EP4119798A1 - Strömungsmaschinenanordnung - Google Patents
Strömungsmaschinenanordnung Download PDFInfo
- Publication number
- EP4119798A1 EP4119798A1 EP22183529.1A EP22183529A EP4119798A1 EP 4119798 A1 EP4119798 A1 EP 4119798A1 EP 22183529 A EP22183529 A EP 22183529A EP 4119798 A1 EP4119798 A1 EP 4119798A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressor
- line
- working medium
- connection
- turbomachine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/122—Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/5826—Cooling at least part of the working fluid in a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/5846—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection
Definitions
- the invention relates to a turbomachine arrangement.
- a turbomachine arrangement with a multi-stage compressor section and an electrical machine is known, the electrical machine driving the compressor section to increase the pressure of a working medium.
- a compressor shaft of the compressor section is coaxial with a shaft of the electric machine and is coupled to the shaft of the electric machine.
- the electrical machine and the compressor section are arranged in a common housing and are mounted in the housing via bearings.
- Working medium compressed as cooling gas can be removed from one stage of the compressor section and can be used to cool the electrical machine.
- a flow machine arrangement with at least one single-stage or multi-stage compressor section and an electrical machine driving the or each compressor section is also referred to as an integrated motor-compressor.
- a turbo compressor with several compressor sections is known.
- the compressor sections and the electrical machine that drives the compressor sections are arranged in a gas-tight housing and mounted in the housing via bearings.
- the shaft of the respective compressor section and the shaft of the electrical machine run coaxially to one another and are coupled without translation.
- Compressed working medium which is branched off from a compressor section, serves to cool the electric machine.
- DE 10 2007 019 264 A1 discloses another turbo compressor. It is disclosed to remove compressed working medium in the area of a compressor stage of a compressor section of the turbo compressor, to guide it through a wheel side space and starting from the wheel side space via an extraction channel into a collection space in order to provide this working medium to an assembly to be cooled.
- the object of the present invention is to create a novel turbomachine arrangement. This object is achieved by a flow machine arrangement according to claim 1.
- the turbomachine arrangement has at least one compressor section, each with one or more stages, for increasing the pressure of a working medium such as a process gas, with the respective compressor section having a compressor shaft.
- the turbomachine arrangement also has an electric machine that has a shaft.
- the compressor shaft of the respective compressor section runs coaxially to the shaft of the electrical machine.
- the compressor shaft of the respective compressor section is preferably coupled directly and without gearing to the shaft of the electrical machine.
- the electrical machine and the respective compressor section are arranged in a common, hermetically sealed, one- or multi-part housing and mounted on bearings in the housing, such that the respective compressor section, the electrical marriage Machine and bearings are all washed by the working medium.
- Uncompressed working medium can be fed to the flow machine arrangement via a feed line.
- Working medium compressed by the turbomachine arrangement can be discharged via a discharge line.
- the turbomachine arrangement according to claim 1 also has at least one jet compressor, to which working medium at a first pressure level can be supplied as propellant via a first line or a first connection, specifically for sucking in working medium at a lower second pressure level via a second line or a second connection, wherein a mixture formed in at least one jet compressor from the working medium at the first pressure level and the working medium at the second pressure level of the electrical machine and/or at least one other assembly to be cooled, in particular the bearings, via a third line or a third connection can be supplied as a cooling medium.
- the turbomachine arrangement has the at least one jet compressor, to which the working medium at the first pressure level, which is preferably an at least partially compressed working medium, can be fed as the propellant in order to overcome the pressure difference between the the working medium at the first pressure level and the working medium at the lower second pressure level, which is preferably uncompressed working medium, to suck in the working medium at the lower second pressure level, to mix it with the working medium at the first pressure level and then to supply this mixture to the electric Machine and / or supply at least one other to be cooled assembly for cooling.
- the working medium at the first pressure level which is preferably an at least partially compressed working medium
- the cooling medium routed through or via the electrical machine and/or the at least one other assembly to be cooled consists of the working medium at the first pressure level, preferably at least partially compressed working medium, and the other part consists of the lower, second pressure level Standing working medium, preferably from uncompressed Working medium, there is, on the one hand, the cooling medium has a lower temperature, on the other hand, the overall thermodynamic efficiency of the turbomachine arrangement can be increased as a result. More efficient cooling of the electrical machine can be provided with a high overall thermodynamic efficiency of the turbomachine arrangement.
- the at least one jet compressor is preferably coupled to the compressor section or one of the compressor sections or to the discharge line of the turbomachine arrangement or to a first leakage point of the turbomachine arrangement via the first line or the first connection.
- the at least one jet compressor is connected via the second line or the second connection to the feed line of the turbomachine arrangement or to a second leakage point of the turbomachine arrangement or a return line of the turbomachine arrangement for coolant routed over or through the electrical machine and/or the at least one other assembly to be cooled coupled.
- a return line for the coolant routed over or through the electrical machine and/or the at least one other assembly to be cooled is coupled to the feed line of the turbomachine arrangement in such a way that a point at which the return line of the coolant opens into the feed line of the turbomachine arrangement in Flow direction of the feed line of the turbomachine assembly is seen downstream of a branch point of the second line or the second connection of the feed line of the turbomachine assembly.
- the branching point of the second line or of the second connection is used to remove the working medium which is under lower or lower pressure and is fed to the at least one jet compressor.
- This first development of the invention is particularly preferred.
- the fact that the point at which the return line opens into the supply line is downstream of the point at which the second line or the second connection branches off from the supply line ensures that via the second line or the second connection only non-compressed, cold working medium is sucked in via the jet compressor, which contains no recirculated cooling medium.
- the return line for the cooling medium routed through or via the electrical machine and/or the at least one other assembly to be cooled is connected to the second line leading to the at least one jet compressor or the second connection of the jet compressor for feeding in the propellant coupled into the at least one jet compressor.
- This second development can be used to provide a closed cooling circuit for the cooling medium routed via the electrical machine.
- a heat exchanger or cooler is preferably integrated into the respective return line for the cooling medium.
- the integration of the heat exchanger in the return line for the cooling medium is particularly preferred for efficient cooling of the electrical machine and/or the at least one other assembly to be cooled.
- the at least one jet compressor is preferably coupled to the compressor section or one of the compressor sections via the first line or the first connection, the at least one jet compressor being coupled to the feed line of the turbomachine arrangement via the second line or the second connection.
- This coupling of the jet compressor with the compressor section and the feed line of the turbomachine arrangement is particularly preferred in order to provide efficient cooling of the electrical machine and/or the at least one other assembly to be cooled, such as the bearings, with a high overall thermodynamic efficiency of the turbomachine arrangement.
- the present invention relates to a turbomachine arrangement 10, which is designed in particular as an integrated motor-compressor.
- FIG. 1 shows a first exemplary embodiment of a flow machine arrangement 10 according to the invention, designed as an integrated motor-compressor, which has a compressor section 11 for increasing the pressure of a working medium, preferably for compressing a process gas.
- the compressor section 11 has in 1 via a plurality of compressor stages 12 and via a compressor shaft 13, in which case uncompressed working medium can be supplied to the compressor section 11 and thus to the turbomachine arrangement 10 via a supply line 14 to the turbomachine arrangement 10, and in which case working medium compressed by the compressor section 11 and thus by the turbomachine arrangement 10 can be supplied via a discharge line 15 of the turbomachine arrangement 10 can be discharged.
- the as an integrated Motor-compressor trained flow machine assembly 10 of 1 also has an electric machine 16 with a shaft 17, the electric machine 16 serving to drive the compressor section 11.
- the compressor shaft 13 and the shaft 17 of the electrical machine 16 run coaxially with one another.
- the compressor shaft 13 and the shaft 17 of the electrical machine 16 are preferably coupled directly and without gearing or without gearing.
- the electrical machine 16 and the compressor section 11 are arranged in a common, hermetically sealed and thus gas-tight housing 18 and are rotatably mounted in the housing 18 via bearings 19 .
- the gas-tight housing 18 can be designed in one piece or in multiple pieces.
- the compressor section 11, the electrical machine 16 and the bearings 19 are all flushed with the working medium, in particular the process gas.
- the turbomachine arrangement 10 has at least one jet compressor 20.
- the jet compressor 20 shown can be supplied with working medium at a first pressure level as propellant via a first line 21 or a first connection 22, specifically for sucking in working medium at a lower second pressure level via a second line 23 or a second connection 24, with an im Jet compressor 20 formed mixture of the working medium under the first pressure level and the working medium under the second pressure level of the electrical machine 16 and/or at least one other assembly to be cooled, such as the bearings 19, via a third line 25 or a third connection 26 as a cooling medium is.
- At least partially compressed working medium can be fed to jet compressor 20 via first line 21 or first connection 22 as propellant for sucking in uncompressed working medium via second line 23 or second connection 24, the mixture formed in jet compressor 20 consisting of the at least partially compressed working medium and from the uncompressed working medium of the electrical machine 16 and/or the at least one other to be cooled assembly such as the bearings 19 via the third line 25 or the third port 26 can be supplied as a cooling medium.
- the jet compressor 20 has a mixing chamber 20a and a diffuser 20b, the mixing chamber 20a providing the first connection 22 and the second connection 24 and the diffuser 20b providing the third connection 26.
- the partially compressed working medium supplied via the connection 22 generates a jet of the working medium, which is subject to impulses, as a propellant via a preferably adjustable propulsion nozzle and which enters the mixing chamber 20a.
- At least partially compressed working medium is supplied to the jet compressor 20 via the first connection 22 of the mixing chamber 20a, starting from the compressor section 11 via the first line 21 1 corresponds to the working medium that is under the first pressure level, can be supplied, with in 1 the partially compressed working medium is branched off from the compressor section 11 and fed to the jet compressor 20 .
- the partially compressed working medium which is fed into the jet compressor 20 via the first line 21 or the first connection 22, has a higher pressure than the uncompressed working medium, which is 1 corresponds to the working medium which is under the lower second pressure level and is conducted via the second line 23 or the second connection 24 into the jet compressor 20, as a result of this pressure difference via the preferably adjustable driving nozzle in the mixing chamber 20b of the steel compressor 20, starting from the feed line 14 of the turbomachine arrangement 10
- Uncompressed working medium can be sucked in via the second line 23 or the second termination 24, which is mixed with the at least partially compressed working medium in the region of the mixing chamber 20a.
- This mixture of the at least partially compressed working medium or the working medium at the first pressure level and the uncompressed working medium or the working medium at the second pressure level is discharged via the diffuser 20b of the jet compressor 20 and the third connection 26 provided by the diffuser 20b and via the third line 25 of the electrical machine 16 and/or the at least one other assembly to be cooled, such as the bearings 19, for cooling.
- the mixing ratio of partially compressed working medium, which is 1 corresponds to the working medium under the first pressure level, and uncompressed working medium, which in 1 corresponds to the working medium at the second pressure level depends on the one hand on the design of the jet compressor and on the other hand on the pressure difference between the uncompressed working medium or the working medium at the second pressure level and the partially compressed working medium or the working medium at the first pressure level, with the The higher the pressure difference between the at least partially compressed working medium or the working medium at the first pressure level and the uncompressed working medium, the greater the proportion of uncompressed working medium or working medium that is under the second pressure level, which is sucked in via the second line 23 or the working medium which is under the second pressure level.
- the cooling medium has a lower temperature than in the prior art, in which only at least partially compressed working medium is branched off from the compressor section 11 and routed via the electric machine 16 for cooling.
- the cooling capacity can be improved, and an improved overall thermodynamic efficiency of the turbomachine arrangement 10 is also provided.
- the jet compressor 20, namely the mixing chamber 20a thereof is coupled via the first line 21 or the first connection 22 to the compressor section 11, namely a compressor stage 12 thereof. Furthermore, in 1 the jet compressor 20, namely the mixing chamber 20a thereof, via the second line 23 or the second port 24 with the Feed line 14 of the turbomachine assembly 10 coupled. In addition, the jet compressor 20, namely the diffuser 20b of the same, is coupled to the electrical machine 16 via the third line 25 or the third connection 26 .
- the electric machine 16 is coupled to the feed line 14 of the turbomachine arrangement 10 via a return line 27 for the cooling medium routed via the electric machine 16, in such a way that an opening point 27a of the return line 27 into the feed line 14 of the turbomachine arrangement 10 in the flow direction of the feed line 14 of the turbomachine arrangement 10 is seen downstream of a branching point 23a of the second line 23 from the feed line 14 . This ensures that only fresh working medium is removed via the second line 23 with the line 23 .
- turbomachine assembly 10 of 2 shows a further development of the turbomachine arrangement 10 of FIG 1 , wherein the turbomachine assembly 10 of 2 from the turbomachine assembly 10 of FIG 1 differs only in that a heat exchanger 28 or cooler is integrated into the return line 27 in order to cool the cooling medium before it is returned to the feed line 14 of the turbomachine arrangement 10 .
- This also serves to increase the overall thermodynamic efficiency.
- the turbomachine assembly 10 agrees 2 with the turbomachine assembly 10 of 1 agree, which is why the same reference numerals are used to avoid unnecessary repetition for the same assemblies and to the statements on the turbomachine arrangement 10 of 1 is referenced.
- FIG 3 shows a modification of the turbomachine arrangement 10 of FIG 1 that differ from the 1 differs in that in the turbomachine assembly 10 of 3 two compressor sections 11a, 11b are present, each having a compressor stage 12a, 12b and a compressor shaft 13a, 13b, these compressor sections 11a, 11b being arranged on opposite sides of the electrical machine 16.
- Both compressor shafts 13a, 13b are preferably on different, opposite sides of the electrical machine 16 coupled in each case directly and without translation to the shaft 17 of the electric machine 16 .
- the two compressor sections 11a, 11b are connected in series. Working medium compressed in the compressor section 11a is further compressed in the compressor section 11b.
- the compressor sections 11a, 11b can also be connected in parallel, in which case the first line 21 is connected to the discharge line of one of the two compressor sections 11a, 11b and also to the return line 27 for the cooling medium to the supply line 14 of one of the two compressor sections 11a, 11b.
- the compressor sections 11a, 11b can also each have a plurality of compressor stages.
- partially compressed working medium which was partially compressed by the first compressor section 11a, is supplied to the second compressor section 11b via an overflow line 29 for further compression and is also supplied to the jet compressor 20 via the first line 21, which branches off from the overflow line 29, so that the jet compressor 20, in turn, as a result of the pressure difference between the at least partially compressed working medium and the uncompressed working medium, can draw in uncompressed working medium starting from the supply line 14 of the turbomachine arrangement 10 and mix it with the partially compressed working medium in the region of the mixing chamber 20a of the jet compressor 20. This mixture is then in turn fed from the jet compressor 20 to the electrical machine 16 and/or the at least one other assembly to be cooled, such as the bearings 19, for cooling the same.
- In 3 leads the discharge line 15 of the turbomachine arrangement 10 for the compressed working medium away from the second compressor section 11b.
- FIG 4 shows a modification of the turbomachine arrangement 10 of FIG 3 , which is different from the embodiment of 3 again differs only in that in the return line 27 for the cooling medium, which is above or through the electrical machine 16 guided cooling medium returns in the direction of the supply line 14 of the turbomachine arrangement 10, a heat exchanger 28 is integrated.
- coolers can also be integrated in the lines 21, 23 and 25.
- the compressor sections 11a, 11b can also be connected in parallel.
- the feed line 14 of the turbomachine arrangement 10 can then lead to both compressor sections 11a, 11b.
- the first line 21 is preferably connected to the discharge line of one of the two compressor sections 11a, 11b and also to the return line 27 for the cooling medium to the supply line 14 of one of the two compressor sections 11a, 11b.
- figure 5 shows a modification of the turbomachine arrangement 10 of FIG 3 , which differ from the turbomachine arrangement 10 of 3 differs in that the propellant, which is fed to the jet compressor 20 via the first line 21 or the first connection 22, is not used in the first compressor section 11a partially compressed working medium, but rather in the second compressor section 11b completely compressed working medium, so that accordingly in figure 5 the first line 21 does not branch off from the overflow line 29 but rather from the discharge line 15 of the turbomachine arrangement 10 .
- figure 5 there is a significantly higher pressure difference between the compressed working medium serving as the propellant and the uncompressed working medium sucked in by the supply line, with in figure 5 the mixture of uncompressed working medium and compressed working medium formed in the jet compressor 20 preferably contains a higher proportion of uncompressed working medium than in 3 .
- the embodiment of the figure 5 with the embodiment of 3 match, so that in turn the same reference numerals are used to avoid unnecessary repetition for the same assemblies.
- the propellant in the case of a multi-stage compressor design, can be analogous to 1 can also be taken from an intermediate stage.
- the lines 23 and 27 can also end at the overflow line 29 instead of at the feed 14 of the turbomachine arrangement 10 , so that the cooling medium is removed only after the compressor section 11b and fed back into the overflow line 29 .
- FIG 6 shows a modification of the embodiment of FIG figure 5 that differ from figure 5 again only differs in that the heat exchanger 28 is integrated into the return line 27 of the cooling medium for the cooling medium routed over or through the electric machine 16 and/or the at least one other assembly group to be cooled, such as the bearings 19 .
- FIG 7 shows a further embodiment according to the invention of a turbomachine 10 according to the invention, which is a modification of the turbomachine arrangement 10 of FIG 4 represents. while in 4 the second line 23 branches off from the supply line 14 of the turbomachine arrangement 10 and the return line 27 of the cooling medium opens into the supply line 14 of the turbomachine arrangement 10, consists in 7 a closed circuit for the cooling medium, in that the second line 23 is coupled to the return line 27 of the cooling medium.
- the working medium used as the propellant in the first compressor section 11a is partially compressed, which is branched off from the overflow line 29 and fed to the jet compressor 20 via the first line 21, whereas in 7 no uncompressed working medium is sucked in by the jet compressor 20, but rather the cooling medium guided over or through the electrical machine 16 and/or the at least one other assembly to be cooled, such as the bearings 19, which is fed via the return line 27 of the cooling medium from the electrical machine 16 and/or or the at least one other assembly to be cooled, such as the bearings 19.
- the second line 23 and the return line 27 of the cooling medium form a closed cooling circuit for the cooling medium, in which according to 7 a heat exchanger 28 is integrated.
- working medium at a first pressure level can be fed to the jet compressor 20 via the first line 21 or the first connection 22 as propellant, specifically for sucking in working medium at a lower second pressure level via the second line 23 or the second connection 24, wherein the im Jet compressor 20 formed mixture of the working medium under the first pressure level and the working medium under the second pressure level of the electrical machine 16 and/or the at least one other assembly to be cooled, such as the bearings 19, via the third line 25 or the third connection 26 as cooling medium can be fed.
- the working medium at the first pressure level is the working medium that is partially compressed in the compressor section 11a
- the working medium at the second pressure level is in 7 around the cooling medium routed over or through the electrical machine 16 and/or the at least one other assembly to be cooled, such as the bearings 19, which is fed via the return line 27 of the cooling medium and the cooler 28, the second line 23 and thus the second connection 24 .
- the supply of the propellant gas via the first line 21 or the first connection 22 compensates for any losses of cooling medium in the circuit.
- the invention allows efficient cooling of the electrical machine 16 and/or the at least one other assembly to be cooled, such as the bearings 19 of a turbomachine assembly 10, with a high overall thermodynamic efficiency of the turbomachine assembly 10.
- the invention makes it possible to use an electric machine 16 with a high power range in turbomachine arrangements 10 .
- the flow rate through the jet compressor 20 can be regulated by means of a preferably adjustable propulsion nozzle (not shown).
- a preferably adjustable propulsion nozzle can be dispensed with and the jet compressor 20 can be operated in an unregulated manner.
- the jet compressor 20 is positioned outside of the housing 18, with at least some of the lines 21, 25, 29 extending at least in sections outside of the housing 18 and through the housing 18.
- the jet compressor 20 it is also possible for the jet compressor 20 to be positioned within the housing 18 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
- Die Erfindung betrifft eine Strömungsmaschinenanordnung.
- Aus
WO 2013/139568 A1 ist eine Strömungsmaschinenanordnung mit einer mehrstufigen Kompressorsektion und einer elektrischen Maschine bekannt, wobei die elektrische Maschine die Kompressorsektion zur Druckerhöhung eines Arbeitsmediums antreibt. Eine Kompressorwelle der Kompressorsektion verläuft koaxial zu einer Welle der elektrischen Maschine und ist mit der Welle der elektrischen Maschine gekoppelt. Die elektrische Maschine und die Kompressorsektion sind in einem gemeinsamen Gehäuse angeordnet und über Lager in dem Gehäuse gelagert. Einer Stufe der Kompressorsektion ist als Kühlgas verdichtetes Arbeitsmedium entnehmbar, welches zur Kühlung der elektrischen Maschine nutzbar ist. - Eine Strömungsmaschinenanordnung mit mindestens einer einstufigen oder mehrstufigen Kompressorsektion und einer die oder jede Kompressorsektion antreibenden elektrischen Maschine wird auch als integrierter Motor-Kompressor bezeichnet.
- Aus
EP 1 074 746 B1 ist ein Turboverdichter mit mehreren Kompressorsektionen bekannt. Die Kompressorsektionen und die elektrische Maschine, welche die Kompressorsektionen antreibt, sind in einem gasdichten Gehäuse angeordnet und über Lager im Gehäuse gelagert. Die Welle der jeweiligen Kompressorsektion und die Welle der elektrischen Maschine verlaufen koaxial zueinander und sind übersetzungslos gekoppelt. Zur Kühlung der elektrischen Maschine dient verdichtetes Arbeitsmedium, welches von einer Kompressorsektion abgezweigt wird. -
DE 10 2007 019 264 A1 offenbart einen weiteren Turboverdichter. Es ist offenbart, im Bereich einer Kompressorstufe einer Kompressorsektion des Turboverdichters verdichtetes Arbeitsmedium zu entnehmen, über einen Radseitenraum zu führen und ausgehend vom Radseitenraum über einen Entnahmekanal in einen Sammelraum zu führen, um dieses Arbeitsmedium einer zu kühlenden Baugruppe bereitzustellen. - Dann, wenn zur Kühlung von Baugruppen einer Strömungsmaschinenanordnung im Bereich einer Kompressorsektion verdichtetes Arbeitsmedium entnommen und zur Kühlung verwendet wird, besteht der Nachteil eines reduzierten Gesamtwirkungsgrads der Strömungsmaschinenanordnung. Darüber hinaus ist verdichtetes Arbeitsmedium infolge der Verdichtung bereits erwärmt, wodurch die Kühlleistung reduziert ist.
- Es besteht Bedarf an einer effizienteren Kühlung der elektrischen Maschine einer Strömungsmaschinenanordnung bei hohem thermodynamischen Gesamtwirkungsgrad der Strömungsmaschinenanordnung.
- Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine neuartige Strömungsmaschinenanordnung zu schaffen. Diese Aufgabe wird durch eine Strömungsmaschinenanordnung nach Anspruch 1 gelöst.
- Die Strömungsmaschinenanordnung verfügt über mindestens eine jeweils ein- oder mehrstufige Kompressorsektion zur Druckerhöhung eines Arbeitsmediums wie eines Prozessgases, wobei die jeweilige Kompressorsektion eine Kompressorwelle aufweist. Die Strömungsmaschinenanordnung verfügt über ferner eine elektrische Maschine, die eine Welle aufweist. Die Kompressorwelle der jeweiligen Kompressorsektion verläuft koaxial zu der Welle der elektrischen Maschine.
- Die Kompressorwelle der jeweiligen Kompressorsektion ist vorzugsweise direkt und übersetzungslos mit der Welle der elektrischen Maschine gekoppelt.
- Die elektrische Maschine und die jeweilige Kompressorsektion sind in einem gemeinsamen, hermetisch dichten, ein- oder mehrteiligen Gehäuse angeordnet und über Lager im Gehäuse gelagert, derart, dass die jeweilige Kompressorsektion, die elektrisehe Maschine und die Lager allesamt von dem Arbeitsmedium umspült sind. Über eine Zuführleitung ist der Strömungsmaschinenanordnung unverdichtetes Arbeitsmedium zuführbar. Über eine Abführleitung ist von der Strömungsmaschinenanordnung verdichtetes Arbeitsmedium abführbar.
- Die Strömungsmaschinenanordnung nach Anspruch 1 verfügt weiterhin über mindestens einen Strahlverdichter, dem über eine erste Leitung oder einen ersten Anschluss unter einem ersten Druckniveau stehendes Arbeitsmedium als Treibmittel zuführbar ist, und zwar zur Ansaugung von unter einem geringeren zweiten Druckniveau stehendem Arbeitsmedium über eine zweite Leitung oder einen zweiten Anschluss, wobei eine im mindestens einen Strahlverdichter ausgebildete Mischung aus dem unter dem ersten Druckniveau stehenden Arbeitsmedium und dem unter dem zweiten Druckniveau stehenden Arbeitsmedium der elektrischen Maschine und/oder mindestens einer anderen zu kühlenden Baugruppe, insbesondere den Lagern, über eine dritte Leitung oder einen dritten Anschluss als Kühlmedium zuführbar ist.
- Mit der hier vorliegenden Erfindung wird vorgeschlagen, dass die Strömungsmaschinenanordnung den mindestens einen Strahlverdichter aufweist, dem als Treibmittel das unter dem ersten Druckniveau stehende Arbeitsmedium, bei welchem es sich vorzugsweise um zumindest teilverdichtetes Arbeitsmedium handelt, zuführbar ist, um über den Druckunterschied zwischen dem unter dem ersten Druckniveau stehenden Arbeitsmedium und dem unter dem geringeren zweiten Druckniveau stehendem Arbeitsmedium, bei welchem es sich vorzugsweise um unverdichtetes Arbeitsmedium handelt, das unter dem geringeren zweiten Druckniveau stehende Arbeitsmedium anzusaugen, mit dem unter dem ersten Druckniveau stehenden Arbeitsmedium zu mischen und diese Mischung dann der elektrischen Maschine und/oder der mindestens einen anderen zu kühlenden Baugruppe zur Kühlung zuzuführen.
- Da nur ein Teil des durch oder über die elektrische Maschine und/oder die mindestens eine andere zu kühlende Baugruppe geführten Kühlmediums aus dem unter dem ersten Druckniveau stehenden Arbeitsmedium, vorzugsweise aus zumindest teilweise verdichtetem Arbeitsmedium, und der andere Teil aus dem unter dem geringeren zweiten Druckniveau stehendem Arbeitsmedium, vorzugsweise aus unverdichtetem Arbeitsmedium, besteht, verfügt das Kühlmedium einerseits über eine geringere Temperatur, andererseits kann hierdurch der thermodynamische Gesamtwirkungsgrad der Strömungsmaschinenanordnung gesteigert werden. Es kann eine effizientere Kühlung der elektrischen Maschine bei hohem thermodynamischen Gesamtwirkungsgrad der Strömungsmaschinenanordnung bereitgestellt werden.
- Vorzugweise ist der mindestens eine Strahlverdichter über die erste Leitung oder den ersten Anschluss mit der Kompressorsektion oder einer der Kompressorensektionen oder mit der Abführleitung der Strömungsmaschinenanordnung oder mit einer ersten Leckagestelle der Strömungsmaschinenanordnung gekoppelt. Vorzugsweise ist der mindestens eine Strahlverdichter über die zweite Leitung oder den zweiten Anschluss mit der Zuführleitung der Strömungsmaschinenanordnung oder mit einer zweiten Leckagestelle der Strömungsmaschinenanordnung oder einer Rückführleitung der Strömungsmaschinenanordnung für über oder durch die elektrische Maschine und/oder die mindestens eine andere zu kühlende Baugruppe geführtes Kühlmedium gekoppelt.
- Nach einer ersten Weiterbildung der Erfindung ist eine Rückführleitung für das über oder durch die elektrische Maschine und/oder die mindestens eine andere zu kühlende Baugruppe geführte Kühlmedium derart mit der Zuführleitung der Strömungsmaschinenanordnung gekoppelt, dass eine Mündungsstelle der Rückführleitung des Kühlmediums in die Zuführleitung der Strömungsmaschinenanordnung in Durchströmungsrichtung der Zuführleitung der Strömungsmaschinenanordnung gesehen stromabwärts einer Abzweigungsstelle der zweiten Leitung oder des zweiten Anschlusses von der Zuführleitung der Strömungsmaschinenanordnung liegt. Die Abzweigungsstelle der zweiten Leitung oder des zweiten Anschlusses dient zur Entnahme des unter geringerem oder tieferem Druck stehenden Arbeitsmediums, welchem dem mindestens einen Strahlverdichter zugeführt wird.
- Diese erste Weiterbildung der Erfindung ist besonders bevorzugt. Dadurch, dass die Mündungsstelle der Rückführleitung in die Zuführleitung stromabwärts der Abzweigungsstelle der zweiten Leitung oder des zweiten Anschlusses von der Zuführleitung liegt, wird sichergestellt, dass über die zweite Leitung oder den zweiten Anschluss ausschließlich unverdichtetes, kaltes Arbeitsmedium über den Strahlverdichter angesaugt wird, welches kein zurückgeführtes Kühlmedium enthält.
- Nach einer alternativen, zweiten Weiterbildung der Erfindung ist die Rückführleitung für das durch oder über die elektrische Maschine und/oder die mindestens eine andere zu kühlende Baugruppe geführte Kühlmedium mit der zum mindestens einen Strahlverdichter führenden zweiten Leitung oder dem zweiten Anschluss des Strahlverdichters zur Einspeisung des Treibmittels in den mindestens einen Strahlverdichter gekoppelt. Über diese zweite Weiterbildung kann ein geschlossener Kühlkreislauf für das über die elektrische Maschine geführte Kühlmedium bereitgestellt werden.
- Vorzugsweise ist zur weiteren Steigerung des Wirkungsgrads in die jeweilige Rückführleitung für das Kühlmedium ein Wärmetauscher oder Kühler integriert. Die Integration des Wärmetauschers in die Rückführleitung für das Kühlmedium ist für eine effiziente Kühlung der elektrischen Maschine und/oder der mindestens einen anderen zu kühlenden Baugruppe besonders bevorzugt.
- Vorzugsweise ist zur weiteren Steigerung des Wirkungsgrads der mindestens eine Strahlverdichter über die erste Leitung oder den ersten Anschluss mit der Kompressorsektion oder einer der Kompressorsektionen gekoppelt, wobei der mindestens eine Strahlverdichter über die zweite Leitung oder den zweiten Anschluss mit der Zuführleitung der Strömungsmaschinenanordnung gekoppelt ist. Diese Kopplung von Strahlverdichter mit der Kompressorsektion sowie der Zuführleitung der Strömungsmaschinenanordnung ist besonders bevorzugt, um eine effiziente Kühlung der elektrischen Maschine und/oder der mindestens einen anderen zu kühlenden Baugruppe wie der Lager bei hohem thermodynamischen Gesamtwirkungsgrad der Strömungsmaschinenanordnung bereitzustellen.
- Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung.
- Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
- Fig. 1
- eine stark schematisierte Darstellung einer ersten erfindungsgemäßen Strömungsmaschinenanordnung;
- Fig. 2
- eine stark schematisierte Darstellung einer zweiten erfindungsgemäßen Strömungsmaschinenanordnung;
- Fig. 3
- eine stark schematisierte Darstellung einer dritten erfindungsgemäßen Strömungsmaschinenanordnung;
- Fig. 4
- eine stark schematisierte Darstellung einer vierten erfindungsgemäßen Strömungsmaschinenanordnung;
- Fig. 5
- eine stark schematisierte Darstellung einer fünften erfindungsgemäßen Strömungsmaschinenanordnung;
- Fig. 6
- eine stark schematisierte Darstellung einer sechsten erfindungsgemäßen Strömungsmaschinenanordnung; und
- Fig. 7
- eine stark schematisierte Darstellung einer siebten erfindungsgemäßen Strömungsmaschinenanordnung.
- Die hier vorliegende Erfindung betrifft eine Strömungsmaschinenanordnung 10, die insbesondere als integrierter Motor-Kompressor ausgeführt ist.
-
Fig. 1 zeigt ein erstes Ausführungsbeispiel einer erfindungsgemäßen, als integrierter Motor-Kompressor ausgebildeten Strömungsmaschinenanordnung 10, die eine Kompressorsektion 11 zur Druckerhöhung eines Arbeitsmediums, vorzugsweise zur Verdichtung eines Prozessgases, aufweist. Die Kompressorsektion 11 verfügt inFig. 1 über mehrere Kompressorstufen 12 sowie über eine Kompressorwelle 13, wobei der Kompressorsektion 11 und damit der Strömungsmaschinenanordnung 10 unverdichtetes Arbeitsmedium über eine Zuführleitung 14 der Strömungsmaschinenanordnung 10 zugeführt werden kann, und wobei von der Kompressorsektion 11 und damit von der Strömungsmaschinenanordnung 10 verdichtetes Arbeitsmedium über eine Abführleitung 15 der Strömungsmaschinenanordnung 10 abgeführt werden kann. Die als integrierter Motor-Kompressor ausgebildete Strömungsmaschinenanordnung 10 derFig. 1 verfügt weiterhin über eine elektrische Maschine 16 mit einer Welle 17, wobei die elektrische Maschine 16 dem Antreiben der Kompressorsektion 11 dient. Die Kompressorwelle 13 und die Welle 17 der elektrischen Maschine 16 verlaufen koaxial zueinander. Ferner sind die Kompressorwelle 13 und die Welle 17 der elektrischen Maschine 16 vorzugsweise direkt und übersetzungslos bzw. übersetzungsfrei gekoppelt. - Die elektrische Maschine 16 und die Kompressorsektion 11 sind in einem gemeinsamen, hermetisch dichten und damit gasdichten Gehäuse 18 angeordnet und über Lager 19 im Gehäuse 18 drehbar gelagert. Das gasdichte Gehäuse 18 kann einteilig oder mehrteilig ausgebildet sein. Dabei sind die Kompressorsektion 11, die elektrische Maschine 16 sowie die Lager 19 allesamt von dem Arbeitsmedium, insbesondere dem Prozessgas, umspült.
- Die erfindungsgemäße Strömungsmaschinenanordnung 10 verfügt über mindestens einen Strahlverdichter 20. Dem in
Fig. 1 gezeigten Strahlverdichter 20 ist über eine erste Leitung 21 oder einen ersten Anschluss 22 unter einem ersten Druckniveau stehendes Arbeitsmedium als Treibmittel zuführbar, und zwar zur Ansaugung von unter einem geringeren zweiten Druckniveau stehendem Arbeitsmedium über eine zweite Leitung 23 oder einen zweiten Anschluss 24, wobei eine im Strahlverdichter 20 ausgebildete Mischung aus dem unter dem ersten Druckniveau stehenden Arbeitsmedium und dem unter dem zweiten Druckniveau stehenden Arbeitsmedium der elektrischen Maschine 16 und/oder mindestens einer anderen zu kühlenden Baugruppe wie den Lagern 19 über eine dritte Leitung 25 oder einen dritten Anschluss 26 als Kühlmedium zuführbar ist. - In
Fig. 1 ist dem Strahlverdichter 20 über die erste Leitung 21 oder den ersten Anschluss 22 zumindest teilweise verdichtetes Arbeitsmedium als Treibmittel zur Ansaugung von unverdichtetem Arbeitsmedium über die zweite Leitung 23 oder den zweiten Anschluss 24 zuführbar, wobei die im Strahlverdichter 20 ausgebildete Mischung aus dem zumindest teilweise verdichtetem Arbeitsmedium und aus dem unverdichtetem Arbeitsmedium der elektrischen Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 über die dritte Leitung 25 oder den dritten Anschluss 26 als Kühlmedium zuführbar ist. - Der Strahlverdichter 20 verfügt dabei über eine Mischkammer 20a und einen Diffusor 20b, wobei die Mischkammer 20a den ersten Anschluss 22 und den zweiten Anschluss 24 und der Diffusor 20b den dritten Anschluss 26 bereitstellt. Das über den Anschluss 22 zugeführte, teilweise verdichtete Arbeitsmedium erzeugt als Treibmittel über eine vorzugsweise verstellbare Treibdüse einen impulsbehafteten Strahl des Arbeitsmediums, der in die Mischkammer 20a eintritt. Über den ersten Anschluss 22 der Mischkammer 20a ist dem Strahlverdichter 20 ausgehend von der Kompressorsektion 11 über die erste Leitung 21 zumindest teilweise verdichtetes Arbeitsmedium, welches in
Fig. 1 dem unter dem ersten Druckniveau stehenden Arbeitsmedium entspricht, zuführbar, wobei inFig. 1 das teilweise verdichtete Arbeitsmedium von der Kompressorsektion 11 abgezweigt und zum Strahlverdichter 20 geführt wird. - Dadurch, dass das teilweise verdichtete Arbeitsmedium, welches über die erste Leitung 21 oder den ersten Anschluss 22 in den Strahlverdichter 20 geleitet wird, einen höheren Druck aufweist als das unverdichtete Arbeitsmedium, welches in
Fig. 1 dem unter dem geringeren zweiten Druckniveau stehenden Arbeitsmedium entspricht über die zweite Leitung 23 oder den zweiten Anschluss 24 in den Strahlverdichter 20 geleitet wird, kann infolge dieses Druckunterschieds über die vorzugsweise verstellbare Treibdüse in der Mischkammer 20b des Stahlverdichters 20 ausgehend von der Zuführleitung 14 der Strömungsmaschinenanordnung 10 über die zweite Leitung 23 oder den zweiten Abschluss 24 unverdichtetes Arbeitsmedium angesaugt werden, welches mit dem zumindest teilweise verdichteten Arbeitsmedium im Bereich der Mischkammer 20a gemischt wird. - Diese Mischung aus dem zumindest teilweise verdichteten Arbeitsmedium bzw. dem unter dem ersten Druckniveau stehenden Arbeitsmedium und dem unverdichtetem Arbeitsmedium bzw. dem unter dem zweiten Druckniveau stehenden Arbeitsmedium wird über den Diffusor 20b des Strahlverdichters 20 und den vom Diffusor 20b bereitgestellten dritten Anschluss 26 sowie über die dritte Leitung 25 der elektrischen Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 zur Kühlung bereitgestellt.
- Das Mischungsverhältnis von teilweise verdichtetem Arbeitsmedium, welches in
Fig. 1 dem unter dem ersten Druckniveau stehenden Arbeitsmedium entspricht, und unverdichtetem Arbeitsmedium, welches inFig. 1 dem unter dem zweiten Druckniveau stehenden Arbeitsmedium entspricht, ist einerseits vom Design des Strahlverdichters und andererseits vom Druckunterschied zwischen dem unverdichteten Arbeitsmedium bzw. dem unter dem zweiten Druckniveau stehenden Arbeitsmedium und dem teilweise verdichteten Arbeitsmedium bzw. dem unter dem ersten Druckniveau stehenden Arbeitsmedium abhängig, wobei der Anteil an unverdichtetem Arbeitsmedium bzw. an unter dem zweiten Druckniveau stehenden Arbeitsmedium, welches über die zweite Leitung 23 angesaugt wird, umso größer ist, je höher der Druckunterschied zwischen dem zumindest teilweise verdichteten Arbeitsmedium bzw. dem unter dem ersten Druckniveau stehenden Arbeitsmedium und dem unverdichteten Arbeitsmedium bzw. dem unter dem zweiten Druckniveau stehenden Arbeitsmedium ist. - Bedingt dadurch, dass in
Fig. 1 zur Kühlung der elektrischen Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 die Mischung aus zumindest teilweise verdichtetem Arbeitsmedium und unverdichtetem Arbeitsmedium über die elektrische Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 geführt wird, verfügt das Kühlmedium über eine geringere Temperatur als im Stand der Technik, in welchem lediglich zumindest teilweise verdichtetes Arbeitsmedium von der Kompressorsektion 11 abgezweigt und zur Kühlung über die elektrische Maschine 16 geführt wird. Hierdurch kann die Kühlleistung verbessert werden, ferner wird ein verbesserter thermodynamischer Gesamtwirkungsgrad der Strömungsmaschinenanordnung 10 bereitgestellt. - Im gezeigten Ausführungsbeispiel der
Fig. 1 ist demnach der Strahlverdichter 20, nämlich die Mischkammer 20a desselben, über die erste Leitung 21 oder den ersten Anschluss 22 mit der Kompressorsektion 11, nämlich einer Kompressorstufe 12 desselben, gekoppelt. Ferner ist inFig. 1 der Strahlverdichter 20, nämlich die Mischkammer 20a desselben, über die zweite Leitung 23 oder den zweiten Anschluss 24 mit der Zuführleitung 14 der Strömungsmaschinenanordnung 10 gekoppelt. Darüber hinaus ist der Strahlverdichter 20, nämlich der Diffusor 20b desselben, über die dritte Leitung 25 oder den dritten Anschluss 26 mit der elektrischen Maschine 16 gekoppelt. - In
Fig. 1 ist die elektrische Maschine 16 über eine Rückführleitung 27 für das über die elektrische Maschine 16 geführte Kühlmedium mit der Zuführleitung 14 der Strömungsmaschinenanordnung 10 gekoppelt, und zwar derart, dass eine Mündungsstelle 27a der Rückführleitung 27 in die Zuführleitung 14 der Strömungsmaschinenanordnung 10 in Durchströmungsrichtung der Zuführleitung 14 der Strömungsmaschinenanordnung 10 gesehen stromabwärts einer Abzweigungsstelle 23a der zweiten Leitung 23 von der Zuführleitung 14 liegt. Hierdurch wird sichergestellt, dass über die zweite Leitung 23 lediglich frisches Arbeitsmedium mit der Leitung 23 entnommen wird. -
Fig. 2 zeigt eine Weiterbildung der Strömungsmaschinenanordnung 10 derFig. 1 , wobei sich die Strömungsmaschinenanordnung 10 derFig. 2 von der Strömungsmaschinenanordnung 10 derFig. 1 lediglich dadurch unterscheidet, dass in die Rückführleitung 27 ein Wärmetauscher 28 oder Kühler integriert ist, um das Kühlmedium vor der Rückführung in die Zuführleitung 14 der Strömungsmaschinenanordnung 10 zu kühlen. Auch dies dient der Steigerung des thermodynamischen Gesamtwirkungsgrads. Ansonsten stimmt die Strömungsmaschinenanordnung 10 derFig. 2 mit der Strömungsmaschinenanordnung 10 derFig. 1 überein, weshalb zur Vermeidung unnötiger Wiederholungen für gleiche Baugruppen gleiche Bezugsziffern verwendet werden und auf die Ausführungen zur Strömungsmaschinenanordnung 10 derFig. 1 verwiesen wird. -
Fig. 3 zeigt eine Abwandlung der Strömungsmaschinenanordnung 10 derFig. 1 , die sich von derFig. 1 dadurch unterscheidet, dass bei der Strömungsmaschinenanordnung 10 derFig. 3 zwei Kompressorsektionen 11a, 11b vorhanden sind, die jeweils über eine Kompressorstufe 12a, 12b und einer Kompressorwelle 13a, 13b verfügen, wobei diese Kompressorsektionenen 11a, 11b an sich gegenüberliegenden Seiten der elektrischen Maschine 16 angeordnet sind. Beide Kompressorwellen 13a, 13b sind an unterschiedlichen, sich gegenüberliegenden Seiten der elektrischen Maschine 16 vorzugsweise jeweils direkt und übersetzungslos mit der Welle 17 der elektrischen Maschine 16 gekoppelt. - In
Fig. 3 sind die beiden Kompressorsektionen 11a, 11b in Reihe geschaltet. In der Kompressorsektion 11a verdichtetes Arbeitsmedium wird in der Kompressorsektion 11b weiterverdichtet. Die Kompressorsektionen 11a, 11b können alternativ auch parallelgeschaltet sein, wobei dann die erste Leitung 21 an die Abführleitung einer der beiden Kompressorsektionen 11a, 11b sowie auch an der Rückführleitung 27 für das Kühlmedium an die Zuführleitung 14 einer der beiden Kompressorsektionen 11a, 11b angeschlossen ist. - In
Fig. 3 können die Kompressorsektionen 11a, 11b auch jeweils mehrere Kompressorstufen aufweisen. - In
Fig. 3 wird teilweise verdichtetes Arbeitsmedium, welches von der ersten Kompressorsektion 11a teilweise verdichtet wurde, zur weiteren Verdichtung der zweiten Kompressorsektion 11b über eine Überströmleitung 29 zugeführt und über die erste Leitung 21, die von der Überströmleitung 29 abzweigt, auch dem Strahlverdichter 20 zugeführt, sodass der Strahlverdichter 20 wiederum infolge des Druckunterschieds zwischen dem zumindest teilweise verdichteten Arbeitsmedium und dem unverdichteten Arbeitsmedium unverdichtetes Arbeitsmedium ausgehend von der Zuführleitung 14 der Strömungsmaschinenanordnung 10 ansaugen und mit dem teilweise verdichteten Arbeitsmedium im Bereich der Mischkammer 20a des Strahlverdichters 20 mischen kann. Diese Mischung wird dann wiederum ausgehend vom Strahlverdichter 20 der elektrischen Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 zur Kühlung derselben zugeführt. InFig. 3 führt die Abführleitung 15 der Strömungsmaschinenanordnung 10 für das verdichtete Arbeitsmedium von der zweiten Kompressorsektion 11b weg. -
Fig. 4 zeigt eine Abwandlung der Strömungsmaschinenanordnung 10 derFig. 3 , die sich vom Ausführungsbeispiel derFig. 3 wiederum nur dadurch unterscheidet, dass in die Rückführleitung 27 für das Kühlmedium, die über oder durch die elektrische Maschine 16 geführtes Kühlmedium in Richtung auf die Zuführleitung 14 der Strömungsmaschinenanordnung 10 zurückführt, ein Wärmetauscher 28 integriert ist. Alternativ oder zusätzlich können Kühler auch in den Leitungen 21, 23 und 25 integriert sein. - Bis auf die Anzahl und Anordnung der Kompressorsektionen stimmen die Ausführungsbeispiele der
Fig. 3, 4 mit den Ausführungsbeispielen derFig. 1, 2 überein, sodass zur Vermeidung unnötiger Wiederholungen für gleiche Baugruppen gleiche Bezugsziffern verwendet werden. - In
Fig. 3 und 4 können die Kompressorsektionen 11a, 11b auch parallelgeschaltet sein. In diesem Fall kann die Zuführleitung 14 der Strömungsmaschinenanordnung 10 dann zu beiden Kompressorsektionen 11a, 11b führen. Vorzugswese ist bei einer Parallelschaltung der Kompressorsektionen 11a, 11b die erste Leitung 21 an die Abführleitung einer der beiden Kompressorsektionen 11a, 11b sowie auch an der Rückführleitung 27 für das Kühlmedium an die Zuführleitung 14 einer der beiden Kompressorsektionen 11a, 11b angeschlossen. -
Fig. 5 zeigt eine Abwandlung der Strömungsmaschinenanordnung 10 derFig. 3 , die sich von der Strömungsmaschinenanordnung 10 derFig. 3 dadurch unterscheidet, dass als Treibmittel, welches über die erste Leitung 21 bzw. den ersten Anschluss 22 dem Strahlverdichter 20 zugeführt wird, nicht in der ersten Kompressorsektion 11a teilweise verdichtetes Arbeitsmedium genutzt wird, sondern vielmehr in der zweiten Kompressorsektion 11b vollständig verdichtetes Arbeitsmedium, sodass demnach inFig. 5 die erste Leitung 21 nicht von der Überströmleitung 29 sondern vielmehr von der Abführleitung 15 der Strömungsmaschinenanordnung 10 abzweigt. Demnach liegt inFig. 5 ein deutlich höherer Druckunterschied zwischen dem als Treibmittel dienenden, verdichteten Arbeitsmedium und dem von der Zuführleitung angesaugten, unverdichteten Arbeitsmedium vor, wobei inFig. 5 die im Strahlverdichter 20 ausgebildete Mischung aus unverdichtetem Arbeitsmedium und verdichtetem Arbeitsmedium vorzugsweise einen höheren Anteil an unverdichtetem Arbeitsmedium enthält als inFig. 3 . Hinsichtlich aller übrigen Details stimmt das Ausführungsbeispiel derFig. 5 mit dem Ausführungsbeispiel derFig. 3 überein, sodass wiederum zur Vermeidung unnötiger Wiederholungen für gleiche Baugruppen gleiche Bezugsziffern verwendet werden. - Alternativ kann bei mehrstufiger Verdichterausführung das Treibmittel analog zu
Fig. 1 auch aus einer Zwischenstufe entnommen werden. Des Weiteren können die Leitungen 23 und 27 statt bei der Zuführung 14 der Strömungsmaschinenanordnung 10 auch bei der Überströmleitung 29 enden, so dass das Kühlmedium erst nach der Kompressorsektion 11b entnommen und in die Überströmleitung 29 rückgeführt wird. -
Fig. 6 zeigt eine Abwandlung des Ausführungsbeispiels derFig. 5 , die sich vonFig. 5 wiederum lediglich dadurch unterscheidet, dass in die Rückführleitung 27 des Kühlmediums für das über oder durch die elektrische Maschine 16 und/oder die mindestens eine andere zu kühlende Baugruppe wie die Lagern 19 geführte Kühlmedium der Wärmetauscher 28 integriert ist. -
Fig. 7 zeigt eine weitere erfindungsgemäße Ausführungsform einer erfindungsgemäßen Strömungsmaschine 10, die eine Abwandlung der Strömungsmaschinenanordnung 10 derFig. 4 darstellt. Während inFig. 4 die zweite Leitung 23 von der Zuführleitung 14 der Strömungsmaschinenanordnung 10 abzweigt und die Rückführleitung 27 des Kühlmediums in die Zuführleitung 14 der Strömungsmaschinenanordnung 10 mündet, besteht inFig. 7 ein geschlossener Kreislauf für das Kühlmedium, und zwar dadurch, dass die zweite Leitung 23 mit der Rückführleitung 27 des Kühlmediums gekoppelt ist. InFig. 7 dient als Treibmittel demnach wiederum in der ersten Kompressorsektion 11a teilweise verdichtetes Arbeitsmedium, welches von der Überströmleitung 29 abgezweigt und über die erste Leitung 21 dem Strahlverdichter 20 zugeführt wird, wohingegen inFig. 7 kein unverdichtetes Arbeitsmedium vom Strahlverdichter 20 angesaugt wird, sondern vielmehr das über oder durch die elektrische Maschine 16 und/oder die mindestens eine andere zu kühlende Baugruppe wie die Lagern 19 geführte Kühlmedium, welches über die Rückführleitung 27 des Kühlmediums von der elektrischen Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 abgeführt wird. Demnach bilden inFig. 7 die zweite Leitung 23 und die Rückführleitung 27 des Kühlmediums einen geschlossenen Kühlkreislauf für das Kühlmedium, in welchen gemäßFig. 7 ein Wärmetauscher 28 integriert ist. - Auch in
Fig. 7 ist dem Strahlverdichter 20 über die erste Leitung 21 oder den ersten Anschluss 22 unter einem ersten Druckniveau stehendes Arbeitsmedium als Treibmittel zuführbar, und zwar zur Ansaugung von unter einem geringeren zweiten Druckniveau stehendem Arbeitsmedium über die zweite Leitung 23 oder den zweiten Anschluss 24, wobei die im Strahlverdichter 20 ausgebildete Mischung aus dem unter dem ersten Druckniveau stehenden Arbeitsmedium und dem unter dem zweiten Druckniveau stehenden Arbeitsmedium der elektrischen Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 über die dritte Leitung 25 oder den dritten Anschluss 26 als Kühlmedium zuführbar ist. InFig. 7 handelt es sich beim unter dem ersten Druckniveau stehenden Arbeitsmedium um das in der Kompressorsektion 11a teilverdichtete Arbeitsmedium, beim unter dem zweiten Druckniveau stehenden Arbeitsmedium handelt es sich inFig. 7 um das über oder durch die elektrische Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 geführte Kühlmedium, welches über die Rückführleitung 27 des Kühlmediums und dem Kühler 28, der zweiten Leitung 23 und damit dem zweiten Anschluss 24 zugeführt wird. Die Zuführung des Treibgases über die erste Leitung 21 oder den ersten Anschluss 22 gleicht dabei eventuelle Verluste an Kühlmedium im Kreislauf aus. - Die Erfindung erlaubt eine effiziente Kühlung der elektrischen Maschine 16 und/oder der mindestens einen anderen zu kühlenden Baugruppe wie den Lagern 19 einer Strömungsmaschinenanordnung 10 bei hohem thermodynamischen Gesamtwirkungsgrad der Strömungsmaschinenanordnung 10.
- Die Erfindung ermöglicht es, in Strömungsmaschinenanordnungen 10 eine elektrische Maschine 16 mit hohem Leistungsbereich einzusetzen.
- Die Durchflussmenge durch den Strahlverdichter 20 kann mittels einer vorzugsweise verstellbaren Treibdüse (nicht gezeigt) geregelt werden. Zur Gewährleistung einer maximalen Einfachheit und Robustheit der Strömungsmaschinenanordnungen 10 kann jedoch auf seine solche vorzugsweise verstellbare Treibdüse verzichtet und der Strahlverdichter 20 ungeregelt betrieben werden.
- In den
Fig. 1 bis 7 gezeigten Ausführungsbeispielen von Strömungsmaschinenanordnungen 10 ist der Strahlverdichter 20 jeweils außerhalb des Gehäuses 18 positioniert, wobei sich zumindest einige der Leitungen 21, 25, 29 zumindest abschnittsweise außerhalb des Gehäuses 18 und durch das Gehäuse 18 hindurch erstrecken. Es ist alternativ auch möglich, dass der Strahlverdichter 20 innerhalb des Gehäuses 18 positioniert ist. -
- 10
- Strömungsmaschinenanordnung
- 11
- Kompressorsektion
- 11a
- Kompressorsektion
- 11b
- Kompressorsektion
- 12
- Kompressorstufe
- 12a
- Kompressorstufe
- 12b
- Kompressorstufe
- 13
- Kompressorwelle
- 13a
- Kompressorwelle
- 13b
- Kompressorwelle
- 14
- Zuführleitung
- 15
- Abführleitung
- 16
- elektrische Maschine
- 17
- Welle
- 18
- Gehäuse
- 19
- Lager
- 20
- Strahlverdichter
- 20a
- Mischkammer
- 20b
- Diffusor
- 21
- erste Leitung
- 22
- erster Anschluss
- 23
- zweite Leitung
- 23a
- Abzweigungsstelle
- 24
- zweiter Anschluss
- 25
- dritte Leitung
- 26
- dritter Anschluss
- 27
- Rückführleitung
- 27a
- Mündungsstelle
- 28
- Wärmetauscher
- 29
- Überströmleitung
Claims (10)
- Strömungsmaschinenanordnung (10),mit mindestens einer jeweils ein- oder mehrstufigen Kompressorsektion (11, 11a, 11b) zur Druckerhöhung eines Arbeitsmediums wie eines Prozessgases, wobei die jeweilig Kompressorsektion (11, 11a, 11b) eine Kompressorwelle (13, 13a, 13b) aufweist,mit einer elektrischen Maschine (16), die eine Welle (17) aufweist,wobei die jeweilige Kompressorwelle (13, 13a, 13b) koaxial zu der Welle (17) der elektrischen Maschine (16) verläuft,wobei die jeweilige Kompressorwelle (13, 13a, 13b) mit der Welle (17) der elektrischen Maschine (16) gekoppelt ist,wobei die elektrische Maschine (16) und die jeweilige Kompressorsektion (11, 11a, 11b) in einem gemeinsamen, hermetisch dichten, ein- oder mehrteiligen Gehäuse (18) angeordnet und über Lager (19) im Gehäuse (18) gelagert sind, derart, dass die jeweilige Kompressorsektion (11, 11a, 11b), die elektrische Maschine (16) und die Lager (19) allesamt von dem Arbeitsmedium umspült sind,mit einer Zuführleitung (14), über die der Strömungsmaschinenanordnung (10) unverdichtetes Arbeitsmedium zuführbar ist,mit einer Abführleitung (15), über die von der Strömungsmaschinenanordnung (10) verdichtetes Arbeitsmedium abführbar ist,mit mindestens einem Strahlverdichter (20), dem über eine erste Leitung (21) oder einen ersten Anschluss (22) unter einem ersten Druckniveau stehendes Arbeitsmedium als Treibmittel zuführbar ist, und zwar zur Ansaugung von unter einem geringeren zweiten Druckniveau stehendem Arbeitsmedium über eine zweite Leitung (23) oder einen zweiten Anschluss (24), wobei eine im mindestens einen Strahlverdichter (20) ausgebildete Mischung aus dem unter dem ersten Druckniveau stehenden Arbeitsmedium und dem unter dem zweiten Druckniveau stehenden Arbeitsmedium der elektrischen Maschine (16) und/oder mindestens einer anderen zu kühlenden Baugruppe über eine dritte Leitung (25) oder einen dritten Anschluss (26) als Kühlmedium zuführbar ist.
- Strömungsmaschinenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass dem mindestens einen Strahlverdichter (20) über die erste Leitung (21) oder den ersten Anschluss (22) zumindest teilverdichtetes Arbeitsmedium als Treibmittel zur Ansaugung von unverdichtetem Arbeitsmedium über die zweite Leitung (23) oder den zweiten Anschluss (24) zuführbar ist, wobei die im mindestens einen Strahlverdichter (20) ausgebildete Mischung aus dem zumindest teilverdichteten Arbeitsmedium und aus dem unverdichteten Arbeitsmedium der elektrischen Maschine (16) und/oder der mindestens einen anderen zu kühlenden Baugruppe über die dritte Leitung (25) oder den dritten Anschluss (26) als Kühlmedium zuführbar ist.
- Strömungsmaschinenanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine Strahlverdichter (20) über die erste Leitung (21) oder den ersten Anschluss (22) mit der Kompressorsektion (11) oder einer der Kompressorensektionen (11a, 11b) oder mit der Abführleitung (15) der Strömungsmaschinenanordnung oder mit einer ersten Leckagestelle der Strömungsmaschinenanordnung gekoppelt ist.
- Strömungsmaschinenanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Strahlverdichter (20) über die zweite Leitung (23) oder den zweiten Anschluss (24) mit der Zuführleitung (14) der Strömungsmaschinenanordnung oder mit der Kompressorsektion (11) oder einer der Kompressorensektionen (11a, 11b) oder mit einer zweiten Leckagestelle der Strömungsmaschinenanordnung oder einer Rückführleitung (27) der Strömungsmaschinenanordnung für über oder durch die elektrische Maschine (16) und/oder die mindestens eine andere zu kühlende Baugruppe geführtes Kühlmedium gekoppelt ist.
- Strömungsmaschinenanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der mindestens eine Strahlverdichter (20) über die dritte Leitung (25) oder den dritten Anschluss (26) mit der elektrischen Maschine (16) und/oder der mindestens einen anderen zu kühlenden Baugruppe gekoppelt ist.
- Strömungsmaschinenanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Rückführleitung (27) für das über oder durch die elektrische Maschine (16) und/oder die mindestens eine andere zu kühlende Baugruppe geführte Kühlmedium derart mit der Zuführleitung (14) der Strömungsmaschinenanordnung gekoppelt ist, dass eine Mündungsstelle (27a) der Rückführleitung (27) des Kühlmediums in die Zuführleitung (14) der Strömungsmaschinenanordnung in Durchströmungsrichtung der Zuführleitung (14) gesehen stromabwärts einer Abzweigungsstelle (23a) der zweiten Leitung (23) oder des zweiten Anschlusses (24) von der Zuführleitung (14) der Strömungsmaschinenanordnung liegt.
- Strömungsmaschinenanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Rückführleitung (27) für das über oder durch die elektrische Maschine (16) und/oder die mindestens eine andere zu kühlende Baugruppe geführte Kühlmedium mit der zum mindestens einen Strahlverdichter (20) führenden zweiten Leitung (23) oder dem zweiten Anschluss (24) des mindestens einen Strahlverdichters (20) gekoppelt ist.
- Strömungsmaschinenanordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in die Rückführleitung (27) für das Kühlmedium ein Wärmetauscher (28) oder Kühler integriert ist.
- Strömungsmaschinenanordnung nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine einzige Kompressorsektion (11) mit mindestens einer Kompressorstufe (12), der oder die an einer Seite der elektrischen Maschine (16) koaxial zu derselben angeordnet ist.
- Strömungsmaschinenanordnung nach einem der Ansprüche 1 bis 8, gekennzeichnet durch zwei Kompressorsektionen (11a, 11b) mit jeweils mindestens einer Kompressorstufe (12a, 12b), die an gegenüberlegenden Seiten der elektrischen Maschine (16) jeweils koaxial zu derselben angeordnet sind.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021118253.0A DE102021118253B4 (de) | 2021-07-14 | 2021-07-14 | Strömungsmaschinenanordnung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4119798A1 true EP4119798A1 (de) | 2023-01-18 |
Family
ID=82399407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22183529.1A Pending EP4119798A1 (de) | 2021-07-14 | 2022-07-07 | Strömungsmaschinenanordnung |
Country Status (6)
Country | Link |
---|---|
US (1) | US12006951B2 (de) |
EP (1) | EP4119798A1 (de) |
JP (1) | JP2023014041A (de) |
CN (1) | CN115614297A (de) |
CA (1) | CA3165886A1 (de) |
DE (1) | DE102021118253B4 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102627489B1 (ko) * | 2021-08-16 | 2024-01-23 | 터보윈 주식회사 | 압력차를 이용하여 냉각시키는 압축가스압력차활용냉각부가 적용된 2단 가스 압축 수단 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1074746B1 (de) | 1999-07-16 | 2005-05-18 | Man Turbo Ag | Turboverdichter |
DE102007019264A1 (de) | 2007-04-24 | 2008-11-06 | Man Turbo Ag | Filtervorrichtung |
WO2013139568A1 (de) | 2012-03-20 | 2013-09-26 | Man Diesel & Turbo Se | Mehrstufige radialverdichtereinheit mit entnahme von gas in einer verdichterstufe |
DE102015107002A1 (de) * | 2014-05-12 | 2015-11-12 | General Electric Company | Verbessertes Turbinenkühlsystem, das ein Gemisch aus Verdichterzapfluft und Turbinenraumluft verwendet |
US20160040915A1 (en) * | 2013-03-25 | 2016-02-11 | Carrier Corporation | Compressor Bearing Cooling |
US20200340495A1 (en) * | 2017-05-10 | 2020-10-29 | Fmc Technologies Do Brasil Ltda | System for the circulation of gas in airs gaps of rotating machines |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5165248A (en) | 1991-09-03 | 1992-11-24 | Carrier Corporation | Oil reclaim in a centrifugal chiller system |
US8083495B2 (en) | 2008-08-14 | 2011-12-27 | General Electric Company | Ejectors with separably secured nozzles, adjustable size nozzles, or adjustable size mixing tubes |
-
2021
- 2021-07-14 DE DE102021118253.0A patent/DE102021118253B4/de active Active
-
2022
- 2022-06-29 CA CA3165886A patent/CA3165886A1/en active Pending
- 2022-07-07 EP EP22183529.1A patent/EP4119798A1/de active Pending
- 2022-07-11 US US17/861,748 patent/US12006951B2/en active Active
- 2022-07-13 JP JP2022112460A patent/JP2023014041A/ja active Pending
- 2022-07-14 CN CN202210823293.8A patent/CN115614297A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1074746B1 (de) | 1999-07-16 | 2005-05-18 | Man Turbo Ag | Turboverdichter |
DE102007019264A1 (de) | 2007-04-24 | 2008-11-06 | Man Turbo Ag | Filtervorrichtung |
WO2013139568A1 (de) | 2012-03-20 | 2013-09-26 | Man Diesel & Turbo Se | Mehrstufige radialverdichtereinheit mit entnahme von gas in einer verdichterstufe |
US20160040915A1 (en) * | 2013-03-25 | 2016-02-11 | Carrier Corporation | Compressor Bearing Cooling |
DE102015107002A1 (de) * | 2014-05-12 | 2015-11-12 | General Electric Company | Verbessertes Turbinenkühlsystem, das ein Gemisch aus Verdichterzapfluft und Turbinenraumluft verwendet |
US20200340495A1 (en) * | 2017-05-10 | 2020-10-29 | Fmc Technologies Do Brasil Ltda | System for the circulation of gas in airs gaps of rotating machines |
Also Published As
Publication number | Publication date |
---|---|
JP2023014041A (ja) | 2023-01-26 |
DE102021118253B4 (de) | 2023-02-02 |
CN115614297A (zh) | 2023-01-17 |
US20230018652A1 (en) | 2023-01-19 |
US12006951B2 (en) | 2024-06-11 |
CA3165886A1 (en) | 2023-01-14 |
DE102021118253A1 (de) | 2023-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69018338T2 (de) | Gasturbine. | |
DE102006024315B4 (de) | Fahrzeugkühlsystem für einen Motor und einen Motorluftkühler | |
DE68904275T2 (de) | Mehrstufige roots-vakuumpumpe mit rueckkuehlungsstroemung. | |
EP2828531B1 (de) | Mehrstufige radialverdichtereinheit mit entnahme von gas in einer verdichterstufe | |
EP2136052A1 (de) | Turboproptriebwerk mit einer Vorrichtung zum Erzeugen eines Kühlluftstroms | |
DE102006038098A1 (de) | Durchflusskanal-Konstruktion für Kältemittelverdichter | |
DE212017000159U1 (de) | Mehrstufige und energiesparende Vakuumvorrichtung mit Wälzkolbenvakuumpumpe in der ersten Stufe | |
DE3801042C2 (de) | Raumklima-Aufbereitungsanlage für Fluggeräte | |
DE2252733B2 (de) | Geschlossene gasgekühlte elektrische Maschine | |
EP4119798A1 (de) | Strömungsmaschinenanordnung | |
EP2569542A1 (de) | Mehrstufiger getriebeverdichter | |
DE102011055868A1 (de) | Windstrom-konzentrations-führungs-vorrichtung und motorraum-layout mit derselben | |
CH629572A5 (de) | Mehrstufige, axial durchstroemte gasturbine. | |
WO2012107483A1 (de) | Abgasturbolader mit gekühltem turbinengehäuse und gekühltem lagergehäuse und gemeinsamer kühlmittelzufuhr | |
DE102019214739A1 (de) | Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem | |
DE102020205172A1 (de) | Strömungsmaschine, Verfahren zum Betreiben einer Strömungsmaschine | |
EP2516868B1 (de) | Wasserturbine oder wasserpumpe oder sonstige hydraulische maschine | |
DE69002358T2 (de) | Schraubenverdichter und sein Betriebsverfahren. | |
DE602004001156T2 (de) | Verdichtereinheit mit unterstützter Kühlung | |
DE112019004941T5 (de) | Turbogebläse mit komplexer kühlstruktur für eine brennstoffzelle | |
DE102014115963A1 (de) | Rotor-Kühlung | |
DE112020007071T5 (de) | Mehrstufiger elektrischer Zentrifugalverdichter | |
DE1428106A1 (de) | Mehrstufiger Kreiselverdichter mit Axialstufen und wenigstens einer Radialstufe | |
DE102012105405A1 (de) | Systeme und Verfahren zur Kühlung des Hochdruckabschnitts und des Mitteldruckabschnitts einer Dampfturbine | |
DE102004007035A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230323 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |