EP1069910A1 - Adjuvant compositions - Google Patents

Adjuvant compositions

Info

Publication number
EP1069910A1
EP1069910A1 EP99915735A EP99915735A EP1069910A1 EP 1069910 A1 EP1069910 A1 EP 1069910A1 EP 99915735 A EP99915735 A EP 99915735A EP 99915735 A EP99915735 A EP 99915735A EP 1069910 A1 EP1069910 A1 EP 1069910A1
Authority
EP
European Patent Office
Prior art keywords
polyoxyethylene
composition
ether
vaccine
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99915735A
Other languages
German (de)
English (en)
French (fr)
Inventor
Martin SmithKline Beecham Bio. S.A. FRIEDE
Philippe SmithKline Beecham Bio. S.A. HERMAND
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
GlaxoSmithKline Biologicals SA
SmithKline Beecham Biologicals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9807805.8A external-priority patent/GB9807805D0/en
Priority claimed from GBGB9820956.2A external-priority patent/GB9820956D0/en
Application filed by GlaxoSmithKline Biologicals SA, SmithKline Beecham Biologicals SA filed Critical GlaxoSmithKline Biologicals SA
Publication of EP1069910A1 publication Critical patent/EP1069910A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0016Combination vaccines based on diphtheria-tetanus-pertussis
    • A61K39/0018Combination vaccines based on acellular diphtheria-tetanus-pertussis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/0225Spirochetes, e.g. Treponema, Leptospira, Borrelia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • A61K39/092Streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6068Other bacterial proteins, e.g. OMP
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an adjuvant composition comprising a polyoxyethylene ether or polyoxyethylene ester, in combination with a pharmaceutically acceptable excipient, and to a vaccine comprising such adjuvant compositions and antigen.
  • the present invention relates to the use of polyoxyethylene ethers or esters in the manufacture of an adjuvant formulations, and vaccine formulations, and their use as medicaments.
  • Mucosal vaccination for example intranasal and oral, may represent an easy and more convenient way of vaccination than traditional vaccination through systemic injection.
  • the use of an injection to administer a vaccine dose is associated with a number of disadvantages, namely pain and irritation at the injection site following injection. These factors may lead to "needle-fear" which has been known to result in poor patient compliance for vaccination regimes.
  • conventional systemic injections can be a source of infection in the region of the skin puncture.
  • mucosal vaccination is attractive since it has been shown in animals that mucosal administration of antigens has a greater efficiency of inducing protective responses at mucosal surfaces, which is the route of entry of many pathogens.
  • mucosal vaccination such as intranasal vaccination, may induce mucosal immunity not only in the nasal mucosa, but also in distant mucosal sites such as the genital mucosa (Mestecky, 1987, Journal of Clinical Immunology, 7, 265-276; McGhee and Kiyono, Infectious Agents and Disease, 1993, 2, 55-73).
  • this vaccination route will have to be able to induce systemic immunological responses at least as efficiently as those induced by injection. While it has been reported that certain antigens when administered via this route are able to induce systemic responses (Cahill et ⁇ /.,1993, FEMS Microbiology Letters, 107, 211-216), most soluble antigens given intranasally by themselves induce little or no immune response.
  • a number of authors have investigated potential mucosal adjuvants to overcome this problem, which exert their adjuvant activity through various mechanisms including: encapsulation of the antigen (e.g. liposomes and microparticles); or via direct interaction with, and subsequent release of immunostimulatory cytokines from, target cells (e.g. cholera toxin and E.coli heat-labile toxin); or by enhancing the uptake of antigen across the epithelium (e.g. cholera toxin).
  • target cells e.g. cholera toxin and E.coli heat-labile toxin
  • enhancing the uptake of antigen across the epithelium e.g. cholera toxin
  • the applicant presents here the surprising finding that polyoxyethylene ethers and polyoxyethylene esters act as a potent adjuvants for vaccines.
  • the adjuvants of the present invention are safe, easily sterilisable, and simple to administer.
  • Such compositions are sufficient to induce systemic immune responses when administered mucosally, which are at least as high as those observed after conventional systemic injection of the vaccine.
  • Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12 th ed: entry 7717), where therapeutic uses are stated to include: topical anesthetic; anti-pruritic; and sclerosing agent activities.
  • polyoxyethylene ethers, or esters are non-ionic surfactants.
  • non-ionic surfactants have been utilised in vaccine formulations. It has been reported that vaccine preparations comprising an admixture of either polyoxyethylene castor oil or caprylic/capric acid glycerides, with polyoxyethylene sorbitan monoesters, and an antigen, are capable of inducing systemic immune responses after topical administration to a mucosal membrane (WO 9417827).
  • This patent application discloses the combination of TWEEN20TM (polyoxyethylene sorbitan monoester) and Imwitor742TM (caprylic/capric acid glycerides), or a combination of TWEEN20TM and polyoxyethylene castor oil is able to enhance the systemic immune response following intranasal immunisation.
  • Novasomes (US 5, 147,725) are paucilamenar vesicular structures comprising
  • Polyoxyethylene ethers and cholesterol encapsulate the antigen and are capable of adjuvanting the immune response to antigens after systemic administration.
  • Surfactants have also been formulated in such a way as to form non-ionic surfactant vesicles (commonly known as neosomes, WO 95/09651).
  • neosomes commonly known as neosomes, WO 95/09651.
  • Such vesicles in the presence of cholesterol form lipid-bilayer vesicles which are capable of entrapping antigen within the inner aqueous phase or within the bilayer itself.
  • one embodiment of the present invention provides for an adjuvant formulation comprising a surfactant of formula (I), O 99/52549
  • Another embodiment of the present invention takes the form of a vaccine adjuvant comprising a surfactant of formula (I), formulated in the absence of cholesterol.
  • Vaccines and adjuvant formulations of the present invention comprise molecules of general formula (I): HO(CH 2 CH 2 O) n -A-R wherein, n is 1-50, A is a bond or -C(O)-, R is C,. 50 alkyl or Phenyl C,. J0 alkyl.
  • One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein n is between 1 and 50, preferably 4-24, most preferably 9; the R component is C ⁇ o, preferably C 4 -C 20 alkyl and most preferably C I2 alkyl, and A is a bond.
  • the concentration of the polyoxyethylene ethers should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%.
  • Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-steoryl ether, polyoxyethylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.
  • a further embodiment of the present invention consists of a vaccine composition
  • a polyoxyethylene ester of general formula (I) wherein n is between 1 and 50, preferably 4-24, most preferably 9; R is C,. J0 , preferably C 4 to C 20 alkyl and most preferably C 12 alkyl, and A is -C(O)-.
  • concentration of the polyoxyethylene ester should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%.
  • Preferred polyoxyethylene esters are selected from the following group: polyoxyethylene-9-lauryl esters, polyoxyethylene-9-steoryl esters, polyoxyethylene-8-steoryl esters, polyoxyethylene-4-lauryl esters, polyoxyethylene- 35-lauryl esters, and polyoxyethylene-23-lauryl esters.
  • vaccine compositions comprising polyoxyethylene phenyl ethers of general formula (I), wherein n is
  • R is C,. 50 phenyl alkyl, preferably C 4 - C 20 phenyl alkyl, and most preferably C 12 phenyl alkyl, and A is a bond.
  • concentration of the polyoxyethylene ethers should preferably be in the range 0.1-10%, and most preferably in the range 0.25-1%.
  • the vaccine preparations of the present invention may be used to protect or treat a mammal susceptible to, or suffering from disease, by means of administering said vaccine via a mucosal route, such as the oral/bucal/intestinal/vaginal rectal or nasal route. Such administration may be in a droplet, spray, or dry powdered form. Nebulised or aerosolised vaccine formulations also form part of this invention. Enteric formulations such as gastro resistant capsules and granules for oral administration, suppositories for rectal or vaginal adrr ⁇ iistration also form part of this invention.
  • the present invention may also be used to enhance the immunogenicity of antigens applied to the skin (transdermal or transcutaneous delivery).
  • the adjuvants of the present invention may be parentally delivered, for example intramuscular, or subcutaneous administration, characterised in that the adjuvants are not in the form of a vesicle.
  • an adjuvant for use in mucosal vaccine formulations.
  • Such adjuvants are well tolerated in humans and are potent in their induction of systemic immune responses.
  • the adjuvants of the present invention may take the form of a solution, or non- vesicular solution or suspension, and as such do not have any of the problems associated with the manufacture, stability, uniformity, and quality control of particulate adjuvant systems. These formulations are potent adjuvants and also exhibit low reactogenicity and are well tolerated by patients.
  • the polyoxyethylene ethers of the present invention have haemolytic activity.
  • the haemolytic activity of a polyoxyethylene ether may be measured in vitro, with reference to the following assay, and is as expressed as the highest concentration of the detergent which fails to cause lysis of the red blood cells: 1. Fresh blood from guinea pigs is washed with phosphate buffered saline (PBS)
  • the polyoxyethylene ethers, or surfactants of general formula (I), of the present invention preferably have a haemolytic activity, of approximately between 0.5-0.0001 %, more preferably between 0.05-0.0001%, even more preferably between 0.005-0.0001%, and most preferably between 0.003-0.0004%.
  • said polyoxyethylene ethers or esters should have a haemolytic activity similar (i.e. within a ten-fold difference) to that of either polyoxyethylene-9 lauryl ether or polyoxyethylene-8 steoryl ether.
  • the ratio of the length of the polyoxyethylene section to the length of the alkyl chain in the surfactant affects the solubility of this class of detergent in an aqueous medium.
  • the adjuvants of the present invention may be in solution or may form particulate structures such as micelles.
  • the adjuvants of the present invention are because of their non- vesicular nature are clear and not cloudy or opaque, stable and are easily sterilisable by filtration through a 220 nm membrane, and are manufactured in a easy and controlled fashion.
  • Vaccines of the present invention may take the form of a non- vesicular solution or suspension of polyoxyethylene ether or ester of general formula (I) in a pharmaceutically acceptable excipient, such as PBS or water, and an antigen or antigenic preparation.
  • a vaccine formulation may then be applied to a mucosal surface of a mammal in either a priming or boosting vaccination regime; or alternatively be administered systemically, for example via the transdermal, subcutaneous or intramuscular routes.
  • CT and LT are heterodimers consisting of a pentameric ring of ⁇ - subunits, cradling a toxic A subunit. Their structure and biological activity are disclosed in Clements and Finklestein, 1979, Infection and Immunity, 24:760-769; Clements et al., 1980, Infection and Immunity, 24:91-97.
  • mLT(Rl 92G) is rendered insuceptible to proteolytic cleavage by a substitution of the amino acid arginine with glycine at position 192, and has been shown to have a greatly reduced toxicity whilst retairiing its potent adjuvant activity.
  • mLT(R192G) is, therefore, termed a proteolytic site mutant. Methods for the manufacture of mLT(R192G) are disclosed in the patent application WO 96/06627.
  • mutant forms of LT include the active site mutants such as mLT(A69G) which contain a substitution of an glycine for an alanine in position 69 of the LTA sequence.
  • active site mutants such as mLT(A69G) which contain a substitution of an glycine for an alanine in position 69 of the LTA sequence.
  • mLT(R192G) as a mucosal vaccine is described in patent application WO 96/06627.
  • Such adjuvants may be advantageously combined with the non- ionic surfactants of the present invention.
  • the polyoxyethylene ether, or ester will further be combined with other adjuvants or immunostimulants including Cholera toxin and its B subunit, Monophosphoryl Lipid A and its non-toxic derivative 3-de-O-acylated monophosphoryl lipid A (as described in UK patent no. GB 2,220,211 ), saponins such as Quil A (derived from the bark of the South American tree Quillaja Saponaria Molina), and fractions thereof, including QS21 and QS17 (US 5,057,540; Kensil, C.
  • adjuvants or immunostimulants including Cholera toxin and its B subunit, Monophosphoryl Lipid A and its non-toxic derivative 3-de-O-acylated monophosphoryl lipid A (as described in UK patent no. GB 2,220,211 ), saponins such as Quil A (derived from the bark of the South American tree Quillaja Saponaria Molina), and fractions thereof, including QS21 and QS17 (US 5,057,
  • oligonucleotide adjuvant system containing an unmethylated CpG dinucleotide (as described in WO 96/02555).
  • a particularly preferred immunostimulant used in conjunction with POE is CpG immunostimulatory oligonucleotide, which formulations are potent in the induction and boosting of immune responses in larger animals.
  • Preferred oligonucleotides have the following sequences: The sequences preferably contain all phosphorothioate modified internucleotide linkages. OLIGO 1 : TCC ATG ACG TTC CTG ACG TT
  • OLIGO 2 TCT CCC AGC GTG CGC CAT OLIGO 3: ACC GAT GAC GTC GCC GGT GAC GGC ACC ACG
  • the CpG oligonucleotides utilised in the present invention may be synthesized by any method known in the art (eg EP 468520). Conveniently, such oligonucleotides may be synthesized utilising an automated synthesizer.
  • polyoxyethylene ethers or esters may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co- glycolide particles, particles composed of polysaccharides or chemically modified polysaccharides, cholesterol-free liposomes and lipid-based particles, oil in water emulsions (WO 95/17210), particles composed of glycerol monoesters, etc.
  • the polyoxyethylene ethers or esters may also be admixed with powdered excipients such as lactose containing antigen which can be administered as a dry powder.
  • Adjuvants of the present invention comprise the surfactants: polyoxyethylene ethers or esters wherein the polyoxyethylene ethers or esters are not present in the form of vesicles. Accordingly, the present invention includes the use of polyoxyethylene ethers and esters of general formula (I) in the manufacture of adjuvant compositions and vaccines, wherein the surfactant of general formula (I) is not present in a vesicular form.
  • the vaccine formulations of the present invention contain an antigen or antigenic composition capable of eliciting an immune response against a human pathogen, which antigen or antigenic composition is derived from HIV-1, (such as tat, nef, gpl20 or gpl60), human herpes viruses, such as gD or derivatives thereof or Immediate Early protein such as ICP27 from HSVl or HSV2, cytomegalo virus ((esp Human)(such as gB or derivatives thereof), Rotavirus (including live-attenuated viruses), Epstein Barr virus (such as gp350 or derivatives thereof), Varicella Zoster Virus (such as gpl, II and IE63), or from a hepatitis virus such as hepatitis B virus (for example Hepatitis B Surface antigen or a derivative thereof), hepatitis A virus, hepatitis C virus and hepatitis E virus, or from other viral pathogens, such as paramyxo
  • Influenza virus whole live or inactivated virus, split influenza virus, grown in eggs or MDCK cells, or Vero cells or whole flu virosomes (as described by R. Gluck, Vaccine, 1992, 10, 915-920) or purified or recombinant proteins thereof, such as HA, NP, NA, or M proteins, or combinations thereof), or derived from bacterial pathogens such as Neisseria spp, including N. gonorrhea and N.
  • meningitidis for example capsular polysaccharides and conjugates thereof, transferrin-binding proteins, lactoferrin binding proteins, PilC, adhesins
  • S. pyogenes for example M proteins or fragments thereof, C5A protease, lipoteichoic acids
  • S. agalactiae S. mutans
  • H. ducreyi Moraxella spp, including M catarrhalis, also known as Branhamella catarrhalis (for example high and low molecular weight adhesins and invasins ⁇ " Bordetella spp, including B.
  • pertussis for example pertactin, pertussis toxin or derivatives thereof, filamenteous hemagglutinin, adenylate cyclase, fimbriae), B. parapertussis and B. bronchiseptica; Mycobacterium spp., including M. tuberculosis (for example ESAT6, Antigen 85A, -B or -C), M. bovis, M. leprae, M. avium, M. paratuberculosis, M. smegmatis; Legionella spp, including L. pneumophila; Escherichia spp, including enterotoxic E.
  • M. tuberculosis for example ESAT6, Antigen 85A, -B or -C
  • M. bovis for example ESAT6, Antigen 85A, -B or -C
  • M. bovis for example ESAT6, Antigen 85A, -B or -C
  • M. bovis for example ESAT6,
  • coli for example colonization factors, heat-labile toxin or derivatives thereof, heat-stable toxin or derivatives thereof), enterohemorragic E. coli, enteropathogenic E. coli (for example shiga toxin-like toxin or derivatives thereof); Vibrio spp, including V. cholera (for example cholera toxin or derivatives thereof); Shigella spp, including S. sonnei, S. dysenteriae, S. flexnerii; Yersinia spp, including Y. enterocolitica (for example a Yop protein) , Y. pestis, Y. pseudotuberculosis; Campylobacter spp, including C.
  • V. cholera for example cholera toxin or derivatives thereof
  • Shigella spp including S. sonnei, S. dysenteriae, S. flexnerii
  • Yersinia spp including Y. enterocolitica (for example
  • jejuni for example toxins, adhesins and invasins
  • C. coli Salmonella spp, including S. typhi, S. paratyphi, S. choleraesuis, S. enteritidis
  • Listeria spp. including L. monocytogenes
  • Helicobacter spp including H. pylori (for example urease, catalase, vacuolating toxin); Pseudomonas spp, including P. aeruginosa; Staphylococcus spp., including S. aureus, S. epidermidis; Enterococcus spp., including E. faecalis, E.
  • Clostridium spp. including C. tetani (for example tetanus toxin and derivative thereof), C. botulinum (for example botulinum toxin and derivative thereof), C. difficile (for example clostridium toxins A or B and derivatives thereof); Bacillus spp., including B. anthracis (for example botulinum toxin and derivatives thereof); Corynebacterium spp., including C. diphtheriae (for example diphtheria toxin and derivatives thereof); Borrelia spp., including B. burgdorferi (for example OspA, OspC, DbpA, DbpB), B.
  • garinii for example OspA, OspC, DbpA, DbpB
  • B. afzelii for example OspA, OspC, DbpA, DbpB
  • B. andersonii for example OspA, OspC, DbpA, DbpB
  • B. hermsii for example E. equi and the agent of the Human Granulocytic Ehrlichiosis
  • Rickettsia spp including R. rickettsii
  • Chlamydia spp. including C. trachomatis (for example MOMP, heparin-binding proteins), C.
  • pneumoniae for example MOMP, heparin-binding proteins,), C. psittaci; Leptospira spp., including L. interrogans; Treponema spp., including T. pallidum (for example the rare outer membrane proteins), T. denticola, T. hyodysenteriae; or derived from parasites such as Plasmodium spp., including P. falciparum; Toxoplasma spp., including T. gondii (for example SAG2, SAG3, Tg34); Entamoeba spp., including E. histolytica; Babesia spp., including B.
  • Preferred bacterial vaccines comprise antigens derived from Streptococcus spp, including S. pneumoniae (for example capsular polysaccharides and conjugates thereof, PsaA, PspA, streptolysin, choline-binding proteins)and the protein antigen Pneumolysin (Biochem Biophys Acta, 1989, 67, 1007; Rubins et al., Microbial
  • H. influenzae type B for example PRP and conjugates thereof
  • non typeable H. influenzae for example OMP26
  • high molecular weight adhesins for example P5, P6, protein D and lipoprotein D
  • fimbrin and fimbrin derived peptides US 5,843,464
  • bacterial vaccines comprise antigens derived from Morexella Catarrhalis (including outer membrane vesicles thereof, and OMP106 (WO97/41731)) and from Neisseria mengitidis B (including outer membrane vesicles thereof, and NspA (WO 96/29412).
  • the vaccine formulation of the invention comprises the HIV-1 antigen, gpl20, especially when expressed in CHO cells.
  • the vaccine formulation of the invention comprises gD2t as hereinabove defined.
  • vaccines containing the claimed adjuvant comprise antigen derived from the Human Papilloma Virus (HPV) considered to be responsible for genital warts, ( ⁇ PV 6 or HPV 11 and others), and the HPV viruses responsible for cervical cancer (HPV 16, HPV 18 and others).
  • HPV Human Papilloma Virus
  • Particularly preferred forms of genital wart prophylactic, or therapeutic, vaccine comprise LI particles or capsomers, and fusion proteins comprising one or more antigens selected from the HPV 6 and HPV 1 1 proteins E6, E7, LI, and L2.
  • fusion protein 1 1
  • the most preferred forms of fusion protein are: L2E7 as disclosed in WO 96/26277, and proteinD(l/3)-E7 disclosed in GB 9717953.5 (PCT/EP98/05285).
  • a preferred HPV cervical infection or cancer, prophylaxis or therapeutic vaccine, composition may comprise HPV 16 or 18 antigens.
  • HPV 16 or 18 antigens For example, LI or L2 antigen monomers, or LI or L2 antigens presented together as a virus like particle (VLP) or the LI alone protein presented alone in a VLP or capsomer structure.
  • VLP virus like particle
  • antigens, virus like particles and capsomer are per se known. See for example WO94/00152, WO94/20137, WO94/05792, and WO93/02184.
  • Additional early proteins may be included alone or as fusion proteins such as preferably E7, E2 or E5 for example; particularly preferred embodiments of this includes a VLP comprising L1E7 fusion proteins (WO 96/11272).
  • HPV 16 antigens comprise the early proteins E6 or E7 in fusion with a protein D carrier to form Protein D - E6 or E7 fusions from HPV 16, or combinations thereof; or combinations of E6 or E7 with L2 (WO 96/26277).
  • HPV 16 or 18 early proteins E6 and E7 may be presented in a single molecule, preferably a Protein D- E6/E7 fusion.
  • Such vaccine may optionally contain either or both E6 and E7 proteins from HPV 18, preferably in the form of a Protein D - E6 or Protein D - E7 fusion protein or Protein D E6 E7 fusion protein.
  • the vaccine of the present invention may additionally comprise antigens from other HPV strains, preferably from strains HPV 6, 11, 31, 33, or 45.
  • Vaccines of the present invention further comprise antigens derived from parasites that cause Malaria.
  • preferred antigens from Plasmodia falciparum include RTS,S and TRAP.
  • RTS is a hybrid protein comprising substantially all the C- terminal portion of the circumsporozoite (CS) protein of P. falciparum linked via four
  • a preferred embodiment of the present invention is a Malaria vaccine wherein the antigenic preparation comprises a combination of the RTS,S and TRAP antigens.
  • Other plasmodia antigens that are likely candidates to be components of a multistage Malaria vaccine are P.faciparum MSP1, AMA1, MSP3, EBA, GLURP, RAP1, RAP2, Sequestrin, PfEMPl, PD32, LSA1, LSA3, STARP, SALSA, PfEXPl, Pfs25, Pfs28, PFS27/25, Pfsl6, Pfs48/45, Pfs230 and their analogues in Plasmodium spp.
  • the formulations may also contain an anti-tumour antigen and be useful for the immunotherapeutic treatment cancers.
  • the adjuvant formulation finds utility with tumour rejection antigens such as those for prostrate, breast, colorectal, lung, pancreatic, renal or melanoma cancers.
  • exemplary antigens include MAGE 1 and MAGE 3 or other MAGE antigens for the treatment of melanoma, PRAME,
  • a vaccine comprising an adjuvant composition according to the invention and a tumour rejection antigen.
  • said antigen may be a self peptide hormone such as whole length Gonadotrophin hormone releasing hormone (GnRH, WO 95/20600), a short 10 amino acid long peptide, in the treatment of many cancers, or in immunocastration.
  • GnRH Gonadotrophin hormone releasing hormone
  • a short 10 amino acid long peptide in the treatment of many cancers, or in immunocastration.
  • compositions of the present invention will be used to formulate vaccines containing antigens derived from Borrelia sp.
  • antigens may include nucleic acid, pathogen derived antigen or antigenic preparations, recombinantly produced protein or peptides, and chimeric fusion proteins.
  • the antigen is OspA.
  • the OspA may be a full mature protein in a lipidated form virtue of the host cell (E.Coli) termed (Lipo-OspA) or a non-lipidated derivative.
  • non-lipidated derivatives include the non-lipidated NSl-OspA fusion protein which has the first 81 N-terminal amino acids of the non-structural protein (NS1) of the influenza virus, and the complete OspA protein, and another, MDP-OspA is a non- lipidated form of OspA carrying 3 additional N-terminal amino acids.
  • NS1 non-structural protein
  • MDP-OspA is a non- lipidated form of OspA carrying 3 additional N-terminal amino acids.
  • Vaccines of the present invention may be used for the prophylaxis or therapy of allergy.
  • Such vaccines would comprise allergen specific (for example Der pi) and allergen non-specific antigens (for example peptides derived from human IgE, including but not restricted to the stanworth decapeptide (EP 0 477 231 Bl)).
  • each vaccine dose is selected as an amount which induces an immunoprotective response without significant, adverse side effects in typical vaccinees. Such amount will vary depending upon which specific immunogen is employed and how it is presented. Generally, it is expected that each dose will comprise 1 - 1000 ⁇ g of protein, preferably 1 -500 ⁇ g, preferably 1 - 1 OO ⁇ g, most preferably 1 to 50 ⁇ g.
  • An optimal amount for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects may receive one or several booster immunisation adequately spaced.
  • compositions of the present invention will be used to formulate vaccines containing antigens derived from a wide variety of sources.
  • antigens may include human, bacterial, or viral nucleic acid, pathogen derived antigen or antigenic preparations, tumour derived antigen or antigenic preparations, host- derived antigens, including GnRH and IgE peptides, recombinantly produced protein or peptides, and chimeric fusion proteins.
  • the vaccines of the present invention may also be administered via the oral route.
  • the pharmaceutically acceptible excipient may also include alkaline buffers, or enteric capsules or microgranules.
  • the vaccines of the present invention may also be administered by the vaginal route.
  • the pharmaceutically acceptable excipients may also include emulsifiers, polymers such as CARBOPOL ® , and other known stablilisers of vaginal creams and suppositories.
  • the vaccines of the present invention may also be administered by the rectal route. In such cases the excipients may also include waxes and polymers known in the art for forming rectal suppositories.
  • the formulations of the present invention maybe used for both prophylactic and therapeutic purposes. Accordingly, the present invention provides for a method of treating a mammal susceptible to or suffering from an infectious disease or cancer, or allergy, or autoimmune disease. In a further aspect of the present invention there is provided a vaccine as herein described for use in medicine. Vaccine preparation is generally described in New Trends and Developments in Vaccines, edited by Voller et al., University Park Press, Baltimore, Maryland, U.S.A. 1978.
  • the present invention relates to the use of polyoxyethylene ethers or esters of general formula (I) in the manufacture of an adjuvant formulation, comprising a surfactant of formula (I) and a pharmaceutically acceptable excipient.
  • the present invention relates to the use of polyoxyethylene ethers or esters of general formula (I) in the manufacture of vaccine formulation, comprising a surfactant of formula (I) and a pharmaceutically acceptable excipient and an antigen.
  • the present invention also
  • 15 relates to the use of polyoxyethylene ethers or esters of general formula (I) in the manufacture of an adjuvant formulation or vaccine, as described above, wherein the formulation does not contain cholesterol.
  • the present invention further provides the use of polyoxyethylene ethers or esters of general formula (I) in the manufacture of an adjuvant formulation or vaccine, as described above, wherein the formulation is a non-vesicular solution or suspension.
  • Suitable pharmaceutically acceptable excipients include water, phosphate buffered saline, isotonic buffer solutions.
  • polyoxyethylene lauryl ether Alternative terms or names for polyoxyethylene lauryl ether are disclosed in the CAS registry.
  • the CAS registry number of polyoxyethylene lauryl ether is: CAS REGISTRY NUMBER: 9002-92-0
  • Example 1 Techniques used to measure antigen specific antibody (Ab) responses .
  • ELISA for the measurement of QspA-specific serum IgG Maxisorp Nunc immunoplates are coated overnight at 4°C with 50 ⁇ l/well of 1 ⁇ g/ml of antigen OspA diluted in PBS (in rows B to H of plate), or with 50 ⁇ l of 5 ⁇ g/ml purified goat anti-mouse Ig (Boerhinger), in PBS (row A). Free sites on the plates were blocked (1 hour, 37°C) using saturation buffer : PBS comtaining 1%BSA, 0.1% polyoxyethylene sorbitan monolaurate (TWEEN 20), and 4% Normal Bovine Serum (NBS).
  • saturation buffer PBS comtaining 1%BSA, 0.1% polyoxyethylene sorbitan monolaurate (TWEEN 20), and 4% Normal Bovine Serum (NBS).
  • Anti-TT, anti-FHA and anti-influenza IgG titres were measured using a similar technique, by replacing the OspA coating antigen with either TT, FHA, or whole influenza antigen.
  • TT was supplied by a commercially available source (Behring).
  • FHA was produced and purified by methods described in EP 0 427 462 B.
  • Anti-influenza immunoglobulin titres were measured using a similar technique, by replacing the OspA coating antigen with whole influenza virus antigen, inactivated with ⁇ -propiolactone (BPL), supplied by SSD GmBH manufacturer (Dresden, Germany).
  • BPL ⁇ -propiolactone
  • LA2 is a murine monoclonal antibody which recognizes a conformational OspA epitope at the surface of the bacteria and has been shown to be able to kill B. burgdorferi in vitro, as well as to protect mice against a challenge with laboratory- grown spirochete (Schaible UE et al. 1990. Proc Natl Acad Sci USA 87:3768-3772).
  • LA-2 mab has been shown to correlate with bactericidal antibodies, and studies on human sera showed also a good correlation between the total anti-OspA IgG titers and the LA-2 titers (as measured by ELISA).
  • LA2 mAb-peroxidase conjugate (1/10,000) diluted in saturation buffer was added to each well (50 ⁇ l/well) and incubated for lhr at 37°C. After 5 washings, plates are incubated for 20 min at room temperature (in darkness) with 50 ⁇ l well of revelation buffer (OPDA 0.4 mg/ml and H 2 O 2 0.03% in 50mM pH 4.5 citrate buffer). The reaction and colour formation was stopped with H 2 SO 4 2N. Optical densities are read at 492 and 630 nm by using Biorad 3550 immunoreader. L A2-like Ab titers are calculated by the 4 parameter mathematical method using
  • mice Female Balb/c mice (8 animals per group) aged 8 weeks were immunised intramuscularly with 1 ⁇ g of the antigen lipo-OspA on 50 ⁇ g alum. After 3 months the mice were boosted intranasally (under anesthesia) with 10 ⁇ l of solution (5 ⁇ l per nostril, delivered as droplets by pipette) containing either A: 5 ⁇ g lipo-OspA; B: 5 ⁇ g lipo-OspA in 36 % tween-20, 10% Imwitor 742 ; C: 5 ⁇ g lipo-OspA in 36 % tween- 20; D: 5 ⁇ g lipo-OspA in 18% polyoxyethylene-9 lauryl ether.
  • A 5 ⁇ g lipo-OspA
  • B 5 ⁇ g lipo-OspA in 36 % tween-20, 10% Imwitor 742
  • C 5 ⁇ g lipo-OspA in 36 % twe
  • mice were primed as described in example 2. The mice were then boosted (using the method described in example 2) with 5 ⁇ g lipo-OspA alone (group A and C) or in the presence of B: 1 % sodium taurocholic acid; D: 1% dodecyl-maltoside; E: 36% tween 20 or F: 18% polyoxyethylene-9 lauryl ether. Since the experiment with groups A and B was performed at a different moment to that with groups C,D,E and F they are separated on the figures below (see figure 3). It is clear that 1% sodium taurocholate does not significantly adjuvant the boost above that obtained with the antigen alone.
  • Dodecyl-maltoside at 1%, or tween-20 at 36% provide a slight adjuvant effect, but only polyoxyethylene-9 lauryl ether provides a very significant enhancement of the IgG response. A similar effect is observed for the LA2 response (see figure 4).
  • mice primed as in example 1 were boosted intranasally with 10 ⁇ l containing 5 ⁇ g of lipo-OspA in either A: PBS; B: 1% polyoxyethylene-9 lauryl ether; C: 2% polyoxyethylene-9 lauryl ether; D: 5% polyoxyethylene-9 lauryl ether; E: 1% polyoxyethylene-23 lauryl ether or; F: 10 % polyoxyethylene-23 lauryl ether. 14 days after the boost the sera were analysed as in example 2.
  • Figures 5 and 6, below, show that concentrations of polyoxyethylene-9 lauryl ether as low as 1% show a very significant enhancement of the immune response.
  • Polyoxyethylene-23 -lauryl ether also significantly enhances the intranasal boost response.
  • Example 5 Combination vaccine - intranasal boosting
  • mice were primed intra-muscularly with the commercial DTPa vaccine (Diptheria, Tetanus, accular Pertussis vaccine: INFANRIXTM SmithKline Beecham, Belgium). The mice were primed once intramuscularly with 2 X 50 ⁇ l injections corresponding to 20% of the human dose.
  • DTPa vaccine Diptheria, Tetanus, accular Pertussis vaccine: INFANRIXTM SmithKline Beecham, Belgium.
  • the mice were primed once intramuscularly with 2 X 50 ⁇ l injections corresponding to 20% of the human dose.
  • mice were boosted (as in example 2) intranasally with either tetanus toxoid (TT: 5 ⁇ g) or filamentous haemagglutinin (FHA: 5 ⁇ g) in A: PBS; B: 1% polyoxyethylene-9 lauryl ether; or; C: by intramuscular injection of the DTPa vaccine (2x50 ⁇ l). 14 days after the boosting the sera were analysed for their TT and FHA specific IgG. The titres are shown in figures 7 and 8.
  • Lipo-OspA alone was able to boost the systemic response when administered intranasally to monkeys, but this boost is very significantly enhanced by the addition of 1% polyoxyethylene 9 lauryl ether.
  • the titres obtained following intranasal boosting in the presence of polyoxyethylene 9 lauryl ether are also greater than those obtained following an intramuscular injection (group C).
  • Example 7 Intranasal priming and boosting of AGMs
  • African Green Monkeys (3 animals per group) were primed and boosted intranasally with 60 ⁇ g of lipo-OspA delivered in 200 ⁇ l (100 ⁇ l per nostril delivered with a bidose spray-device from Pfeiffer GmBH, Germany) of A: PBS; B: 1% polyoxyethylene-9 lauryl ether. 14 days after the boosting the sera were assayed for their Osp-A specific immunoglobulin.
  • Figure 1 shows that when Lipo-OspA is not adjuvanted, no systemic immune response can be detected following intranasal
  • Example 8 Intranasal adjuvant effect of CpG on the induction of systemic and nasal humoral immune responses to lipo OspA antigen in primates
  • This model was designed to investigate the priming and boosting effect of polyoxyethylene-9 lauryl ether (POE-9LE), with and without additional immunostimulants, in a primate priming and boosting model. Serum and nasal immunoglobulin responses were measured.
  • the immunostimulant used in this study was the CpG 1001 as described in example 9.
  • African Green monkeys were primed and boosted intranasally at days 0 (pi) and 14 (pll).
  • Vaccines were given using a bi-dose spray delivery system from the Pfeiffer company (100 ⁇ l in each nostril, under anesthesia). Formulations tested were:
  • Ig Ab titers to lipo OspA were measured in sera collected at day 14 post-pll.
  • Antigen-specific nasal IgA were measured using a very sensitive ELISA in nasal swabs collected at the same time, animals were considered positive when their IgA titres exceeded a pre-determined level which was significantly above background levels.
  • Figure 12 shows the levels of serum anti-lipo-OspA immunoglobulin responses observed at day 14 post-pll.
  • Lipo-OspA given as a priming and boosting formulation alone did not induce any detectable serum immunoglobulin. This response was not improved in the presence of CpG.
  • a dose of 0.25 % and 0.5 % of POE-9 LE elicited greater immune responses that those observed after vaccination with CpG alone, although the 0.5% dose is much more efficient in this respect.
  • the 0.25 % dose induces an Ab response similar in magnitude to that obtained with 0.5 % dose, indicating a synergistic effect of the CpG and POE components.
  • Example 9 Intranasal adjuvant effect of CpG on the boosting of systemic humoral immune responses to lipo OspA antigen
  • CpG is a known immunomodulatory oligonucleotide described in PCT WO 96/02555. The immune response boosted by these vaccine formulations
  • the formulations were at least as high as those induced by conventional i.m. boosting vaccinations.
  • the formulations were further compared to a well known intranasal adjuvant, the heat- labile enterotoxin from E.Coli (mLT).
  • the CpG sequences used in this experiment were CpG 1001 (TCC ATG AGC TTC CTG ACG TT), CpG 1002 (TCT CCC AGC GTG CGC CAT), and the negative control the non-immunostimulatory sequence CpG 1005 (TCC ATG AGC TTC CTG AGC TT).
  • mice were primed at day 0 by intramuscular administration of 100 ⁇ l vaccine containing 1 ⁇ g lipo OspA adsorbed on 50 ⁇ g aluminium hydroxyde.
  • intranasal booster was given in 10 ⁇ l (5 ⁇ l in each nostril), by nasal drop administration with a micropipette under anesthesia.
  • Groups of 6 mice were boosted either intranasally (i.n.) or intramuscularly (i.m.) with the following vaccine formulations:
  • concentrations of polyoxyethylene-9 lauryl ether as low as 1% show a very significant enhancement of the immune response.
  • concentration of polyoxyethylene-9 lauryl ether required to provide the nasal adjuvanticity observed in the previous examples a dose-range assay with lower doses was performed.
  • Balb/c mice primed as in example 2 were boosted intranasally with 10 ⁇ l containing 5 ⁇ g of lipo-OspA in either A: PBS; B: 1% polyoxyethylene-9 lauryl ether; C: 0.5% polyoxyethylene-9 lauryl ether; D: 0.25% polyoxyethylene-9 lauryl ether; or; E: by intramuscular injection of l ⁇ g lipo-OspA adsorbed on 50 ⁇ g Alum. 14 days after the boost the sera were analyzed as in example 1.
  • the Ab response reached is similar to that elicited by the parenteral vaccine.
  • mice were primed intra-muscularly with classical monovalent split influenza vaccine. The mice were primed twice intramuscularly at days 0 and 14 with 100 ⁇ l injections containing 1.5 ⁇ g equivalent hemagglutinin A (HA) of A/Singapore/6/86 split monobulk.
  • HA hemagglutinin A
  • mice were boosted (as in example 2) intranasally with 1.5 ⁇ g equivalent HA of inactivated whole A/Singapore/6/86 virus in A: PBS; B: 1% polyoxyethylene-9 lauryl ether; or; C: by intramuscular injection of the split A/Singapore/6/86 vaccine (1.5 ⁇ g equivalent HA). 14 days after the boosting the sera were analyzed for their A/Singapore/6/86 virus-specific IgG.
  • mice primed parenterally The mice were primed once subcutaneously with 100 ⁇ l injections containing S. pneumoniae PS 14 and PS 19 polysaccharides (1 ⁇ g each one) conjugated to the protein D carrier.
  • mice Two months later, the mice were boosted intranasally (under anesthesia) with 40 ⁇ l of solution (10 ⁇ l per nostril at time 0 followed 30 minutes later by 10 ⁇ l per nostril again, delivered as droplets by pipette) containing 1 ⁇ g PS 14 and 1 ⁇ g PS 19 conjugates in either A: NaCl 150 mM pH 6.1; B: 1% polyoxyethylene-9 lauryl ether. 14 days after the boost the sera were assayed for their PS 14 and PS19-specific IgG Abs.
  • the administration of PS 14 or PS 19 by itself induces a boosting response which is further enhanced by addition of polyoxyethylene-9 lauryl ether as an adjuvant.
  • mice primed as in example 2 were boosted intranasally with 10 ⁇ l containing 5 ⁇ g of lipo-OspA in either A: PBS; B: 1% polyoxyethylene-9 lauryl ether; C: 1%
  • Figures 22 and 23 show that polyoxyethylene-8 stearyl ether is as potent as polyoxyethylene-9 lauryl ether for enhancing the boosting response to the antigen. Ab titres reached with both polyoxyethylene ethers are similar to those elicited by the parenteral vaccine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
EP99915735A 1998-04-09 1999-03-29 Adjuvant compositions Withdrawn EP1069910A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB9807805 1998-04-09
GBGB9807805.8A GB9807805D0 (en) 1998-04-09 1998-04-09 Vaccine
GBGB9820956.2A GB9820956D0 (en) 1998-09-25 1998-09-25 Vaccine
GB9820956 1998-09-25
PCT/EP1999/002278 WO1999052549A1 (en) 1998-04-09 1999-03-29 Adjuvant compositions

Publications (1)

Publication Number Publication Date
EP1069910A1 true EP1069910A1 (en) 2001-01-24

Family

ID=26313462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99915735A Withdrawn EP1069910A1 (en) 1998-04-09 1999-03-29 Adjuvant compositions

Country Status (15)

Country Link
EP (1) EP1069910A1 (zh)
JP (1) JP2002511423A (zh)
KR (1) KR20010042573A (zh)
CN (1) CN1296416A (zh)
AR (1) AR019026A1 (zh)
AU (1) AU746163B2 (zh)
BR (1) BR9909915A (zh)
CA (1) CA2325939A1 (zh)
HU (1) HUP0101619A3 (zh)
IL (1) IL138000A0 (zh)
NO (1) NO20005051L (zh)
NZ (1) NZ506603A (zh)
PL (1) PL354714A1 (zh)
TR (1) TR200002930T2 (zh)
WO (1) WO1999052549A1 (zh)

Families Citing this family (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
EP0909323B1 (en) 1996-01-04 2007-02-28 Novartis Vaccines and Diagnostics, Inc. Helicobacter pylori bacterioferritin
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20020147143A1 (en) 1998-03-18 2002-10-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
NZ508927A (en) 1998-05-22 2003-12-19 Ottawa Health Research Inst Methods and products for inducing mucosal immunity
US20030235557A1 (en) 1998-09-30 2003-12-25 Corixa Corporation Compositions and methods for WT1 specific immunotherapy
BR0014285A (pt) * 1999-09-24 2002-05-21 Smithkline Beecham Biolog Adjuvantes compreendendo um éster ou éter de alquila de polioxietileno e pelo menos um tensoativo não-iÈnico
CA2383105C (en) * 1999-09-24 2010-01-26 Smithkline Beecham Biologicals S.A. Intranasal influenza virus vaccine
WO2001095935A1 (en) * 2000-01-20 2001-12-20 Ottawa Health Research Institute Immunostimulatory nucleic acids for inducing a th2 immune response
DK1265915T3 (da) 2000-02-23 2011-02-14 Glaxosmithkline Biolog Sa Nye forbindelser
CN1606446A (zh) 2000-05-19 2005-04-13 科里克萨有限公司 用单糖和二糖类化合物预防和治疗传染病和其他疾病的方法
PT1542732E (pt) 2000-06-20 2009-11-06 Corixa Corp Proteínas de fusão de mycobacterium tuberculosis
WO2002000174A2 (en) 2000-06-28 2002-01-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
CA2423610A1 (en) * 2000-10-02 2002-04-11 Glaxosmithkline Biologicals S.A. Split enveloped virus preparation
CA2881568C (en) 2000-10-27 2019-09-24 Novartis Vaccines And Diagnostics, Inc. Nucleic acids and proteins from streptococcus groups a & b
AU2002227365A1 (en) 2000-12-07 2002-06-18 Chiron Corporation Endogenous retroviruses up-regulated in prostate cancer
WO2002080648A2 (en) * 2001-04-05 2002-10-17 Chiron Corporation Mucosal boosting following parenteral priming
WO2002089747A2 (en) 2001-05-09 2002-11-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
MY134424A (en) * 2001-05-30 2007-12-31 Saechsisches Serumwerk Stable influenza virus preparations with low or no amount of thiomersal
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
US8481043B2 (en) 2001-06-22 2013-07-09 Cpex Pharmaceuticals, Inc. Nasal immunization
JP4370161B2 (ja) 2001-06-29 2009-11-25 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド Hcve1e2ワクチン組成物
GB0118249D0 (en) 2001-07-26 2001-09-19 Chiron Spa Histidine vaccines
GB0121591D0 (en) 2001-09-06 2001-10-24 Chiron Spa Hybrid and tandem expression of neisserial proteins
US7361352B2 (en) 2001-08-15 2008-04-22 Acambis, Inc. Influenza immunogen and vaccine
AR045702A1 (es) 2001-10-03 2005-11-09 Chiron Corp Composiciones de adyuvantes.
AU2002365279B2 (en) 2001-12-17 2009-08-13 Corixa Corporation Compositions and methods for the therapy and diagnosis of inflammatory bowel disease
US8088388B2 (en) 2002-02-14 2012-01-03 United Biomedical, Inc. Stabilized synthetic immunogen delivery system
CA2476626A1 (en) 2002-02-20 2003-08-28 Chiron Corporation Microparticles with adsorbed polypeptide-containing molecules
US7351413B2 (en) 2002-02-21 2008-04-01 Lorantis, Limited Stabilized HBc chimer particles as immunogens for chronic hepatitis
SE0201701D0 (sv) * 2002-06-05 2002-06-05 Gotovax Ab Treatment of epithelial tumors and infections
US8518694B2 (en) 2002-06-13 2013-08-27 Novartis Vaccines And Diagnostics, Inc. Nucleic acid vector comprising a promoter and a sequence encoding a polypeptide from the endogenous retrovirus PCAV
EP1387167B1 (en) * 2002-07-24 2008-05-07 Centre National De La Recherche Scientifique (Cnrs) Method for identifying biologically active compounds with anti-asthmatic and/or anti-allergic properties
US20040132652A1 (en) * 2002-08-30 2004-07-08 Shire Biochem Inc. Pharmaceutical compositions
GB0220194D0 (en) 2002-08-30 2002-10-09 Chiron Spa Improved vesicles
SI2351579T1 (sl) 2002-10-11 2017-05-31 Glaxosmithkline Biologicals Sa Polipeptidna cepiva za široko zaščito proti hipervirulentnim meningokoknim linijam
BR0315810A (pt) 2002-10-29 2005-09-13 Coley Pharmaceutical Group Ltd Uso de oligonucleotìdeos cpg no tratamento de infecção por vìrus da hepatite c
US20070059329A1 (en) 2002-11-15 2007-03-15 Nathalie Norais Unexpected surface proteins in meningococcus
GB0227346D0 (en) 2002-11-22 2002-12-31 Chiron Spa 741
WO2004060396A2 (en) 2002-12-27 2004-07-22 Chiron Corporation Immunogenic compositions containing phospholpid
ZA200505302B (en) 2003-01-06 2007-03-28 Corixa Corp Certain aminoalkyl glucosaminide phosphate compounds and their use
US7960522B2 (en) 2003-01-06 2011-06-14 Corixa Corporation Certain aminoalkyl glucosaminide phosphate compounds and their use
CN101926988B (zh) 2003-01-30 2014-06-04 诺华疫苗和诊断有限公司 抗多种脑膜炎球菌血清组的可注射性疫苗
WO2004087153A2 (en) 2003-03-28 2004-10-14 Chiron Corporation Use of organic compounds for immunopotentiation
GB0308198D0 (en) 2003-04-09 2003-05-14 Chiron Srl ADP-ribosylating bacterial toxin
CA2522379C (en) 2003-04-10 2012-10-23 Chiron Corporation The severe acute respiratory syndrome coronavirus
US9107831B2 (en) 2003-06-02 2015-08-18 Novartis Vaccines And Diagonstics, Inc. Immunogenic compositions containing microparticles comprising adsorbed toxoid and polysaccharide-containing antigens
US20060035242A1 (en) 2004-08-13 2006-02-16 Michelitsch Melissa D Prion-specific peptide reagents
ATE506963T1 (de) 2003-10-02 2011-05-15 Novartis Vaccines & Diagnostic Kombinationsimpfstoffe gegen meningitis
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
CA2551560A1 (en) 2003-12-23 2005-07-14 Arbor Vita Corporation Antibodies for oncogenic strains of hpv and methods of their use
WO2005107797A1 (en) 2004-03-09 2005-11-17 Chiron Corporation Influenza virus vaccines
GB0409745D0 (en) 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
GB0500787D0 (en) 2005-01-14 2005-02-23 Chiron Srl Integration of meningococcal conjugate vaccination
PL1740217T3 (pl) 2004-04-30 2012-03-30 Novartis Ag Szczepienie koniugatem meningokokowym
GB0410866D0 (en) 2004-05-14 2004-06-16 Chiron Srl Haemophilius influenzae
CA2567446C (en) 2004-05-21 2018-01-02 Chiron Corporation Alphavirus vectors for respiratory pathogen vaccines
US20080199493A1 (en) 2004-05-25 2008-08-21 Picker Louis J Siv and Hiv Vaccination Using Rhcmv- and Hcmv-Based Vaccine Vectors
CA2571710A1 (en) 2004-06-24 2006-11-02 Nicholas Valiante Small molecule immunopotentiators and assays for their detection
EP1765313A2 (en) 2004-06-24 2007-03-28 Novartis Vaccines and Diagnostics, Inc. Compounds for immunopotentiation
WO2006078318A2 (en) 2004-07-29 2006-07-27 Novartis Vaccines And Diagnostics Inc. Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
GB0424092D0 (en) 2004-10-29 2004-12-01 Chiron Srl Immunogenic bacterial vesicles with outer membrane proteins
PT2682126T (pt) 2005-01-27 2017-02-28 Children`S Hospital & Res Center At Oakland Vacinas de vesícula com base em agn1870 para proteção de amplo espetro contra doenças causadas por neisseria meningitidis
GB0502095D0 (en) 2005-02-01 2005-03-09 Chiron Srl Conjugation of streptococcal capsular saccharides
NZ580974A (en) 2005-02-18 2011-05-27 Novartis Vaccines & Diagnostic Immunogens from uropathogenic escherichia coli
HUE030881T2 (en) 2005-02-18 2017-06-28 Glaxosmithkline Biologicals Sa Meningitis / sepsis-associated escherichia coli proteins and nucleic acids
KR20070121814A (ko) 2005-03-31 2007-12-27 글락소스미스클라인 바이오로지칼즈 에스.에이. 클라미디아 감염에 대비한 백신
ZA200800146B (en) * 2005-08-03 2009-10-28 Immunogen Inc Immunoconjugate formulations
JP2009511636A (ja) 2005-10-18 2009-03-19 ノバルティス ヴァクシンズ アンド ダイアグノスティクス, インコーポレイテッド アルファウイルスレプリコン粒子による粘膜免疫および全身免疫
EP1776963A1 (en) 2005-10-19 2007-04-25 Gbf-Gesellschaft Für Biotechnologische Forschung Mbh Hexosylceramides as adjuvants and their uses in pharmaceutical compositions
JP2009514838A (ja) 2005-11-04 2009-04-09 ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル 細胞培養物において増殖されたインフルエンザウイルスから調製された非ビリオン抗原を含むアジュバントワクチン
EP2360175B1 (en) 2005-11-22 2014-07-16 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
GB0524066D0 (en) 2005-11-25 2006-01-04 Chiron Srl 741 ii
DK2478916T3 (da) 2006-01-27 2020-06-15 Seqirus Uk Ltd Influenzavacciner indeholdende hæmagglutinin og matrixproteiner
ES2376492T3 (es) 2006-03-23 2012-03-14 Novartis Ag Compuestos de imidazoquinoxalina como inmunomoduladores.
CA2646349A1 (en) 2006-03-24 2007-10-04 Novartis Vaccines And Diagnostics Gmbh & Co Kg Storage of influenza vaccines without refrigeration
WO2007126825A2 (en) 2006-03-31 2007-11-08 Novartis Ag Combined mucosal and parenteral immunization against hiv
US20100015168A1 (en) 2006-06-09 2010-01-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
GB0614460D0 (en) 2006-07-20 2006-08-30 Novartis Ag Vaccines
AU2007285484B2 (en) 2006-08-16 2013-05-02 Novartis Ag Immunogens from uropathogenic Escherichia coli
EP1897557A1 (en) * 2006-09-07 2008-03-12 Helmholtz-Zentrum für Infektionsforschung GmbH Use of glycolipids as adjuvants
ES2694805T7 (es) 2006-09-11 2021-10-21 Seqirus Uk Ltd Fabricación de vacunas contra virus de la gripe sin usar huevos
SG177141A1 (en) 2006-12-06 2012-01-30 Novartis Ag Vaccines including antigen from four strains of influenza virus
GB0700562D0 (en) 2007-01-11 2007-02-21 Novartis Vaccines & Diagnostic Modified Saccharides
EP3199176B1 (en) 2007-04-04 2020-02-19 Infectious Disease Research Institute Immunogenic compositions comprising mycobacterium tuberculosis polypeptides and fusions thereof
EP2185191B1 (en) 2007-06-27 2012-09-12 Novartis AG Low-additive influenza vaccines
GB0713880D0 (en) 2007-07-17 2007-08-29 Novartis Ag Conjugate purification
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
BRPI0815008B8 (pt) 2007-08-02 2021-05-25 Biondvax Pharmaceuticals Ltd vacinas multiméricas com múltiplos epítopos contra influenza
EP2185577A4 (en) 2007-08-03 2010-09-22 Harvard College CHLAMYDIA ANTIGENS
BRPI0816689B1 (pt) 2007-09-12 2021-08-24 Novartis Ag Composição de vacina, kit e método para a confecção de uma composição de vacina para a prevenção ou tratamento de infecção por streptococcus pyogenes
EA026990B1 (ru) 2007-11-07 2017-06-30 Селлдекс Терапьютикс Инк. Антитела, связывающиеся с человеческой клеткой dec-205
GB0810305D0 (en) 2008-06-05 2008-07-09 Novartis Ag Influenza vaccination
CA2744739A1 (en) 2007-12-03 2009-06-11 President And Fellows Of Harvard College Chlamydia antigens
US8815253B2 (en) 2007-12-07 2014-08-26 Novartis Ag Compositions for inducing immune responses
GB0818453D0 (en) 2008-10-08 2008-11-12 Novartis Ag Fermentation processes for cultivating streptococci and purification processes for obtaining cps therefrom
NZ601543A (en) 2007-12-21 2013-03-28 Novartis Ag Mutant forms of streptolysin o
EP2886551A3 (en) 2008-02-21 2015-09-23 Novartis AG Meningococcal fhbp polypeptides
US9511131B2 (en) 2008-03-10 2016-12-06 Children's Hospital & Research Center Oakland Chimeric factor H binding proteins (fHBP) containing a heterologous B domain and methods of use
EP2356225A1 (en) 2008-12-03 2011-08-17 Protea Vaccine Technologies Ltd. GLUTAMYL tRNA SYNTHETASE (GtS) FRAGMENTS
NZ592977A (en) 2008-12-09 2013-01-25 Pfizer Vaccines Llc IgE CH3 PEPTIDE VACCINE
US8585505B2 (en) 2008-12-15 2013-11-19 Tetris Online, Inc. Inter-game interactive hybrid asynchronous computer game infrastructure
NZ594029A (en) 2009-01-12 2014-01-31 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria
RU2011140508A (ru) 2009-03-06 2013-04-20 Новартис Аг Антигены хламидии
CN109248313B (zh) 2009-04-14 2023-01-17 葛兰素史密丝克莱恩生物有限公司 用于免疫接种以抵御金黄色葡萄球菌的组合物
KR101450958B1 (ko) 2009-04-30 2014-10-15 콜레이 파마시티컬 그룹, 인코포레이티드 폐렴구균 백신 및 그의 용도
EP2442826B1 (en) 2009-06-15 2015-07-08 National University of Singapore Influenza vaccine, composition, and methods of use
JP2012532600A (ja) 2009-07-07 2012-12-20 ノバルティス アーゲー 保存された大腸菌免疫原
ES2918381T3 (es) 2009-07-15 2022-07-15 Glaxosmithkline Biologicals Sa Composiciones de proteína F de VRS y métodos para producir las mismas
PT2464658E (pt) 2009-07-16 2015-01-14 Novartis Ag Imunogénios de escherichia coli desintoxicados
NZ618391A (en) 2009-07-30 2015-07-31 Pfizer Vaccines Llc Antigenic tau peptides and uses thereof
EP2470204B1 (en) 2009-08-27 2015-12-16 GlaxoSmithKline Biologicals SA Hybrid polypeptides including meningococcal fhbp sequences
KR101660578B1 (ko) 2009-09-03 2016-09-27 화이자 백신스 엘엘씨 Pcsk9 백신
CA2779798C (en) 2009-09-30 2019-03-19 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
GB0918392D0 (en) 2009-10-20 2009-12-02 Novartis Ag Diagnostic and therapeutic methods
BR112012010531A2 (pt) 2009-10-27 2019-09-24 Novartis Ag "polipeptídeos de modificação meningocócica fhbp"
JP5917402B2 (ja) 2009-11-03 2016-05-11 タケダ ヴァクシーンズ, インコーポレイテッド キメラRSV−Fポリペプチド、およびレンチウイルスGagまたはアルファレトロウイルスGagに基づくVLP
GB0919690D0 (en) 2009-11-10 2009-12-23 Guy S And St Thomas S Nhs Foun compositions for immunising against staphylococcus aureus
WO2011067758A2 (en) 2009-12-02 2011-06-09 Protea Vaccine Technologies Ltd. Immunogenic fragments and multimers from streptococcus pneumoniae proteins
WO2011077309A2 (en) 2009-12-22 2011-06-30 Pfizer Vaccines Llc Vaccine compositions
EP2519265B1 (en) 2009-12-30 2018-11-14 GlaxoSmithKline Biologicals SA Polysaccharide immunogens conjugated to e. coli carrier proteins
GB201003333D0 (en) 2010-02-26 2010-04-14 Novartis Ag Immunogenic proteins and compositions
EP2552942B1 (en) 2010-03-30 2017-12-27 Children's Hospital & Research Center at Oakland Factor h binding proteins (fhbp) with altered properties and methods of use thereof
GB201005625D0 (en) 2010-04-01 2010-05-19 Novartis Ag Immunogenic proteins and compositions
US9744228B2 (en) 2010-04-07 2017-08-29 Norvartis Ag Method for generating a parvovirus B19 virus-like particle
CA2796314A1 (en) 2010-04-13 2011-10-20 Novartis Ag Benzonapthyridine compositions and uses thereof
CA2796571C (en) 2010-04-13 2019-10-29 Celldex Therapeutics Inc. Antibodies that bind human cd27 and uses thereof
EP2575868A1 (en) 2010-06-07 2013-04-10 Pfizer Vaccines LLC Ige ch3 peptide vaccine
WO2011154863A1 (en) 2010-06-07 2011-12-15 Pfizer Inc. Her-2 peptides and vaccines
GB201009861D0 (en) 2010-06-11 2010-07-21 Novartis Ag OMV vaccines
US9192661B2 (en) 2010-07-06 2015-11-24 Novartis Ag Delivery of self-replicating RNA using biodegradable polymer particles
US20130171185A1 (en) 2010-07-06 2013-07-04 Ethan Settembre Norovirus derived immunogenic compositions and methods
GB201101665D0 (en) 2011-01-31 2011-03-16 Novartis Ag Immunogenic compositions
US20130345079A1 (en) 2010-10-27 2013-12-26 Infectious Disease Research Institute Mycobacterium tuberculosis antigens and combinations thereof having high seroreactivity
BR112013011420A2 (pt) 2010-11-08 2016-08-02 Infectious Disease Res Inst vacinas compreendendo poliptídeos de nucleosídeo hidrolase não específica e esterol 24-c-metil-transferase (smt) para o tratamento e o diagnóstico de leishmaníase
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
CN103260642B (zh) * 2010-12-14 2018-03-16 葛兰素史密丝克莱恩生物有限公司 分枝杆菌抗原组合物
US20130315959A1 (en) 2010-12-24 2013-11-28 Novartis Ag Compounds
PT2667892T (pt) 2011-01-26 2019-06-07 Glaxosmithkline Biologicals Sa Regime de imunização contra o vsr
AU2011360572B2 (en) 2011-02-22 2017-03-02 Biondvax Pharmaceuticals Ltd. Multimeric multiepitope polypeptides in improved seasonal and pandemic influenza vaccines
WO2012131504A1 (en) 2011-03-02 2012-10-04 Pfizer Inc. Pcsk9 vaccine
GB201106357D0 (en) 2011-04-14 2011-06-01 Pessi Antonello Composition and uses thereof
PT2707385T (pt) 2011-05-13 2017-12-19 Glaxosmithkline Biologicals Sa Antigénios de f de rsv pré-fusão
MX2013013627A (es) 2011-06-21 2014-04-25 Oncofactor Corp Composiciones y metodos para la terapia y diagnostico de cancer.
JP2014520807A (ja) 2011-07-06 2014-08-25 ノバルティス アーゲー 免疫原性組成物およびその使用
EP2729165B1 (en) 2011-07-06 2017-11-08 GlaxoSmithKline Biologicals SA Immunogenic combination compositions and uses thereof
US10030052B2 (en) 2011-07-25 2018-07-24 Glaxosmithkline Biologicals Sa Parvovirus Vp1 unique region polypeptides and compositions thereof
GB201114923D0 (en) 2011-08-30 2011-10-12 Novartis Ag Immunogenic proteins and compositions
EP2755994A2 (en) 2011-09-14 2014-07-23 Novartis AG Escherichia coli vaccine combination
ES2704069T3 (es) 2011-12-08 2019-03-14 Glaxosmithkline Biologicals Sa Vacuna basada en toxinas de Clostridium difficile
WO2013108272A2 (en) 2012-01-20 2013-07-25 International Centre For Genetic Engineering And Biotechnology Blood stage malaria vaccine
MX2014010011A (es) 2012-02-24 2014-09-08 Novartis Ag Proteinas y composiciones de pilus.
ES2702278T3 (es) 2012-04-01 2019-02-28 Technion Res & Dev Foundation Péptidos de inductor de metaloproteinasa de matriz extracelular (emmprin) y anticuerpos de unión
US10279026B2 (en) 2012-04-26 2019-05-07 Glaxosmithkline Biologicals Sa Antigens and antigen combinations
BR112014026812A8 (pt) 2012-04-26 2022-10-04 Novartis Ag Antígenos e combinações de antígenos
EP2659907A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
EP2659908A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
EP2659906A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
EP3563865A3 (en) 2012-05-04 2019-12-04 Pfizer Inc Prostate-associated antigens and vaccine-based immunotherapy regimens
SG11201407440WA (en) 2012-05-22 2014-12-30 Novartis Ag Meningococcus serogroup x conjugate
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
WO2014042780A1 (en) 2012-08-03 2014-03-20 Infectious Disease Research Institute Compositions and methods for treating an active mycobacterium tuberculosis infection
EA201590427A1 (ru) 2012-10-02 2015-09-30 Глаксосмитклайн Байолоджикалс С.А. Нелинейные сахаридные конъюгаты
RU2015106791A (ru) 2012-10-03 2016-11-20 Глэксосмитиклайн Байолоджикалз Са Иммуногенные композиции
AU2013351182C1 (en) 2012-11-30 2018-11-08 Glaxosmithkline Biologicals Sa Pseudomonas antigens and antigen combinations
ES2728865T3 (es) 2013-03-28 2019-10-29 Infectious Disease Res Inst Vacunas que comprenden polipéptidos de Leishmania para el tratamiento y el diagnóstico de la leishmaniasis
CA2909586C (en) 2013-05-15 2021-08-31 The Governors Of The University Of Alberta E1e2 hcv vaccines and methods of use
AU2015208821B2 (en) 2014-01-21 2017-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US11160855B2 (en) 2014-01-21 2021-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2015123291A1 (en) 2014-02-11 2015-08-20 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Pcsk9 vaccine and methods of using the same
CA3212723A1 (en) 2014-07-23 2016-01-28 Peter T. Beernink Factor h binding protein variants and methods of use thereof
AR102548A1 (es) 2014-11-07 2017-03-08 Takeda Vaccines Inc Vacunas contra la enfermedad de manos, pies y boca y métodos de fabricación y uso
AR102547A1 (es) 2014-11-07 2017-03-08 Takeda Vaccines Inc Vacunas contra la enfermedad de manos, pies y boca y métodos de fabricación y su uso
CN113563468A (zh) 2014-12-19 2021-10-29 雷根尼桑斯公司 结合人c6的抗体及其用途
FI3244917T3 (fi) 2015-01-15 2023-05-25 Pfizer Immunogeenisiä koostumuksia pneumokokkirokotteissa käytettäväksi
US20180044429A1 (en) 2015-03-09 2018-02-15 Celldex Therapeutics, Inc. Cd27 agonists
WO2016191553A1 (en) 2015-05-26 2016-12-01 Ohio State Innovation Foundation Nanoparticle based vaccine strategy against swine influenza virus
US10576131B2 (en) 2015-06-03 2020-03-03 Affiris Ag IL-23-p19 vaccines
WO2017005851A1 (en) 2015-07-07 2017-01-12 Affiris Ag Vaccines for the treatment and prevention of ige mediated diseases
TWI756893B (zh) 2015-07-21 2022-03-01 美商輝瑞股份有限公司 包含經共軛之莢膜糖抗原的致免疫性組成物、包含該致免疫性組成物之套組及彼等之用途
CA3005524C (en) 2015-11-20 2023-10-10 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
CA2954892A1 (en) 2016-01-19 2017-07-19 Pfizer Inc. Immunogens derived from tumor-associated antigens or nucleic acid molecules encoding the immunogens
WO2017184619A2 (en) 2016-04-18 2017-10-26 Celldex Therapeutics, Inc. Agonistic antibodies that bind human cd40 and uses thereof
CA3024313A1 (en) 2016-05-21 2017-11-30 Infectious Disease Research Institute Compositions and methods for treating secondary tuberculosis and nontuberculous mycobacterium infections
BR112019004913B1 (pt) 2016-09-16 2022-07-12 Infectious Disease Research Institute Vacinas que compreendem polipeptídeos de mycobacterium leprae para a prevenção, tratamento e diagnóstico de lepra
DK3570879T3 (da) 2017-01-20 2022-04-11 Pfizer Immunogene sammensætninger til anvendelse i pneumokokvacciner
WO2019035963A1 (en) 2017-08-16 2019-02-21 Ohio State Innovation Foundation NANOPARTICLE COMPOSITIONS FOR VACCINES AGAINST SALMONELLA
WO2019090228A2 (en) 2017-11-03 2019-05-09 Takeda Vaccines, Inc. Zika vaccines and immunogenic compositions, and methods of using the same
WO2019173438A1 (en) 2018-03-06 2019-09-12 Stc. Unm Compositions and methods for reducing serum triglycerides
US11459393B2 (en) 2018-04-17 2022-10-04 Celldex Therapeutics, Inc. Anti-CD27 and anti-PD-L1 antibodies and bispecific constructs
US11260119B2 (en) 2018-08-24 2022-03-01 Pfizer Inc. Escherichia coli compositions and methods thereof
WO2020051766A1 (zh) 2018-09-11 2020-03-19 上海市公共卫生临床中心 一种广谱抗流感疫苗免疫原及其应用
US20220016168A1 (en) 2018-12-11 2022-01-20 Celldex Therapeutics, Inc. Methods of using cd27 antibodies as conditioning treatment for adoptive cell therapy
JP2022512345A (ja) 2018-12-12 2022-02-03 ファイザー・インク 免疫原性多重ヘテロ抗原多糖-タンパク質コンジュゲートおよびその使用
JP7239509B6 (ja) 2019-02-22 2023-03-28 ファイザー・インク 細菌多糖類を精製するための方法
JP2022528158A (ja) 2019-04-10 2022-06-08 ファイザー・インク コンジュゲート化莢膜糖抗原を含む免疫原性組成物、それを含むキットおよびその使用
IL292494A (en) 2019-11-01 2022-06-01 Pfizer Preparations of Escherichia coli and their methods
NL2027383B1 (en) 2020-01-24 2022-04-06 Aim Immunotech Inc Methods, compositions, and vaccines for treating a virus infection
AU2021224078B2 (en) 2020-02-21 2024-01-18 Pfizer Inc. Purification of saccharides
EP4107170A2 (en) 2020-02-23 2022-12-28 Pfizer Inc. Escherichia coli compositions and methods thereof
CN116724118A (zh) * 2020-07-24 2023-09-08 利兰斯坦福初级大学董事会 Covid-19的三组分疫苗
TW202227467A (zh) 2020-10-27 2022-07-16 美商輝瑞大藥廠 大腸桿菌組合物及其方法
KR20230097160A (ko) 2020-11-04 2023-06-30 화이자 인코포레이티드 폐렴구균 백신에 사용하기 위한 면역원성 조성물
JP2023549736A (ja) 2020-11-10 2023-11-29 ファイザー・インク コンジュゲートさせた莢膜糖抗原を含む免疫原性組成物およびその使用
US20220202923A1 (en) 2020-12-23 2022-06-30 Pfizer Inc. E. coli fimh mutants and uses thereof
WO2022147373A1 (en) 2020-12-31 2022-07-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibody-guided pcsk9-mimicking immunogens lacking 9-residue sequence overlap with human proteins
MX2023009728A (es) 2021-02-19 2023-08-30 Sanofi Pasteur Inc Vacuna recombinante meningococica b.
EP4320159A1 (en) 2021-04-09 2024-02-14 Celldex Therapeutics, Inc. Antibodies against ilt4, bispecific anti-ilt4/pd-l1 antibody and uses thereof
WO2022234483A1 (en) 2021-05-04 2022-11-10 King Abdullah University Of Science And Technology Immuogenic compositions of mutant sars-cov-2 n protein and gene and methods of use thereof
PE20240090A1 (es) 2021-05-28 2024-01-16 Pfizer Composiciones inmunogenas que comprenden antigenos de sacarido capsular conjugados y sus usos
TW202306969A (zh) 2021-05-28 2023-02-16 美商輝瑞大藥廠 包含結合之莢膜醣抗原的免疫原組合物及其用途
WO2023079529A1 (en) 2021-11-05 2023-05-11 King Abdullah University Of Science And Technology Re-focusing protein booster immunization compositions and methods of use thereof
WO2023079528A1 (en) 2021-11-05 2023-05-11 King Abdullah University Of Science And Technology Compositions suitable for use in a method for eliciting cross-protective immunity against coronaviruses
WO2023077521A1 (en) 2021-11-08 2023-05-11 Celldex Therapeutics, Inc Anti-ilt4 and anti-pd-1 bispecific constructs
CA3237496A1 (en) 2021-11-18 2023-05-25 Matrivax, Inc. Immunogenic fusion protein compositions and methods of use thereof
WO2023135515A1 (en) 2022-01-13 2023-07-20 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
KR102420201B1 (ko) * 2022-01-17 2022-07-13 주식회사 유이케미칼 인지질 외피 보유 바이러스 사멸기능을 가지는 친환경 방역 조성물
WO2023161817A1 (en) 2022-02-25 2023-08-31 Pfizer Inc. Methods for incorporating azido groups in bacterial capsular polysaccharides
WO2023218322A1 (en) 2022-05-11 2023-11-16 Pfizer Inc. Process for producing of vaccine formulations with preservatives
WO2024018061A1 (en) 2022-07-22 2024-01-25 Institut National de la Santé et de la Recherche Médicale Use of bordetella strains for the treatment of chronic obstructive pulmonary disease

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919411A (en) * 1972-01-31 1975-11-11 Bayvet Corp Injectable adjuvant and compositions including such adjuvant
DE3867635D1 (de) * 1987-03-13 1992-02-20 Micro Vesicular Systems Lipidversikel aus grenzflaechenaktiven stoffen und sterolen.
JPH05201877A (ja) * 1992-01-30 1993-08-10 Kanebo Ltd アジュバント組成物
GB9207731D0 (en) * 1992-04-07 1992-05-27 Proteus Molecular Design Improvements in or relating to vaccines
JPH06172216A (ja) * 1992-12-04 1994-06-21 Norin Suisanshiyou Kachiku Eisei Shikenjo 乳液状オイルアジュバント
DK17093D0 (da) * 1993-02-15 1993-02-15 Lyfjathroun H F Farmaceutisk praeparat til topisk administrering af antigener og/eller vacciner til pattedyr via slimhinder
GB9320597D0 (en) * 1993-10-06 1993-11-24 Proteus Molecular Design Improvements in and realting to vaccines
ES2267100T5 (es) * 1994-07-15 2011-04-08 The University Of Iowa Research Foundation Oligonucleótidos inmunomoduladores.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9952549A1 *

Also Published As

Publication number Publication date
TR200002930T2 (tr) 2000-12-21
WO1999052549A1 (en) 1999-10-21
HUP0101619A2 (hu) 2001-08-28
CN1296416A (zh) 2001-05-23
AR019026A1 (es) 2001-12-26
KR20010042573A (ko) 2001-05-25
CA2325939A1 (en) 1999-10-21
NZ506603A (en) 2002-10-25
IL138000A0 (en) 2001-10-31
HUP0101619A3 (en) 2003-11-28
NO20005051D0 (no) 2000-10-06
AU3419799A (en) 1999-11-01
JP2002511423A (ja) 2002-04-16
NO20005051L (no) 2000-11-21
BR9909915A (pt) 2000-12-26
PL354714A1 (en) 2004-02-09
AU746163B2 (en) 2002-04-18

Similar Documents

Publication Publication Date Title
AU746163B2 (en) Adjuvant compositions
AU766635B2 (en) Adjuvant comprising a polyxyethylene alkyl ether or ester and at least one nonionic surfactant
AU765824B2 (en) Vaccines
US6558670B1 (en) Vaccine adjuvants
AU764969B2 (en) Vaccines
EP1279401B1 (en) Oil in water emulsions containing saponins
US20020058047A1 (en) Vaccines
JP5307859B2 (ja) ワクチン
MXPA00009887A (en) Adjuvant compositions
CZ20003732A3 (cs) Pomocný prostředek
ZA200202268B (en) Adjuvant comprising a polyxyethylene alkyl ether or ester and at least one non-ionic surfactant.
ZA200202270B (en) Use of combination of polyxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20000821

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GLAXOSMITHKLINE BIOLOGICALS S.A.

17Q First examination report despatched

Effective date: 20040824

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050304

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1034192

Country of ref document: HK