EP1074746B1 - Turboverdichter - Google Patents

Turboverdichter Download PDF

Info

Publication number
EP1074746B1
EP1074746B1 EP00810274A EP00810274A EP1074746B1 EP 1074746 B1 EP1074746 B1 EP 1074746B1 EP 00810274 A EP00810274 A EP 00810274A EP 00810274 A EP00810274 A EP 00810274A EP 1074746 B1 EP1074746 B1 EP 1074746B1
Authority
EP
European Patent Office
Prior art keywords
compressor
electric motor
shaft
turbo
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00810274A
Other languages
English (en)
French (fr)
Other versions
EP1074746A3 (de
EP1074746A2 (de
Inventor
Denis Grob
Jean-Claude Pradetto
Dominique Dessibourg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Turbo AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26073836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1074746(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP99810640A external-priority patent/EP0990798A1/de
Application filed by MAN Turbo AG filed Critical MAN Turbo AG
Priority to EP00810274A priority Critical patent/EP1074746B1/de
Priority to US09/597,938 priority patent/US6464469B1/en
Priority to CA002312081A priority patent/CA2312081C/en
Priority to DE20011219U priority patent/DE20011219U1/de
Priority to JP2000192339A priority patent/JP4460116B2/ja
Priority to KR1020000039922A priority patent/KR100779959B1/ko
Priority to CNB001201131A priority patent/CN1153907C/zh
Publication of EP1074746A2 publication Critical patent/EP1074746A2/de
Publication of EP1074746A3 publication Critical patent/EP1074746A3/de
Publication of EP1074746B1 publication Critical patent/EP1074746B1/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • F04D29/054Arrangements for joining or assembling shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine

Definitions

  • the invention relates to a turbocompressor according to the preamble of Claim 1.
  • turbo compressor which is a radial turbo compressor and an electric motor, each of these units in one is arranged separate housing, and the shaft of the electric motor via a flexible shaft part is coupled to the shaft of the radial turbocompressor.
  • a disadvantage of this known turbocompressor is the fact that this relatively large is designed that a plurality of seals and Bearings are required, and that the manufacturing cost of Turbo compressor therefore relatively high.
  • a turbocompressor comprising an electric motor, a multi-stage radial turbocompressor and a common shaft, wherein a portion of the shaft as the rotor Electric motor is formed, and wherein a further portion of the shaft is designed as a rotor of Radialturboverêtrs, the runner a Compressor shaft and associated compressor wheels includes, and wherein for storing the shaft several electromagnetic radial bearings in Expended direction of the shaft are arranged spaced, and wherein between the rotor of the electric motor and the compressor wheel a single Electromagnetic radial bearing is arranged, and wherein the electric motor, the radial turbo compressor, the shaft and the radial bearings in one common, outwardly gastight housing are arranged, and wherein the housing consists of several sub-housings, which firmly can be connected to each other, the electric motor in a sub-housing and the Radial turbocompressor is arranged in a sub-housing, and the
  • turbocompressor comprising an electric motor, a multi-stage radial turbocompressor and a common shaft, wherein a portion of the shaft as a rotor of the electric motor is formed, and wherein a further portion of the Shaft is designed as a rotor of the radial turbocompressor, wherein the rotor a compressor shaft and associated compressor wheels, and wherein for supporting the shaft a plurality of electromagnetic radial bearings in Course of the wave are arranged spaced, wherein the Radial bearings are supported on a common base element.
  • turbocompressor comprising an outwardly gas-tight housing within which a common shaft an electric motor and a multi-stage Radial turbo compressor are arranged, wherein for storing the shaft in the Course arranged electromagnetic radial bearings spaced are, and being between the electric motor and the radial turbo compressor a shaft surrounding the dry gas seal is arranged to the Seal electric motor with respect to the radial turbo compressor, wherein the Electric motor has an interior, which fluid-conducting with a the Housing penetrating outlet is connected.
  • Fig. 1 shows a known turbocompressor, which has a double-sided mounted electric motor and a bilaterally mounted Radial turbocharger includes, wherein the shaft of the electric motor via a flexible shaft part is coupled to the shaft of the radial turbocompressor.
  • turbocompressor for complete storage of the entire shaft, opposite to the Embodiment according to FIG. 1, three radial bearings, in particular designed as electromagnetic radial bearings, suffice by between the Electric motor and the compressor a single radial bearing is arranged.
  • the turbo compressor is cheaper to produce.
  • the entire shaft can be designed in one piece.
  • a very stiff coupling allowed to form a total wave, which in the direction of the wave a has largely homogeneous stiffness profile.
  • the overall wave or the entire rotatable components of the Turbo compressors behave like a compact shaft, resulting in positively affects a stable running behavior of the turbo compressor. moreover this allows the entire shaft with the help of a single thrust bearing in store axial direction.
  • Fig. 1 is for the electric motor and the radial turbo compressor each a separate Thrust bearing required.
  • a radial turbo compressor is arranged so suffice three spaced in the direction of the wave arranged electromagnetic radial bearings for complete storage of entire wave. Is on both sides of the electric motor ever one Arranged radial turbocharger, so suffice four in the direction of the Shaft spaced arranged electromagnetic radial bearings for complete storage of the entire shaft.
  • the waiver of a radial bearing between the electric motor and the Radial turbo compressor also has the advantage that the length of the shorter shaft, which is advantageous in terms of rotor dynamics, a lighter one Wave allows to form, and also a more compact design of the Turbo compressor results. It should be noted that electromagnetic Radial bearings compared to hydrodynamic radial bearings a substantial lower bearing force, so that by the shorter shaft gained, more advantageous rotordynamic behavior and the lower Weight is crucial to keep the turbo compressor safe and trouble-free operation by means of electromagnetic bearings.
  • the engine and the Radial turbo compressor in a common, hermetically sealed Housing, in particular arranged a pressure housing, wherein a fluid-conducting inlet and outlet penetrate the housing or on the housing flanged to the radial turbo compressor to be compressed Add and remove fluid.
  • This arrangement has the decisive advantage on that on the shaft no seals against the outside, especially against Atmosphere more are needed, which in addition to the cost advantage of the others Advantages are that downtime caused by sealing problems no longer occur, and that the total length of the shaft in addition can be reduced, which in turn reduces the overall weight of the shaft as well the stability of the shaft held by electromagnetic radial bearings elevated.
  • the radial turbo compressor with a hermetically sealed to the outside Pressure housing allows the motor-compressor system according to the invention also to operate at locations, which so far for the enterprise of a Radial turbocompressors were unsuitable, for example, under water or in an environment with high pollutant content, high degree of contamination or high risk of explosion.
  • turbocompressor Another advantage of the inventive turbocompressor is in it too see that this is remote controlled very safe operable.
  • Turbo compressor for example, does not require a complex oil system Storage of the rotor.
  • the turbocompressor therefore has no components, too whose operation requires a specialist on site, or components which require regular control in relatively short time intervals.
  • a start and stop operation of the turbocompressor can be controlled remotely expire, by means of sensors, the states of the turbo compressor of Remotely monitorable, and detecting an irregularity suitable measures, for example stopping, are automatically initiated can be.
  • a turbocompressor has in the embodiment with hermetically sealed pressure housing on the further advantage that the Danger to external influences is very low.
  • a part of the compressed Fluids or process gas for longitudinal gas cooling of the engine and the Radial bearing used is especially true when using a common, hermetically sealed pressure housing advantageous.
  • Electric motor is preferably one for suction or standstill pressure designed engine used.
  • the electric motor has a separate, from the radial turbocompressor separate cooling circuit on.
  • a common base element which for example, is plate-shaped, and on which some, preferably all radial bearings are supported.
  • the arrangement of Radial bearing on a common base element has the advantage that they are aligned in a defined position against each other, and that due to tensile, compressive or shear stresses or caused by temperature influences mutual Shifts of the radial bearings can be minimized.
  • a mutually precisely arranged alignment of the radial bearings at guaranteed a wide range of operating conditions.
  • the radial bearings are arranged on the base element special also the other elements like the electric motor, the radial turbo compressor etc.
  • turbo compressor As a whole Assemble module ready in the factory.
  • This module can be at the Application can be put into operation very quickly, as it is no longer required is the radial turbocharger and the electric motor separately anchoring a document and their mutual position exactly adjust.
  • turbocompressor arranged within a housing, wherein a part of the housing, for example, the bottom disposed inner wall of the housing, at the same time forms the common base element.
  • the turbocompressor are the Radial turbo compressor and the engine in a common housing arranged, wherein the housing of a plurality of interconnected Part housings, or consists of a substantially single housing.
  • the entire drive device and in a further sub-housing of the entire radial turbocompressor arranged, wherein these sub-housing preferably so mutually Adapted are designed so that they are directly centered and mutually firmly connectable.
  • this is common housing designed so stiff that the entire Turbo compressor comprising the radial turbo compressor, the engine, etc.
  • turbo compressor consists of a separate motor with its own housing, as well as from a radial turbo compressor with another, own housing.
  • this known arrangement represents the mutual movement of the housing or the displacement of the individual waves is a significant problem that causes thereby is that each housing is anchored individually to the ground. By different thermal expansions or other forces acting on The individual housing changes their position.
  • the inventive Arrangement of engine and radial turbocompressor on a common Base element, in particular in a common housing has the Advantage on that the base element or the housing the Reference for storage, and therefore a mutual change the position of engine and radial turbocompressor largely excluded is.
  • Fig. 1 shows schematically a known turbocompressor 1, which a Radial turbocompressor 3 with a shaft 3a and a driving Electric motor 2 comprises a shaft 2a.
  • the shaft 3a of Radial turbocompressor 3 is supported by two radial bearings 5 on both sides.
  • the shaft 2a of the electric motor 2 by two radial bearings. 5 stored on both sides.
  • the two shafts 2a, 3a are connected via a coupling 4 comprising two coupling parts 4a and 4b a flexible intermediate piece connected, so that the electric motor 2 via the shaft 2a and the coupling 4th the shaft 3a of the radial turbocompressor 3 drives.
  • Fig. 2 shows a turbocompressor 1, which in a hermetic sealed pressure housing 6 is arranged, wherein each one the Pressure housing 6 penetrating supply line 6c and 6d discharge provided is to the radial turbocompressor 3 fluid-conducting with an outside of the Pressure housing 6 arranged device to connect.
  • the electric motor 2 comprises the rotor 2b and the stator 2c, wherein the rotor 2b part of the Motor shaft 2a, and the motor shaft 2a on both sides in the electromagnetic Radial bearing 5, each comprising a support device 5a and a electromagnetic coil 5b, is mounted in the radial direction.
  • the Motor shaft 2a has a thrust bearing 7 against the radial turbocompressor 3 on, which is a part of the motor shaft 2a forming disc 2d as well comprises electromagnetic coils 7a.
  • the motor shaft 2a is at the End section via a coupling 4 with the rotor 3a of the Radial turbocompressor 3 connected, with the opposite End portion of the rotor 3a is mounted in a radial bearing 5.
  • the Motor shaft 2a and the rotor 3a form a common shaft 13.
  • In Running direction of the rotor 3a are arranged two compressor wheels 3b, which a first compression stage 3c and a second compression stage Training. Not shown are the guide vanes 3f of Radial turbo-compressor 3.
  • the main mass flow 8 of the compressed Fluids pass via the inlet opening 6a and the lead 6c enters and becomes the first compression stage 3c subsequently to the second compression stage 3d and subsequently via the Discharge 6d passed to the outlet opening 6b.
  • a small fraction of the Main mass flow 8 is at the exit point of the first Compression level 3c derived via a connecting line 11 and as Cooling gas mass flow 9 a filter device 10 fed, which the Cooling gas mass flow 9 cleans of impurities, and the purified Cooling gas mass flow 9 as a coolant the electromagnetic Radallagagem 5 and the electric motor 2 supplies.
  • the cooling gas mass flow 9 is flowing in the longitudinal direction of the housing, the radial bearing 5 and subsequently the electric motor 2 and the other Radial bearing 5 fed, the cooling gas preferably between the Wave 2a and the respective magnet 5b, 2c is performed.
  • the Coolant gas mass flow 9 opens to the suction side of the first Compression level 3c, we compress this in turn, and is called Main mass flow 8 and / or further promoted as cooling gas mass flow 9.
  • the connecting line 11 and the filter device 10 can within or be arranged outside of the pressure housing 6 extending.
  • the Turbo compressor 1 according to the embodiment shown in Fig. 2 has the advantage that no seal the motor shaft 2a and the Runner 3a opposite atmosphere is required. In addition, there is no seal between the engine 2 and the first compression stage 3c required.
  • the electric motor 2 is designed in such a way that this with Suction pressure or with standstill pressure is operable.
  • the turbo-compressor 1 could, of course, a plurality of in the direction of travel of the rotor 3a have arranged spaced compressor wheels 3b, so for example, a total of four, six, eight or ten compressor wheels 3 b.
  • the compression pressure to be achieved is largely open to the top, wherein by a corresponding number connected in series Compressor wheels 3b, for example, a compression pressure of 600 bar is reachable.
  • the turbocompressor 1 could also have one or more others Radial turbo compressor 3 and / or electric motors 2 include, which in Running direction of the rotor 3a, 2a are arranged, with all runs 3a, 2a to train a common wave.
  • This common wave could be through Radial bearing, in particular magnetic radial bearings 5 be stored, wherein between each one Radialturbover Noticer 3 preferably a single Radial bearing 5 is arranged.
  • all radial turbocompressors 3 together with the electric motor 2 or the electric motors 2 in one common, single pressure housing 6 is arranged.
  • the electromagnetic radial bearing 5 and the radial bearings. 5 associated portions of the shafts 2a and 3a have further, for a Professional self-evident and therefore not shown components on to form an electromagnetic radial bearing 5, such as electrical Coils, ferromagnetic parts, etc.
  • Fig. 3 shows a longitudinal section of another embodiment of a Turbo compressor 1 comprising two radial turbocompressors 3, wherein at each Side of the electric motor 2 per a Radialturbover Noticer 3 arranged and whose rotor 3a is connected via a coupling 4 with the motor shaft 2a. Only the upper half of the turbocompressor 1 is shown. It will only the opposite to the embodiment according to FIG. 2 essential Differences in detail described.
  • the entire wave includes the Motor shaft 2a and the two rotor 3a is by four, in the longitudinal direction of the distributed throughout the wave electromagnetic radial bearings 5 stored.
  • the left-hand radial turbocompressor 3 is as Low pressure part connected and has six compressor wheels 3b.
  • the main mass flow 8 passes through the supply line 6c in the low pressure part, and after compression over a Connecting line 12 is supplied to the high pressure part, wherein the Main mass flow 8 the high pressure part after compression over the Derivative 6d leaves.
  • a small part of the main mass flow 8 is after the first compression stage 3c as the cooling gas mass flow 9 in the Conduction line 11 passed, said cooling gas mass flow 9 after the flow through the filter 10 that on the right side of the electric motor 2 arranged interior 9 c is supplied, and thereafter in the longitudinal direction the motor shaft 2 a flowing over the inner space 9 b of the suction port of the first compression stage 3c zuflust.
  • the Radial turbo compressor 3 located process gas for cooling the Derived and used electric motor 2.
  • a non-contact seal 19th arranged to the internal pressure on the right side of the electric motor. 2 keep it low.
  • the electric motor 2 is again designed to be operable at a suction pressure or a standstill pressure.
  • the Connecting line 12 and / or the connecting line 11 and the Filter device 10 could also be completely inside the housing 6 be arranged running.
  • the radial turbocompressor 3 for example, in a back to back "arrangement, in other words such that the by the two Radialturbover Noticer 3 on the shaft caused forces in act in the opposite direction to such in the direction of the Motor shaft 2a acting shear forces to compensate and reduce.
  • the housing 6 is set in the embodiments according to FIGS. 3 and 4 from the three sub-housings 6e, 6f, 6g together, the sub-housings 6e, 6g form part of the radial turbocompressor 3 and the part housing 6f part of Engine 2 forms.
  • the sub-housings 6e, 6f, 6g are adapted to one another in this way designed so that they, as shown in Figures 3 and 4, fixed can be connected to each other, for example by means of screws.
  • At this Junctions can also be arranged seals to the To hermetically seal the interior of the housing 6 so that only over the intended lines 6c, 6d, 11, 12 or corresponding flanges a fluid-conducting connection between the interior of the housing.
  • Figs. 3 and 4 show arrangement of the lines 11 and 12 only through the lines 6c, 6d and optionally through the discharge line 6i a fluid-conducting connection to the outside space exists.
  • the joints can also do so be adapted to each other that arranged adjacent Part housing when pushed together and connect with respect to Longitudinal axis of the turbocompressor 1 automatically center each other.
  • the two partial housings 6e, 6g each have an opening 23a in the outer wall which can be closed gas-tight with a cover 23b.
  • Fig. 3 is the in the sub-housing 6g arranged opening 23a with lid 23b shown.
  • the Turbo compressor 1 is preferably prefabricated such that the Radial turbo compressor 3 is installed in the respective sub-housing 6e, 6g and the electric motor 2 is installed in the sub housing 6f.
  • the like preconfigured sub-housing 6e, 6f, 6g are in the assembled State transported to the place of application.
  • the assembly of the Turbo compressor 1 is as follows: After the sub-housing 6e, 6f, 6g on the Flanges 6k, 6l are firmly connected to each other, the shaft 3a and the rotor 2b at the outside accessible through the opening 23a Clutch 4 firmly connected. Thereafter, the opening 23 a with the lid 23b firmly and sealed gas-tight.
  • the at the clutch 4 used fasteners, such as screws, are in themselves known and therefore not shown in detail.
  • the turbocompressor 1 shown in Fig. 4 in otherwise substantially the same configuration as the turbocompressor according to FIG. 3, in the housing part 6e a fluidically connected to the interior 9b outlet opening 6h and a subsequently arranged derivative 6i, through which the Cooling gas mass flow 9 and a minor proportion of Main mass flow 9a exits and example of a foreign investment Process source is supplied.
  • This arrangement is opposite to the Embodiment according to FIG. 3 has the advantage that the pressure in the Derivative 6i subsequent device independent of the pressure in Radial turbo compressor 3 is, this pressure is preferably selected is that the engine cooling is done at a lower pressure level than in the Embodiment according to FIG.
  • the Discharge 6i may be supplied to, for example, a compressor 24, which compresses the mass flow 9, 9a again the inlet opening 6a supplies.
  • the suction pressure generated by the compressor in the discharge line 6i can for example, be lower than 50 bar.
  • a control device 17 which at least for driving the electromagnetic radial bearing 5 and the motor 2 serves.
  • sensors 16a, 16b, 16c, 16d arranged, which the position of the entire shaft 13 and the sub-waves 2a, 3a with respect to the radial bearings 5, the sensors 16a, 16b, 16c, 16d via electrical lines 16e, 16f, 16g, 16h with the control device 17 are connected.
  • electrical lines 15a, 15b, 15c, 15d which are connected to the control device 17.
  • electrical line 15 e is also one electrical line 15 e is provided, which the control device 17 via a power electronics, not shown, with the winding of the Electric motor 2 connects.
  • Fig. 5 shows a longitudinal section through a housing 6, wherein the Junction of two sub-housing 6e, 6f is shown.
  • the flange 6k of the first sub-housing 6e has a recess configured in this way, that the flange 6I of the second part housing 6f is received therein, wherein the mutual position of the two sub-housings 6e, 6f at Joining together by the flanges 6k, 6l are centered on each other.
  • the Flanges 6k, 6l are distributed by several in the circumferential direction arranged screws 6m held together with nut 6n, wherein at the Face of the flanges 6k, 6l extending in the circumferential direction groove is provided, in which a sealing element 6o is arranged to the by the two sub-housing 6e, 6f limited interior to the outside seal.
  • FIG. 6 shows a longitudinal section of a schematically illustrated housing 6 consisting of three sub-housings 6e, 6f, 6g with flanges 6k, 6l and a Supply line 6c and a derivative 6d.
  • the housing 6 is about two Supporting elements 18a, 18b supported on a substrate 14.
  • a base member 6p which is a rigid, in Longitudinal direction of the housing 6 extending support, in particular a Supporting surface forms on which the electromagnetic radial bearings. 5 are arranged.
  • the function of the basic elements 6p is one as possible stable and preferably temperature-insensitive reference plane too form, on which at least some radial bearings 5 are arranged.
  • the Base member 6p may be configured in a variety of embodiments be, for example, as a solid, solid plate, as a carrier or as Grating. On the base element 6p further components such as Electric motor 2 or 3 Radialturbover Noticer be anchored.
  • the Using a base element 6p allows the electromagnetic Radial bearing 5 mutually very precise and in particular precisely aligned to arrange.
  • the common arrangement of the radial bearing 5 on the Base element 6p has the advantage that due to attacking Tensile, compressive or shear forces or due to temperature influences mutual shifts of the radial bearings turn out very low. moreover This arrangement can be set up very quickly ready for use. In the From Fig.
  • the bearing force generated by electromagnetic radial bearings is much lower than that of known hydrodynamic bearings producible bearing force. That is why the exact mutual Alignment of electromagnetic radial bearings and preventing a mutual displacement of the radial bearings of central importance.
  • the Electromagnetic radial bearing is usually operated such that the Shaft is held in the geometric center of the radial bearing.
  • One mutual displacement of the radial bearing has the consequence that the Radial bearing has to expend considerable forces to the shaft anyway in the to hold geometric center. Since the electromagnetic radial bearing relative it soon gets into the state of magnetic saturation Radial bearing in this situation over lower, to carry the shaft to Available forces.
  • Fig. 7 shows a turbocompressor 1 with a compared to Embodiment according to FIG. 4 separately cooled electric motor 2. It is between the pressure part of the radial turbocompressor 3 and the electric motor 2 each a system with a double seal, comprising a Dry gas seal 19 and subsequently a seal 20, arranged wherein between the two seals 19, 20 an outlet 21, as a vent (Exit to the atmosphere without gas combustion) or flare (exit to the Atmosphere with gas combustion) configured, which is arranged by the housing wall 6 runs.
  • the electric motor 2 has a separate, separated by the seals 19, 20 from the radial turbo compressor 3 Cooling circuit on which a connecting line 11 and a radiator 22nd includes.
  • a Coolant gas driving device not shown are other components of this cycle, such as a Coolant gas driving device.
  • a supply line 9d carries additional Cooling gas to, for example, the effluent via the discharge line 21 Compensate cooling gas components.
  • the cooling gas is not in particular aggressive gas such as nitrogen.
  • the cooling circuit of the Electric motor 2 may be designed such that this pressure in the Range of atmospheric pressure or slightly above it. As in 7, the cooling circuit can be designed such that a small proportion of the cooling gas mass flow 9 via the seal 20 for Outlet 21 arrives. This ensures that the Coolant gas mass flow 9 is not contaminated by foreign gases. in the Embodiment according to FIG. 7 also flows a small proportion of Process gas 8 via the seal 19 to the outlet 21.
  • the outlet 21 can a so-called flare or vent be subordinate to that from the Outlet 21 discharged gases unburned vent (vent) or via a subsequent combustion (flare) dissipate, especially to the environment leave.
  • cooling gas 9 has a low pressure and / or that as a cooling gas favorable or easily manageable gas is used, in particular a gas without aggressive properties.
  • turbocompressor 1 An advantage of the turbocompressor 1 according to the invention can be seen therein that the electric motor 2 and the radial turbocompressor 3 together with the corresponding housing parts 6e, 6f are preassembled, so that the Turbo compressor 1 as a housing 6 or as a unit for Site is transportable and can be set up there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft einen Turboverdichter gemäss dem Oberbegriff von Anspruch 1.
Es ist ein Turboverdichter bekannt, welcher einen Radialturboverdichter sowie einen Elektromotor umfasst, wobei jede dieser Einheiten in einem separaten Gehäuse angeordnet ist, und die Welle des Elektromotors über ein flexibles Wellenteil an die Welle des Radialturboverdichters gekuppelt ist.
Nachteilig an diesem bekannten Turboverdichter ist die Tatsache, dass dieser relativ gross ausgestaltet ist, dass eine Mehrzahl von Dichtungen und Lagern erforderlich sind, und dass die Herstellungskosten des Turboverdichters daher relativ hoch sind.
Die Druckschrift DE 37 29 486 C1 offenbart in Figur 1a einen Turboverdichter, welcher zwei zweistufige Radialturboverdichter sowie einen Elektromotor umfasst, wobei diese an eine starre Welle gekoppelt sind, welche an drei Stellen mit magnetischen Radiallagern gelagert ist. Diese Ausführungsform weist den Nachteil auf, dass der Zusammenbau sehr aufwändig und schwierig ist, dass diese Anordnung für einen höchstens zweistufigen Radialturboverdichter geeignet ist, und dass der Turboverdichter relativ hohe Dissipationsverluste aufweist.
Es ist Aufgabe der vorliegenden Erfindung einen wirtschaftlich vorteilhafteren Turboverdichter vorzuschlagen.
Diese Aufgabe wird gelöst mit einem Turboverdichter aufweisend die Merkmale von Anspruch 1. Die Unteransprüche 2 bis 15 betreffen weitere, vorteilhaft gestaltete Ausbildungen des erfindungsgemässen Turboverdichters.
Die Aufgabe wird insbesondere gelöst mit einem Turboverdichter umfassend einen Elektromotor, einen mehrstufigen Radialturboverdichter sowie eine gemeinsame Welle, wobei ein Teilabschnitt der Welle als Rotor des Elektromotors ausgebildet ist, und wobei ein weiterer Teilabschnitt der Welle als Läufer des Radialturboverdichters ausgebildet ist, wobei der Läufer eine Verdichterwelle sowie damit verbundene Verdichterräder umfasst, und wobei zum Lagern der Welle mehrere elektromagnetische Radiallager in Verlaufsrichtung der Welle beabstandet angeordnet sind, und wobei zwischen dem Rotor des Elektromotors und dem Verdichterrad ein einziges elektromagnetisches Radiallager angeordnet ist, und wobei der Elektromotor, der Radialturboverdichter, die Welle sowie die Radiallager in einem gemeinsamen, nach aussen gasdichten Gehäuse angeordnet sind, und wobei das Gehäuse aus mehreren Teilgehäusen besteht, welche fest miteinander verbindbar sind, der Elektromotor in einem Teilgehäuse und der Radialturboverdichter in einem Teilgehäuse angeordnet ist, und der Rotor des Elektromotors sowie der Läufer des Radialturboverdichters über eine zwischen dem Rotor des Elektromotors und dem Verdichterrad angeordnete Kupplung zu einer gemeinsamen Welle verbindbar sind.
Die Aufgabe wird weiter insbesondere gelöst mit einem Turboverdichter umfassend einen Elektromotor, einen mehrstufigen Radialturboverdichter sowie eine gemeinsame Welle, wobei ein Teilabschnitt der Welle als Rotor des Elektromotors ausgebildet ist, und wobei ein weiterer Teilabschnitt der Welle als Läufer des Radialturboverdichters ausgebildet ist, wobei der Läufer eine Verdichterwelle sowie damit verbundene Verdichterräder umfasst, und wobei zum Lagern der Welle mehrere elektromagnetische Radiallager in Verlaufsrichtung der Welle beabstandet angeordnet sind, wobei die Radiallager auf einem gemeinsamen Basiselement abgestützt sind.
Die Aufgabe wird weiter insbesondere gelöst mit einem Turboverdichter umfassend ein nach aussen gasdichtes Gehäuse innerhalb welchem auf einer gemeinsamen Welle ein Elektromotor sowie ein mehrstufiger Radialturboverdichter angeordnet sind, wobei zum Lagern der Welle in deren Verlaufsrichtung elektromagnetische Radiallager beabstandet angeordnet sind, und wobei zwischen dem Elektromotor und dem Radialturboverdichter eine die Welle umschliessende Trockengasdichtung angeordnet ist, um den Elektromotor bezüglich dem Radialturboverdichter abzudichten, wobei der Elektromotor einen Innenraum aufweist, welcher fluidleitend mit einer das Gehäuse durchdringenden Austrittsöffnung verbunden ist.
Fig. 1 zeigt einen bekannten Turboverdichter, welcher einen beidseitig gelagerten Elektromotor sowie einen beidseitig gelagerten Radialturboverdichter umfasst, wobei die Welle des Elektromotors über ein flexibles Wellenteil an die Welle des Radialturboverdichters gekuppelt ist.
Ein Vorteil des erfindungsgemässen Turboverdichters ist darin zu sehen, dass zur vollständigen Lagerung der gesamten Welle, gegenüber der Ausführungsform gemäss Fig. 1, drei Radiallager, insbesondere ausgestaltet als elektromagnetische Radiallager, genügen, indem zwischen dem Elektromotor und dem Verdichter ein einziges Radiallager angeordnet ist. Somit ist der Turboverdichter günstiger herstellbar.
Die gesamte Welle kann einstückig ausgestaltet sein. In einer vorteilhaften Ausgestaltung ist die Welle des Elektromotors sowie die Welle des Radialturboverdichters über eine Kupplung, insbesondere eine Kupplung mit möglichst hoher Steifigkeit, verbunden. Eine sehr steife Kupplung erlaubt eine Gesamtwelle zu bilden, welche in Verlaufsrichtung der Welle einen weitgehend homogenen Steifigkeitsverlauf aufweist. Die Gesamtwelle beziehungsweise die gesamten rotierbaren Komponenten des Turboverdichters verhalten sich dadurch wie eine kompakte Welle, was sich positiv auf ein stabiles Laufverhalten des Turboverdichter auswirkt. Zudem ermöglicht dies die gesamte Welle mit Hilfe eines einzigen Axiallagers in axialer Richtung zu lagern. In der aus Fig. 1 bekannten Ausführungsform ist für den Elektromotor sowie den Radialturboverdichter je ein separates Axiallager erforderlich.
Wenn nur an einer Seite des Elektromotors ein Radialturboverdichter angeordnet ist, so genügen drei in Verlaufsrichtung der Welle beabstandet angeordnete elektromagnetische Radiallager zur vollständigen Lagerung der gesamten Welle. Ist an beiden Seiten des Elektromotors je ein Radialturboverdichter angeordnet, so genügen vier in Verlaufsrichtung der Welle beabstandet angeordnete elektromagnetische Radiallager zur vollständigen Lagerung der gesamten Welle.
Der Verzicht auf ein Radiallager zwischen dem Elektromotor und dem Radialturboverdichter weist zudem den Vorteil auf, dass die Länge der gesamten Welle kürzer ist, was rotordynamisch vorteilhaft ist, eine leichtere Welle zu bilden ermöglicht, und zudem eine kompaktere Bauweise des Turboverdichters ergibt. Dabei ist zu beachten, dass elektromagnetische Radiallager im Vergleich zu hydrodynamischen Radiallagern eine wesentlich geringere Lagerkraft aufweisen, sodass das durch die kürzere Welle gewonnene, vorteilhaftere rotordynamische Verhalten sowie das geringere Gewicht von entscheidender Bedeutung ist, um den Turboverdichter sicher und störungsfrei mittels elektromagnetischer Lager zu betreiben. Dieser Aspekt ist insbesondere von Bedeutung bei Radialturboverdichtern, welche ein Fluid auf einen hohen Druck von beispielsweise 600 Bar verdichten, weil bei einem derart hochverdichteten Fluid eine Strömungsstörung relativ hohe radiale und axiale Kräfte bewirkt, die von dem eine begrenzte Tragfähigkeit aufweisenden elektromagnetischen Lager nur dann aufgefangen werden könne, wenn das rotordynamische Verhalten des Gesamtsystems optimiert ist.
In einer besonders vorteilhaften Ausgestaltung sind der Motor sowie der Radialturboverdichter in einem gemeinsamen, hermetisch abgedichteten Gehäuse, insbesondere einem Druckgehäuse angeordnet, wobei eine fluidleitende Zu- und Ableitung das Gehäuse durchdringen oder am Gehäuse angeflanscht sind, um dem Radialturboverdichter das zu komprimierenden Fluid zu- und abzuführen. Diese Anordnung weist den entscheidenden Vorteil auf, dass an der Welle keine Dichtungen gegen aussen, insbesondere gegen Atmosphäre mehr erforderlich sind, was nebst dem Kostenvorteil die weiteren Vorteile ergibt, dass durch Dichtungsprobleme verursachte Stillstandzeiten nicht mehr auftreten, und dass die Gesamtlänge der Welle zusätzlich reduziert werden kann, was wiederum das Gesamtgewicht der Welle sowie die Stabilität der durch elektromagnetische Radiallager gehaltenen Welle erhöht.
Der Radialturboverdichter mit einem nach Aussen hermetisch abgedichteten Druckgehäuse erlaubt die erfindungsgemässe Motor-Kompressor-Anlage auch an Standorten zu betreiben, welche bisher für den Betrieb eines Radialturobverdichters ungeeignet waren, beispielsweise unter Wasser oder in einer Umgebung mit hohem Schadstoffanteil, hohem Verschmutzungsgrad oder hoher Explosionsgefahr.
Ein weiterer Vorteil des erfindungsgemässen Turboverdichters ist darin zu sehen, dass dieser auch ferngesteuert sehr sicher betreibbar ist. Der Turboverdichter weist beispielsweise kein aufwendiges Ölsystem zur Lagerung des Rotors auf. Zudem sind keine oder nur wenige Dichtungen erforderlich. Der Turboverdichter weist daher keine Komponenten auf, zu deren Betrieb ein Fachmann vor Ort erforderlich ist, oder Komponenten welche eine regelmässige Kontrolle in relativ kurzen Zeitabständen erfordern. Ein Start- und Stoppvorgang des Turboverdichters kann ferngesteuert ablaufen, wobei mittels Sensoren die Zustände des Turboverdichters von Ferne überwachbar sind, und beim Feststellen einer Unregelmässigkeit geeignete Massnahmen, zum Beispiel ein Stoppen, automatisch eingeleitet werden können. Ein Turboverdichter weist in der Ausführungform mit hermetisch abgedichtetem Druckgehäuse den weiteren Vorteil auf, dass die Gefahr für von Aussen einwirkenden Störeinflüssen sehr gering ist.
Um das Fluid auf einen hohen Enddruck zu komprimieren war es bisher erforderlich den Turboverdichter mit sehr teuren Trockengasdichtungen zu versehen, wobei diese Trockengasdichtungen nebst dem hohen Preis den weiteren Nachteil aufweisen, dass sie eine erhebliche Wartung erfordern und zudem eine Risikokomponente darstellen, sind doch die meisten unvorhersehbaren Stillstandzeiten eines Turboverdichters durch Schäden an der Trockengasdichtung bedingt.
In einer weiteren vorteilhaften Ausgestaltung wird ein Teil des komprimierten Fluides bzw. Prozessgases zur Längsgaskühlung des Motors sowie der Radiallager verwendet. Dies ist insbesondere bei der Verwendung eines gemeinsamen, hermetisch abgedichteten Druckgehäuses von Vorteil. Als Elektromotor wird dabei vorzugsweise ein für Saugdruck oder Stillstanddruck ausgelegter Motor verwendet. In einer weiteren vorteilhaften Ausgestaltung weist der Elektromotor einen separaten, vom Radialturboverdichter getrennten Kühlkreislauf auf.
In einer vorteilhaften Ausgestaltung des erfindungsgemässen Turboverdichters weist dieser ein gemeinsames Basiselement auf, welches beispielsweise plattenförmig ausgestaltet ist, und auf welchem einige, vorzugsweise alle Radiallager abgestützt sind. Die Anordnung der Radiallager auf einem gemeinsamen Basiselement weist den Vorteil auf, dass diese in einer definierten Lage gegeneinander ausgerichtet sind, und dass die auf Grund von Zug-, Druck- oder Scherspannungen beziehungsweise durch Temperatureinflüsse bedingten gegenseitigen Verschiebungen der Radiallager minimal gehalten werden können. Somit ist eine gegenseitig präzis angeordnete Ausrichtung der Radiallager bei unterschiedlichsten Betriebsbedingungen gewährleistet. Vorteilhafterweise werden auf dem Basiselement nicht nur die Radiallager angeordnet sonder auch die übrigen Elemente wie der Elektromotor, der Radialturboverdichter usw. Dies ermöglicht, nicht zuletzt auch dank der kompakten Bauweise des erfindungsgemässen Turboverdichters, den Turboverdichter als gesamtes Modul fertig im Herstellungswerk zu montieren. Dieses Modul kann am Anwendungsort sehr schnell in Betrieb genommen werden, da es nicht mehr erforderlich ist den Radialturboverdichter sowie den Elektromotor separat auf einer Unterlage zu verankern und dabei deren gegenseitige Lage genau einzustellen. In einer vorteilhaften Ausgestaltung ist der Turboverdichter innerhalb eines Gehäuses angeordnet, wobei ein Teil des Gehäuses, beispielsweise die unten angeordnete Innenwand des Gehäuses, zugleich das gemeinsame Basiselement ausbildet.
In einer vorteilhaften Ausgestaltung des Turboverdichters sind der Radialturboverdichter sowie der Motor in einem gemeinsamen Gehäuse angeordnet, wobei das Gehäuse aus mehreren miteinander verbindbaren Teilgehäusen, oder aus einem im wesentlichen einzigen Gehäuse besteht. Vorteilhafterweise ist im einen Teilgehäuse die gesamte Antriebsvorrichtung und in einem weiteren Teilgehäuse der gesamte Radialturboverdichter angeordnet, wobei diese Teilgehäuse vorzugsweise derart gegenseitig angepasst ausgestaltet sind, dass diese direkt gegenseitig zentrierbar und fest verbindbar sind. In einer vorteilhaften Ausführungsform ist das gemeinsame Gehäuse derart steif ausgestaltet, dass der gesamte Turboverdichter umfassend den Radialturboverdichter, den Motor usw. durch das gemeinsame Gehäuse gegenseitig im wesentlichen verschiebungsfrei gelagert ist, sodass das gemeinsame Gehäuse, beispielsweise ausgestaltet als ein Rohr, ohne äusserliche Abstützung, oder mit nur einer oder zwei Abstützungen auf einem Untergrund abstützbar ist. Diese Anordnung weist den Vorteil auf, dass die Möglichkeit stationärer und/oder instationärer Verlagerungen der Lagerstellen weitgehendst unterbunden sind, weshalb auch eine Lagereinstellung vor Ort entfällt, sodass die Herstellung und die Inbetriebsetzung des Turboverdichters kostengünstiger erfolgt. Sollte im gemeinsamen Gehäuse trotzdem eine geringfügige Verlagerung der einzelnen Wellen beziehungsweise der statisch angeordneten Teile des Motors oder des Radialturboverdichters im gemeinsamen Gehäuse auftreten, so besteht auch die Möglichkeit diese Abweichung dank der Verwendung elektromagnetischer Radiallager zu kompensieren.
Der aus Fig. 1 bekannte Turboverdichter besteht aus einem separaten Motor mit einem eigenen Gehäuse, sowie aus einem Radialturboverdichter mit einem weiteren, eigenen Gehäuse. Bei dieser bekannten Anordnung stellt die gegenseitige Bewegung der Gehäuse beziehungsweise die Verlagerung der einzelnen Wellen ein erhebliches Problem dar, welches dadurch verursacht wird, dass jedes Gehäuse individuell am Boden verankert ist. Durch unterschiedliche thermische Dehnungen oder sonstige einwirkende Kräfte auf die einzelnen Gehäuse verändert sich deren Lage. Die erfindungsgemässe Anordnung von Motor und Radialturboverdichter auf einem gemeinsamen Basiselement, insbesondere in einem gemeinsamen Gehäuse, weist den Vorteil auf, dass das Basiselement beziehungsweise das Gehäuse die Referenz für die Lagerung bildet, und daher eine gegenseitige Veränderung der Lage von Motor und Radialturboverdichter weitgehend ausgeschlossen ist.
Der Turboverdichter umfassend eine Mehrzahl von Teilgehäusen weist die Vorteile auf:
  • dass der Zusammenbau des gesamten Turboverdichters sehr einfach ist,
  • dass in jedem Teilgehäuse eine rotierbaren Einheit angeordnet ist, welche separat balanciert und ausgewuchtet werden kann,
  • dass jedes Teilgehäuse mit der sich darin befindlichen rotierbaren Einheit auch von unterschiedlichen Lieferanten bezogen werden kann. Insbesondere kann der Elektromotor und der Radialturboverdichter von unterschiedlichen Lieferanten bezogen werden.
  • dass der Unterhalt des Turboverdichters einfacher und kostengünstiger ist.
Die Erfindung wird im weiteren an Hand mehrerer Ausführungsbeispiele beschrieben, wobei dieselben Bezugszeichen dieselben Gegenstände betreffen. Es zeigen:
Fig. 1
eine schematische Anordnung eines bekannten Turboverdichters;
Fig. 2
ein Längsschnitt eines Turboverdichters mit einem Elektromotor sowie einem Radialturboverdichter;
Fig. 3
ein Längsschnitt eines Turboverdichters mit beidseitig angeordneten Radialturboverdichtern;
Fig. 4
ein weiterer Längsschnitt eines Turboverdichters mit beidseitig angeordneten Radialturboverdichtem;
Fig. 5
ein Längsschnitt durch die Verbindungsstelle zweier Teilgehäuse;
Fig. 6
ein Längsschnitt eines schematisch dargestellten Gehäuses bestehend aus drei Teilgehäusen;
Fig. 7
ein Längsschnitt eines Turboverdichters mit separatem Kühlsystem.
Fig. 1 zeigt schematisch einen bekannten Turboverdichter 1, welcher einen Radialturboverdichter 3 mit einer Welle 3a sowie einen antreibenden Elektromotor 2 mit einer Welle 2a umfasst. Die Welle 3a des Radialturboverdichters 3 ist durch zwei Radiallager 5 beidseitig gelagert. Ebenso ist die Welle 2a des Elektromotors 2 durch je zwei Radiallager 5 beidseitig gelagert. Die beiden Wellen 2a, 3a sind über eine Kupplung 4 umfassend zwei Kupplungsteile 4a und ein flexibles Zwischenstück 4b verbunden, sodass der Elektromotor 2 über die Welle 2a und die Kupplung 4 die Welle 3a des Radialturboverdichters 3 antreibt.
Fig. 2 zeigt einen Turboverdichter 1, welcher in einem hermetisch abgedichteten Druckgehäuse 6 angeordnet ist, wobei je eine das Druckgehäuse 6 durchdringende Zuleitung 6c und Ableitung 6d vorgesehen ist, um den Radialturboverdichter 3 fluidleitend mit einer ausserhalb des Druckgehäuses 6 angeordneten Vorrichtung zu verbinden. Der Elektromotor 2 umfasst den Rotor 2b sowie den Stator 2c, wobei der Rotor 2b Teil der Motorwelle 2a ist, und die Motorwelle 2a beidseitig im elektromagnetischen Radiallager 5, umfassend je eine Abstützvorrichtung 5a sowie eine elektromagnetische Spule 5b, in radialer Richtung gelagert ist. Die Motorwelle 2a weist gegen den Radialturboverdichter 3 hin ein Axiallager 7 auf, welches eine Teil der Motorwelle 2a bildende Scheibe 2d sowie elektromagnetische Spulen 7a umfasst. Die Motorwelle 2a ist an deren Endabschnitt über eine Kupplung 4 mit dem Läufer 3a des Radialturboverdichters 3 verbunden, wobei der gegenüberliegende Endabschnitt des Läufers 3a in einem Radiallager 5 gelagert ist. Die Motorwelle 2a sowie der Läufer 3a bilden eine gemeinsame Welle 13. In Verlaufsrichtung des Läufers 3a sind zwei Verdichterräder 3b angeordnet, welche eine erste Verdichtungsstufe 3c sowie eine zweite Verdichtungsstufe 3d ausbilden. Nicht dargestellt sind die Leitschaufeln 3f des Radialturboverdichters 3. Der Hauptmassenstrom 8 des zu komprimierenden Fluides, vorzugsweise in Form eines Gases, tritt über die Eintrittsöffnung 6a und die Zuleitung 6c in die erste Verdichtungsstufe 3c ein und wird nachfolgend zur zweiten Verdichtungsstufe 3d und nachfolgend über die Ableitung 6d zur Austrittsöffnung 6b geleitet. Ein geringer Bruchteil des Hauptmassenstroms 8 wird an der Austrittsstelle der ersten Verdichtungsstufe 3c über eine Verbindungsleitung 11 abgeleitet und als Kühlgasmassenstrom 9 einer Filtervorrichtung 10 zugeleitet, welche den Kühlgasmassenstrom 9 von Verunreinigungen reinigt, und den gereinigten Kühlgasmassenstrom 9 als Kühlmittel den elektromagnetischen Radiallagem 5 sowie dem Elektromotor 2 zuführt. Im dargestellten Ausführungsbeispiel wird der Kühlgasmassenstrom 9 in Längsrichtung des Gehäuses fliessend, dem Radiallager 5 und nachfolgend dem Elektromotor 2 sowie dem weiteren Radiallager 5 zugeführt, wobei das Kühlgas vorzugsweise zwischen der Welle 2a und dem jeweiligen Magnet 5b, 2c durchgeführt wird. Der Kühlgasmassenstrom 9 mündet zur Ansaugseite der ersten Verdichtungsstufe 3c, wir von dieser wiederum komprimiert, und wird als Hauptmassenstrom 8 und/oder als Kühlgasmassenstrom 9 weiter gefördert. Die Verbindungsleitung 11 und die Filtervorrichtung 10 können innerhalb oder ausserhalb des Druckgehäuses 6 verlaufend angeordnet sein. Der Turboverdichter 1 gemäss der in Fig. 2 dargestellten Ausführungsform weist den Vorteil auf, dass keine Dichtung der Motorwelle 2a beziehungsweise des Läufers 3a gegenüber Atmosphäre erforderlich ist. Zudem ist keine Dichtung zwischen zwischen dem Motor 2 und der ersten Verdichtungsstufe 3c erforderlich. Der Elektromotor 2 ist dabei derart auszulegen, dass dieser mit Saugdruck oder mit Stillstanddruck betreibbar ist.
Der Turboverdichter 1 könnte natürlich eine Mehrzahl von in Verlaufsrichtung des Läufers 3a beabstandet angeordneten Verdichterräder 3b aufweisen, so beispielsweise auch gesamthaft vier, sechs, acht oder zehn Verdichterräder 3b. Der zu erzielende Kompressionsdruck ist nach oben weitgehend offen, wobei durch eine entsprechende Anzahl in Serie geschalteter Verdichterräder 3b beispielsweise ein Kompressionsdruck von 600 Bar erreichbar ist. Der Turboverdichter 1 könnte auch einen oder mehrere weitere Radialturboverdichter 3 und/oder Elektromotoren 2 umfassen, welche in Verlaufsrichtung des Läufers 3a;2a angeordnet sind, wobei alle Läufe 3a;2a eine gemeinsame Welle ausbilden. Diese gemeinsame Welle könnte durch Radiallager, insbesondere magnetische Radiallager 5 gelagert sein, wobei zwischen je einem Radialturboverdichter 3 vorzugsweise ein einziges Radiallager 5 angeordnet ist. Vorzugsweise sind alle Radialturboverdichter 3 gemeinsam mit dem Elektromotor 2 oder den Elektromotoren 2 in einem gemeinsamen, einzigen Druckgehäuse 6 angeordnet.
Die elektromagnetischen Radiallager 5 sowie die den Radiallagern 5 zugeordneten Abschnitte der Wellen 2a und 3a weisen weitere, für einen Fachmann selbstverständliche und daher nicht dargestellte Komponenten auf, um ein elektromagnetisches Radiallager 5 auszubilden, wie elektrische Spulen, ferromagnetische Teile usw. Dasselbe gilt für den Elektromotor 2, welcher ebenfalls nur schematisch dargestellt ist.
Fig. 3 zeigt einen Längsschnitt eines weiteren Ausführungsbeispiels eines Turboverdichters 1 umfassend zwei Radialturboverdichter 3, wobei an jeder Seite des Elektromotors 2 je ein Radialturboverdichter 3 angeordnet und dessen Läufer 3a über eine Kupplung 4 mit der Motorwelle 2a verbunden ist. Es ist nur die obere Hälfte des Turboverdichters 1 dargestellt. Es werden nur die gegenüber der Ausführungsform gemäss Fig. 2 wesentlichen Unterschiede im Detail beschrieben. Die gesamte Welle umfassend die Motorwelle 2a sowie die beiden Läufer 3a ist durch vier, in Längsrichtung der gesamten Welle verteilt angeordnete elektromagnetische Radiallager 5 gelagert. Der links angeordnete Radialturboverdichter 3 ist als Niederdruckteil angeschlossen und weist sechs Verdichterräder 3b auf. Der rechts angeordnete Radialturboverdichter 3 ist als Hochdruckteil angeschlossen und weist fünf Verdichterräder 3b auf. Ebenfalls dargestellt sind die Leitschaufeln 3f. Der Hauptmassenstrom 8 tritt über die Zuleitung 6c in den Niederdruckteil ein, und wird nach dem Komprimieren über eine Verbindungsleitung 12 dem Hochdruckteil zugeführt, wobei der Hauptmassenstrom 8 den Hochdruckteil nach dem Komprimieren über die Ableitung 6d verlässt. Ein geringer Teil des Hauptmassenstroms 8 wird nach der ersten Verdichtungsstufe 3c als Kühlgasmassenstrom 9 in die Verbindungsleitung 11 geleitet, wobei dieser Kühlgasmassenstrom 9 nach dem Durchfliessen des Filters 10 dem an der rechten Seite des Elektromotors 2 angeordneten Innenraum 9c zugeführt wird, und danach in Längsrichtung der Motorwelle 2a strömend über den Innenraum 9b der Saugöffnung der ersten Verdichtungsstufe 3c zufliesst. Somit wird ein Teil des sich im Radialturboverdichters 3 befindlichen Prozessgases zur Kühlung des Elektromotors 2 abgeleitet und verwendet.
Zwischen dem rechts angeordneten Radialturboverdichter 3 sowie dem Elektromotor 2 ist am Läufer 3a eine berührungsfreie Dichtung 19 angeordnet, um den Innendruck an der rechten Seite des Elektromotors 2 entsprechend tief zu halten. Der Elektromotor 2 ist wiederum ausgelegt, um bei einem Saugdruck oder einem Stillstanddruck betreibbar zu sein. Die Verbindungsleitung 12 und/oder die Verbindungsleitung 11 als auch die Filtervorrichtung 10 könnten auch vollständig innerhalb des Gehäuses 6 verlaufend angeordnet sein.
Die Radialturboverdichter 3 können beispielsweise auch in einer back to back" Anordnung angeordnet sein, mit anderen Worten derart, dass die durch die beiden Radialturboverdichter 3 auf die Welle bewirkten Kräfte in entgegengesetzter Richtung wirken, um derart die in Verlaufsrichtung der Motorwelle 2a wirkenden Schubkräfte zu kompensieren und zu reduzieren.
Das Gehäuse 6 setzt sich in den Ausführungsformen gemäss Fig. 3 und 4 aus den drei Teilgehäusen 6e, 6f, 6g zusammen, wobei die Teilgehäuse 6e, 6g Teil des Radialturboverdichters 3 bilden und das Teilgehäuse 6f Teil des Motors 2 bildet. Die Teilgehäuse 6e, 6f, 6g sind derart gegenseitig angepasst ausgestaltet, dass sie, wie in den Figuren 3 und 4 dargestellt, fest miteinander verbindbar sind, beispielsweise mittels Schrauben. An diesen Verbindungsstellen können zudem Dichtungen angeordnet sein, um den Innenraum des Gehäuses 6 hermetisch abzudichten, sodass nur noch über die vorgesehenen Leitungen 6c, 6d, 11, 12 oder entsprechende Flansche eine Fluid leitende Verbindung zwischen dem Innenraum des Gehäuses 6 und dem Aussenraum besteht, wobei bedingt durch die in Fig. 3 und 4 dargestellte Anordnung der Leitungen 11 und 12 nur durch die Leitungen 6c, 6d und gegebenenfalls durch die Ableitung 6i eine fluidleitende Verbindung zum Aussenraum besteht. Die Verbindungsstellen können zudem derart gegenseitig angepasst ausgestaltet sein, dass sich benachbart angeordnete Teilgehäuse beim Zusammenschieben und Verbinden bezüglich der Längsachse des Turboverdichters 1 selbsttätig gegenseitig zentrieren. Die beiden Teilgehäuse 6e, 6g weisen in der Aussenwand je eine Öffnung 23a auf, welche mit einem Deckel 23b gasdicht verschliessbar ist. In Fig. 3 ist die im Teilgehäuse 6g angeordnete Öffnung 23a mit Deckel 23b dargestellt. Der Turboverdichter 1 wird vorzugsweise derart vorgefertigt, dass der Radialturboverdichter 3 in das jeweilige Teilgehäuse 6e, 6g eingebaut wird und der Elektromotor 2 in das Teilgehäuse 6f eingebaut wird. Die derart vorkonfigurierten Teilgehäuse 6e, 6f, 6g werden im zusammengesetzten Zustand zum Anwendungsort transportiert. Der Zusammenbau des Turboverdichters 1 ist wie folgt: Nachdem die Teilgehäuse 6e, 6f, 6g über die Flansche 6k, 6l fest miteinander verbunden sind, werden die Welle 3a und der Rotor 2b an der von Aussen durch die Öffnung 23a zugänglichen Kupplung 4 fest miteinander verbunden. Danach wird die Öffnung 23a mit dem Deckel 23b fest und gasdicht verschlossen. Die an der Kupplung 4 verwendeten Befestigungsmittel, wie beispielsweise Schrauben, sind an sich bekannt und daher nicht im Detail dargestellt.
Der in Fig. 4 dargestellte Turboverdichter 1 weist, an sonst im wesentlichen gleich ausgestaltet wie der Turboverdichter gemäss Fig. 3, im Gehäuseteil 6e eine mit den Innenraum 9b fluidleitend verbundene Austrittsöffnung 6h sowie eine daran anschliessend angeordnete Ableitung 6i auf, durch welche der Kühlgasmassenstrom 9 sowie ein geringfügiger Anteil des Hauptmassenstroms 9a austritt und beispielsweise einer Anlage fremden Prozessquelle zugeführt wird. Diese Anordnung weist gegenüber dem Ausführungsbeispiel gemäss Fig. 3 den Vorteil auf, dass der Druck in der der Ableitung 6i nachfolgenden Vorrichtung unabhängig vom Druck im Radialturboverdichter 3 ist, wobei dieser Druck vorzugsweise derart gewählt ist, dass die Motorkühlung auf einem tieferen Druckniveau erfolgt als in der Ausführungsform gemäss Fig. 3, was den Vorteil ergibt, dass die zwischen den rotierenden und den statischen Teilen auftretenden Dissipationsverluste im Motor 2 vermindert sind. Zwischen dem Motor 2 und dem Radialturboverdichter 3 ist beidseitig eine Dichtung 19 angeordnet. Die Ableitung 6i kann beispielsweise einem Kompressor 24 zugeführt werden, welcher den Massenstrom 9, 9a komprimiert wieder der Eintrittsöffnung 6a zuführt. Der vom Kompressor in der Ableitung 6i erzeugte Saugdruck kann beispielsweise tiefer als 50 Bar sein.
In Fig. 4 ist zudem eine Regelvorrichtung 17 dargestellt, welche zumindest zum Ansteuern der elektromagnetischen Radiallager 5 sowie des Motors 2 dient. Im Bereich der Radiallager 5 sind Sensoren 16a, 16b, 16c, 16d angeordnet, welche die Lage der gesamten Welle 13 bzw. der Teilwellen 2a, 3a bezüglich der Radiallager 5 erfassen, wobei die Sensoren 16a, 16b, 16c, 16d über elektrische Leitungen 16e, 16f, 16g, 16h mit der Regelvorrichtung 17 verbunden sind. Zur Ansteuerung der magnetischen Spulen der Radiallager 5 sind elektrische Leitungen 15a, 15b, 15c, 15d angeordnet, welche mit der Regelvorrichtung 17 verbunden sind. Zudem ist eine elektrische Leitung 15e vorgesehen, welche die Regelvorrichtung 17 über eine nicht dargestellte Leistungselektronik mit der Wicklung des Elektromotors 2 verbindet.
Fig. 5 zeigt einen Längsschnitt durch ein Gehäuse 6, wobei die Verbindungsstelle zweier Teilgehäuse 6e, 6f dargestellt ist. Der Flansch 6k des ersten Teilgehäuses 6e weist eine derart ausgestaltete Ausnehmung auf, dass der Flansch 6I des zweiten Teilgehäuses 6f darin eine Aufnahme findet, wobei die gegenseitige Lage der beiden Teilgehäuse 6e, 6f beim Zusammenfügen durch die Flansche 6k, 6l gegenseitig zentriert werden. Die Flansche 6k, 6l werden durch mehrere in Umfangsrichtung verteilt angeordnete Schrauben 6m mit Mutter 6n zusammengehalten, wobei an der Stirnseite der Flansche 6k, 6l eine in Umfangsrichtung verlaufende Nut vorgesehen ist, in welcher ein Dichtelement 6o angeordnet ist, um den durch die beiden Teilgehäuse 6e, 6f begrenzten Innenraum gegen aussen abzudichten.
Fig. 6 zeigt einen Längsschnitt eines schematisch dargestellten Gehäuses 6 bestehend aus drei Teilgehäusen 6e, 6f, 6g mit Flanschen 6k, 6l sowie einer Zuleitung 6c und einer Ableitung 6d. Das Gehäuse 6 ist über zwei Abstützelemente 18a, 18b auf einen Untergrund 14 abgestützt. Innerhalb des Gehäuses ist ein Basiselement 6p angeordnet, welches eine steife, in Längsrichtung des Gehäuses 6 verlaufende Abstützung, insbesondere eine Abstützfläche ausbildet, auf welchem die elektromagnetischen Radiallager 5 angeordnet sind. Die Funktion des Basiselemente 6p ist eine möglichst stabile und vorzugsweise Temperatur unempfindliche Referenzebene zu bilden, auf welcher zumindest einige Radiallager 5 angeordnet sind. Das Basiselement 6p kann in einer Vielzahl von Ausführungsformen ausgestaltet sein, so beispielsweise als feste, massive Platte, als Träger oder als Gitterrost. Auf dem Basiselement 6p können weitere Komponenten wie der Elektromotor 2 oder der Radialturboverdichter 3 verankert sein. Die Verwendung eines Basiselemente 6p ermöglicht die elektromagnetischen Radiallager 5 gegenseitig sehr präzise und insbesondere genau fluchtend anzuordnen. Die gemeinsame Anordnung der Radiallager 5 auf dem Basiselement 6p weist den Vorteil auf, dass die auf Grund von angreifenden Zug-, Druck- oder Scherkräften oder durch Temperatureinflüsse bedingten gegenseitigen Verschiebungen der Radiallager sehr gering ausfallen. Zudem kann diese Anordnung sehr schnell betriebsbereit aufgestellt werden. Bei der aus Fig. 1 bekannten Anordnung war es erforderlich die beiden separaten Vorrichtungen Elektromotor 2 und Radialturboverdichter 3 getrennt aufzustellen und in einem zeitaufwendigen Verfahren genau gegenseitig auszurichten, damit die Wellen 2a, 3a fluchtend angeordnet sind. Trotz dieses Aufwandes können sich der Elektromotor 2 und/oder der Radialturboverdichter 3 beziehungsweise deren Radiallager bedingt beispielsweise durch einwirkende Kräfte, eine Verschiebung des Untergrundes oder Temperaturänderungen gegenseitig verschieben.
Die durch elektromagnetische Radiallager erzeugbare Lagerkraft ist wesentlich geringer als die durch bekannte, hydrodynamische Lager erzeugbare Lagerkraft. Deshalb ist auch die genaue gegenseitige Ausrichtung der elektromagnetischen Radiallager sowie das Verhindern einer gegenseitigen Verschiebung der Radiallager von zentraler Bedeutung. Das elektromagnetische Radiallager wird üblicherweise derart betrieben, dass die Welle in der geometrischen Mitte des Radiallagers gehalten wird. Ein gegenseitige Verschieben der Radiallager hat zur Folge, dass das Radiallager erhebliche Kräfte aufzuwenden hat, um die Welle trotzdem in der geometrischen Mitte zu halten. Da das elektromagnetische Radiallager relativ bald in den Zustand einer magnetischen Sättigung gelangt, verfügt das Radiallager in dieser Situation über geringere, zum Tragen der Welle zur Verfügung stehende Kräfte. Dieser Effekt verringert die Betriebssicherheit des Turboverdichters, wobei das elektromagnetische Radiallager im Extremfall nicht mehr in der Lage ist die Welle zu tragen. Daher ist es bei der Verwendung von elektromagnetischen Radiallagern von zentraler Bedeutung, dass diese möglichst genau fluchtend angeordnet sind, und dass sie derart angeordnet sind, dass ein gegenseitiges Verschieben der Radiallager auch während dem Betrieb des Turboverdichters nach Möglichkeit verhindert wird. Daher ist es auch vorteilhaft, wenn die elektromagnetischen Radiallager in Verlaufsrichtung der gemeinsamen Welle 13 einen grösseren gegenseitigen Abstand aufweisen. Bei der bekannten Ausführungsform gemäss Fig. 1 weisen die beiden mittleren Radiallager 5 einen relativ geringen gegenseitigen Abstand auf, sodass bei einem gegenseitigen Versatz dieser beiden mittleren Radiallager 5 das Problem auftreten kann, dass diese in radialer Richtung gegeneinander wirkende Kräfte erzeugen, was bewirkt, dass die noch zum Tragen zur Verfügung stehende Restkraft des elektromagnetischen Radiallagers geringer ist oder gar nicht mehr zur Verfügung steht.
Fig. 7 zeigt einen Turboverdichter 1 mit einem im Vergleich zur Ausführungsform gemäss Fig. 4 separat gekühlten Elektromotor 2. Dabei ist zwischen dem Druckteil des Radialturboverdichters 3 und dem Elektromotor 2 je ein System mit einer Doppeldichtung, umfassend eine Trockengasdichtung 19 und nachfolgend eine Dichtung 20, angeordnet, wobei zwischen den beiden Dichtungen 19, 20 ein Auslass 21, als Vent (Austritt an die Atmosphäre ohne Gasverbrennung) oder Flare (Austritt an die Atmosphäre mit Gasverbrennung) ausgestaltet, angeordnet ist, welcher durch die Gehäusewand 6 verläuft. Der Elektromotor 2 weist einen separaten, durch die Dichtungen 19, 20 vom Radialturboverdichter 3 getrennten Kühlkreislauf auf, welcher eine Verbindungsleitung 11 sowie einen Kühler 22 umfasst. Der den Elektromotor 2 kühlende Kühlgasmassenstrom 9 fliesst zwischen dem Stator 2c und dem Rotor 2b in Längsrichtung, wird im Bereich des einen Endes 9b des Elektromotors 2 aus dem Gehäuse 6 in die Verbindungsleitung 11 geleitet, und wird nach dem Durchströmen des Kühlers 22 und der nachfolgend angeordneten Verbindungsleitung 11 am anderen Ende 9c des Elektromotors 2 wieder in das Gehäuse 6 geleitet. Nicht dargestellt sind weitere Komponenten dieses Kreislaufes, wie eine das Kühlgas antreibende Vorrichtung. Eine Zuleitung 9d führt zusätzliches Kühlgas zu, um beispielsweise die über die Ableitung 21 abfliessenden Kühlgasanteile zu kompensieren. Als Kühlgas ist insbesondere ein nicht aggressives Gas wie Stickstoff geeignet. Die Anordnung gemäss Fig. 7 ist beispielsweise dann vorteilhaft, wenn kein Prozessgas auf einem tiefen Druckniveau zur Kühlung des Elektromotors 2 zur Verfügung steht, oder wenn das Prozessgas aggressive Eigenschaften aufweist oder verschmutzt ist, beispielsweise durch flüssige Gasunreinheiten, sodass dieses beispielsweise Teile des Elektromotors 2, wie die Welle 2a oder die elektrische Isolation, beschädigen könnte. Der Kühlkreislauf des Elektromotors 2 kann derart ausgelegt sein, dass dieser einen Druck im Bereich des atmosphärischen Druckes oder leicht darüber aufweist. Wie in Fig. 7 dargestellt kann der Kühlkreislauf derart ausgelegt sein, dass ein geringer Anteil des Kühlgasmassenstroms 9 über die Dichtung 20 zum Auslass 21 gelangt. Dadurch bleibt gewährleistet, dass der Kühlgasmassenstrom 9 nicht durch Fremdgase verunreinigt wird. Im Ausführungsbeispiel gemäss Fig. 7 fliesst zudem ein geringer Anteil des Prozessgases 8 über die Dichtung 19 zum Auslass 21. Dem Auslass 21 kann ein sogenanntes Flare oder Vent nachgeordnet sein, um die aus dem Auslass 21 austretenden Gase unverbrannt abzuführen (Vent) oder über eine nachfolgende Verbrennung (Flare) abzuführen, insbesondere an die Umwelt abzugeben.
Ein Vorteil des Ausführungsbeispiels gemäss Fig. 7 ist darin zu sehen, dass das Kühlgas 9 einen geringen Druck aufweist und/oder dass als Kühlgas ein günstiges oder problemlos handhabbares Gas verwendbar ist, insbesondere ein Gas ohne aggressive Eigenschaften.
Ein Vorteil des erfindungsgemässen Turboverdichters 1 ist darin zu sehen, dass der Elektromotor 2 und der Radialturboverdichter 3 zusammen mit den entsprechenden Gehäuseteilen 6e, 6f vormontierbar sind, sodass der Turboverdichter 1 als ein Gehäuse 6 beziehungsweise als eine Einheit zum Aufstellungsort transportierbar und dort aufstellbar ist.
Die in den Figuren 3, 4 und 7 ausserhalb des Gehäuses 6 verlaufenden Leitungen 11, 12 sowie die dazu gehörenden Komponenten 22, können in einer weiteren Ausgestaltungsform auch innerhalb des Gehäuses 6 verlaufend angeordnet sein.

Claims (15)

  1. Turboverdichter (1) umfassend einen Elektromotor (2), einen mehrstufigen Radialturboverdichter (3) sowie eine gemeinsame Welle (13), wobei ein Teilabschnitt der Welle (13) als Rotor (2b) des Elektromotors (2) ausgebildet ist, und wobei ein weiterer Teilabschnitt der Welle (13) als Läufer (3e) des Radialturboverdichters (3) ausgebildet ist, wobei der Läufer (3e) eine Verdichterwelle (3a) sowie damit verbundene Verdichterräder (3b) umfasst, und wobei zum Lagern der Welle (13) mehrere elektromagnetische Radiallager (5) in Verlaufsrichtung der Welle (13) beabstandet angeordnet sind, und wobei zwischen dem Rotor (2b) des Elektromotors (2) und dem Verdichterrad (3b) ein einziges elektromagnetisches Radiallager (5) angeordnet ist, und wobei der Elektromotor (2), der Radialturboverdichter (3), die Welle (13) sowie die Radiallager (5) in einem gemeinsamen, nach aussen gasdichten Gehäuse (6) angeordnet sind, dadurch gekennzeichnet, dass das Gehäuse (6) aus mehreren Teilgehäusen (6e, 6f, 6g) besteht, welche fest miteinander verbindbar sind, dass der Elektromotor (2) in einem Teilgehäuse (6f) und der Radialturboverdichter (3) in einem Teilgehäuse (6e, 6g) angeordnet ist, und dass der Rotor (2b) des Elektromotors (2) sowie der Läufer (3e) des Radialturboverdichters (3) über eine zwischen dem Rotor (2b) des Elektromotors (2) und dem Verdichterrad (3b) angeordnete Kupplung (4) zu einer gemeinsamen Welle (13) verbindbar sind.
  2. Turboverdichter (1) nach Anspruch 1, dadurch gekennzeichnet, dass zumindest ein Teilgehäuse (6e, 6f, 6g) eine verschliessbare Öffnung (23a) aufweist, welche im Bereich der Kupplung (4) angeordnet ist.
  3. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kupplung (4) axial im Bereich der Verbindungsstellen (6k, 6l) zweier Teilgehäuse (6e, 6f, 6g) angeordnet ist.
  4. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Radiallager (5) auf einem gemeinsamen Basiselement (6p) abgestützt sind.
  5. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das gemeinsame Gehäuse (6), in welchem der Elektromotor (2), der Radialturboverdichter (3), die Welle (13) sowie die Radiallager (5) angeordnet sind, ein Basiselement (6p) umfasst, auf welchem die Radiallager (5) abgestützt sind.
  6. Turboverdichter (1) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass ein Teil der Innenseite des Gehäuses (6) das Basiselement (6p) ausbildet.
  7. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kupplung (4) eine sehr hohe Steifigkeit aufweist, um der Welle (13) in Längsrichtung eine hohe und insbesondere homogene Steifigkeit zu verleihen.
  8. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beidseits des Rotors (2b) des Elektromotors (2) ein mehrstufiger Radialturboverdichter (3) mit je einem Läufer (3e) angeordnet ist.
  9. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das gemeinsame Gehäuse (6) eine von aussen in den Radialturboverdichter (3) mündende Zuleitung (6c) und Ableitung (6d) aufweist, um ausserhalb des Gehäuses (6) angeordnete Vorrichtungen fluidleitend mit dem Radialturboverdichter (3) zu verbinden.
  10. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektromotor (2) als ein Saugdruck resistenter Motor ausgestaltet ist, und dass der Elektromotor (2) an dessen einem, saugseitigen Ende fluidleitend mit dem Einlass einer bestimmten Stufe (3c, 3d) des Radialturboverdichters (3) verbunden ist, und dass das andere Ende des Elektromotors (2) mit dem Auslass der bestimmten Stufe (3c, 3d) oder einer nachfolgenden Stufe des Radialturboverdichters (3) fluidleitend verbunden ist, wobei als bestimmte Stufe (3c, 3d) vorzugsweise die erste Stufe (3c) gewählt ist.
  11. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Elektromotor (2) und dem am saugseitigen Ende des Elektromotors (2) angeordneten Radialturboverdichter (3) kein Dichtungssystem angeordnet ist.
  12. Turboverdichter (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zwischen dem Radialturboverdichter (3) und dem Elektromotor (2) ein Dichtungssystem (19,20) angeordnet ist, und dass der Elektromotor (2) einen separaten Kühlkreislauf (22,11) aufweist.
  13. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein auf die Welle (13) wirkendes Axiallager (7) in Längsrichtung der Welle (13) insbesondere zwischen dem Elektromotor (2) und dem Radialturboverdichter (3) angeordnet ist.
  14. Turboverdichter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass entlang der Welle (13) Sensoren (16a, 16b, 16c) zum Erfassen der Lage der Welle (13) angeordnet sind, und dass eine Steuer- und Regelvorrichtung (17) vorgesehen ist, welche mit den Sensoren (16a, 16b, 16c) Signal leitend verbunden ist, und dass die elektromagnetischen Radiallager (5) elektromagnetische Spulen (5b) aufweisen, welche mit der Steuer- und Regelvorrichtung (17) Signal leitend verbunden sind.
  15. Anlage umfassend einen Turboverdichter nach einem der vorhergehenden Ansprüche.
EP00810274A 1999-07-16 2000-03-31 Turboverdichter Revoked EP1074746B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP00810274A EP1074746B1 (de) 1999-07-16 2000-03-31 Turboverdichter
CA002312081A CA2312081C (en) 1999-07-16 2000-06-20 Cooling system for electromagnetic bearings of a turbocompressor
US09/597,938 US6464469B1 (en) 1999-07-16 2000-06-20 Cooling system for electromagnetic bearings of a turbocompressor
DE20011219U DE20011219U1 (de) 1999-07-16 2000-06-26 Turboverdichter
JP2000192339A JP4460116B2 (ja) 1999-07-16 2000-06-27 ターボ圧縮機
KR1020000039922A KR100779959B1 (ko) 1999-07-16 2000-07-12 터보압축기
CNB001201131A CN1153907C (zh) 1999-07-16 2000-07-17 涡轮压缩机装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP99810640 1999-07-16
EP99810640A EP0990798A1 (de) 1999-07-16 1999-07-16 Turboverdichter
EP00810274A EP1074746B1 (de) 1999-07-16 2000-03-31 Turboverdichter

Publications (3)

Publication Number Publication Date
EP1074746A2 EP1074746A2 (de) 2001-02-07
EP1074746A3 EP1074746A3 (de) 2002-05-15
EP1074746B1 true EP1074746B1 (de) 2005-05-18

Family

ID=26073836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810274A Revoked EP1074746B1 (de) 1999-07-16 2000-03-31 Turboverdichter

Country Status (7)

Country Link
US (1) US6464469B1 (de)
EP (1) EP1074746B1 (de)
JP (1) JP4460116B2 (de)
KR (1) KR100779959B1 (de)
CN (1) CN1153907C (de)
CA (1) CA2312081C (de)
DE (1) DE20011219U1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830070A2 (de) 2006-02-17 2007-09-05 Nuovo Pignone S.P.A. Motor-Kompressor
EP2113671A1 (de) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Anordnung mit einem elektrischen Motor und einer Pumpe
EP2252797A1 (de) 2008-03-19 2010-11-24 Siemens Aktiengesellschaft Kompressoreinheit
EP2290241A1 (de) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbokompressoreinheit mit einem Kühlsystem
EP2295811A1 (de) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. Hochdruckverdichtereinheit für Prozessfluide in einer Industrieanlage sowie Verfahren zum Betreiben der Anlage
EP2315946A1 (de) 2008-08-13 2011-05-04 Siemens Aktiengesellschaft Fluidenergiemaschine
EP2462350A1 (de) 2009-08-03 2012-06-13 Atlas Copco Airpower, Naamloze Vennootschap Turboverdichtersystem
EP2469100A1 (de) 2010-12-22 2012-06-27 Thermodyn Motorkompressor mit Drehkupplung in einer Hohlwelle des Kompressors
EP2761187A1 (de) 2011-09-27 2014-08-06 Termodinamica SAS Motorkompressoreinheit mit abnehmbarer kartusche
DE102007032933B4 (de) * 2007-07-14 2015-02-19 Atlas Copco Energas Gmbh Turbomaschine
EP4119798A1 (de) 2021-07-14 2023-01-18 MAN Energy Solutions SE Strömungsmaschinenanordnung

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018212C2 (nl) 2001-06-05 2002-12-10 Siemens Demag Delaval Turbomac Compressoreenheid omvattende een centrifugaalcompressor en een elektromotor.
NL1021656C2 (nl) * 2002-10-15 2004-04-16 Siemens Demag Delaval Turbomac Compressoreenheid met gemeenschappelijke behuizing voor elektromotor en compressor, werkwijze voor het vervaardigen van een scheidingswand voor een compressoreenheid en gebruik van een compressoreenheid.
AU2003233369A1 (en) * 2003-03-10 2004-10-11 Thermodyn Integrated centrifugal compressor unit
EP1613864B1 (de) * 2003-04-11 2015-10-14 Thermodyn Motorradialverdichtereinheit
NO323324B1 (no) * 2003-07-02 2007-03-19 Kvaerner Oilfield Prod As Fremgangsmate for regulering at trykket i en undervannskompressormodul
EP1482179B1 (de) * 2003-07-05 2006-12-13 MAN TURBO AG Schweiz Kompressorvorrichtung und Verfahren zum Betrieb derselben
ATE348267T1 (de) * 2003-07-05 2007-01-15 Man Turbo Ag Schweiz Kompressorvorrichtung und verfahren zum betrieb derselben
DE102004023148A1 (de) * 2004-05-07 2005-11-24 Atlas Copco Energas Gmbh Turbomaschine für Tieftemperaturanwendungen
DE102004027594B4 (de) * 2004-06-05 2006-06-29 Man B & W Diesel Ag Strömungsmaschine mit radial durchströmtem Verdichterrad
US8075668B2 (en) 2005-03-29 2011-12-13 Dresser-Rand Company Drainage system for compressor separators
DE102005039033B3 (de) * 2005-08-18 2006-11-02 Atlas Copco Energas Gmbh Turbomaschine für Tieftemperaturanwendungen
FR2896101B1 (fr) * 2006-01-10 2008-04-18 Mecanique Magnetique Sa Soc D Dispositif de filtrage de particules dans une machine tournante a paliers magnetiques actifs
WO2007110281A1 (de) * 2006-03-24 2007-10-04 Siemens Aktiengesellschaft Verdichtereinheit
NO326735B1 (no) * 2006-06-30 2009-02-09 Aker Subsea As Fremgangsmåte og anordning for beskyttelse av kompressormoduler mot uønsket innstrømming av forurenset gass.
MX2009002982A (es) 2006-09-19 2009-05-25 Dresser Rand Co Sello de tambor separador rotatorio.
MX2009003119A (es) 2006-09-21 2009-04-06 Dresser Rand Co Tambor separador y ensamble propulsor de compresor.
EP2066983B1 (de) 2006-09-25 2013-12-11 Dresser-Rand Company Kompressorbefestigungssystem
CA2662780C (en) 2006-09-25 2015-02-03 William C. Maier Axially moveable spool connector
BRPI0717571B1 (pt) 2006-09-25 2018-11-27 Dresser Rand Co carretel de conexão para conectar um invólucro do compressor com um invólucro do acionador de um sistema de compressão industrial
US8231336B2 (en) 2006-09-25 2012-07-31 Dresser-Rand Company Fluid deflector for fluid separator devices
BRPI0717088B1 (pt) 2006-09-25 2019-10-29 Dresser Rand Co sistema de proteção de acoplamento
EP2066422B1 (de) 2006-09-26 2012-06-27 Dresser-Rand Company Verbesserte statische flüssigkeitstrennungsvorrichtung
US8156757B2 (en) * 2006-10-06 2012-04-17 Aff-Mcquay Inc. High capacity chiller compressor
US7700207B2 (en) * 2006-11-09 2010-04-20 Gm Global Technology Operations, Inc. Turbocompressor shutdown mechanism
US20080199326A1 (en) * 2007-02-21 2008-08-21 Honeywell International Inc. Two-stage vapor cycle compressor
US7901177B2 (en) * 2007-03-01 2011-03-08 Siemens Energy, Inc. Fluid pump having multiple outlets for exhausting fluids having different fluid flow characteristics
US8047809B2 (en) * 2007-04-30 2011-11-01 General Electric Company Modular air compression apparatus with separate platform arrangement
GB2470151B (en) 2008-03-05 2012-10-03 Dresser Rand Co Compressor assembly including separator and ejector pump
CA2717871C (en) * 2008-03-13 2013-08-13 Aaf-Mcquay Inc. High capacity chiller compressor
DE102008031994B4 (de) * 2008-04-29 2011-07-07 Siemens Aktiengesellschaft, 80333 Fluidenergiemaschine
US7922218B2 (en) 2008-06-25 2011-04-12 Dresser-Rand Company Shear ring casing coupler device
US8062400B2 (en) 2008-06-25 2011-11-22 Dresser-Rand Company Dual body drum for rotary separators
US8079805B2 (en) 2008-06-25 2011-12-20 Dresser-Rand Company Rotary separator and shaft coupler for compressors
DE102009004376B4 (de) * 2009-01-12 2016-06-16 Man Diesel & Turbo Se Verfahren und System zur Steuerung eines Turbokompressorverbundes
US8087901B2 (en) 2009-03-20 2012-01-03 Dresser-Rand Company Fluid channeling device for back-to-back compressors
US8210804B2 (en) 2009-03-20 2012-07-03 Dresser-Rand Company Slidable cover for casing access port
US8061972B2 (en) 2009-03-24 2011-11-22 Dresser-Rand Company High pressure casing access cover
EP2478229B1 (de) 2009-09-15 2020-02-26 Dresser-Rand Company Kompakte trennvorrichtung auf basis erhöhter dichte
IT1395822B1 (it) * 2009-10-12 2012-10-26 Nuovo Pignone Spa Metodo e macchinario con combinazione di dispositivi di separazione particelle e di regolazione flusso
BR112012020085B1 (pt) 2010-02-10 2020-12-01 Dresser-Rand Company aparelho de coleta para um separador e método de separação
IT1399881B1 (it) * 2010-05-11 2013-05-09 Nuova Pignone S R L Configurazione di tamburo di bilanciamento per rotori di compressore
US8673159B2 (en) 2010-07-15 2014-03-18 Dresser-Rand Company Enhanced in-line rotary separator
WO2012009159A2 (en) 2010-07-15 2012-01-19 Dresser-Rand Company Radial vane pack for rotary separators
US8657935B2 (en) 2010-07-20 2014-02-25 Dresser-Rand Company Combination of expansion and cooling to enhance separation
US8821362B2 (en) 2010-07-21 2014-09-02 Dresser-Rand Company Multiple modular in-line rotary separator bundle
EP2614216B1 (de) 2010-09-09 2017-11-15 Dresser-Rand Company Spülungsaktivierter gesteuerter strömungsabfluss
WO2012058069A2 (en) * 2010-10-27 2012-05-03 Dresser-Rand Company System and method for rapid pressurization of a motor/bearing cooling loop for a hermetically sealed motor/compressor system
RU2448277C1 (ru) * 2010-12-28 2012-04-20 Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Способ разгрузки и защиты упорного подшипника двухсекционного центробежного компрессора
WO2013109235A2 (en) 2010-12-30 2013-07-25 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
JP5697243B2 (ja) * 2011-02-25 2015-04-08 三菱重工コンプレッサ株式会社 回転軸組立体およびこれを備えた遠心圧縮機
RU2458253C1 (ru) * 2011-03-18 2012-08-10 Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Центробежный компрессорный агрегат
US9551349B2 (en) 2011-04-08 2017-01-24 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
CN102200136B (zh) * 2011-05-25 2012-09-05 北京虎渡能源科技有限公司 一种空气悬浮供气可调高速电机直驱鼓风机
WO2012166236A1 (en) 2011-05-27 2012-12-06 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
DE102012016844A1 (de) * 2011-08-30 2013-02-28 Ksb Aktiengesellschaft Turbokompressor und Verwendung
DE102012204403A1 (de) * 2012-03-20 2013-09-26 Man Diesel & Turbo Se Radialverdichtereinheit
DE102012207019B4 (de) * 2012-04-27 2015-12-24 Siemens Aktiengesellschaft Strömungsmaschine sowie Verfahren zur Kühlen einer solchen
US9371835B2 (en) 2013-07-19 2016-06-21 Praxair Technology, Inc. Coupling for directly driven compressor
FR2997739B1 (fr) 2012-11-07 2015-01-09 Thermodyn Compresseur comprenant un equilibrage de poussee
EP2853749A1 (de) * 2013-09-25 2015-04-01 Siemens Aktiengesellschaft Strömungsenergiemaschine, Betriebsverfahren
ITCO20130069A1 (it) * 2013-12-18 2015-06-19 Nuovo Pignone Srl Compressore centrifugo multistadio
DE102014009146A1 (de) * 2014-06-20 2015-12-24 Ziehl-Abegg Se Elektromotor mit einem Rotor, einem Stator und einem Elektronikgehäuse sowie Lüfterrad für einen Elektromotor
JP6117423B2 (ja) * 2014-11-17 2017-04-19 株式会社日立製作所 圧縮装置
US11421696B2 (en) 2014-12-31 2022-08-23 Ingersoll-Rand Industrial U.S., Inc. Multi-stage compressor with single electric direct drive motor
EP3121449B1 (de) * 2015-07-22 2022-10-05 Thermodyn Unterwasserradialverdichter mit horizontaler welle und mit lediglich einem axialschublager
DE102015214788A1 (de) 2015-08-03 2017-02-09 Magna Powertrain Bad Homburg GmbH Elektrischer Verdichter und Verfahren zur Herstellung eines elektrischen Verdichters
IT201600120314A1 (it) * 2016-11-28 2018-05-28 Nuovo Pignone Tecnologie Srl Turbo-compressore e metodo di funzionamento di un turbo-compressore
US11274679B2 (en) 2017-02-14 2022-03-15 Danfoss A/S Oil free centrifugal compressor for use in low capacity applications
EP3628868B1 (de) * 2017-03-07 2021-02-24 ATLAS COPCO AIRPOWER, naamloze vennootschap Kompressormodul zum verdichten von gas und damit ausgestatteter verdichter
GB201708289D0 (en) * 2017-05-24 2017-07-05 Rolls Royce Plc Preventing electrical breakdown
RU2670993C1 (ru) * 2017-08-02 2018-10-29 Василий Сигизмундович Марцинковский Компрессорный агрегат компримирования азото-водородной смеси в производстве аммиака (варианты)
IT201700097796A1 (it) * 2017-08-31 2019-03-03 Nuovo Pignone Tecnologie Srl Sistemi di turbomacchine con refrigerazione di cuscini magnetici attivi e metodo
FR3072428B1 (fr) * 2017-10-16 2019-10-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de compression et machine de refrigeration
FR3072429B1 (fr) 2017-10-16 2020-06-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de compression
FR3088386B1 (fr) * 2018-11-13 2021-01-08 Thermodyn Dispositif de filtration pour un groupe moto-compresseur
IT201900003077A1 (it) * 2019-03-04 2020-09-04 Nuovo Pignone Tecnologie Srl Configurazione di turbomacchina compressore-espantore multistadio
EP3726081B1 (de) 2019-04-16 2023-10-25 GE Energy Power Conversion Technology Ltd Mechanisches system und angekoppelter motorkompressor
JP7429541B2 (ja) 2020-01-06 2024-02-08 三菱重工コンプレッサ株式会社 圧縮機システム
CN115803507A (zh) * 2020-07-02 2023-03-14 西门子能源全球有限两合公司 具有通过连接螺栓的流动回路的压缩机转子
CN115388017B (zh) * 2022-09-26 2023-09-19 烟台东德实业有限公司 一种高速离心空压机的膨胀端总成

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH663644A5 (de) * 1982-02-22 1987-12-31 Bbc Brown Boveri & Cie Turboverdichter.
FR2528127A1 (fr) * 1982-06-04 1983-12-09 Creusot Loire Moto-compresseur centrifuge electrique integre a grande vitesse
EP0297691A1 (de) * 1987-06-11 1989-01-04 Acec Energie S.A. Motor- Kompressor-Aggregat
DE3729486C1 (de) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit
GB9404436D0 (en) * 1994-03-08 1994-04-20 Welsh Innovations Ltd Compressor
IL109967A (en) * 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
US5698917A (en) * 1995-09-25 1997-12-16 Glacier Rpb Inc. Electromagnetic bearing with a stationary armature canning arrangement
JPH09132924A (ja) * 1995-11-08 1997-05-20 Shin Caterpillar Mitsubishi Ltd 建設機械の点検用カバーおよびこれを備えた建設機械
JP3425308B2 (ja) * 1996-09-17 2003-07-14 株式会社 日立インダストリイズ 多段圧縮機
JP3399800B2 (ja) * 1997-09-24 2003-04-21 イビデン株式会社 モータ及びターボ分子ポンプ
KR100273380B1 (ko) * 1997-12-26 2001-01-15 구자홍 터보 압축기
JP3425351B2 (ja) * 1998-01-13 2003-07-14 株式会社 日立インダストリイズ 2段遠心圧縮機

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830070A2 (de) 2006-02-17 2007-09-05 Nuovo Pignone S.P.A. Motor-Kompressor
DE102007032933B4 (de) * 2007-07-14 2015-02-19 Atlas Copco Energas Gmbh Turbomaschine
EP2252797A1 (de) 2008-03-19 2010-11-24 Siemens Aktiengesellschaft Kompressoreinheit
EP2113671A1 (de) 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Anordnung mit einem elektrischen Motor und einer Pumpe
EP2315946A1 (de) 2008-08-13 2011-05-04 Siemens Aktiengesellschaft Fluidenergiemaschine
US8632320B2 (en) 2009-07-10 2014-01-21 Nuovo Pignone S.P.A. High-pressure compression unit for process fluids for industrial plant and a related method of operation
EP2295811A1 (de) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. Hochdruckverdichtereinheit für Prozessfluide in einer Industrieanlage sowie Verfahren zum Betreiben der Anlage
US8801398B2 (en) 2009-07-13 2014-08-12 Siemens Aktiengesellschaft Turbocompressor assembly with a cooling system
EP2290241A1 (de) 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Turbokompressoreinheit mit einem Kühlsystem
EP2462350A1 (de) 2009-08-03 2012-06-13 Atlas Copco Airpower, Naamloze Vennootschap Turboverdichtersystem
US9470238B2 (en) 2009-08-03 2016-10-18 Atlas Copco Airpower, Naamloze Vennootschap Electric motor having segmented stator windings
EP2469100A1 (de) 2010-12-22 2012-06-27 Thermodyn Motorkompressor mit Drehkupplung in einer Hohlwelle des Kompressors
EP2761187A1 (de) 2011-09-27 2014-08-06 Termodinamica SAS Motorkompressoreinheit mit abnehmbarer kartusche
EP4119798A1 (de) 2021-07-14 2023-01-18 MAN Energy Solutions SE Strömungsmaschinenanordnung
DE102021118253A1 (de) 2021-07-14 2023-01-19 Man Energy Solutions Se Strömungsmaschinenanordnung
DE102021118253B4 (de) 2021-07-14 2023-02-02 Man Energy Solutions Se Strömungsmaschinenanordnung

Also Published As

Publication number Publication date
CA2312081C (en) 2004-03-02
EP1074746A3 (de) 2002-05-15
US6464469B1 (en) 2002-10-15
CN1281101A (zh) 2001-01-24
JP4460116B2 (ja) 2010-05-12
KR100779959B1 (ko) 2007-11-28
JP2001041191A (ja) 2001-02-13
DE20011219U1 (de) 2000-10-05
KR20010015305A (ko) 2001-02-26
EP1074746A2 (de) 2001-02-07
CN1153907C (zh) 2004-06-16
CA2312081A1 (en) 2001-01-16

Similar Documents

Publication Publication Date Title
EP1074746B1 (de) Turboverdichter
EP1069313B1 (de) Turboverdichter
DE4334662C2 (de) Maschine mit einer Welle
DE102007032933B4 (de) Turbomaschine
DE3729486C1 (de) Kompressoreinheit
DE69727835T2 (de) Lagersystem für motorunterstützte turbolader für verbrennungsmotoren
EP1999375A1 (de) Verdichtereinheit
DE3600124A1 (de) Geblaese zum umwaelzen grosser gasmengen, insbesondere fuer hochleistungs-laser
EP3480929B1 (de) Gekühltes gehäuse für den stator eines direktantriebs
EP1391586A1 (de) Abgasturbolader
WO2007110271A1 (de) Verdichtereinheit und verwendung eines kühlmediums
EP0408791A1 (de) Reibungspumpe mit glockenförmigem Rotor
DE4015732A1 (de) Antriebsmaschinenanlage und verfahren zum umwandeln eines flugzeugtriebwerks in ein triebwerk fuer andere zwecke
EP0569455B1 (de) Trockenlaufende zweiwellenvakuumpumpe
EP0990798A1 (de) Turboverdichter
EP0653566B1 (de) Getriebeverdichter für die Verdichtung von Sauerstoff
DE602004001156T2 (de) Verdichtereinheit mit unterstützter Kühlung
DE2100690A1 (de) Einbaublock zum Einbau in einen mehrstufigen Radialverdichter
EP0789815B1 (de) Reibungsvakuumpumpe mit kühlung
DE2324880C3 (de) Gehäuse eines Gaserzeugers für Gasturbinenanlagen
DE4005923A1 (de) Kreiselpumpe mit laufraedern unterschiedlicher drehzahl
EP0713001B1 (de) Gas-Expansionsmaschine
DE102021120100A1 (de) Stirnradgetriebe
DE3600125A1 (de) Geblaese zum umwaelzen grosser gasmengen, insbesondere fuer hochleistungs-laser
DE19814485A1 (de) Mehrstufiges Turbogebläse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG GHH BORSIG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 04D 25/06 A, 7F 04D 17/12 B, 7F 04D 29/04 B, 7F 04D 29/10 B, 7F 04D 29/58 B

17P Request for examination filed

Effective date: 20020419

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBO AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010337

Country of ref document: DE

Date of ref document: 20050623

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051024

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050518

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

ET Fr: translation filed
26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

Effective date: 20060217

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: MAN TURBO A.G.

Effective date: 20060331

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN DIESEL & TURBO SE

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130408

Year of fee payment: 14

Ref country code: DE

Payment date: 20130321

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 50010337

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 50010337

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20131127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140319

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 50010337

Country of ref document: DE

Effective date: 20140522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140327

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 295939

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50010337

Country of ref document: DE