EP1054849B1 - Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren - Google Patents

Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren Download PDF

Info

Publication number
EP1054849B1
EP1054849B1 EP99913070A EP99913070A EP1054849B1 EP 1054849 B1 EP1054849 B1 EP 1054849B1 EP 99913070 A EP99913070 A EP 99913070A EP 99913070 A EP99913070 A EP 99913070A EP 1054849 B1 EP1054849 B1 EP 1054849B1
Authority
EP
European Patent Office
Prior art keywords
kclo
ignition powder
powder according
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99913070A
Other languages
English (en)
French (fr)
Other versions
EP1054849A1 (de
Inventor
Eduard Gast
Peter Semmler
Bernhard Schmid
Christian Recker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nigu Chemie GmbH
Original Assignee
Nigu Chemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nigu Chemie GmbH filed Critical Nigu Chemie GmbH
Publication of EP1054849A1 publication Critical patent/EP1054849A1/de
Application granted granted Critical
Publication of EP1054849B1 publication Critical patent/EP1054849B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters

Definitions

  • the present invention relates to pre-ignition powder for thermal fuses currentless ignition of the gas set of an airbag gas generator of motor vehicles
  • the gas sets used in automotive airbag gas generators are typically very stable thermally.
  • To the gas set at high ambient temperature e.g. in case of a Igniting vehicle fires in a controlled manner are so-called thermal fuses used.
  • the thermal fuse ensures that the finished gas generator before and after installation, e.g. in the motor vehicle not only at an uncontrollably high level Temperature is ignited and it may then lead to a leak or even to Fragmentation of the gas generator housing - especially with an aluminum housing - come Accordingly, the thermal fuse ensures that the implementation of the gas-generating mixture thermally triggered far below this critical temperature becomes. In such a case, they are prevented by their early implementation and controlled ignition of the gas set, the destruction of the gas generator housing and avoids the associated dangers
  • a possible embodiment for a thermal fuse includes a container, that with a pre-ignition powder, for example in granular form (pyrotechnic mixture) is filled (0.1 to 0.5 g), which is preferably between 150 ° C. and 200 ° C ignites itself and releases so much heat that the ignition of the actual lighter and / or the gas set is guaranteed.
  • a pre-ignition powder for example in granular form (pyrotechnic mixture) is filled (0.1 to 0.5 g), which is preferably between 150 ° C. and 200 ° C ignites itself and releases so much heat that the ignition of the actual lighter and / or the gas set is guaranteed.
  • Pyrotechnic airbag gas generators are usually used in the event of a vehicle crash ignited by a current pulse by means of a sensor Ignition charge intensified, which with the hot gas and solid particles generated actual gas set - often in tablet form - burns almost synchronously.
  • the burning one Gas set supplies the filling gas of the protective cushion.
  • the autoignition temperature currently Common gas sets are around 400 ° C for the azide-containing ones and for the azide-free ones Gas rates still at around 300 ° C.
  • nitrocellulose powders have been used as pre-ignition powder used for thermal fuses. These have a self-ignition temperature (Decomposition point) from 150-200 ° C.
  • the nitrocellulose powders are not enough Stability requirements that have recently been required by the automotive industry Thereafter, thermal fuses of hot storage must be kept at 107 ° C for 400 hours (224 ° Fahrenheit; U.S. Patent 5,460,671, column 3) with a weight loss ⁇ 3% and below Withstand full functionality.
  • nitrocellulose tends to become decomposes slowly even at low temperatures and therefore does not guarantee that Functionality as pre-ignition powder over a longer period of time, like this at Motor vehicles, however, is required
  • thermal fuses which are said to be able to the gas-generating mixtures commonly used in gas generators are widely used ignite thermally controlled below the critical temperature, and not the Disadvantages of nitrocellulose have as substances or as mixtures of these Thermal fuses can use connections that are selected from the compound classes of oxalates, peroxodisulfates (persulfates), permanganates, nitrides, Perborates, bismuthates, formates, nitrates, sulfamates, bromates or peroxides.
  • oxalates peroxodisulfates (persulfates), permanganates, nitrides, Perborates, bismuthates, formates, nitrates, sulfamates, bromates or peroxides.
  • oxidizable components such as explosives with low deflagration or decomposition points, preferably calcium bistetrazolamine, 3-nitro-1,2,4-triazol-5-one (NTO), 5-aminotetrazole nitrate, nitroguanidine (NIGU), Guanidine nitrate or bistrazolamine can be used.
  • the substances although one lower deflagration point or decomposition point than the gas generator used Having a mixture, but decomposing endothermically, require at least one Fuel and possibly a reducing agent to be used as a thermal fuse to be able to. Examples of fuels are those given above called oxidizable components.
  • Metal powder for example, can be used as the reducing agent. titanium powder are preferably used.
  • To influence the deflagration points can include oxidizing agents such as potassium nitrate or potassium perchlorate or Mixtures of these oxidizing agents are added.
  • US Pat. No. 5,460,671 describes ignition powder which consists of a mixture of a fuel and an oxidizing agent.
  • the oxidizing agents are selected from the group consisting of alkali metal or alkaline earth metal chlorates or mixtures thereof. especially potassium or sodium chlorate are examples of the fuels Carbohydrates such as D-glucose, D-galactose, D-ribose, etc.
  • the present invention has for its object to provide pre-ignition powder, the do not have the disadvantages of nitrocellulose described above and the Stability requirements mentioned above (i.e. weight loss ⁇ 3% at warm storage at 107 ° C for 400 hours) and overheating of the gas generator (at temperatures above 240 ° C) with a small amount (0.1 to 0.5g) Early ignition powder (in the early ignition unit) can ignite the airbag gas set.
  • the fuel (A) is in the early ignition powders according to the invention for thermal Fuses in an amount of 20 to 40 parts by weight, preferably 25-35 parts by weight and especially 28-32 parts by weight before
  • the oxidizing agents (B) preferably Potassium chlorate and potassium nitrate, potassium chlorate and potassium perchlorate as well as mixtures of these three oxidizing agents are preferably in an amount of 40-80 parts by weight 50-75 parts by weight and in particular 60-75 parts by weight.
  • the stabilizers (C) is hydroxyethyl cellulose (Natrosol 250 HR from Aqualon) and Cellulose acetobutyrate is particularly preferred.
  • the polyamides are stabilizers (C) in addition to conventional polyamides according to the invention amide derivatives such as dicyandiamide (Cyanoguanidine) to count
  • the stabilizers are in a proportion of 0.5-20 Parts by weight, preferably 0.5-10 parts by weight and in particular 0.5-5 parts by weight
  • the pre-ignition powders according to the invention can optionally Processing aids (D) in an amount of 0.5-5 parts by weight, preferably 0.5 to 3 Parts by weight included.
  • auxiliary fuels (E) can optionally be added in one Amount of 0.5-20 parts by weight, preferably 0.5-10 parts by weight and in particular 0.5-5 Parts by weight are available.
  • fillers (F) can optionally be combined in one Proportion of 0.5-12 parts by weight, preferably 0.5-10 parts by weight and in particular 0.5-5 Parts by weight are available.
  • the pre-ignition powder for thermal fuses according to the invention are not only for that Airbag area limited, but can also trigger mechanical Movements and in pressure and security elements are used,
  • the toxicities of those used for the thermal fuses according to the invention correspond to the Swiss poison class 3, 4 and 5 Reaction products of these mixtures is due to the previous raw material balance and low use does not endanger or harm humans / vehicle occupants fear.
  • the unused mixes are good too with conventional means dispose of or recycle.
  • the thermal fuses according to the invention are with others gas generating mixtures or pyrotechnic phrases, e.g. Boron / potassium nitrate good compatible and can be added as granules or tablets or in preferably made of aluminum (or steel) container.
  • the Purity and the grain size of these raw materials as well as the various used Mixtures of the oxidizing agents and fuels influence the Decomposition temperature and type.
  • the type of stabilizer and its mixing proportion affects the Long-term stability and trigger temperature.
  • Thiourea in the new combination with the oxidizing agents mentioned above (B) and the appropriate stabilizers (C) (protective colloids) represent systems that between 150-200 ° C suddenly react strongly exothermic, but on the other hand storage 400 hours at 107 ° C with a weight loss of ⁇ 3% while maintaining full functionality can survive.
  • chlorates as an oxidizing agent (B)
  • Nitrates and / or perchlorates are the trigger temperature of the chemical fuse be moved (see Examples 3 and 5, Table I).
  • auxiliary fuels such as metal powders of aluminum, zirconium, titanium, magnesium, zinc, iron, etc.
  • the production of hot particles can be positively influenced.
  • Another possibility for producing hot particles - but at the expense of the total energy of the thermal Security mixes are made - by adding fillers such as Al 2 O 3 , TiO 2 , ZrO 2 , Fe 2 O 3 , Si 3 N 4 , boron nitride, etc.
  • processing aids (D) such as graphite and stearates (especially calcium) and magnesium stearate) or high-boiling paraffins (usually) the trigger temperature rises.
  • the thermal behavior was determined by means of differential scanning calorimetry (DSC method) of the various examples both before storage and after 400 hours at 107 ° C.
  • example 1 (Comparison) parts by weight 2 parts by weight 3 parts by weight 4 parts by weight 5 parts by weight KClO 3 70.0 70.0 44.0 70.0 44.0 KNO 3 0 0 26.0 0 26.0 thiourea 30.0 30.0 30.0 30.0 30.0 30.0 Hydroxyethyl cellulose (Natrosol 250 HR from Aqualon) 0 3.0 3.0 1.5 1.5 Weight loss after h at 107 ° C in% after 216h > 3% after 400h 2.3% after 400h 1.3% after 400h 2.2% after 400h 1.5% Reaction peak in DSC analysis; Heating rate 10 ° C / min Before exam 170 ° C Before exam 172 ° C Before exam 197 ° C Before exam 177 ° C Before exam 198 ° C After exam - After exam 172 ° C After exam 190 ° C After exam 168
  • the ignition powders according to the invention according to Examples 2-5 and 7-10 showed after 400 Hours at 107 ° C a change in the decomposition temperature between 0 and 12 ° C Decomposition point was determined using differential scanning calorimetry (DSC method) certainly.
  • the range in the decomposition temperature determination was at used heating rate of 10 ° C / min ⁇ 5 ° C.
  • Example 6 is carried out in accordance with Examples 1-5, instead of thiourea N, N'-diphenylthiourea used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

Die vorliegende Erfindung betrifft Frühzündpulver für thermische Sicherungen zur stromlosen Anzündung des Gassatzes eines Airbag-Gasgenerators von Kraftfahrzeugen
Die in Airbag-Gasgeneratoren von Kraftfahrzeugen verwendeten Gassätze sind in der Regel thermisch sehr stabil. Um den Gassatz bei hoher Umgebungstemperatur, z.B. im Falle eines Fahrzeugbrandes, kontrolliert anzuzünden, werden sogenannte thermische Sicherungen eingesetzt. Durch die thermische Sicherung wird sichergestellt, daß der fertige Gasgenerator vor und nach dem Einbau, z.B. im Kraftfahrzeug nicht erst bei einer unkontrolliert hohen Temperatur gezündet wird und es dann eventuell zur Undichtigkeit oder gar zum Fragmentieren des Gasgeneratorgehäuses - speziell bei einem Aluminiumgehäuse - kommen kann Demnach sorgt die thermische Sicherung dafür, daß die Umsetzung der gaserzeugenden Mischung weit unterhalb dieser kritischen Temperatur thermisch ausgelöst wird. Sie verhindert in einem solchen Fall durch ihre frühzeitige Umsetzung und kontrollierte Anzündung des Gassatzes die Zerstörung des Gasgeneratorgehäuses und vermeidet die damit verbundenen Gefahren
Eine mögliche Ausführungsform für eine thermische Sicherung beinhaltet einen Behälter, der mit einem beispielsweise in Granulatform vorliegenden Frühzündpulver (pyrotechnisches Gemisch) gefüllt ist (0,1 bis 0,5g), das sich vorzugsweise zwischen 150°C und 200°C selbst entzündet und soviel Wärmemenge freisetzt, daß die Anzündung des eigentlichen Anzünders und/oder des Gassatzes gewährleistet ist.
Ublicherweise werden pyrotechnische Airbag-Gasgeneratoren im Falle eines Fahrzeugcrash mittels Sensor durch einen Stromimpuls gezündet Die Anzündung wird mit einer Anzundladung verstärkt, die mit den dabei erzeugten heißen Gas- und Feststoffpartikeln den eigentlichen Gassatz - oft in Tablettenform - nahezu synchron anbrennt. Der abbrennende Gassatz liefert das Füllgas des Schutzkissens. Die Selbstentzündungstemperatur der zur Zeit gebräuchlichen Gassatze liegt bei den azidhaltigen bei etwa 400°C und bei den azidfreien Gassätzen immerhin noch bei etwa 300°C.
Im Stand der Technik wurden bisher stabilisierte Nitrocellulosepulver als Frühzündpulver für thermische Sicherungen eingesetzt. Diese weisen eine Selbstentzündungstemperatur (Zersetzungspunkt) von 150-200°C auf. Die Nitrocellulosepulver genügen aber nicht den Stabilitätsanforderungen, die seit kurzem von der Automobilindustrie gefordert werden Danach müssen thermische Sicherungen einer Warmlagerung über 400 Stunden bei 107°C (224°Fahrenheit; US-PS 5,460,671, Spalte 3) mit einem Gewichtsverlust < 3% und unter Erhalt der vollen Funktionsfähigkeit standhalten. Nitrocellulose neigt jedoch dazu, sich schon bei niedrigen Temperaturen langsam zu zersetzen und gewährleistet somit nicht die Funktionsfähigkeit als Frühzündpulver über einen längeren Zeitraum, wie dies bei Kraftfahrzeugen jedoch erforderlich ist
Aus der DE 197 30 873 sind thermische Sicherungen bekannt, die in der Lage sein sollen, die üblicherweise in Gasgeneratoren eingesetzten gaserzeugenden Mischungen weit unterhalb der kritischen Temperatur thermisch kontrolliert anzuzünden, und die nicht die Nachteile von Nitrocellulose aufweisen Als Stoffe oder als Stoffgemische für diese thermischen Sicherungen können Verbindungen eingesetzt werden, die ausgewählt sind aus den Verbindungsklassen der Oxalate, Peroxodisulfate (Persulfate), Permanganate, Nitride, Perborate, Bismutate, Formiate, Nitrate, Sulfamate, Bromate oder Peroxide. Außerdem können gemäß der DE 197 30 873 oxidierbare Komponenten, beispielsweise Explosivstoffe mit niedrigen Verpuffungs- oder Zersetzungspunkten, vorzugsweise Calcium-bistetrazolamin, 3-Nitro-1,2,4-triazol-5-on (NTO), 5-Aminotetrazolnitrat, Nitroguanidin (NIGU), Guanidinnitrat oder Bistetrazolamin eingesetzt werden. Die Stoffe, die zwar einen niedrigeren Verpuffungspunkt oder Zersetzungspunkt als die verwendete gaserzeugende Mischung aufweisen, sich dabei aber endotherm zersetzen, benötigen mindestens einen Brennstoff und gegebenenfalls ein Reduktionsmittel um als thermische Sicherung eingesetzt werden zu können. Als Beispiele für Brennstoffe sind die vorstehend angegebenen oxidierbaren Komponenten genannt. Als Reduktionsmittel kann beispielsweise Metallpulver. vorzugsweise Titanpulver eingesetzt werden. Zur Beeinflussung der Verpuffungspunkte können unter anderem Oxidationsmittel wie Kaliumnitrat oder Kaliumperchlorat oder Mischungen dieser Oxidationsmittel zugegeben werden.
Die US-PS 5,460,671 beschreibt Zündpulver, die aus einem Gemisch eines Brennstoffs und eines Oxidationsmittels bestehen. Die Oxidationsmittel sind ausgewählt aus der Gruppe bestehend aus Alkalimetall- oder Erdalkalimetallchloraten oder Gemischen davon. insbesondere Kalium- oder Natriumchlorat Beispiele fur die Brennstoffe sind Kohlenhydrate, wie D-Glucose, D-Galactose, D-Ribose, usw.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Frühzündpulver bereitzustellen, die die vorstehend beschriebenen Nachteile von Nitrocellulose nicht aufweisen und den vorstehend genannten Stabilitätsanforderungen entsprechen (d h. Gewichtsverlust <3% bei einer Warmlagerung bei 107°C über 400 Stunden) und bei Uberhitzung des Gasgenerators (bei Temperaturen oberhalb 240°C) mit einer geringen Menge (0,1 bis 0,5g) Frühzündpulver (in der Frühzündeinheit) den Gassatz des Airbags anzünden können.
Gelöst wurde diese erfindungsgemäße Aufgabe durch ein Frühzündpulver für eine thermische Sicherung, umfassend:
  • (A) mindestens einen Brennstoff ausgewählt aus der Gruppe bestehend aus Thioharnstoff und seinen Derivaten, wie N,N'-Diphenylthioharnstoff und Thiocyanate der Guanidine, wie Guanidin-thiocyanat.
  • (B) mindestens ein Oxidationsmittel ausgewählt aus den Chloraten, Perchloraten und Nitraten von Natrium, Kalium und Strontium, d.h. NaNO3, KNO3, Sr(NO3)2, NaClO3, KClO3, Sr (ClO3)2, NaClO4, KClO4, Sr(ClO4)2,
  • (C) mindestens einen Stabilisator ausgewählt aus der Gruppe bestehend aus Cellulosederivaten, wie Celluloseether und Celtuloseester, Polystyrol und Polystyrol-Copolymeren, Polyamiden, Polyacrylaten, Polycarbonaten, Polypropylenen, Polybutylenen, Polyoxymethylenen, Polyacetaten und Polyvinyl-Verbindungen, und gegebenenfalls
  • (D) Verarbeitungshilfsmittel, ausgewählt aus Calcium- und Magnesiumstearaten, Graphit, hochsiedenden Paraffinen (wie Naftolen P603 der Fa. Chemetall) und Citronensäureester und Acylcitronensäureester (wie Triethylcitrat und Acetyltriethylcitrat), und gegebenenfalls
  • (E) Hilfsbrennstoffe, ausgewählt aus elementarem Aluminium, Zirconium, Titan, Magnesium, Zink und Eisen, und gegebenenfalls
  • (F) Füllstoffe, ausgewählt aus der Gruppe von Al2O3, TiO2, ZrO2, Fe2O3, Si3N4 und Bornitrid (BN)
  • Der Brennstoff (A) liegt in den erfindungsgemaßen Fruhzündpulvern fur thermische Sicherungen in einer Menge von 20 bis 40 Gewichtsteilen, bevorzugt 25-35 Gewichtsteilen und insbesondere 28-32 Gewichtsteilen vor Die Oxidationsmittel (B) vorzugsweise Kaliumchlorat und Kaliumnitrat, Kaliumchlorat und Kaliumperchlorat als auch Gemische dieser drei Oxidationsmittel, liegen in einer Menge von 40-80 Gewichtsteilen, vorzugsweise 50-75 Gewichtsteilen und insbesondere 60-75 Gewichtsteilen vor. Unter den Stabilisatoren (C) ist Hydroxyethylcellulose (Natrosol 250 HR der Fa. Aqualon) und Celluloseacetobutyrat besonders bevorzugt. Zu den Polyamiden als Stabilisatoren (C) sind neben herkömmlichen Polyamiden erfindungsgemäß Amidderivate wie Dicyandiamid (Cyanoguanidin) zu zählen Die Stabilisatoren liegen in einem Anteil von 0,5-20 Gewichtsteilen, bevorzugt 0,5-10 Gewichtsteilen und insbesondere 0,5-5 Gewichtsteilen vor Die erfindungsgemäßen Frühzündpulver können gegebenenfalls Verarbeitungshilfsmittel (D) in einer Menge von 0,5-5 Gewichtsteilen, bevorzugt 0,5 bis 3 Gewichtsteilen enthalten. Weiterhin können gegebenenfalls Hilfsbrennstoffe (E) in einer Menge von 0,5-20 Gewichtsteilen, bevorzugt 0,5 -10 Gewichtsteilen und insbesondere 0,5-5 Gewichtsteilen vorliegen. Des weiteren können gegebenenfalls Füllstoffe (F) in einem Anteil von 0,5-12 Gewichtsteilen, bevorzugt 0,5-10 Gewichtsteilen und insbesondere 0,5-5 Gewichtsteilen vorliegen.
    Die erfindungsgemäßen Frühzündpulver für thermische Sicherungen sind nicht nur auf das Airbag-Gebiet beschränkt, sondern können auch zur Auslösung von mechanischen Bewegungen sowie in Druck- und Sicherheitselementen eingesetzt werden,
    Die Toxizitäten der für die erfindungsgemäßen thermischen Sicherungen eingesetzten Rohstoffe entsprechen alle der Schweizer Giftklasse 3, 4 und 5. Durch die Reaktionsprodukte dieser Mischungen ist durch die vorherige Rohstoffbilanzierung und die geringe Einsatzmenge keine Gefahrdung oder Schädigung beim Menschen/KFZ-Insassen zu befürchten. Die nicht benutzten Mischungen sind gut mit herkömmlichen Mitteln zu entsorgen bzw. recyceln. Die ertindungsgemäßen thermischen Sicherungen sind mit anderen gaserzeugenden Mischungen oder pyrotechnischen Sätzen, z.B. Bor/Kaliumnitrat gut verträglich und können als Granulat oder Tabletten zugemischt werden oder im vorzugsweise aus Aluminium (oder Stahl) bestehenden Behältnis untergebracht sein. Die Reinheit und die Korngröße dieser Rohstoffe sowie die verschiedenen eingesetzten Mischungen der Oxidationsmittel und Brennstoffe nehmen Einfluß auf die Zersetzungstemperatur und -art.
    Insbesondere die Art des Stabilisators und dessen Mischungsanteil wirkt sich auf die Langzeitstabilität und Auslösungstemperatur aus.
    In pyrotechnischen Mischungen z.B Thioharnstoff mit Kaliumchlorat zu kombinieren, ist bekannt (DE 195 05 568), Diese Mischungen erfüllen aber nicht die von der Automobilindustrie geforderten Stabilitätskriterien einer Lagerfähigkeit von 400 Std. bei 107°C (siehe Beispiel 1 (Vergleich) in Tabelle I). Erst die erfindungsgemäße Einbindung der angegebenen Reaktionskomponenten in einen temperaturbeständigen Stabilisator, der wie ein Schutzkolloid wirkt, läßt die gewünschte Stabilität erreichen, ohne daß die Selbstentzündungstemperatur merklich angehoben wird.
    Thioharnstoff in der neuen Kombination mit den vorstehend genannten Oxidationsmitteln (B) und den geeigneten Stabilisatoren (C) (Schutzkolloiden) stellen Systeme dar, die zwischen 150-200°C schlagartig stark exotherm reagieren, andererseits aber eine Lagerung von 400 Std. bei 107°C mit einem Gewichtsverlust <3% bei vollem Funktionserhalt überstehen können.
    Bei der Verwendung von Chloraten als Oxidationsmittel (B), kann durch Zudotierung von Nitraten und/oder Perchloraten die Auslösetemperatur der chemischen Sicherung verschoben werden (vgl. Beispiele 3 und 5, Tabelle I).
    Mit der Zugabe der Hilfsbrennstoffe (E), wie Metallpulvern von Aluminium, Zirconium, Titan, Magnesium, Zink, Eisen, usw. kann die Erzeugung von Heißpartikeln positiv beeinflußt werden Eine andere Möglichkeit, Heißpartikel zu erzeugen - die allerdings zu Lasten der Gesamtenergie der thermischen Sicherungsmischungen geht - erfolgt durch Zumischen von Füllstoffen wie Al2O3, TiO2, ZrO2, Fe2O3, Si3N4, Bornitrid, usw. Mit dem Einsatz von Verarbeitungshilfsmitteln (D) wie Graphit und Stearaten (insbesondere Calcium- und Magnesiumstearat) oder hochsiedenden Paraffinen steigt die Auslösetemperatur (normalerweise) an.
    Die nachstehenden Beispiele veranschaulichen die Erfindung, schränken sie aber nicht auf diese ein.
    Beispiele 1 bis 5 und 7 bis 10:
    Die in Tabelle I und II aufgeführten, gemahlenen, festen Mischungskomponenten wurden in den angegebenen Mischverhältnissen in einem Vertikalmischer vorgemischt und mittels Wasser und/oder Lösungsmittel (wie C1-C4-Alkohole, z.B Methanol, Ethanol, Propanol sowie Aceton (Beispiel 10)) in einer Menge von 10-20 Gew.-% und ebenfalls zugesetztem Stabilisator innerhalb einer Stunde zu einer heterogenen Mischung verarbeitet. Je nach Art und Menge des Stabilisators können so ein Fertiggranulat oder ein Tablettiergranulat, die lediglich abgesiebt werden müssen, hergestellt werden; es kann aber auch eine hochviskose Mischung eingestellt werden, die sich zur Formgebung durch Strangpressen mit anschließendem Schneiden eignet. Die Herstellung der Mischungen wurde durch ein- bis zweistündiges Trocknen bei 90°C abgeschlossen
    Die Bestimmung des Wärmeverhaltens mittels Differential-Scanning-Kalorimetrie (DSC-Methode) der verschiedenen Beispiele erfolgte sowohl vor der Einlagerung wie auch nach 400 Std. bei 107°C.
    Beispiel 1
    (Vergleich) Gewichtsteile
    2
    Gewichtsteile
    3
    Gewichtsteile
    4
    Gewichtsteile
    5
    Gewichtsteile
    KClO3 70.0 70,0 44,0 70,0 44,0
    KNO3 0 0 26,0 0 26,0
    Thioharnstoff 30,0 30,0 30,0 30,0 30,0
    Hydroxyethyl cellulose (Natrosol 250 HR der Fa. Aqualon) 0 3,0 3,0 1,5 1,5
    Gewichtsverlust nach h bei 107°C in % nach 216h
    >3%
    nach 400h
    2,3%
    nach 400h
    1,3%
    nach 400h
    2,2%
    nach 400h
    1,5%
    Reaktionspeak bei DSC-Analyse; Aufheizrate 10°C/min Vor Prüfung
    170°C
    Vor Prüfung
    172°C
    Vor Prüfung
    197°C
    Vor Prüfung
    177°C
    Vor Prüfung
    198°C
    Nach Prüfung
    -
    Nach Prüfung
    172°C
    Nach Prüfung
    190°C
    Nach Prüfung
    168°C
    Nach Prüfung
    186°C
    Figure 00070001
    Aus dem Vergleich von Beispiel 1 (Vergleich) mit den erfindungsgemäßen Beispielen 2 bis 5 und 7 bis 10 wird deutlich, daß erst durch Zusatz des Stabilisators die geforderte Stabilität erfüllt wird. Die Zusammensetzung nach Beispiel 1 (Vergleich) zeigte bereits nach 216 Stunden einen Gewichtsverlust von >3% Hingegen erfüllen die erfindungsgemäßen Zusammensetzungen das Stabilitätserfordernis und zeigten nach 400 Stunden lediglich einen Gewichtsverlust zwischen 1,3 und 2,3 % bzw. 2,4%. Auch liegen die Zünd- (bzw. Zersetzungs)temperaturen der erfindungsgemäßen Frühzündpulver sowohl vor als auch nach der thermischen Belastung in dem geforderten Bereich von 150-200°C
    Die erfindungsgemaßen Zundpulver gemäß den Beispielen 2-5 und 7-10 zeigten nach 400 Stunden bei 107°C eine Veränderung der Zersetzungstemperatur zwischen 0 und 12°C Der Zersetzungspunkt wurde mittels Differential-Scanning-Kalorimetrie (DSC-Methode) bestimmt. Die Bandbreite in der Zersetzungstemperaturbestimmung betrug bei der verwendeten Autheizrate von 10°C/min ± 5°C.
    Beispiel 6:
    Beispiel 6 wird entsprechend den Beispielen 1-5 ausgeführt, anstelle von Thioharnstoff wird N,N'-Diphenylthioharnstoff verwendet.

    Claims (12)

    1. Frühzündpulver für eine thermische Sicherung, umfassend
      (A) mindestens einen Brennstoff ausgewählt aus der Gruppe bestehend aus Thioharnstoff und seinen Derivaten,
      (B) mindestens ein Oxidationsmittel ausgewählt aus NaNO3, KNO3, Sr(NO3)2, NaClO3, KClO3, Sr(ClO3)2, NaClO4. KClO4, Sr(ClO4)2,
      (C) mindestens einen Stabilisator ausgewählt aus der Gruppe bestehend aus Celluslosederivaten, wie Celluloseether und Celluloseester, Polystyrol und Polystyrol-Copolymeren, Polyamiden, Polyacrylaten, Polycarbonaten, Polypropylenen, Polybutylenen, Polyoxymethylenen, Polyacetaten und Polyvinyl-Verbindungen.
    2. Frühzündpulver nach Anspruch 1, wobei das Oxidationsmittel (B) ausgewählt ist aus einem Gemisch von KClO3 und KNO3, KClO3 und KClO4, und KClO3, KNO3 und KClO4
    3. Frühzündpulver nach Anspruch 1 oder 2, wobei der Stabilisator (C) ausgewählt ist aus Hydroxyethylcellulose, Celluloseacetobutyrat und Dicyandiamid und deren Gemischen.
    4. Frühzundpulver nach Anspruch 1, wobei der Brennstoff (A) Thioharnstoff ist, das Oxidationsmittel (B) KNO3 und/oder KClO3 ist, und der Stabilisator (C) Hydroxyethylcellulose ist.
    5. Frühzündpulver nach Anspruch 1, wobei der Brennstoff (A) Thioharnstoff ist, das Oxidationsmittel (B) ein Gemisch von KClO3 und KNO3 und/oder KClO4 ist, und der Stabilisator (C) ausgewählt ist aus Hydroxyethylcellulose, Celluloseacetobutyrat und Dicyandiamid oder deren Gemischen.
    6. Frühzündpulver nach einem der Ansprüche 1-5 des weiteren umfassend:
      (D) Verarbeitungshilfsmittel ausgewählt aus Calcium- und Magnesiumstearaten, Graphit, hochsiedenden Paraffinen und Citronensäureester und Acylcitronensäureester in einer Menge von 0,5-5 und bevorzugt 0,5-3 Gewichtsteilen.
    7. Frühzündpulver nach einem der Ansprüche 1-6 des weiteren umfassend
      (E) Hilfsbrennstoffe, ausgewählt aus elementarem Aluminium, Zirconium, Titan, Magnesium, Zink und Eisen in einer Menge von 0,5-20, bevorzugt 0,5-10 und insbesondere 0,5-5 Gewichtsteilen.
    8. Frühzündpulver nach einem der Ansprüche 1-7, des weiteren umfassend:
      (F) Füllstoffe, ausgewählt aus der Gruppe von Al2O3, TiO2, ZrO2, Fe2O3, Si3N4 und Bornitrid in einer Menge von 0,5-12, bevorzugt 0,5-10 und insbesondere 0,5-5 Gewichtsteilen.
    9. Frühzündpulver nach einem der Ansprüche 1-8, wobei der Brennstoff (A) in einer Menge von 20-40, bevorzugt 25-35 und insbesondere 28-32 Gewichtsteilen vorliegt
    10. Frühzündpulver nach einem der Ansprüche 1-9, wobei das Oxidationsmittel (B) in einer Menge von 40-80, vorzugsweise 50-75 und insbesondere 60-75 Gewichtsteilen vorliegt
    11. Frühzündpulver nach einem der Ansprüche 1-10, wobei der Stabilisator (C) in einer Menge von 0,5-20, bevorzugt 0,5-10 und insbesondere 0,5-5 Gewichtsteilen vorliegt.
    12. Verwendung eines Frühzündpulvers nach einem der Ansprüche 1 bis 11 für thermische Sicherungen für Airbag-Gasgeneratoren
    EP99913070A 1998-02-13 1999-02-11 Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren Expired - Lifetime EP1054849B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19805976A DE19805976C1 (de) 1998-02-13 1998-02-13 Frühzündpulver für thermische Sicherungen für Airbag-Gasgeneratoren
    DE19805976 1998-02-13
    PCT/DE1999/000414 WO1999041213A1 (de) 1998-02-13 1999-02-11 Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren

    Publications (2)

    Publication Number Publication Date
    EP1054849A1 EP1054849A1 (de) 2000-11-29
    EP1054849B1 true EP1054849B1 (de) 2002-05-02

    Family

    ID=7857656

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99913070A Expired - Lifetime EP1054849B1 (de) 1998-02-13 1999-02-11 Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren

    Country Status (8)

    Country Link
    EP (1) EP1054849B1 (de)
    JP (1) JP2002503624A (de)
    KR (1) KR20010040741A (de)
    AT (1) ATE216985T1 (de)
    AU (1) AU3136699A (de)
    CZ (1) CZ292350B6 (de)
    DE (2) DE19805976C1 (de)
    WO (1) WO1999041213A1 (de)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001090032A1 (de) * 2000-05-26 2001-11-29 Nigu Chemie Gmbh Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren
    DE20010154U1 (de) * 2000-06-07 2000-09-07 TRW Airbag Systems GmbH & Co. KG, 84544 Aschau Anzündmischung zur Verwendung in Gasgeneratoren
    DE202004014775U1 (de) * 2004-09-22 2005-02-10 Trw Airbag Systems Gmbh Gasgenerator
    DE102004062168A1 (de) * 2004-10-08 2006-04-13 Petri-Dn Gmbh Inflator Systems Stoffgemisch als thermisch initiierbare Anzündmischung
    CN100455553C (zh) * 2004-10-08 2009-01-28 彼得里-蒂恩充气系统两合公司 作为可热引发的引燃混合物的物质混合物
    DE102004057770B4 (de) * 2004-11-30 2008-07-31 Trw Airbag Systems Gmbh Pyrotechnische Zusammensetzung zur Verwendung als Frühzündmittel
    FR2883868B1 (fr) * 2005-03-30 2007-08-03 Davey Bickford Snc Compositions auto-initiatrices, initiateurs electriques utilisant de telles compositions et generateurs de gaz comportant de tels initiateurs
    GB0722384D0 (en) * 2007-11-15 2007-12-27 Green Benjamin J Pyrotechnic target
    DE102008025218B3 (de) * 2008-05-27 2009-11-12 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Initiator
    FR2945288B1 (fr) * 2009-05-05 2011-07-22 Snpe Materiaux Energetiques Compose solide pyrotechnique, obtention par voie seche et utilisation
    DE102015014428A1 (de) 2014-11-10 2016-05-12 Ruag Ammotec Gmbh Thermische Frühzündmittel

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3929530A (en) * 1966-11-21 1975-12-30 Dow Chemical Co Pyrotechnic disseminating formulation
    GB1290418A (de) * 1969-12-26 1972-09-27
    US3695948A (en) * 1970-05-22 1972-10-03 Dow Chemical Co Cast explosive composition containing thiourea
    WO1994001382A1 (en) * 1992-07-10 1994-01-20 Nippon Kayaku Kabushiki Kaisha Gas generating agent and gas generator for automotive airbag
    EP0706505B1 (de) * 1994-04-04 2005-11-16 Automotive Systems Laboratory Inc. Gasgeneratorselbstsentzündung mit einer chloratzusammensetzung
    DE19505568A1 (de) * 1995-02-18 1996-08-22 Dynamit Nobel Ag Gaserzeugende Mischungen
    DE19616627A1 (de) * 1996-04-26 1997-11-06 Dynamit Nobel Ag Anzündmischungen
    EP0914305B2 (de) * 1996-07-20 2007-04-04 Dynamit Nobel GmbH Explosivstoff- und Systemtechnik Thermische sicherung

    Also Published As

    Publication number Publication date
    CZ20002897A3 (cs) 2001-02-14
    WO1999041213A1 (de) 1999-08-19
    CZ292350B6 (cs) 2003-09-17
    EP1054849A1 (de) 2000-11-29
    DE19805976C1 (de) 1999-04-29
    DE59901347D1 (de) 2002-06-06
    JP2002503624A (ja) 2002-02-05
    KR20010040741A (ko) 2001-05-15
    AU3136699A (en) 1999-08-30
    ATE216985T1 (de) 2002-05-15

    Similar Documents

    Publication Publication Date Title
    DE69103720T2 (de) Zündmittelzusammensetzung für Gasaufblasvorrichtung.
    DE69424041T2 (de) Zündmittelzusammensetzungen für airbag-gasgeneratoren
    DE69423626T2 (de) Gaserzeugende rückstandsfreie azidfreie zusammensetzung
    DE4412871C2 (de) Zusammensetzungen für Gasgeneratoren
    EP1054849B1 (de) Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren
    DE69534615T2 (de) Gasgeneratorselbstentzündung mit einer Chloratzusammensetzung
    EP0722429A1 (de) Gasgeneratortreibstoff
    EP1890986B1 (de) Pyrotechnisches mittel
    DE19742203A1 (de) Partikelfreies gaserzeugendes Gemisch
    EP1345872B1 (de) Gasgeneratortreibstoff-zusammensetzung
    DE112006002030T5 (de) Selbstzündungs-/Booster-Zusammensetzung
    EP0914305B1 (de) Thermische sicherung
    EP1162183B1 (de) Anzündmischung zur Verwendung in Gasgeneratoren
    US6453816B2 (en) Temperature fuse with lower detonation point
    EP1932817A1 (de) Nitratoethylnitroamin Treibmittel für Automobilsicherheitssysteme
    EP1289910B1 (de) Frühzündpulver für thermische sicherungen für airbag-gasgeneratoren
    DE112007001437T5 (de) Thermisch initiierbare pyrotechnische Zusammensetzungen, Verwendung
    EP1064242B1 (de) Gasgeneratortreibstoffe
    DE102015014428A1 (de) Thermische Frühzündmittel
    DE112015002666T5 (de) Verbesserte Booster-Zusammensetzung
    EP1966120B1 (de) Salze der styphninsäure
    DE102020207700A1 (de) Zusammensetzung und gaserzeugende Mischung
    EP1805123A2 (de) Stoffgemisch als thermisch initiierbare anzündmischung
    DE19932950B4 (de) Eine gaserzeugende Zusammensetzung für eine aufblasbare Fahrzeuginsassenschutzvorrichtung
    DE102004057770B4 (de) Pyrotechnische Zusammensetzung zur Verwendung als Frühzündmittel

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000725

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE FR IT LI

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010522

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE FR IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20020502

    REF Corresponds to:

    Ref document number: 216985

    Country of ref document: AT

    Date of ref document: 20020515

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SERVOPATENT GMBH

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59901347

    Country of ref document: DE

    Date of ref document: 20020606

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030228

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030228

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030204

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20040210

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20040211

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040219

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20051031