or retard in vivo degradations
  • the bioactive agents are naturally occurring proteins or fragments of naturally occunng proteins
  • cellular extracts containing proteins, or random or directed digests of protemaceous cellular extracts may be used
  • libraries of procaryotic and eukaryotic proteins may be made for screening in the systems described herein
  • Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred
  • the bioactive agents are peptides of from about 5 to about 30 ammo acids, with from about 5 to about 20 ammo acids being preferred, and from about 7 to about 15 being particularly preferred
  • the peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased” random peptides
  • randomized or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and ammo acids, respectively Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or ammo acid at any position
  • the synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized bioactive protemaceous agents
  • a library of bioactive agents are used The library should provide a sufficiently structurally diverse population of bioactive agents to effect a probabilistically sufficient range of binding to target analytes Accordingly, an interaction library must be large enough so that at least one of its members will have a structure that gives it affinity for the target analyte Although it is difficult to gauge the required absolute size of an interaction library, nature provides a hint with the immune response a diversity of 10 7 -10 8 different antibodies provides at least one combination with sufficient affinity to interact with most potential antigens faced by an organism Published in vitro selection techniques have also shown that a library size of 10 7 to 10 ⁇ is sufficient to find structures with affinity for the target Thus, in a preferred embodiment, at least 10 6 , preferably at least 10 7 , more preferably at least 10 8 and most preferably at least 10 9 different bioactive agents are simultaneously analyzed in the subject methods Preferred methods maximize library size and diversity In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position.
  • the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities.
  • the nucleotides or amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of cysteines, for cross-linking, pralines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.
  • the bioactive agents are nucleic acids (generally called “probe nucleic acids” or “candidate probes” herein).
  • nucleic acid or “oligonucleotide” or grammatical equivalents herein means at least two nucleotides covalently linked together.
  • a nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below, nucleic acid analogs are included that may have alternate backbones, comprising, for example, phosphoramide (Beaucage, et al., Tetrahedron, 49(10):1925 (1993) and references therein; Letsinger, J. Or ⁇ . Chem..
  • nucleic acids include those with positive backbones (Denpcy, et al., Proc Natl. Acad. Sci. USA. 92:6097 (1995)); non-ionic backbones (U.S. Patent Nos. 5,386,023; 5,637,684; 5,602,240; 5,216,141; and 4,469,863; Kiedrowshi, et al., Angew. Chem. Intl. Ed. English. 30:423 ( 1991 ) ; Letsinger, ef al. , J. Am. Chem. Soc. 110:4470 ( 1988) ;
  • nucleic acids containing one or more carbocyclic sugars are also included within the definition of nucleic acids (see Jenkins, et al., Chem. Soc. Rev.. (1995) pp. 169-176).
  • nucleic acid analogs are described in Rawls, C & E News, June 2, 1997, page 35. All of these references are hereby expressly incorporated by reference.
  • nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence
  • the nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxy ⁇ bo- and ⁇ bo-nucleotides, and any combination of bases, including uracil, adenme, thymme, cytosme, guanme, inosme, xanthan e, hypoxanthanine, isocytosme, isoguanme, and basepair analogs such as
  • nucleic acid bioactive agents may be naturally occunng nucleic acids, random nucleic acids, or "biased" random nucleic acids
  • digests of procaryotic or eukaryotic genomes may be used as is outlined above for proteins
  • probes of the present invention are designed to be complementary to a target sequence (either the target analyte sequence of the sample or to other probe sequences, as is described herein), such that hybridization of the target and the probes of the present invention occurs
  • a target sequence either the target analyte sequence of the sample or to other probe sequences, as is described herein
  • This complementarity need not be perfect, there may be any number of base pair mismatches that will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention
  • the sequence is not a complementary target sequence
  • substantially complementary herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under the selected reaction conditions
  • High stringency conditions are known in the art, see for example Maniatis et al , Molecular Cloning A Laboratory Manual, 2d Edition, 1989, and Short Protocols in Molecular Biology, ed Ausubel, et al , both of which are hereby incorporated by reference
  • Stringent conditions are
  • target sequence' or grammatical equivalents herein means a nucleic acid sequence on a single strand of nucleic acid
  • the target sequence may be a portion of a gene, a regulatory sequence, genomic DNA, cDNA, RNA including mRNA and rRNA, or others It may be any length, with the understanding that longer sequences are more specific
  • the complementary target sequence may take many forms For example, it may be contained within a larger nucleic acid sequence, i e all or part of a gene or mRNA, a restriction fragment of a plasmid or genomic DNA, among others
  • probes are made to hybridize to target sequences to determine the presence or absence of the target sequence in a sample Generally speaking, this term will be understood by those skilled in the art
  • the bioactive agents are organic chemical moieties, a wide variety of which are available in the literature
  • each bead comprises a single type of bioactive agent, although a plurality of individual bioactive agents are preferably attached to each bead
  • preferred embodiments utilize more than one microsphere containing a unique bioactive agent, that is, there is redundancy built into the system by the use of subpopulations of microspheres, each microsphere in the subpopulation containing the same bioactive agent
  • the bioactive agents may either be synthesized directly on the beads, or they may be made and then attached after synthesis
  • linkers are used to attach the bioactive agents to the beads, to allow both good attachment, sufficient flexibility to allow good interaction with the target molecule, and to avoid undesirable binding reactions
  • the bioactive agents are synthesized directly on the beads
  • many classes of chemical compounds are currently synthesized on solid supports, such as peptides, organic moieties, and nucleic acids It is a relatively straightforward matter to adjust the current synthetic techniques to use beads
  • the bioactive agents are synthesized first, and then covalently attached to the beads.
  • this will be done depending on the composition of the bioactive agents and the beads
  • the functionalization of solid support surfaces such as certain polymers with chemically reactive groups such as thiols, amines, carboxyls, etc is generally known in the art Accordingly, "blank" microspheres may be used that have surface chemistries that facilitate the attachment of the desired functionality by the user Some examples of these surface chemistries for blank microspheres are listed in Table I
  • bioactive agents containing carbohydrates may be attached to an ammo-functionalized support, the aldehyde of the carbohydrate is made using standard techniques, and then the aldehyde is reacted with an ammo group on the surface
  • a sulfhydryl linker may be used
  • sulfhydryl reactive linkers such as SPDP, maleimides, ⁇ -haloacetyls, and pyndyl disulfides (see for example the 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200, incorporated herein by reference) which can be used to attach cysteme containing protemaceous agents to the support
  • an ammo group on the bioactive agent may be used for attachment to an ammo group on the surface
  • a large number of stable bifunctional groups are well known in the art, including homo
  • bioactive agents may be attached in a variety of ways, including those listed above What is important is that manner of attachment does not significantly alter the functionality of the bioactive agent, that is, the bioactive agent should be attached in such a flexible manner as to allow its interaction with a target
  • NH 2 surface chemistry microspheres are used Surface activation is achieved with a 2 5% glutaraldehyde in phosphate buffered saline (10 mM) providing a pH of 6 9 (138 mM NaCI, 2 7 mM,
  • the microspheres comprise an optical signature that can be used to identify the attached bioactive agent That is, each subpopulation of microspheres comprise a unique optical signature or optical tag that can be used to identify the unique bioactive agent of that subpopulation of microspheres, a bead comprising the unique optical signature may be distinguished from beads at other locations with different optical signatures As is outlined herein, each bioactive agent will have an associated unique optical signature such that any microspheres comprising that bioactive agent will be identifiable on the basis of the signature As is more fully outlined below, it is possible to reuse or duplicate optical signatures within an array, for example, when another level of identification is used, for example when beads of different sizes are used, or when the array is loaded sequentially with different batches of beads
  • the optical signature is generally a mixture of reporter dyes, preferably fluoroscent
  • matrices of unique tags may be generated This may be done by covalently attaching the dyes to the surface of the beads, or alternatively, by entrapping the dye within the bead
  • the dyes may be chromophores or phosphors but are preferably fluorescent dyes, which due to their strong signals provide a good signal-to-noise ratio for decoding
  • Suitable dyes for use in the invention include, but are not limited to, fluorescent lanthanide complexes, including those of Europium and Terbium, fluorescein, rhodamme, tetramethylrhodamine, eosm, erythrosin, coumarm, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cas
  • the encoding can be accomplished in a ratio of at least two dyes, although more encoding dimensions may be added in the size of the beads, for example
  • the labels are distinguishable from one another, thus two different labels may comprise different molecules (i e two different fluors) or, alternatively, one label at two different concentrations or intensity
  • the dyes are covalently attached to the surface of the beads This may be done as is generally outlined for the attachment of the bioactive agents, using functional groups on the surface of the beads As will be appreciated by those in the art, these attachments are done to minimize the effect on the dye
  • the dyes are non-covalently associated with the beads, generally by entrapping the dyes in the bead matrix or pores of the beads
  • reporter dyes 14 are added to the microsphere 10 with the encoding occurring in the ratio of two or more dyes
  • the reporter dyes 14 may be chromophore-type Fluorescent dyes, however, are preferred because the strength of the fluorescent signal provides a better signal-to-noise ratio when decoding Additionally, encoding in the ratios of the two or more dyes, rather than single dye concentrations, is preferred since it provides msensitivity to the intensity of light used to interrogate the reporter dye's signature and detector sensitivity
  • the dyes are added to the bioactive agent, rather than the beads, although this is generally not preferred
  • Fig 2 is a process diagram illustrating the preparation of the microspheres
  • step 50 an aliquot of stock microspheres are vacuum filtered to produce a dry cake
  • microsphere copolymers of methylstyrene (87%) and divmylbenzene (13%) are used that have a 3 1 micrometer ( ⁇ m) diameter
  • Dyes may be covalently bonded to the microspheres' surface, but this consumes surface binding sites desirably reserved for the chemical functionalities
  • the microspheres are placed in a dye solution comprising a ratio of two or more fluorescent reporter dyes dissolved in an organic solvent that will swell the microspheres, e g , dimethylformamide (DMF)
  • DMF dimethylformamide
  • Examples of other dyes that can be used are Oxazin (662/705), IR-144 (745/825), IR-140 (776/882), IR-125 (786/800) from Exciton, and Bodipy 665/676 from Molecular Probes, and Naphthofluorescem (605/675) also from Molecular Probes Lathanide complexes may also be used Fluorescent dyes emitting in other than the near infrared may also be used Chromophore dyes are still another alternative that produce an optically interrogatable signature, as are more exotic formulations using Raman scattering-based dyes or polarizing dyes, for example The ability of a particular dye pair to encode for different chemical functionalities depends on the resolution of the ratiometnc measurement Conservatively, any dye pair should provide the ability to discriminate at least twenty different ratios The number of unique combinations of two dyes made with a particular dye set is shown in the following Table II
  • step 54 the microspheres are vacuum filtered to remove excess dye The microspheres are then washed in water or other liquid that does not swell the microspheres, but in which the dyes are still soluble This allows the residual dye to be rinsed off without rinsing the dye out of the microspheres
  • step 56 the bioactive agent is attached to the microsphere surface if not already present It should be understood that surface chemistries may be present throughout the microsphere's volume, and not limited to the physical circumferential surface
  • the microspheres are added to discrete sites on the surface of the substrate
  • the association of the beads on the surface may comprise a covalent bonding of the bead to the surface, for example when chemical attachment sites are added to both the substrate and the bead, an electrostatic or hydroaffinity, when charge, hydrophobicity or hydrophilicity is used as the basis of the binding, a physical yet non-covalent attachment such as the use of an adhesive, or a spatial attachment, for example the localization of a bead within a well
  • it may be preferable to effect a more permanent attachment after the initial localization for example through the use of cross-linking agents, a film or membrane over the array
  • Fig 3 schematically illustrates a microsphere system, or array of microspheres, 100 formed from microsphere populations that have different bioactive agents While a large number of microspheres and bioactive agents may be employed, in this example only three microsphere populations are shown
  • the individual populations, or subpopulations, of microspheres are represented as IOa,IOb,IOc carrying respective bioactive agents or probe sequences 60a,60b,60c, as exemplary functionalities
  • the subpopulations may be combined in either a random or ordered fashion on a substrate, with a corresponding distribution of their respective bioactive agents
  • each microsphere in each subpopulation is encoded with a common optical signature
  • the subpopulation represented by microsphere 10a has a two reporter dye ratio of 10 1
  • the subpopulation of microspheres 10b has a ratio of 1 1 of the same reporter dyes
  • subpopulation of microspheres 10c has a ratio of 1 10 of the reporter dyes
  • the randomly mixed subpopulations of microspheres are useful as an analytic chemistry system based on each of the carried bioactive agents 60a-60c separately
  • the microsphere array or system 100 is exposed to an analyte of interest to which some of the bioactive agents may interact Any interaction changes the optical response of the corresponding microspheres by, for example, binding a fluorescent dye 64 to the microspheres
  • identifying the chemical functionalities of the microsphere in which the optical signature has changed using the encoded dye combinations, information regarding the chemical identity and concentration of an analyte may be gained based upon the interaction or noninteraction of each bioactive agent contained in the microsphere system 100
  • microspheres exhibiting activity or changes in their optical signature may be identified by a conventional optical tram and optical detection system Decoding can also be performed either manually or automatically with the aid of a computer Depending on the particular encoding or reporter dyes used and their operative wavelengths, optical filters designed for a particular wavelengths may be employed for optical interrogation of the microspheres of bioactive agents In a preferred embodiment, the analytic chemistry microsphere system is used in conjunction with an optical fiber bundle or fiber optic array as a substrate
  • Fig 4 is a schematic block diagram showing a microsphere-based analytic chemistry system employing a fiber optic assembly 200 with an optical detection system
  • the fiber optic assembly 200 comprises a fiber optic bundle or array 202, that is constructed from clad fibers so that light does not mix between fibers
  • a microsphere array or system, 100 is attached to the bundle's distal end 212, with the proximal end 214 being received by a z-translation stage 216 and x-y m ⁇ cropos ⁇ t ⁇ oner 218
  • These two components act in concert to properly position the proximal end 214 of the bundle 202 for a microscope objective lens 220
  • Light collected by the objective lens 220 is passed to a reflected light fluorescence attachment with three pointer cube slider 222
  • the attachment 222 allows insertion of light from a 75 Watt Xe lamp 224 through the objective lens 220 to be coupled into the fiber bundle 202
  • the light from the source 224 is condensed by condensing lens 226,
  • the microsphere array or system 100 may be attached to the distal end of the optical fiber bundle using a variety of compatible processes It is important that the microspheres are located close to the end of the bundle This ensures that the light returning in each optical fiber predominantly comes from only a single microsphere This feature is necessary to enable the interrogation of the optical signature of individual microspheres to identify reactions involving the microsphere's functionality and also to decode the dye ratios contained in those microspheres
  • the adhesion or affixing technique must not chemically insulate the microspheres from the analyte
  • Figs 5A and 5B are micrographs of the distal end 212 of the bundle 202 illustrating the preferred technique for attaching the microspheres 10 to the bundle 202.
  • Wells 250 are formed at the center of each optical fiber 252 of the bundle 202.
  • the size of the wells 250 are coordinated with the size of the microspheres 10 so that the microspheres 10 can be placed within the wells 250.
  • each optical fiber 252 of the bundle 202 conveys light from the single microsphere 10 contained in 5 its well Consequently, by imaging the end of the bundle 202 onto the CCD array 236, the optical signatures of the microspheres 10 are individually interrogatable
  • Fig 6 illustrates how the microwells 250 are formed and microspheres 10 placed in the wells
  • a 1 mm hexagonally-packed imaging fiber contains approximately 20,600 individual optical fibers that have cores approximately 3 7 ⁇ m across (Part No ET26 from Galileo Fibers)
  • the cores of each fiber are hexagonally shaped as a result the starting preform, that is, during drawing the fiber does not usually change shape In some cases, the shape can be circular, however
  • both the proximal and distal ends 212,214 of the fiber bundle 202 are successively polished on 12 ⁇ m, 9 ⁇ m, 3 ⁇ m, 1 ⁇ m, and 0 3 ⁇ m lapping films Subsequently, the ends can be inspected for scratches on an atomic force microscope
  • a representative etching is performed on the distal end 212 of the bundle 202.
  • a solution of 0 2 grams NH 4 F (ammonium fluoride) with 600 ⁇ l distilled H 2 0 and 100 ⁇ 1 of HF (hydrofluoric acid), 50% stock solution, may be used The distal end 212 is etched in this solution for a specified time, preferably approximately 30 to 600 seconds, with about 80 seconds being preferred
  • the bundle end Upon removal from this solution, the bundle end is immediately placed in deionized water to stop any further etching in step 274.
  • the fiber is then rinsed in running tap water At this stage, sonication is preferably performed for several minutes to remove any salt products from the reaction The fiber is then allowed to air dry
  • the foregoing procedure produces wells by the anisotr opic etching of the fiber cores 254 favorably with respect to the cladding 256 for each fiber of the bundle 202.
  • the wells have approximately the diameter of the cores 254, 3 7 ⁇ m This diameter is selected to be slightly larger than the diameters of the microspheres used, 3 1 ⁇ m, in the example
  • the preferential etching occurs because the pure silica of the cores 254 etches faster in the presence of hydrofluoric acid than the germanium-doped silica claddings 256.
  • microspheres are then placed in the wells 250 in step 276 according to a number of different techniques
  • the placement of the microspheres may be accomplished by dripping a solution containing the desired randomly mixed subpopulations of the microspheres over the distal end 212, sonicating the bundle to settle the microspheres in the wells, and allowing the microsphere solvent to evaporate
  • the subpopulations could be added serially to the bundle end
  • Microspheres 10 may then be fixed into the wells 250 by using a dilute solution of sulfonated Nation that is dripped over the end Upon solvent evaporation, a thin film of Nafion was formed over the microspheres which holds them in place
  • This approach is compatible for fixing microspheres for pH indication that carry FITC functionality
  • the resulting array of fixed microspheres retains its pH sensitivity due to the permeability of the sulfonated Nafion to hydrogen ions This approach, however, can not be employed genencally as Nafion is imper
  • microsphere swelling to entrap each microsphere 10 in its corresponding microwell 250
  • the microspheres are first distributed into the microwells 250 by sonicating the microspheres suspended in a non-swelling solvent in the presence of the microwell array on the distal end 212. After placement into the microwells, the microspheres are subsequently exposed to an aqueous buffer in which they swell, thereby physically entrapping them, analogous to muffins rising in a muffin tin
  • compositions of the invention may be made in a variety of ways
  • the arrays are made by adding a solution or slurry comprising the beads to a surface containing the sites for attachment of the beads This may be done in a variety of buffers, including aqueous and organic solvents, and mixtures The solvent can evaporate, and excess beads removed
  • a novel method of loading the beads onto the array comprises exposing the array to a solution of particles (including microspheres and cells) and then applying energy, e g agitating or vibrating the mixture This results in an array comprising more tightly associated particles, as the agitation is done with sufficient energy to cause weakly-associated beads to fall off (or out, in the case of wells) These sites are then available to bind a different bead In this way, beads that exhibit a high affinity for the sites are selected Arrays made in this way have two mam advantages as compared to a more static loading first of all, a higher percentage of the sites can be filled easily, and secondly, the arrays thus loaded show a substantial decrease in bead loss during assays
  • these methods are used to generate arrays that have at least about 50% of the sites filled, with at least about 75% being preferred, and at least about 90% being particularly preferred Similarly, arrays
  • the substrate comprising the surface with the discrete sites is immersed into a solution comprising the particles (beads, cells, etc )
  • the surface may comprise wells, as is described herein, or other types of sites on a patterned surface such that there is a differential affinity for the sites This diffemetial affinity results in a competitive process, such that particles that will associate more tightly are selected
  • the entire surface to be "loaded” with beads is in fluid contact with the solution
  • This solution is generally a slurry ranging from about 10,000 1 beads solution (vol vol) to 1 1 1
  • the solution can comprise any number of reagents, including aqueous buffers, organic solvents, salts, other reagent components, etc
  • the solution preferably comprises an excess of beads, that is, there are more beads than sites on the array Preferred embodiments utilize two-fold to billion-fold excess of beads
  • the immersion can mimic the assay conditions, for example, if the array is to be "dipped" from above into a microtiter plate comprising samples, this configuration can be repeated for the loading, thus minimizing the beads that are likely to fall out due to gravity
  • the substrate, the solution, or both are subjected to a competitive process, whereby the particles with lower affinity can be disassociated from the substrate and replaced by particles exhibiting a higher affinity to the site
  • This competitive process is done by the introduction of energy, in the form of heat, sonication, stirring or mixing, vibrating or agitating the solution or substrate, or both
  • a preferred embodiment utilizes agitation or vibration
  • the amount of manipulation of the substrate is minimized to prevent damage to the array
  • preferred embodiments utilize the agitation of the solution rather than the array, although either will work
  • this agitation can take on any number of forms, with a preferred embodiment utilizing microtiter plates comprising bead solutions being agitated using microtiter plate shakers
  • the agitation proceeds for a period of time sufficient to load the array to a desired fill Depending on the size and concentration of the beads and the size of the array, this time may range from about 1 second to days, with from about 1 minute to about 24 hours being preferred
  • sites of an array may comprise a bead, that is, there may be some sites on the substrate surface which are empty.
  • microspheres One of the most common microsphere formations is tentagel, a styrene-polyethylene glycol co-polymer These microspheres are unswollen in nonpolar solvents such as hexane and swell approximately 20-40% in volume upon exposure to a more polar or aqueous media This approach is extremely desirable since it does not significantly compromise the diffusional or permeability properties of the microspheres themselves
  • Figs 7A and 7B show polymer coated microspheres 12 in wells 250 after their initial placement and then after tapping and exposure to air pulses
  • Figs 7A and 7B illustrate that there is no appreciable loss of microspheres from the wells due to mechanical agitation even without a specific fixing technique This effect is probably due to electrostatic forces between the microspheres and the optical fibers These forces tend to bind the microspheres within the wells Thus, in most environments, it may be unnecessary to use any chemical or mechanical fixation for the microspheres
  • a sonication step may be used to place beads in the wells
  • sites of an array may comprise a bead, that is, there may be some sites on the substrate surface which are empty In addition, there may be some sites that contain more than one bead, although this is not preferred In some embodiments, for example when chemical attachment is done, it is possible to attach the beads in a non-random or ordered way For example, using photoactivatible attachment linkers or photoactivatible adhesives or masks, selected sites on the array may be sequentially rendered suitable for attachment, such that defined populations of beads are laid down
  • the size of the array will be set by the number of unique optical signatures, it is possible to "reuse" a set of unique optical signatures to allow for a greater number of test sites This may be done in several ways, for example, by using a positional coding scheme within an array, different sub-bundles may reuse the set of optical signatures Similarly, one embodiment utilizes bead size as a coding modality, thus allowing the reuse of the set of unique optical signatures for each bead size Alternatively, sequential partial loading of arrays with beads can also allow the reuse of optical signatures
  • a spatial or positional coding system is done
  • each subarray is an "area code", that can have the same tags (i e telephone numbers) of other subarrays, that are separated by virtue of the location of the subarray
  • tags i e telephone numbers
  • the same unique tags can be reused from bundle to bundle
  • the use of 50 unique tags in combination with 100 different subarrays can form an array of 5000 different bioactive agents
  • additional encoding parameters can be added, such as microsphere size
  • the use of different size beads may also allow the reuse of sets of optical signatures, that is, it is possible to use microspheres of different sizes to expand the encoding dimensions of the microspheres
  • Optical fiber arrays can be fabricated containing pixels with different fiber diameters or cross-sections, alternatively, two or more fiber optic bundles, each with different cross-sections of the individual fibers, can be added together to form a larger bundle, or, fiber optic bundles with fiber of the same size cross-sections can be used, but just with different sized beads With different diameters, the largest wells can be filled with the largest microspheres and then moving onto progressively smaller microspheres in the smaller wells until all size wells are then filled In this manner, the same dye ratio could be used to encode microspheres of different sizes thereby expanding the number of different oligonucleotide sequences or chemical functionalities present in the array
  • fiber optic substrates this as well as the other methods outlined
  • arrays are made of a large spectrum of chemical functionalities utilizing the compositions of invention comprising microspheres and substrates with discrete sites on a surface
  • prior art sensors which can be adapted for use in the present invention include four broad classifications of microsphere sensors 1) basic indicator chemistry sensors, 2) enzyme-based sensors, 3) immuno-based sensors (both of which are part of a broader general class of protein sensors), and 4) geno-sensors
  • bioactive agents are used to detect chemical compounds
  • a large number of basic indicator sensors have been previously demonstrated Examples include
  • Enzyme-based microsphere sensors have also been demonstrated and could be manifest on microspheres Examples include
  • the induced change in the optical signal due to the presence of the enzyme-sensitive chemical analyte occurs indirectly in this class of chemical functionalities
  • the microsphere-bound enzyme e g , glucose oxidase
  • decomposes the target analyte, e g , glucose consume a co-substrate, e g , oxygen, or produce some by-product, e g , hydrogen peroxide
  • An oxygen sensitive dye is then used to trigger the signal change
  • Immuno-based microsphere sensors have been demonstrated for the detection for environmental pollutants such as pesticides, herbicides, PCB's and PAH's Additionally, these sensors have also been used for diagnostics, such as bacterial (e g , leprosy, cholera, lyme disease, and tuberculosis), viral (e , HIV, herpes simplex, cytomegalovirus), fungal (e g , aspergillosis, candidiasis, cryptococcoses
  • Microsphere genosensors may also be made (see the Examples) These are typically constructed by attaching a probe sequence to the microsphere surface chemistry, typically via an NH 2 group A fluorescent dye molecule, e , fluorescein, is attached to the target sequence, which is in solution The optically interrogatable signal change occurs with the binding of the target sequences to the microsphere This produces a higher concentration of dye surrounding the microsphere than in the solution generally
  • a few demonstrated probe and target sequences see Ferguson, J A et al Nature Biotechnology, Vol 14, Dec 1996, are listed below in Table V
  • Hybridization indicators preferentially associate with double stranded nucleic acid
  • Hybridization indicators include mtercalators and minor and/or major groove binding moieties
  • mtercalators may be used, since intercalation generally only occurs in the presence of double stranded nucleic acid, only in the presence of target hybridization will the label light up
  • sensors may be made to detect nucleic acids, proteins (including enzyme sensors and immunosensors), lipids, carbohydrates, etc, similarly, these sensors may include bioactive agents that are nucleic acids, proteins, lipids, carbohydrates, etc
  • a single array sensor may contain different binding ligands for multiple types of analytes, for example, an array sensor for HIV may contain multiple nucleic acid probes for direct detection of the viral genome, protein binding ligands for direct detection of the viral particle, immuno-components for the detection of anti-HIV antibodies, etc
  • compositions of the invention may include other components, such as light sources, optical components such as lenses and filters, detectors, computer components for data analysis, etc.
  • the arrays of the present invention are constructed such that information about the identity of the bioactive agent is built into the array, such that the random deposition of the beads on the surface of the substrate can be "decoded” to allow identification of the bioactive agent at all positions This may be done in a variety of ways
  • the beads are loaded onto the substrate and then the array is decoded, prior to running the assay This is done by detecting the optical signature associated with the bead at each site on the array This may be done all at once, if unique optical signatures are used, or sequentially, as is generally outlined above for the "reuse" of sets of optical signatures Alternatively, decoding may occur after the assay is run
  • compositions find use in a number of applications
  • a sample containing a target analyte (whether for detection of the target analyte or screening for binding partners of the target analyte) is added to the array, under conditions suitable for binding of the target analyte to at least one of the bioactive agents, i e generally physiological conditions
  • the presence or absence of the target analyte is then detected
  • this may be done in a variety of ways, generally through the use of a change in an optical signal
  • This change can occur via many different mechanisms
  • a few examples include the binding of a dye-tagged analyte to the bead, the production of a dye species on or near the beads, the destruction of an existing dye species, a change in the optical signature upon analyte interaction with dye on bead, or any other optical interrogatable event
  • the change in optical signal occurs as a result of the binding of a target analyte that is labeled, either directly or indirectly, with a detectable label, preferably an optical label such as a fluorochrome
  • a detectable label preferably an optical label such as a fluorochrome
  • a protemaceous target analyte when used, it may be either directly labeled with a fluor, or indirectly, for example through the use of a labeled antibody
  • nucleic acids are easily labeled with fluorochromes, for example during PCR amplification as is known in the art
  • an intercalating dye e , ethidium bromide
  • the target analyte such as an enzyme generates a species (for example, a fluorescent product) that is either directly or indirectly detectable optically
  • a change in the optical signature may be the basis of the optical signal
  • the interaction of some chemical target analytes with some fluorescent dyes on the beads may alter the optical signature, thus generating a different optical signal
  • fluorophore denvatized receptors may be used in which the binding of the ligand alters the signal
  • sensor redundancy is used
  • a plurality of sensor elements, e g beads, comprising identical bioactive agents are used That is, each subpopulation comprises a plurality of beads comprising identical bioactive agents (e g binding ligands)
  • each subpopulation comprises a plurality of beads comprising identical bioactive agents (e g binding ligands)
  • bioactive agents e g binding ligands
  • a plurality of identical sensor elements are used as will be appreciated by those in the art, the number of identical sensor elements will vary with the application and use of the sensor array In general, anywhere from 2 to thousands may be used, with from 2 to 100 being preferred, 2 to 50 being particularly preferred and from 5 to 20 being especially preferred In general, preliminary results indicate that roughly 10 beads gives a sufficient advantage, although for some applications, more identical sensor elements can be used
  • the optical response signals from a plurality of sensor beads within each bead subpopulation can be manipulated and analyzed in a wide variety of ways, including baseline adjustment, averaging, standard deviation analysis, distribution and cluster analysis, confidence interval analysis, mean testing, etc
  • the first manipulation of the optical response signals is an optional baseline adjustment
  • the standardized optical responses are adjusted to start at a value of 0 0 by subtracting the integer 1 0 from all data points Doing this allows the baseline-loop data to remain at zero even when summed together and the random response signal noise is canceled out
  • the vapor pulse-loop temporal region frequently exhibits a characteristic change in response, either positive, negative or neutral, prior to the vapor pulse and often requires a baseline adjustment to overcome noise associated with drift in the first few data points due to charge buildup in the CCD camera If no drift is present, typically the baseline from the first data point for each bead sensor is subtracted from all the response data for the same bead If drift is observed, the average baseline from the first ten data points for each bead sensor is substracted from the all the response data for the same bead By applying this baseline adjustment, when multiple bead responses are added together they can be amplified while the baseline remains
  • signal summing is done by simply adding the intensity values of all responses at each time point, generating a new temporal response comprised of the sum of all bead responses These values can be baseline-adjusted or raw As for all the analyses described herein, signal summing can be performed in real time or during post-data acquisition data reduction and analysis In one embodiment, signal summing is performed with a commercial spreadsheet program (Excel, Microsoft, Redmond, WA) after optical response data is collected
  • cummulative response data is generated by simply adding all data points in successive time intervals This final column, comprised of the sum of all data points at a particular time interval, may then be compared or plotted with the individual bead responses to determine the extent of signal enhancement or improved signal-to-noise ratios as shown in Figs 14 and 15
  • the mean of the subpopulation (i e the plurality of identical beads) is determined, using the well known Equation 1
  • the subpopulation may be redefined to exclude some beads if necessary (for example for obvious outliers, as discussed below)
  • the standard deviation of the subpopulation can be determined, generally using Equation 2 (for the entire subpopulation) and Equation 3 (for less than the entire subpopulation) Equation 2
  • the subpopulation may be redefined to exclude some beads if necessary (for example for obvious outliers, as discussed below)
  • statistical analyses are done to evaluate whether a particular data point has statistical validty within a subpopulation by using techniques including, but not limited to, t distribution and cluster analysis This may be done to statistically discard outliers that may otherwise skew the result and increase the signal-to-noise ratio of any particular experiment This may be done using Equation 4 Equation 4
  • the quality of the data is evaluated using confidence intervals, as is known in the art Confidence intervals can be used to facilitate more comprehensive data processing to measure the statistical validity of a result
  • statistical parameters of a subpopulation of beads are used to do hypothesis testing
  • tests concerning means also called mean testing
  • statistical evaluation is done to determine whether two subpopulations are different For example, one sample could be compared with another sample for each subpopulation within an array to determine if the variation is statistically significant
  • mean testing can also be used to differentiate two different assays that share the same code If the two assays give results that are statistically distinct from each other, then the subpopulations that share a common code can be distinguished from each other on the basis of the assay and the mean test, shown below in Equation 5
  • analyzing the distribution of individual members of a subpopulation of sensor elements may be done For example, a subpopulation distribution can be evaluated to determine whether the distribution is binomial, Poisson, hypergeometnc, etc
  • a preferred embodiment utilizes a plurality of sensor elements that are directed to a single target analyte but yet are not identical
  • a single target nucleic acid analyte may have two or more sensor elements each comprising a different probe This adds a level of confidence as non-specific binding interactions can be statistically minimized
  • the redundant nucleic acid probes may be overlapping, adjacent, or spatially separated However, it is preferred that two probes do not compete for a single binding site, so adjacent or separated probes are preferred
  • preferred embodiments utilize bioactive agent binding agents that bind to different parts of the target For example, when antibodies (or antibody fragments) are used as bioactive agents for the binding of target proteins, preferred embodiments utilize antibodies to different epitopes
  • a plurality of different sensor elements may be used, with from about 2 to about 20 being preferred, and from about 2 to about 10 being especially preferred, and from 2 to about 5 being particularly preferred, including 2, 3, 4 or 5 However, as above, more may also be used, depending on the application
  • Bead summing when beads are used, is the increase in sensitivity that can occur Detection limits in the zeptomole range can be observed
  • the presence or absence of the target analyte may be done using changes in other optical or non-optical signals, including, but not limited to, surface enhanced Raman spectroscopy, surface plasmon resonance, radioactivity, etc
  • the assays may be run under a variety of experimental conditions, as will be appreciated by those in the art
  • a variety of other reagents may be included in the screening assays
  • These include reagents like salts, neutral proteins, e g albumin, detergents, etc which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions
  • reagents that otherwise improve the efficiency of the assay such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc , may be used
  • the mixture of components may be added in any order that provides for the requisite binding
  • Various blocking and washing steps may be utilized as is known in the art
  • the compositions are used to probe a sample solution for the presence or absence of a target analyte
  • target analyte or “analyte” or grammatical equivalents herein is meant any atom, molecule, ion, molecular ion, compound or particle to be either detected or evaluated for binding partners
  • a large number of analytes may be used in the present invention, basically, any target analyte can be used which binds a bioactive agent or for which a binding partner (i e drug candidate) is sought
  • Suitable analytes include organic and inorganic molecules, including biomolecules
  • suitable target analytes include, but are not limited to, an environmental pollutant (including pesticides, insecticides, toxins, etc ), a chemical (including solvents, polymers, organic materials, etc ), therapeutic molecules (including therapeutic and abused drugs, antibiotics, etc ), biomolecule
  • the target analyte is a protein
  • Suitable protein target analytes include, but are not limited to, (1 ) immunoglobulms, (2) enzymes (and other proteins), (3) hormones and cytokmes (many of which serve as ligands for cellular receptors), and (4) other proteins
  • the target analyte is a nucleic acid
  • the probes are used in genetic diagnosis
  • probes can be made using the techniques disclosed herein to detect target sequences such as the gene for nonpolyposis colon cancer, the BRCA1 breast cancer gene, P53, which is a gene associated with a variety of cancers, the Apo E4 gene that indicates a greater risk of Alzheimer's disease, allowing for easy presymptomatic screening of patients, mutations in the cystic fibrosis gene, or any of the others well known in the art
  • viral and bacterial detection is done using the complexes of the invention
  • probes are designed to detect target sequences from a variety of bacteria and viruses
  • current blood-screening techniques rely on the detection of anti-
  • HIV antibodies The methods disclosed herein allow for direct screening of clinical samples to detect HIV nucleic acid sequences, particularly highly conserved HIV sequences In addition, this allows direct monitoring of circulating virus within a patient as an improved method of assessing the efficacy of anti-viral therapies Similarly, viruses associated with leukemia, HTLV-I and HTLV-II, may be detected in this way Bacterial infections such as tuberculosis, clymidia and other sexually transmitted diseases, may also be detected.
  • the nucleic acids of the invention find use as probes for toxic bacteria in the screening of water and food samples For example, samples may be treated to lyse the bacteria to release its nucleic acid, and then probes designed to recognize bacterial strains, including, but not limited to, such pathogenic strains as, Salmonella, Campylobader, Vibrio cholerae, Leishmama, enterotoxic strains of E coli, and Legionnaire's disease bacteria Similarly, bioremediation strategies may be evaluated using the compositions
  • the probes are used for forensic "DNA fingerprinting" to match crime-scene DNA against samples taken from victims and suspects
  • the probes in an array are used for sequencing by hybridization
  • the present invention also finds use as a methodology for the detection of mutations or mismatches in target nucleic acid sequences
  • STRs short tandem repeats
  • SNPs single nucleotide polymorphisms
  • compositions of the invention are used to screen bioactive agents to find an agent that will bind, and preferably modify the function of, a target molecule
  • an agent that will bind, and preferably modify the function of, a target molecule As above, a wide variety of different assay formats may be run, as will be appreciated by those in the art Generally, the target analyte for which a binding partner is desired is labeled, binding of the target analyte by the bioactive agent results in the recruitment of the label to the bead, with subsequent detection
  • the binding of the bioactive agent and the target analyte is specific, that is, the bioactive agent specifically binds to the target analyte
  • specifically bind herein is meant that the agent binds the analyte, with specificity sufficient to differentiate between the analyte and other components or contaminants of the test sample
  • binding which is not highly specific, for example, the systems may use different binding ligands, for example an array of different ligands, and detection of any particular analyte is via its "signature" of binding to a panel of binding ligands, similar to the manner in which "electronic noses" work This finds particular utility in the detection of chemical analytes
  • the binding should be sufficient to remain bound under the conditions of the assay, including wash steps to remove non-specific binding, although in some embodiments, wash steps are not desired, i e for detecting low affinity binding partners
  • wash steps are not desired, i e for detecting low affinity binding partners
  • a range of ratios of light intensities are selected that are representative of the optical signature for the dye ratio of the subpopulation based on the quantum yield of the two dyes
  • Bioactive agent B-Galactosidase, Target substrate fluorescein di-B-galactopyranoside (FDG)
  • Target substrate fluorescein di-B-D-glucuronide (FDGicu)
  • Reporter dye ratio 1 10 ratio of DilC TRC, which translates to an optical signature of DilC A mtensitv-ave DilC background 0 2136 + 0 03
  • the respective enzymes on the microspheres catalyze the breakdown of the substrates producing fluorescein which is fluorescent, emitting light at 530 nanometers when excited at 490 nm
  • the production of fluorescein localized to particular beads is then monitored
  • the localization of fluorescein around the microspheres is increased by using a substrate solution of 90% glycerol and 10% substrate The glycerol inhibits the generated fluorescein from diffusing away from the microsphere reaction sites
  • the substrate solution is then introduced and CCD images acquired every 30 seconds to a minute for 30 minutes While illuminating the microspheres with 490 nm light and collecting emissions in the 530 nm range Fiber is then placed back in the buffer solution and another background image captured Those beads that generate a signal indicative of fluorescein production are decoded Depending in the ratio of the intensity of light from the two reporter dyes, DilC TRC, the bioactive agent of the optically active beads may be decoded according to the following table
  • Figs 8A-8C are images generated by the CCD 236 when the bead populations are exposed to fluorescein diphosphate
  • Fig 8A illustrates the signals from the alkaline phosphatase microspheres when excited at 490 nm and recording emissions at 530 nm, emissions at this wavelength being indicative of fluorescein production
  • Fig 8B shows the image captured by the CCD when the microspheres are excited at 577 nm and emissions at 670 nm are recorded This wavelength is an encoding wavelength indicative of the concentration of DilC on the microspheres
  • Fig 8C shows the image when the microspheres are excited with 577 nm light and emissions in the 610 nm range are recorded being indicative of the concentration of TRC in the microspheres
  • Figs 9A and 9B are images when the microspheres are exposed to fluorescein ⁇ -d- gatactosidase Fig 9A shows emissions at 530 nm indicative of the fluorescein production, and Fig 9B shows light emitted at the 670 nm range indicative of the presence of DilC
  • micrographs Fig 8A-8C and 9A-9B illustrate that fluorescein production around the microspheres may be detected as an optical signature change indicative of reactions involving the bioactive agent of the microspheres
  • the micrographs also illustrate that the optical signatures may be decoded to determine the chemical functionalities on each microsphere
  • subpopulation A Three separate subpopulations of beads were used In subpopulation A, xrabbit antibodies (Ab) were affixed to the surface of the microspheres, in subpopulation B, xgoat antibodies were affixed to the microspheres, and in subpopulation C, xmouse antibodies were affixed to the microspheres These three separate subpopulations were identified using a DilC TRC encoding ratio similar to that in the previously described experiment

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
EP99945651A 1998-09-11 1999-09-10 Sensor für zielanalyten unter verwendung von mikrosphären Withdrawn EP1125127A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/151,877 US6327410B1 (en) 1997-03-14 1998-09-11 Target analyte sensors utilizing Microspheres
US151877 1998-09-11
PCT/US1999/020914 WO2000016101A2 (en) 1998-09-11 1999-09-10 Target analyte sensors utilizing microspheres

Publications (1)

Publication Number Publication Date
EP1125127A2 true EP1125127A2 (de) 2001-08-22

Family

ID=22540620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99945651A Withdrawn EP1125127A2 (de) 1998-09-11 1999-09-10 Sensor für zielanalyten unter verwendung von mikrosphären

Country Status (6)

Country Link
US (2) US6327410B1 (de)
EP (1) EP1125127A2 (de)
JP (1) JP3836323B2 (de)
AU (2) AU773211B2 (de)
CA (1) CA2343377C (de)
WO (1) WO2000016101A2 (de)

Families Citing this family (469)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053300A2 (en) 1997-05-23 1998-11-26 Lynx Therapeutics, Inc. System and apparaus for sequential processing of analytes
USRE43097E1 (en) 1994-10-13 2012-01-10 Illumina, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US6387707B1 (en) * 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
US6958245B2 (en) 1996-04-25 2005-10-25 Bioarray Solutions Ltd. Array cytometry
DE69737883T2 (de) 1996-04-25 2008-03-06 Bioarray Solutions Ltd. Licht-regulierte, elektrokinetische zusammensetzung von partikeln an oberflächen
US7041510B2 (en) 1996-04-25 2006-05-09 Bioarray Solutions Ltd. System and method for programmable illumination pattern generation
US7144119B2 (en) * 1996-04-25 2006-12-05 Bioarray Solutions Ltd. System and method for programmable illumination pattern generation
US20030027126A1 (en) 1997-03-14 2003-02-06 Walt David R. Methods for detecting target analytes and enzymatic reactions
US6327410B1 (en) 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US6023540A (en) 1997-03-14 2000-02-08 Trustees Of Tufts College Fiber optic sensor with encoded microspheres
US7622294B2 (en) * 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US7348181B2 (en) 1997-10-06 2008-03-25 Trustees Of Tufts College Self-encoding sensor with microspheres
US7115884B1 (en) * 1997-10-06 2006-10-03 Trustees Of Tufts College Self-encoding fiber optic sensor
US6749811B2 (en) 1998-04-28 2004-06-15 The Johns Hopkins University Molecularly imprinted polymer solution anion sensor
EP2045334A1 (de) 1998-06-24 2009-04-08 Illumina, Inc. Dekodierung von Arraysensoren mit Mikrosphären
US7612020B2 (en) 1998-12-28 2009-11-03 Illumina, Inc. Composite arrays utilizing microspheres with a hybridization chamber
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US6635470B1 (en) 1999-01-08 2003-10-21 Applera Corporation Fiber array and methods for using and making same
US7595189B2 (en) 1999-01-08 2009-09-29 Applied Biosystems, Llc Integrated optics fiber array
JP2000262460A (ja) * 1999-03-18 2000-09-26 Inst Of Physical & Chemical Res 生体試料の特定部位検出方法、生体試料の生理学的測定方法、生体試料の特定部位検出装置、光ファイバ保持装置
US20050100943A1 (en) * 2000-04-11 2005-05-12 Hideki Kambara Method of producing probe arrays for biological materials using fine particles
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US20050191698A1 (en) * 1999-04-20 2005-09-01 Illumina, Inc. Nucleic acid sequencing using microsphere arrays
US6355431B1 (en) 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
DK1923471T3 (da) 1999-04-20 2013-04-02 Illumina Inc Detektion af nukleinsyrereaktioner på bead-arrays
AU7569600A (en) * 1999-05-20 2000-12-28 Illumina, Inc. Combinatorial decoding of random nucleic acid arrays
US6544732B1 (en) 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
US8080380B2 (en) 1999-05-21 2011-12-20 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US8481268B2 (en) 1999-05-21 2013-07-09 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US7604996B1 (en) * 1999-08-18 2009-10-20 Illumina, Inc. Compositions and methods for preparing oligonucleotide solutions
WO2001018524A2 (en) 1999-08-30 2001-03-15 Illumina, Inc. Methods for improving signal detection from an array
US7244559B2 (en) * 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7211390B2 (en) * 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
EP1122535A3 (de) * 2000-01-31 2004-09-22 The Penn State Research Foundation Verfahren zur Prüfung des Inhalts eines verschlossenen Behälters
US7955794B2 (en) 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US6913884B2 (en) 2001-08-16 2005-07-05 Illumina, Inc. Compositions and methods for repetitive use of genomic DNA
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
ATE492652T1 (de) * 2000-02-07 2011-01-15 Illumina Inc Nukleinsäuredetektionsverfahren mit universellem priming
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
WO2001059432A2 (en) * 2000-02-10 2001-08-16 Illumina, Inc. Array of individual arrays as substrate for bead-based simultaneous processing of samples and manufacturing method therefor
US6770441B2 (en) * 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
EP1967595A3 (de) 2000-02-16 2008-12-03 Illumina, Inc. Paralleles Genotypisieren von mehreren Patientenproben
JP2004500569A (ja) * 2000-02-25 2004-01-08 ルミネックス コーポレイション 多重アッセイ法のための内部標準および内部対照
BR0109432A (pt) * 2000-03-21 2004-06-22 Univ Illinois Nariz artificial tendo um arranjo de corantes e método para olfação artificial
US6844154B2 (en) * 2000-04-04 2005-01-18 Polygenyx, Inc. High throughput methods for haplotyping
US9709559B2 (en) 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
WO2001098765A1 (en) 2000-06-21 2001-12-27 Bioarray Solutions, Ltd. Multianalyte molecular analysis
CA2414618C (en) * 2000-06-28 2009-11-03 Illumina, Inc. Composite arrays utilizing microspheres with a hybridization chamber
AU2001284760A1 (en) * 2000-08-09 2002-02-18 Illumina, Inc. Automated information processing in randomly ordered arrays
US6934408B2 (en) * 2000-08-25 2005-08-23 Amnis Corporation Method and apparatus for reading reporter labeled beads
US7057704B2 (en) * 2000-09-17 2006-06-06 Bioarray Solutions Ltd. System and method for programmable illumination pattern generation
US20030045005A1 (en) * 2000-10-17 2003-03-06 Michael Seul Light-controlled electrokinetic assembly of particles near surfaces
EP2275819B1 (de) * 2000-10-19 2019-11-27 Mycartis NV Verfahren zur Manipulation von Mikroträgern zu Identifizierungszwecken
US20040018491A1 (en) * 2000-10-26 2004-01-29 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
CA2439404A1 (en) 2001-03-07 2002-09-12 Bio-Rad Laboratories Inc. Assay system for simultaneous detection and measurement of multiple modified cellular proteins
EP1262764B1 (de) * 2001-05-25 2007-04-11 Corning Incorporated Verfahren zur Bestimmung der Reaktionen und der Metabolischen Aktivitat mit Fluoreszentem temperaturempfindlichem Material
US7262063B2 (en) * 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
CN100399025C (zh) * 2001-09-27 2008-07-02 北京源德生物医学工程有限公司 多标记连续注射免疫及基因分析系统
JP4754746B2 (ja) * 2001-09-28 2011-08-24 オリンパス株式会社 棒状担体およびこれを具備するシリンダー反応容器
EP1463825B1 (de) 2001-10-15 2017-12-06 BioArray Solutions Ltd. Gemultiplexte analyse polymorphischer stellen durch gleichzeitige abfrage und enzymvermittelte detektion
US6551788B1 (en) * 2001-11-28 2003-04-22 Beckman Coulter, Inc. Particle-based ligand assay with extended dynamic range
US7011945B2 (en) * 2001-12-21 2006-03-14 Eastman Kodak Company Random array of micro-spheres for the analysis of nucleic acids
US7335153B2 (en) * 2001-12-28 2008-02-26 Bio Array Solutions Ltd. Arrays of microparticles and methods of preparation thereof
AU2003215240A1 (en) * 2002-02-14 2003-09-04 Illumina, Inc. Automated information processing in randomly ordered arrays
US20030162178A1 (en) * 2002-02-25 2003-08-28 O'hagan David Variable microarray and methods of detecting one or more anlaytes in a sample
US20030162179A1 (en) * 2002-02-27 2003-08-28 General Electric Company Fabrication, performance testing, and screening of three dimensional arrays of materials
US7491491B2 (en) * 2002-03-12 2009-02-17 Polytechnic Institute Of New York University Detecting and/or measuring a substance based on a resonance shift of photons orbiting within a microsphere
US6916620B2 (en) * 2002-03-15 2005-07-12 Eastman Kodak Company Random array of micro-spheres for the analysis of nucleic acid using enzyme digestion
US20030232384A1 (en) * 2002-06-13 2003-12-18 Eastman Kodak Company Microarray system utilizing microtiter plates
CN100414296C (zh) * 2002-06-14 2008-08-27 赵翀 镶嵌式高通量三维立体生物检测方法及试剂盒
WO2004013628A1 (en) * 2002-08-02 2004-02-12 Applera Corporation Fluorescence polarization assay
US20040132141A1 (en) * 2002-08-28 2004-07-08 Kimon Angelides Selecting therapeutic human monoclonal antibodies from disease-specific libraries
US7595883B1 (en) 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
US7122384B2 (en) * 2002-11-06 2006-10-17 E. I. Du Pont De Nemours And Company Resonant light scattering microparticle methods
AU2003298655A1 (en) 2002-11-15 2004-06-15 Bioarray Solutions, Ltd. Analysis, secure access to, and transmission of array images
AU2003291718A1 (en) * 2002-11-15 2004-06-15 University Of Maryland, Baltimore Release of the self-quenching of fluorescence near silver metallic surfaces
CA2513985C (en) 2003-01-21 2012-05-29 Illumina Inc. Chemical reaction monitor
US20040175842A1 (en) * 2003-03-04 2004-09-09 Roitman Daniel B. Near-field and far-field encoding of microbeads for bioassays
US20040175843A1 (en) * 2003-03-04 2004-09-09 Roitman Daniel B. Near-field and far-field encoding and shaping of microbeads for bioassays
US20050064452A1 (en) * 2003-04-25 2005-03-24 Schmid Matthew J. System and method for the detection of analytes
US8150626B2 (en) * 2003-05-15 2012-04-03 Illumina, Inc. Methods and compositions for diagnosing lung cancer with specific DNA methylation patterns
US8150627B2 (en) 2003-05-15 2012-04-03 Illumina, Inc. Methods and compositions for diagnosing lung cancer with specific DNA methylation patterns
US7651850B2 (en) 2003-05-16 2010-01-26 Board Of Regents, The University Of Texas System Image and part recognition technology
US9317922B2 (en) 2003-05-16 2016-04-19 Board Of Regents The University Of Texas System Image and part recognition technology
US20050181394A1 (en) * 2003-06-20 2005-08-18 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
WO2005003304A2 (en) 2003-06-20 2005-01-13 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
US20040259100A1 (en) 2003-06-20 2004-12-23 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
WO2005029705A2 (en) 2003-09-18 2005-03-31 Bioarray Solutions, Ltd. Number coding for identification of subtypes of coded types of solid phase carriers
WO2005031305A2 (en) 2003-09-22 2005-04-07 Bioarray Solutions, Ltd. Surface immobilized polyelectrolyte with multiple functional groups capable of covalently bonding to biomolecules
JP2005098877A (ja) * 2003-09-25 2005-04-14 Hitachi Software Eng Co Ltd 抗体検出体、その製造方法、及び抗体検出方法
CA2899287A1 (en) 2003-10-28 2005-05-12 Bioarray Solutions Ltd. Optimization of gene expression analysis using immobilized capture probes
CN1882703B (zh) 2003-10-29 2011-07-06 佰尔瑞溶液有限公司 通过断裂双链脱氧核糖核酸进行多元核酸分析
US7390628B2 (en) * 2003-12-23 2008-06-24 University Of Florida Research Foundation, Inc. Microparticle-based diagnostic methods
US20050136414A1 (en) * 2003-12-23 2005-06-23 Kevin Gunderson Methods and compositions for making locus-specific arrays
EP1735618A2 (de) * 2004-02-27 2006-12-27 Board of Regents, The University of Texas System System und verfahren zur integration von flüssigkeiten und reagenzien in geschlossenen partikel- und membransensorelemente enthaltenden kartuschen
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
US20060257854A1 (en) * 2004-02-27 2006-11-16 Mcdevitt John T Membrane assay system including preloaded particles
US20050191687A1 (en) * 2004-02-27 2005-09-01 Tianxin Wang Method for multiplexed analyte detection
US7781226B2 (en) * 2004-02-27 2010-08-24 The Board Of Regents Of The University Of Texas System Particle on membrane assay system
US8101431B2 (en) 2004-02-27 2012-01-24 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems
US20050208504A1 (en) * 2004-03-17 2005-09-22 Srinka Ghosh Method and system for testing feature-extractability of high-density microarrays using an embedded pattern block
US7776531B1 (en) 2004-03-25 2010-08-17 Illumina, Inc. Compositions and methods for stabilizing surface bound probes
JPWO2005093416A1 (ja) * 2004-03-26 2008-02-14 独立行政法人科学技術振興機構 ビーズ配置用基板およびそれを用いたビーズ配置方法
JP2005306171A (ja) * 2004-04-20 2005-11-04 Yamaha Motor Co Ltd 鞍乗り型車両
US7622281B2 (en) * 2004-05-20 2009-11-24 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for clonal amplification of nucleic acid
EP1602928A1 (de) * 2004-06-01 2005-12-07 Universiteit Maastricht Verfahren und Kit zur Bestimmung der Bindungsparameter von Bioaffinitätsbindungsreaktionen
FR2871358B1 (fr) * 2004-06-14 2007-02-09 Mauna Kea Technologies Soc Par Procede et systeme d'imagerie microscopique de fluorescence fibree multimarquage
US8536661B1 (en) 2004-06-25 2013-09-17 University Of Hawaii Biosensor chip sensor protection methods
US7702466B1 (en) 2004-06-29 2010-04-20 Illumina, Inc. Systems and methods for selection of nucleic acid sequence probes
US7697808B2 (en) * 2004-07-27 2010-04-13 Ut-Battelle, Llc Multi-tipped optical component
US7697807B2 (en) * 2006-06-01 2010-04-13 Ut-Battelle, Llc Multi-tipped optical component
US7848889B2 (en) 2004-08-02 2010-12-07 Bioarray Solutions, Ltd. Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification
US8497134B2 (en) * 2004-08-19 2013-07-30 Blood Cell Storage, Inc. Fluorescent detector systems for the detection of chemical perturbations in sterile storage devices
US8183052B2 (en) * 2004-08-19 2012-05-22 Blood Cell Storage, Inc. Methods and apparatus for sterility testing
CA2577340A1 (en) * 2004-08-19 2006-03-02 Blood Cell Storage, Inc. Fluorescent ph detector system and related methods
WO2006047038A1 (en) * 2004-09-28 2006-05-04 Trustees Of Tufts College Apparatus and method for cell migration assays
WO2007008246A2 (en) 2004-11-12 2007-01-18 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for dna and other molecules
WO2006058334A2 (en) * 2004-11-29 2006-06-01 Perkinelmer Life And Analytical Sciences Prticle-based multiplex assay for identifying glycosylation
US7647186B2 (en) * 2004-12-07 2010-01-12 Illumina, Inc. Oligonucleotide ordering system
GB0505971D0 (en) * 2005-03-23 2005-04-27 Isis Innovation Delivery of molecules to a lipid bilayer
US20060246576A1 (en) 2005-04-06 2006-11-02 Affymetrix, Inc. Fluidic system and method for processing biological microarrays in personal instrumentation
EP1910824A4 (de) 2005-05-31 2012-11-21 Labnow Inc Verfahren und zusammensetzungen in zusammenhang mit der erstellung und verwendung eines weissen blutbildes
US8486629B2 (en) 2005-06-01 2013-07-16 Bioarray Solutions, Ltd. Creation of functionalized microparticle libraries by oligonucleotide ligation or elongation
EP1922419A4 (de) * 2005-06-10 2010-11-17 Life Technologies Corp Verfahren und system zur genetischen multiplex-analyse
DK1907583T4 (da) 2005-06-15 2020-01-27 Complete Genomics Inc Enkeltmolekyle-arrays til genetisk og kemisk analyse
NO20053373D0 (no) * 2005-07-11 2005-07-11 Rikshospitalet Radiumhospitale Multicolored Particles.
US7781224B2 (en) * 2005-08-10 2010-08-24 Lawrence Livermore National Security, Llc Safe biodegradable fluorescent particles
US7996188B2 (en) 2005-08-22 2011-08-09 Accuri Cytometers, Inc. User interface for a flow cytometer system
US7595473B2 (en) * 2005-08-22 2009-09-29 Tufts University Method and system of array imaging
US8017402B2 (en) 2006-03-08 2011-09-13 Accuri Cytometers, Inc. Fluidic system for a flow cytometer
US8303894B2 (en) 2005-10-13 2012-11-06 Accuri Cytometers, Inc. Detection and fluidic system of a flow cytometer
US8117902B2 (en) * 2005-11-03 2012-02-21 University Of Massachusetts Nanopatterned surfaces and related methods for selective adhesion, sensing and separation
US7329860B2 (en) 2005-11-23 2008-02-12 Illumina, Inc. Confocal imaging methods and apparatus
US20070127863A1 (en) * 2005-12-07 2007-06-07 Accuri Instruments Inc. System and method for guiding light from an interrogation zone to a detector system
US8460879B2 (en) 2006-02-21 2013-06-11 The Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US11237171B2 (en) 2006-02-21 2022-02-01 Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US8149402B2 (en) * 2006-02-22 2012-04-03 Accuri Cytometers, Inc. Optical system for a flow cytometer
US8031340B2 (en) * 2006-02-22 2011-10-04 Accuri Cytometers, Inc. Optical system for a flow cytometer
US7780916B2 (en) 2006-03-08 2010-08-24 Accuri Cytometers, Inc. Flow cytometer system with unclogging feature
US8283177B2 (en) 2006-03-08 2012-10-09 Accuri Cytometers, Inc. Fluidic system with washing capabilities for a flow cytometer
US20070224684A1 (en) * 2006-03-22 2007-09-27 Olson David C Transportable flow cytometer
US7914988B1 (en) * 2006-03-31 2011-03-29 Illumina, Inc. Gene expression profiles to predict relapse of prostate cancer
US20070238140A1 (en) * 2006-04-07 2007-10-11 Pentoney Stephen L Jr Method For Multiplex Bead-Based Assays Using Chemiluminescence and Fluorescence
US11001881B2 (en) 2006-08-24 2021-05-11 California Institute Of Technology Methods for detecting analytes
US11525156B2 (en) 2006-07-28 2022-12-13 California Institute Of Technology Multiplex Q-PCR arrays
WO2008014485A2 (en) 2006-07-28 2008-01-31 California Institute Of Technology Multiplex q-pcr arrays
EP2054711B1 (de) 2006-08-03 2020-11-25 National University of Singapore Verfahren zur mikroarray-herstellung
US11560588B2 (en) 2006-08-24 2023-01-24 California Institute Of Technology Multiplex Q-PCR arrays
GB0618514D0 (en) * 2006-09-20 2006-11-01 Univ Nottingham Trent Method of detecting interactions on a microarray using nuclear magnetic resonance
US8715573B2 (en) 2006-10-13 2014-05-06 Accuri Cytometers, Inc. Fluidic system for a flow cytometer with temporal processing
US8445286B2 (en) * 2006-11-07 2013-05-21 Accuri Cytometers, Inc. Flow cell for a flow cytometer system
US7813013B2 (en) * 2006-11-21 2010-10-12 Illumina, Inc. Hexagonal site line scanning method and system
EP2092322B1 (de) 2006-12-14 2016-02-17 Life Technologies Corporation Verfahren und vorrichtungen zur messung von analyten unter verwendung von grossflächigen fet-arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
FR2910632B1 (fr) * 2006-12-22 2010-08-27 Commissariat Energie Atomique Dispositif de codage optique par effet plasmon et methode d'authentification le mettant en oeuvre
US7739060B2 (en) * 2006-12-22 2010-06-15 Accuri Cytometers, Inc. Detection system and user interface for a flow cytometer system
US20080243865A1 (en) * 2007-03-28 2008-10-02 Oracle International Corporation Maintaining global state of distributed transaction managed by an external transaction manager for clustered database systems
US20080274458A1 (en) * 2007-05-01 2008-11-06 Latham Gary J Nucleic acid quantitation methods
US20090105959A1 (en) * 2007-06-01 2009-04-23 Braverman Michael S System and method for identification of individual samples from a multiplex mixture
WO2008152144A1 (de) * 2007-06-13 2008-12-18 Attomol Gmbh Molekulare Diagnostika Verfahren und sonden/primersystem zum 'real time' nachweis eines nukleinsäuretargets
US20110105366A1 (en) * 2007-06-18 2011-05-05 Illumina, Inc. Microfabrication methods for the optimal patterning of substrates
US20090029347A1 (en) * 2007-07-27 2009-01-29 Thornthwaite Jerry T Method for Identifying Multiple Analytes Using Flow Cytometry
JP5503540B2 (ja) * 2007-08-30 2014-05-28 トラスティーズ・オブ・タフツ・カレッジ 溶液中の分析物濃度を決定する方法
US9274056B2 (en) * 2007-12-03 2016-03-01 Robert Hudak Use of non-chelated fluorochromes in rapid test systems
US8432541B2 (en) 2007-12-17 2013-04-30 Accuri Cytometers, Inc. Optical system for a flow cytometer with an interrogation zone
US7843561B2 (en) * 2007-12-17 2010-11-30 Accuri Cytometers, Inc. Optical system for a flow cytometer with an interrogation zone
US20130020507A1 (en) * 2010-06-17 2013-01-24 Life Technologies Corporation Methods for Detecting Defects in Inorganic-Coated Polymer Surfaces
US8202691B2 (en) 2008-01-25 2012-06-19 Illumina, Inc. Uniform fragmentation of DNA using binding proteins
US20090203086A1 (en) * 2008-02-06 2009-08-13 454 Life Sciences Corporation System and method for improved signal detection in nucleic acid sequencing
US8039817B2 (en) 2008-05-05 2011-10-18 Illumina, Inc. Compensator for multiple surface imaging
EP2294214A2 (de) * 2008-05-07 2011-03-16 Illumina, Inc. Zusammensetzungen und verfahren zur bereitstellung von substanzen an und aus einem array
JP5667049B2 (ja) 2008-06-25 2015-02-12 ライフ テクノロジーズ コーポレーション 大規模なfetアレイを用いて分析物を測定するための方法および装置
EP2291533B2 (de) 2008-07-02 2020-09-30 Illumina Cambridge Limited Verwendung von kügelchengruppen zur herstellung von arrays auf oberflächen
US20100075439A1 (en) * 2008-09-23 2010-03-25 Quanterix Corporation Ultra-sensitive detection of molecules by capture-and-release using reducing agents followed by quantification
US8222047B2 (en) 2008-09-23 2012-07-17 Quanterix Corporation Ultra-sensitive detection of molecules on single molecule arrays
US20100075862A1 (en) * 2008-09-23 2010-03-25 Quanterix Corporation High sensitivity determination of the concentration of analyte molecules or particles in a fluid sample
US20100087325A1 (en) * 2008-10-07 2010-04-08 Illumina, Inc. Biological sample temperature control system and method
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
WO2010068702A2 (en) * 2008-12-10 2010-06-17 Illumina, Inc. Methods and compositions for hybridizing nucleic acids
FI20095501A0 (fi) * 2009-05-04 2009-05-04 Pekka Haenninen Menetelmä näytteiden karakterisoimiseksi ja/tai määrittämiseksi
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
US8574835B2 (en) 2009-05-29 2013-11-05 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US8507279B2 (en) 2009-06-02 2013-08-13 Accuri Cytometers, Inc. System and method of verification of a prepared sample for a flow cytometer
US20100330686A1 (en) * 2009-06-29 2010-12-30 Seung Bum Park Nanosensor for sugar detection
US9523701B2 (en) 2009-07-29 2016-12-20 Dynex Technologies, Inc. Sample plate systems and methods
GB0913258D0 (en) 2009-07-29 2009-09-02 Dynex Technologies Inc Reagent dispenser
KR101464418B1 (ko) * 2009-11-17 2014-11-21 아사히 가세이 셍이 가부시키가이샤 유기 착색 미립자, 이것을 포함하는 진단약 키트 및 인비트로 진단 방법
WO2011090949A2 (en) 2010-01-19 2011-07-28 Illumina, Inc. Methods and compositions for processing chemical reactions
US8422031B2 (en) 2010-02-01 2013-04-16 Illumina, Inc. Focusing methods and optical systems and assemblies using the same
US8779387B2 (en) 2010-02-23 2014-07-15 Accuri Cytometers, Inc. Method and system for detecting fluorochromes in a flow cytometer
ES2544635T3 (es) 2010-03-01 2015-09-02 Quanterix Corporation Métodos para extender el rango dinámico en ensayos para la detección de moléculas o partículas
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
US8415171B2 (en) 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
US9678068B2 (en) 2010-03-01 2017-06-13 Quanterix Corporation Ultra-sensitive detection of molecules using dual detection methods
WO2011112465A1 (en) 2010-03-06 2011-09-15 Illumina, Inc. Systems, methods, and apparatuses for detecting optical signals from a sample
CA2794522C (en) 2010-04-05 2019-11-26 Prognosys Biosciences, Inc. Spatially encoded biological assays
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
US9551600B2 (en) 2010-06-14 2017-01-24 Accuri Cytometers, Inc. System and method for creating a flow cytometer network
US9353412B2 (en) 2010-06-18 2016-05-31 Illumina, Inc. Conformational probes and methods for sequencing nucleic acids
WO2012003363A1 (en) 2010-06-30 2012-01-05 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US20120001646A1 (en) 2010-06-30 2012-01-05 Life Technologies Corporation Methods and apparatus for testing isfet arrays
TWI465716B (zh) 2010-06-30 2014-12-21 Life Technologies Corp 用於檢測及測量化學反應及化合物之電晶體電路
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
JP5876044B2 (ja) 2010-07-03 2016-03-02 ライフ テクノロジーズ コーポレーション 低濃度ドープドレインを有する化学的感応性センサ
WO2012032955A1 (ja) 2010-09-10 2012-03-15 オリンパス株式会社 複数の波長帯域の光計測を用いた光分析方法
CN103097878B (zh) * 2010-09-10 2015-07-22 奥林巴斯株式会社 使用单个发光颗粒的光强度的光学分析方法
WO2012036679A1 (en) 2010-09-15 2012-03-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US8796036B2 (en) 2010-09-24 2014-08-05 Life Technologies Corporation Method and system for delta double sampling
US8759038B2 (en) 2010-09-29 2014-06-24 Illumina Cambridge Limited Compositions and methods for sequencing nucleic acids
US9399217B2 (en) 2010-10-04 2016-07-26 Genapsys, Inc. Chamber free nanoreactor system
EP2625526B1 (de) 2010-10-04 2017-03-15 Genapsys Inc. Systeme und verfahren für automatisierte und wiederverwendbare parallele biologische reaktionen
US9184099B2 (en) 2010-10-04 2015-11-10 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods therefor
ES2897531T3 (es) 2010-10-25 2022-03-01 Accuri Cytometers Inc Sistemas e interfaz de usuario para la recopilación de un conjunto de datos en un citómetro de flujo
WO2012055929A1 (en) 2010-10-26 2012-05-03 Illumina, Inc. Sequencing methods
EP2631631B1 (de) 2010-11-25 2016-01-20 Olympus Corporation Photometrische analysevorrichtung und photometrisches analyseverfahren unter verwendung von wellenlängeneigenschaften eines aus einem einzigen leuchtenden teilchen emittierten lichts
US8951781B2 (en) 2011-01-10 2015-02-10 Illumina, Inc. Systems, methods, and apparatuses to image a sample for biological or chemical analysis
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
US9252175B2 (en) 2011-03-23 2016-02-02 Nanohmics, Inc. Method for assembly of spectroscopic filter arrays using biomolecules
US9828696B2 (en) 2011-03-23 2017-11-28 Nanohmics, Inc. Method for assembly of analyte filter arrays using biomolecules
WO2012142301A2 (en) 2011-04-12 2012-10-18 Quanterix Corporation Methods of determining a treatment protocol for and/or a prognosis of a patients recovery from a brain injury
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
US9926596B2 (en) 2011-05-27 2018-03-27 Genapsys, Inc. Systems and methods for genetic and biological analysis
US9040307B2 (en) 2011-05-27 2015-05-26 Blood Cell Storage, Inc. Fluorescent pH detector system and related methods
US8585973B2 (en) 2011-05-27 2013-11-19 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
US8778848B2 (en) 2011-06-09 2014-07-15 Illumina, Inc. Patterned flow-cells useful for nucleic acid analysis
EP2735618B1 (de) 2011-07-19 2017-12-06 Hitachi High-Technologies Corporation Nukleinsäure-analyseverfahren
CA2856163C (en) 2011-10-28 2019-05-07 Illumina, Inc. Microarray fabrication system and method
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
CN106591103B (zh) 2011-12-01 2021-06-04 吉纳普赛斯股份有限公司 用于高效电子测序与检测的系统和方法
WO2013096661A1 (en) 2011-12-22 2013-06-27 Illumina, Inc. Methylation biomarkers for ovarian cancer
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
WO2013132761A1 (ja) * 2012-03-05 2013-09-12 パナソニック株式会社 センサデバイス
CA3138752C (en) 2012-04-03 2024-02-06 Illumina, Inc. Integrated optoelectronic read head and fluidic cartridge useful for nucleic acid sequencing
US8906320B1 (en) * 2012-04-16 2014-12-09 Illumina, Inc. Biosensors for biological or chemical analysis and systems and methods for same
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8895249B2 (en) 2012-06-15 2014-11-25 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
JP6037701B2 (ja) 2012-08-03 2016-12-07 株式会社日立ハイテクノロジーズ 免疫分析装置
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA3216609C (en) 2012-08-14 2024-05-14 10X Genomics, Inc. Microcapsule compositions and methods
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9567631B2 (en) 2012-12-14 2017-02-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10584381B2 (en) 2012-08-14 2020-03-10 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
GB201219487D0 (en) 2012-10-30 2012-12-12 Cancer Rec Tech Ltd Anti-S100A4 antibody molecules and their uses
GB201220924D0 (en) 2012-11-21 2013-01-02 Cancer Res Inst Royal Materials and methods for determining susceptibility or predisposition to cancer
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
WO2014113502A1 (en) 2013-01-15 2014-07-24 Quanterix Corporation Detection of dna or rna using single molecule arrays and other techniques
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
CA2900543C (en) 2013-02-08 2023-01-31 10X Genomics, Inc. Partitioning and processing of analytes and other species
DK2969479T3 (da) 2013-03-13 2021-08-02 Illumina Inc Væskeanordninger i flere lag og fremgangsmåder til deres fremstilling
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
CA2896879C (en) 2013-03-15 2020-09-22 Genapsys, Inc. Systems and methods for biological analysis
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
WO2014149780A1 (en) 2013-03-15 2014-09-25 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
CN105283758B (zh) 2013-03-15 2018-06-05 生命科技公司 具有一致传感器表面区域的化学传感器
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
JP6671274B2 (ja) 2013-03-15 2020-03-25 ライフ テクノロジーズ コーポレーション 薄伝導性素子を有する化学装置
EP3633048B1 (de) 2013-03-27 2022-10-12 Alan Handyside Beurteilung des risikos auf aneuploidie
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US9879313B2 (en) 2013-06-25 2018-01-30 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
CN109112193A (zh) 2013-07-03 2019-01-01 伊鲁米那股份有限公司 正交合成测序
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US9352315B2 (en) 2013-09-27 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method to produce chemical pattern in micro-fluidic structure
US10540783B2 (en) * 2013-11-01 2020-01-21 Illumina, Inc. Image analysis useful for patterned objects
JP6673843B2 (ja) 2013-11-17 2020-03-25 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated 分子をプローブし、検出し、分析するための光学システム及びアッセイ・チップ
JP6201856B2 (ja) * 2013-11-29 2017-09-27 株式会社Jvcケンウッド 分析用基板及び分析用基板の製造方法
WO2015089238A1 (en) 2013-12-11 2015-06-18 Genapsys, Inc. Systems and methods for biological analysis and computation
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
AU2015206336B2 (en) 2014-01-16 2020-01-23 Illumina, Inc. Gene expression panel for prognosis of prostate cancer recurrence
US9828284B2 (en) 2014-03-28 2017-11-28 Ut-Battelle, Llc Thermal history-based etching
WO2015157567A1 (en) 2014-04-10 2015-10-15 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
WO2015161054A2 (en) 2014-04-18 2015-10-22 Genapsys, Inc. Methods and systems for nucleic acid amplification
EP3161700B1 (de) 2014-06-26 2023-03-29 10X Genomics, Inc. Verfahren und systeme zur nukleinsäuresequenzanordnung
EP4053292A1 (de) 2014-06-26 2022-09-07 10X Genomics, Inc. Verfahren zur analyse von nukleinsäuren aus einzelzellen oder zellpopulationen
BR112017002489B1 (pt) 2014-08-08 2023-02-14 Quantum-Si Incorporated Instrumento configurado para fazer interface com um chip de teste, aparelho, método de análise de um espécime, método para sequenciar uma molécula-alvo de ácido nucleico e método para sequenciamento de ácido nucleico
CN106796176B (zh) 2014-08-08 2021-02-05 宽腾矽公司 用于对分子进行探测、检测和分析的带外部光源的集成装置
CA2957540A1 (en) 2014-08-08 2016-02-11 Quantum-Si Incorporated Integrated device for temporal binning of received photons
CN114807307A (zh) 2014-10-29 2022-07-29 10X 基因组学有限公司 用于靶核酸测序的方法和组合物
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
DK3234187T3 (da) 2014-12-15 2021-05-25 Illumina Inc Fremgangsmåde til enkeltmolekyleanbringelse på et substrat
TWI756167B (zh) 2014-12-18 2022-03-01 美商生命技術公司 積體電路裝置、感測器裝置及積體電路
CN111505087A (zh) 2014-12-18 2020-08-07 生命科技公司 使用大规模 fet 阵列测量分析物的方法和装置
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
BR112017014902A2 (pt) 2015-01-12 2018-03-13 10X Genomics Inc processos e sistemas para a preparação de bibliotecas de sequenciamento de ácido nucleico e bibliotecas preparadas usando os mesmos
CA2968417A1 (en) 2015-01-13 2016-07-21 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
EP3256606B1 (de) 2015-02-09 2019-05-22 10X Genomics, Inc. Systeme und verfahren zur bestimmung struktureller varianten
WO2016137973A1 (en) 2015-02-24 2016-09-01 10X Genomics Inc Partition processing methods and systems
US11274343B2 (en) 2015-02-24 2022-03-15 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequence coverage
CN112326557A (zh) 2015-03-24 2021-02-05 伊鲁米那股份有限公司 对样品成像用于生物或化学分析的方法、载体组件和系统
EP4119677B1 (de) 2015-04-10 2023-06-28 Spatial Transcriptomics AB Räumlich getrennte multiplex-nukleinsäureanalyse von biologischen proben
KR102333255B1 (ko) 2015-05-11 2021-12-01 일루미나, 인코포레이티드 치료제의 발견 및 분석을 위한 플랫폼
US10174363B2 (en) 2015-05-20 2019-01-08 Quantum-Si Incorporated Methods for nucleic acid sequencing
AU2016271049B9 (en) 2015-05-29 2019-07-18 Illumina, Inc. Sample carrier and assay system for conducting designated reactions
IL305561A (en) 2015-07-30 2023-10-01 Illumina Inc Removal of orthogonal blocking of nucleotides
CN108474805A (zh) 2015-08-24 2018-08-31 亿明达股份有限公司 用于生物和化学测定的线路内蓄压器和流量控制系统
EP3957996A1 (de) * 2015-10-05 2022-02-23 The University of North Carolina at Chapel Hill Fluidische vorrichtungen, kits und feste träger für decodierungsverfahren für multiplex-assays
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
CN115369161A (zh) 2015-12-04 2022-11-22 10X 基因组学有限公司 用于核酸分析的方法和组合物
US10386365B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using ionic species diffusion
US10386351B2 (en) 2015-12-07 2019-08-20 Nanohmics, Inc. Methods for detecting and quantifying analytes using gas species diffusion
US11988662B2 (en) 2015-12-07 2024-05-21 Nanohmics, Inc. Methods for detecting and quantifying gas species analytes using differential gas species diffusion
CN115881230A (zh) 2015-12-17 2023-03-31 伊路敏纳公司 区分复杂生物样品中的甲基化水平
JP2019508669A (ja) 2016-01-11 2019-03-28 イラミーナ インコーポレーテッド マイクロフルオロメータ、流体システム、およびフローセルラッチクランプモジュールを有する検出装置
EP3414341A4 (de) 2016-02-11 2019-10-09 10X Genomics, Inc. Systeme, verfahren und medien zur de-novo-anordnung von ganzen genomsequenzdaten
US10441174B2 (en) 2016-02-17 2019-10-15 Tesseract Health, Inc. Sensor and device for lifetime imaging and detection applications
WO2017155858A1 (en) 2016-03-07 2017-09-14 Insilixa, Inc. Nucleic acid sequence identification using solid-phase cyclic single base extension
EP3377226B1 (de) 2016-03-28 2021-02-17 Illumina, Inc. Mikroarrays in mehreren ebenen
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
EP3488017A4 (de) 2016-07-20 2020-02-26 Genapsys Inc. Systeme und verfahren zur nukleinsäuresequenzierung
WO2018064116A1 (en) 2016-09-28 2018-04-05 Illumina, Inc. Methods and systems for data compression
CN109688817B (zh) * 2016-10-03 2022-02-22 Illumina公司 胺和肼的荧光检测及其分析方法
GB201619458D0 (en) 2016-11-17 2017-01-04 Spatial Transcriptomics Ab Method for spatial tagging and analysing nucleic acids in a biological specimen
US20210072255A1 (en) 2016-12-16 2021-03-11 The Brigham And Women's Hospital, Inc. System and method for protein corona sensor array for early detection of diseases
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
BR112019012540A2 (pt) 2016-12-22 2019-11-12 Quantum-Si Incorporated fotodetector integrado com pixel de acondicionamento direto
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
GB201704754D0 (en) 2017-01-05 2017-05-10 Illumina Inc Kinetic exclusion amplification of nucleic acid libraries
CA3050241C (en) 2017-01-20 2022-11-29 Omniome, Inc. Allele-specific capture of nucleic acids
SG11201906569XA (en) 2017-01-20 2019-08-27 Omniome Inc Genotyping by polymerase binding
EP4029939B1 (de) 2017-01-30 2023-06-28 10X Genomics, Inc. Verfahren und systeme für eine einzelzellbarcodierung auf tröpfchenbasis
GB201701689D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials of non-closed shapes
GB201701688D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials in non-recliner layouts
GB201701686D0 (en) 2017-02-01 2017-03-15 Illunina Inc System & method with fiducials having offset layouts
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US11492666B2 (en) 2017-02-15 2022-11-08 Pacific Biosciences Of California, Inc. Distinguishing sequences by detecting polymerase dissociation
US10241022B2 (en) * 2017-03-30 2019-03-26 Intel Corporation Characterizing a fluid sample based on response of a non-planar structure
US10161003B2 (en) 2017-04-25 2018-12-25 Omniome, Inc. Methods and apparatus that increase sequencing-by-binding efficiency
WO2018213774A1 (en) 2017-05-19 2018-11-22 10X Genomics, Inc. Systems and methods for analyzing datasets
US20180340169A1 (en) 2017-05-26 2018-11-29 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
SG11201901822QA (en) 2017-05-26 2019-03-28 10X Genomics Inc Single cell analysis of transposase accessible chromatin
AU2018317826B2 (en) 2017-08-15 2022-11-24 Pacific Biosciences Of California, Inc. Scanning apparatus and methods useful for detection of chemical and biological analytes
MX2020003113A (es) 2017-09-21 2020-09-07 Genapsys Inc Sistemas y metodos para secuenciar acido nucleico.
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. METHODS AND SYSTEMS FOR NUCLEIC ACID PREPARATION AND CHROMATIN ANALYSIS
EP3700672B1 (de) 2017-10-27 2022-12-28 10X Genomics, Inc. Verfahren zur probenvorbereitung und -analyse
CN111051523B (zh) 2017-11-15 2024-03-19 10X基因组学有限公司 功能化凝胶珠
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
MY194772A (en) 2017-12-26 2022-12-15 Illumina Inc Sensor System
EP3752832A1 (de) 2018-02-12 2020-12-23 10X Genomics, Inc. Verfahren zur charakterisierung mehrerer analyten aus einzelnen zellen oder zellpopulationen
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
SG11202009889VA (en) 2018-04-06 2020-11-27 10X Genomics Inc Systems and methods for quality control in single cell processing
US20190338352A1 (en) 2018-04-19 2019-11-07 Omniome, Inc. Accuracy of base calls in nucleic acid sequencing methods
JP2021521820A (ja) 2018-04-26 2021-08-30 オムニオム インコーポレイテッドOmniome, Inc. 核酸−ヌクレオチド−ポリメラーゼ複合体を安定化するための方法及び組成物
AU2019276719A1 (en) 2018-05-31 2020-11-26 Pacific Biosciences Of California, Inc. Increased signal to noise in nucleic acid sequencing
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
EP3811610A1 (de) 2018-06-22 2021-04-28 Quantum-Si Incorporated Integrierter photodetektor mit ladungsspeicherbehälter mit variierender detektionszeit
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US20210055259A1 (en) * 2018-06-29 2021-02-25 Beijing Savant Biotechnology Co., Ltd. Electrochemical Detection Method Based on Tracers Labeling
CA3107165A1 (en) 2018-07-24 2020-01-30 Omniome, Inc. Serial formation of ternary complex species
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
WO2020047005A1 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Resolving spatial arrays
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
CN113286893A (zh) 2018-08-28 2021-08-20 10X基因组学股份有限公司 生成阵列的方法
US10731141B2 (en) 2018-09-17 2020-08-04 Omniome, Inc. Engineered polymerases for improved sequencing
CN211311438U (zh) 2018-12-04 2020-08-21 欧姆尼欧美公司 流动池
WO2020114918A1 (en) 2018-12-05 2020-06-11 Illumina Cambridge Limited Methods and compositions for cluster generation by bridge amplification
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US20220025447A1 (en) 2018-12-10 2022-01-27 10X Genomics, Inc. Generating spatial arrays with gradients
GB201820341D0 (en) 2018-12-13 2019-01-30 10X Genomics Inc Method for transposase-mediated spatial tagging and analysing genomic DNA in a biological specimen
GB201820300D0 (en) 2018-12-13 2019-01-30 10X Genomics Inc Method for spatial tagging and analysing genomic DNA in a biological specimen
SG11202012807YA (en) 2018-12-18 2021-01-28 Illumina Cambridge Ltd Methods and compositions for paired end sequencing using a single surface primer
PT3899037T (pt) 2018-12-19 2023-12-22 Illumina Inc Métodos para melhorar a prioridade de clonalidade de agrupamento polinucleotídico
US11041199B2 (en) 2018-12-20 2021-06-22 Omniome, Inc. Temperature control for analysis of nucleic acids and other analytes
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
SG11202108788TA (en) 2019-02-12 2021-09-29 10X Genomics Inc Methods for processing nucleic acid molecules
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
US11499189B2 (en) 2019-02-14 2022-11-15 Pacific Biosciences Of California, Inc. Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes
US11680950B2 (en) 2019-02-20 2023-06-20 Pacific Biosciences Of California, Inc. Scanning apparatus and methods for detecting chemical and biological analytes
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
CN114174531A (zh) 2019-02-28 2022-03-11 10X基因组学有限公司 用空间条码化寡核苷酸阵列对生物分析物进行概况分析
SG11202111242PA (en) 2019-03-11 2021-11-29 10X Genomics Inc Systems and methods for processing optically tagged beads
CN113924041A (zh) 2019-03-14 2022-01-11 因斯利克萨公司 基于时间门控的荧光检测的方法和系统
CN114127309A (zh) 2019-03-15 2022-03-01 10X基因组学有限公司 使用空间阵列进行单细胞测序的方法
NL2023311B9 (en) 2019-03-21 2021-03-12 Illumina Inc Artificial intelligence-based generation of sequencing metadata
NL2023312B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based base calling
NL2023314B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based quality scoring
NL2023310B1 (en) 2019-03-21 2020-09-28 Illumina Inc Training data generation for artificial intelligence-based sequencing
US11210554B2 (en) 2019-03-21 2021-12-28 Illumina, Inc. Artificial intelligence-based generation of sequencing metadata
WO2020191387A1 (en) 2019-03-21 2020-09-24 Illumina, Inc. Artificial intelligence-based base calling
NL2023316B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based sequencing
WO2020198071A1 (en) 2019-03-22 2020-10-01 10X Genomics, Inc. Three-dimensional spatial analysis
US11593649B2 (en) 2019-05-16 2023-02-28 Illumina, Inc. Base calling using convolutions
WO2020243579A1 (en) 2019-05-30 2020-12-03 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
US11644406B2 (en) 2019-06-11 2023-05-09 Pacific Biosciences Of California, Inc. Calibrated focus sensing
US11377655B2 (en) 2019-07-16 2022-07-05 Pacific Biosciences Of California, Inc. Synthetic nucleic acids having non-natural structures
US10656368B1 (en) 2019-07-24 2020-05-19 Omniome, Inc. Method and system for biological imaging using a wide field objective lens
KR20220078560A (ko) 2019-08-05 2022-06-10 시어 인코퍼레이티드 샘플 제조, 데이터 생성, 및 단백질 코로나 분석을 위한 시스템 및 방법
WO2021050681A1 (en) 2019-09-10 2021-03-18 Omniome, Inc. Reversible modification of nucleotides
JP7479051B2 (ja) 2019-09-27 2024-05-08 国立大学法人広島大学 プラスチック粒子の検出方法およびプラスチック粒子の検出キット
CN114761992B (zh) 2019-10-01 2023-08-08 10X基因组学有限公司 用于识别组织样品中的形态学模式的系统和方法
WO2021076152A1 (en) 2019-10-18 2021-04-22 Omniome, Inc. Methods and compositions for capping nucleic acids
EP4055155A1 (de) 2019-11-08 2022-09-14 Pacific Biosciences of California, Inc. Modifizierte polymerasen zur verbesserten sequenzierung durch bindung
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
EP4055185A1 (de) 2019-11-08 2022-09-14 10X Genomics, Inc. Räumlich markierte analytfänger für analyt-multiplexing
US20210150707A1 (en) 2019-11-18 2021-05-20 10X Genomics, Inc. Systems and methods for binary tissue classification
EP4062373A1 (de) 2019-11-21 2022-09-28 10X Genomics, Inc. Räumliche analyse von analyten
EP4062372B1 (de) 2019-11-22 2024-05-08 10X Genomics, Inc. Systeme und verfahren zur räumlichen analyse von analyten unter verwendung von referenzmarkerausrichtung
EP3891300B1 (de) 2019-12-23 2023-03-29 10X Genomics, Inc. Verfahren zur räumlichen analyse mittels rna-template-ligation
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
EP4100161A1 (de) 2020-02-04 2022-12-14 Pacific Biosciences of California, Inc. Durchflusszellen und verfahren zu deren herstellung und verwendung
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
US20210265018A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Knowledge Distillation and Gradient Pruning-Based Compression of Artificial Intelligence-Based Base Caller
AU2021225020A1 (en) 2020-02-21 2022-08-18 10X Genomics, Inc. Methods and compositions for integrated in situ spatial assay
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11926863B1 (en) 2020-02-27 2024-03-12 10X Genomics, Inc. Solid state single cell method for analyzing fixed biological cells
EP4114966A1 (de) 2020-03-03 2023-01-11 Pacific Biosciences Of California, Inc. Verfahren und zusammensetzungen zur sequenzierung von doppelsträngigen nukleinsäuren
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
ES2965354T3 (es) 2020-04-22 2024-04-12 10X Genomics Inc Métodos para análisis espacial que usan eliminación de ARN elegido como diana
US11188778B1 (en) 2020-05-05 2021-11-30 Illumina, Inc. Equalization-based image processing and spatial crosstalk attenuator
US20230183798A1 (en) 2020-05-05 2023-06-15 Pacific Biosciences Of California, Inc. Compositions and methods for modifying polymerase-nucleic acid complexes
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
WO2021237087A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Spatial analysis to detect sequence variants
EP4153775A1 (de) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultane räumlich-zeitliche messung der genexpression und der zellaktivität
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
AU2021283174A1 (en) 2020-06-02 2023-01-05 10X Genomics, Inc. Nucleic acid library methods
CN116249785A (zh) 2020-06-02 2023-06-09 10X基因组学有限公司 用于抗原-受体的空间转录组学
EP4162074B1 (de) 2020-06-08 2024-04-24 10X Genomics, Inc. Verfahren zur bestimmung eines chirurgischen randes und verfahren zur verwendung davon
EP4165207A1 (de) 2020-06-10 2023-04-19 10X Genomics, Inc. Verfahren zur bestimmung einer position eines analyten in einer biologischen probe
AU2021294334A1 (en) 2020-06-25 2023-02-02 10X Genomics, Inc. Spatial analysis of DNA methylation
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
US11981960B1 (en) 2020-07-06 2024-05-14 10X Genomics, Inc. Spatial analysis utilizing degradable hydrogels
US11981958B1 (en) 2020-08-20 2024-05-14 10X Genomics, Inc. Methods for spatial analysis using DNA capture
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
EP4121555A1 (de) 2020-12-21 2023-01-25 10X Genomics, Inc. Verfahren, zusammensetzungen und systeme zur erfassung von sonden und/oder barcodes
WO2022182682A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
AU2022238446A1 (en) 2021-03-18 2023-09-07 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
US20220333178A1 (en) 2021-03-22 2022-10-20 Illumina Cambridge Limited Methods for improving nucleic acid cluster clonality
WO2023003757A1 (en) 2021-07-19 2023-01-26 Illumina Software, Inc. Intensity extraction with interpolation and adaptation for base calling
US11455487B1 (en) 2021-10-26 2022-09-27 Illumina Software, Inc. Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling
EP4196605A1 (de) 2021-09-01 2023-06-21 10X Genomics, Inc. Verfahren, zusammensetzungen und kits zur blockierung einer erfassungssonde auf einer räumlichen anordnung
AU2022341171A1 (en) 2021-09-09 2024-02-22 Nautilus Subsidiary, Inc. Characterization and localization of protein modifications
WO2023049215A1 (en) 2021-09-22 2023-03-30 Illumina, Inc. Compressed state-based base calling
WO2023122363A1 (en) 2021-12-23 2023-06-29 Illumina Software, Inc. Dynamic graphical status summaries for nucelotide sequencing
US20230215515A1 (en) 2021-12-23 2023-07-06 Illumina Software, Inc. Facilitating secure execution of external workflows for genomic sequencing diagnostics
WO2023129764A1 (en) 2021-12-29 2023-07-06 Illumina Software, Inc. Automatically switching variant analysis model versions for genomic analysis applications
WO2023183937A1 (en) 2022-03-25 2023-09-28 Illumina, Inc. Sequence-to-sequence base calling
CA3223722A1 (en) 2022-04-07 2023-10-12 Illumina, Inc. Altered cytidine deaminases and methods of use
WO2023239917A1 (en) 2022-06-09 2023-12-14 Illumina, Inc. Dependence of base calling on flow cell tilt
WO2024046838A1 (en) 2022-09-01 2024-03-07 Evonik Operations Gmbh Multi-species chip to detect dna-methylation
WO2024046839A1 (en) 2022-09-01 2024-03-07 Evonik Operations Gmbh Dna-methylation detection in animal-derived products
WO2024046840A1 (en) 2022-09-01 2024-03-07 Evonik Operations Gmbh Method of assessing protein production in cho cells
WO2024073043A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Methods of using cpg binding proteins in mapping modified cytosine nucleotides
WO2024073047A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Cytidine deaminases and methods of use in mapping modified cytosine nucleotides
WO2024069581A1 (en) 2022-09-30 2024-04-04 Illumina Singapore Pte. Ltd. Helicase-cytidine deaminase complexes and methods of use

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200110A (en) 1977-11-28 1980-04-29 United States Of America Fiber optic pH probe
US4499052A (en) 1982-08-30 1985-02-12 Becton, Dickinson And Company Apparatus for distinguishing multiple subpopulations of cells
US4682895A (en) 1985-08-06 1987-07-28 Texas A&M University Fiber optic probe for quantification of colorimetric reactions
US4798738A (en) * 1986-10-10 1989-01-17 Cardiovascular Devices, Inc. Micro sensor
US4824789B1 (en) * 1986-10-10 1996-08-13 Minnesota Mining & Mfg Gas sensor
US4822746A (en) 1986-06-25 1989-04-18 Trustees Of Tufts College Radiative and non-radiative energy transfer and absorbance modulated fluorescence detection methods and sensors
US5254477A (en) 1986-06-25 1993-10-19 Trustees Of Tufts College Flourescence intramolecular energy transfer conjugate compositions and detection methods
US5143853A (en) 1986-06-25 1992-09-01 Trustees Of Tufts College Absorbance modulated fluorescence detection methods and sensors
US5114864A (en) 1986-06-25 1992-05-19 Trustees Of Tufts College Fiber optic sensors, apparatus, and detection methods using fluid erodible controlled release polymers for delivery of reagent formulations
US5252494A (en) 1986-06-25 1993-10-12 Trustees Of Tufts College Fiber optic sensors, apparatus, and detection methods using controlled release polymers and reagent formulations held within a polymeric reaction matrix
DE3681176D1 (de) 1986-12-01 1991-10-02 Molecular Biosystems Inc Verfahren zur erhoehung der empfindlichkeit von nukleinsaeure-hybridisierungstesten.
SE458968B (sv) 1987-06-16 1989-05-22 Wallac Oy Biospecifikt analysfoerfarande foer flera analyter i vilket ingaar partikelraekning och maerkning med fluorescerande maerksubstanser
US5194300A (en) 1987-07-15 1993-03-16 Cheung Sau W Methods of making fluorescent microspheres
US5132242A (en) 1987-07-15 1992-07-21 Cheung Sau W Fluorescent microspheres and methods of using them
US4785814A (en) 1987-08-11 1988-11-22 Cordis Corporation Optical probe for measuring pH and oxygen in blood and employing a composite membrane
FR2621393B1 (fr) * 1987-10-05 1991-12-13 Toledano Jacques Dispositif de detection immunoenzymatique de substances a partir d'une goutte de sang ou de liquide provenant d'un quelconque milieu biologique
US5002867A (en) 1988-04-25 1991-03-26 Macevicz Stephen C Nucleic acid sequence determination by multiple mixed oligonucleotide probes
NO164622C (no) 1988-05-11 1990-10-24 Tore Lindmo Binaer immunometrisk partikkelbasert metode for maaling av spesifikke serum-antigener ved hjelp av vaeskestroemsmikrofotometri og et ferdigpreparert maaloppsett derav.
US5575849A (en) * 1988-11-25 1996-11-19 Canon Kabushiki Kaisha Apparatus for producing a substrate having a surface with a plurality of spherical dimples for photoconductive members
JPH02299598A (ja) 1989-04-14 1990-12-11 Ro Inst For Molecular Genetics & Geneteic Res 微視的サイズの別個の粒子と結合している核酸試料中のごく短い配列の全部または一部のオリゴヌクレチドプローブとのハイブリダイゼーションによる決定法
US5424186A (en) * 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5302509A (en) 1989-08-14 1994-04-12 Beckman Instruments, Inc. Method for sequencing polynucleotides
US5326692B1 (en) 1992-05-13 1996-04-30 Molecular Probes Inc Fluorescent microparticles with controllable enhanced stokes shift
US5494810A (en) 1990-05-03 1996-02-27 Cornell Research Foundation, Inc. Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease
EP0478319B1 (de) 1990-09-28 1997-04-02 Kabushiki Kaisha Toshiba Verfahren zum Gennachweis
AU9115891A (en) 1990-11-14 1992-06-11 Siska Diagnostics, Inc. Non-isotopic detection of nucleic acids using a polystyrene support-based sandwich hybridization assay and compositions useful therefor
US5105305A (en) 1991-01-10 1992-04-14 At&T Bell Laboratories Near-field scanning optical microscope using a fluorescent probe
US5244636A (en) 1991-01-25 1993-09-14 Trustees Of Tufts College Imaging fiber optic array sensors, apparatus, and methods for concurrently detecting multiple analytes of interest in a fluid sample
US5244813A (en) 1991-01-25 1993-09-14 Trustees Of Tufts College Fiber optic sensor, apparatus, and methods for detecting an organic analyte in a fluid or vapor sample
US5320814A (en) 1991-01-25 1994-06-14 Trustees Of Tufts College Fiber optic array sensors, apparatus, and methods for concurrently visualizing and chemically detecting multiple analytes of interest in a fluid sample
US5250264A (en) 1991-01-25 1993-10-05 Trustees Of Tufts College Method of making imaging fiber optic sensors to concurrently detect multiple analytes of interest in a fluid sample
US5380489A (en) 1992-02-18 1995-01-10 Eastman Kodak Company Element and method for nucleic acid amplification and detection using adhered probes
DE69227112D1 (de) 1991-07-16 1998-10-29 Transmed Biotech Inc Verfahren und zusammensetzungen für die gleichzeitige analyse einer vielzahl von analyten
US5639603A (en) 1991-09-18 1997-06-17 Affymax Technologies N.V. Synthesizing and screening molecular diversity
ATE161964T1 (de) 1991-10-15 1998-01-15 Multilyte Ltd Bindungstest unter benutzung eines markierten reagens
US6051380A (en) 1993-11-01 2000-04-18 Nanogen, Inc. Methods and procedures for molecular biological analysis and diagnostics
US5888723A (en) 1992-02-18 1999-03-30 Johnson & Johnson Clinical Diagnostics, Inc. Method for nucleic acid amplification and detection using adhered probes
EP0565999A2 (de) * 1992-04-16 1993-10-20 Siemens Aktiengesellschaft Anordnung zur optischen Kopplung von zwei Gruppen von Wellenleitern
CA2115342C (en) 1992-06-17 2003-08-26 Robert B. Wallace A method of detecting and discriminating between nucleic acid sequences
EP0606422B1 (de) 1992-07-02 1997-09-03 SOINI, Erkki Biospezifisches multiparameter-analyseverfahren
ES2123063T3 (es) 1992-09-14 1999-01-01 Stanford Res Inst Int Marcadores convertidores al alza para ensayos biologicos y otros mediante tecnicas de excitacion laser.
US5565324A (en) 1992-10-01 1996-10-15 The Trustees Of Columbia University In The City Of New York Complex combinatorial chemical libraries encoded with tags
US5298741A (en) 1993-01-13 1994-03-29 Trustees Of Tufts College Thin film fiber optic sensor array and apparatus for concurrent viewing and chemical sensing of a sample
CA2102884A1 (en) 1993-03-04 1994-09-05 James J. Wynne Dental procedures and apparatus using ultraviolet radiation
US20020197456A1 (en) * 1993-06-30 2002-12-26 Pope Edward J. A. Integrated electro-luminescent biochip
JP3302458B2 (ja) * 1993-08-31 2002-07-15 富士通株式会社 集積化光装置及び製造方法
AU8102694A (en) 1993-11-17 1995-06-06 Id Biomedical Corporation Cycling probe cleavage detection of nucleic acid sequences
US5494798A (en) 1993-12-09 1996-02-27 Gerdt; David W. Fiber optic evanscent wave sensor for immunoassay
US5496997A (en) 1994-01-03 1996-03-05 Pope; Edward J. A. Sensor incorporating an optical fiber and a solid porous inorganic microsphere
DE69531542T2 (de) 1994-02-07 2004-06-24 Beckman Coulter, Inc., Fullerton Ligase/polymerase-vermittelte analyse genetischer elemente von einzelnukleotid-polymorphismen und ihre verwendung in der genetischen analyse
US5856083A (en) 1994-05-06 1999-01-05 Pharmacopeia, Inc. Lawn assay for compounds that affect enzyme activity or bind to target molecules
AU2990595A (en) 1994-07-26 1996-02-22 Sydney Brenner Multidimensional conduit combinatorial library synthesis device
US5512490A (en) 1994-08-11 1996-04-30 Trustees Of Tufts College Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns
WO1998053300A2 (en) 1997-05-23 1998-11-26 Lynx Therapeutics, Inc. System and apparaus for sequential processing of analytes
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
WO1996036736A2 (en) 1995-05-19 1996-11-21 Abbott Laboratories Wide dynamic range nucleic acid detection using an aggregate primer series
US5690894A (en) 1995-05-23 1997-11-25 The Regents Of The University Of California High density array fabrication and readout method for a fiber optic biosensor
US5656241A (en) * 1995-09-07 1997-08-12 Optical Sensors Incorporated Method for manufacturing fiber optic sensors
EP0852004B1 (de) 1995-10-11 2011-01-19 Luminex Corporation Gleichzeitige mehrfachanalyse klinischer proben
GB9521159D0 (en) 1995-10-16 1995-12-20 Brint Norman T A weapon
US5633972A (en) 1995-11-29 1997-05-27 Trustees Of Tufts College Superresolution imaging fiber for subwavelength light energy generation and near-field optical microscopy
US5814524A (en) 1995-12-14 1998-09-29 Trustees Of Tufts College Optical sensor apparatus for far-field viewing and making optical analytical measurements at remote locations
JP4294732B2 (ja) 1996-02-09 2009-07-15 コーネル・リサーチ・ファンデーション・インコーポレイテッド アドレス可能アレイでのリガーゼ検出反応を用いた核酸配列の相違の検出
US5840256A (en) 1996-04-09 1998-11-24 David Sarnoff Research Center Inc. Plate for reaction system
DE69737883T2 (de) 1996-04-25 2008-03-06 Bioarray Solutions Ltd. Licht-regulierte, elektrokinetische zusammensetzung von partikeln an oberflächen
CA2255774C (en) 1996-05-29 2008-03-18 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
US5854684A (en) 1996-09-26 1998-12-29 Sarnoff Corporation Massively parallel detection
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
US5900481A (en) 1996-11-06 1999-05-04 Sequenom, Inc. Bead linkers for immobilizing nucleic acids to solid supports
DE19647038B4 (de) * 1996-11-14 2007-02-22 Ferro Gmbh Kugelförmige Pigmente, Verfahren zu ihrer Herstellung und deren Verwendung
US5928819A (en) * 1996-12-19 1999-07-27 Xerox Corporation Methods to fabricate optical equivalents of fiber optic face plates using reactive liquid crystals and polymers
EP2295988A2 (de) 1996-12-31 2011-03-16 High Throughput Genomics, Inc. Multiplex-Analysevorrichtung zur Analyse von Molekülen und zugehöriges Herstellungsverfahren
HUP0003152A3 (en) * 1997-02-28 2002-09-30 Burstein Lab Inc Irvine Laboratory in a disk
US6327410B1 (en) * 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US6023540A (en) 1997-03-14 2000-02-08 Trustees Of Tufts College Fiber optic sensor with encoded microspheres
US6110678A (en) 1997-05-02 2000-08-29 Gen-Probe Incorporated Two-step hybridization and capture of a polynucleotide
US6406845B1 (en) 1997-05-05 2002-06-18 Trustees Of Tuft College Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample
DE69838067T2 (de) 1997-05-23 2008-03-13 Bioarray Solutions Ltd. Farbkodierung und in situ abfrage von matrix-gekoppelten chemischen verbindungen
US7115884B1 (en) 1997-10-06 2006-10-03 Trustees Of Tufts College Self-encoding fiber optic sensor
WO1999060170A1 (en) 1998-05-21 1999-11-25 Hyseq, Inc. Linear arrays of immobilized compounds and methods of using same
JP2002518060A (ja) 1998-06-24 2002-06-25 グラクソ グループ リミテッド ヌクレオチド検出法
EP2045334A1 (de) 1998-06-24 2009-04-08 Illumina, Inc. Dekodierung von Arraysensoren mit Mikrosphären
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
US5998175A (en) 1998-07-24 1999-12-07 Lumigen, Inc. Methods of synthesizing and amplifying polynucleotides by ligation of multiple oligomers
WO2000013004A2 (en) 1998-08-26 2000-03-09 Trustees Of Tufts College Combinatorial polymer synthesis of sensors for polymer-based sensor arrays
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
ATE462970T1 (de) 1999-02-09 2010-04-15 Illumina Inc Screeningverfahren mit porösen mikrokügelchen und zusammensetzungen
EP1206315A2 (de) 1999-02-09 2002-05-22 Illumina, Inc. Matrizen mit bezugsmarkierung und automatisierter informationsbehandlung mit frei wählbar angeordneten matrizen
JP2002539849A (ja) 1999-03-26 2002-11-26 ホワイトヘッド インスチチュート フォアー バイオメディカル リサーチ ユニバーサルアレイ
DK1923471T3 (da) 1999-04-20 2013-04-02 Illumina Inc Detektion af nukleinsyrereaktioner på bead-arrays
AU779835B2 (en) 1999-05-20 2005-02-10 Illumina, Inc. Method and apparatus for retaining and presenting at least one microsphere array to solutions and/or to optical imaging systems
AU7569600A (en) 1999-05-20 2000-12-28 Illumina, Inc. Combinatorial decoding of random nucleic acid arrays
US6544732B1 (en) 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
US20020051971A1 (en) 1999-05-21 2002-05-02 John R. Stuelpnagel Use of microfluidic systems in the detection of target analytes using microsphere arrays
AU6488999A (en) 1999-07-12 2001-01-30 Evgeny Vasilievich Kuznetsov Heat-resistant high-temperature steel
DK1218542T3 (da) 1999-09-13 2004-08-02 Nugen Technologies Inc Fremgangsmåder og sammensætninger til lineær isotermisk amplifikation af polynukleotidsekvenser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0016101A3 *

Also Published As

Publication number Publication date
US20030016897A1 (en) 2003-01-23
AU773211B2 (en) 2004-05-20
WO2000016101A3 (en) 2001-05-31
WO2000016101A2 (en) 2000-03-23
JP3836323B2 (ja) 2006-10-25
WO2000016101A9 (en) 2000-06-08
AU2004201360A1 (en) 2004-05-13
AU5821599A (en) 2000-04-03
US6859570B2 (en) 2005-02-22
US6327410B1 (en) 2001-12-04
JP2002525579A (ja) 2002-08-13
CA2343377A1 (en) 2000-03-23
CA2343377C (en) 2011-11-22

Similar Documents

Publication Publication Date Title
US10241026B2 (en) Target analyte sensors utilizing microspheres
US10107804B2 (en) Methods for detecting target analytes and enzymatic reactions
CA2343377C (en) Target analyte sensors utilizing microspheres
CA2359352C (en) Arrays comprising a fiducial and automated information processing in randomly ordered arrays
US6429027B1 (en) Composite arrays utilizing microspheres
US20020150909A1 (en) Automated information processing in randomly ordered arrays
EP1895289A2 (de) Selbstkodierender Sensor mit Mikrokugeln
EP2230512A1 (de) Selbst-kodierender faseroptischer Sensor
WO2003069333A1 (en) Automated information processing in randomly ordered arrays
EP1379995A2 (de) Automatisierte informationsverarbeitung mit frei wählbar angeordneten matrizen
WO2002099982A2 (en) Methods for improving signal detection from an array

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010330

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20060228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070913