EP1031623B1 - Verfahren zur katalytischen Spaltung von flüchtigen höheren Kohlenwasserstoffen - Google Patents

Verfahren zur katalytischen Spaltung von flüchtigen höheren Kohlenwasserstoffen Download PDF

Info

Publication number
EP1031623B1
EP1031623B1 EP00101992A EP00101992A EP1031623B1 EP 1031623 B1 EP1031623 B1 EP 1031623B1 EP 00101992 A EP00101992 A EP 00101992A EP 00101992 A EP00101992 A EP 00101992A EP 1031623 B1 EP1031623 B1 EP 1031623B1
Authority
EP
European Patent Office
Prior art keywords
fluidised bed
particles
raw gas
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00101992A
Other languages
English (en)
French (fr)
Other versions
EP1031623A2 (de
EP1031623A3 (de
Inventor
Johannes Dr. Albrecht
Claus Gretl
Ernst Bareuther
Peter Sturm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envirotherm GmbH
Original Assignee
Envirotherm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envirotherm GmbH filed Critical Envirotherm GmbH
Publication of EP1031623A2 publication Critical patent/EP1031623A2/de
Publication of EP1031623A3 publication Critical patent/EP1031623A3/de
Application granted granted Critical
Publication of EP1031623B1 publication Critical patent/EP1031623B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the invention relates to a process for the catalytic cleavage of in the gasification of carbonaceous masses, in particular biomass and sewage sludge, in a fluidized bed at temperatures of 700 to 1200 ° C, preferably 850 to 950 ° C, and a stoichiometric air factor ⁇ , based on the C. - and H content of the carbonaceous masses, from 0.28 to 0.60 incurred, contained in the crude gas volatile higher, preferably aromatic hydrocarbons of C 6 - to C 22 binding systems.
  • the raw gas must be subjected to gas purification prior to gasification downstream reuse, for example in rotary kilns, boiler plants for energy production, electricity machines, piston engines or the like.
  • gas purification prior to gasification downstream reuse, for example in rotary kilns, boiler plants for energy production, electricity machines, piston engines or the like.
  • the frequently condensing out higher aromatic hydrocarbons hinder gas purification considerably.
  • the D1 refers instead to a process for the production of synthesis gas.
  • the CO and hydrogen synthesis gas is recovered in a gasification process of solid fuels at a pressure of about 5 bar to 150 bar by treatment with oxygen and water vapor at 350 ° C to 700 ° C.
  • the crude gas thus obtained is post-treated in a subsequent reactor at a temperature between 800 ° C and 1400 ° C with the addition of a dust fuel or liquid hydrocarbons and oxygen in the presence of catalysts in a fluidized bed to remove higher hydrocarbons.
  • nickel, cobalt or chromium oxides and / or sulfides are disclosed.
  • the fluidized bed also contains oxides, spinels or silicates of aluminum and / or magnesium.
  • the particles forming the fluidized bed consist of at least one of oxides, hydroxides and carbonates of calcium, aluminum, silicon, nickel, magnesium, titanium, iron, cobalt and molybdenum and are based on the content of hydrocarbons in the raw gas, in stoichiometric Excess used.
  • a considerable reduction in the content of higher aromatic carbons, in particular the C 6 - to C 22 binding systems to contents ⁇ 500 mg / Nm 3 is achieved.
  • an "in-situ" cleavage ie a splitting of the higher aromatic hydrocarbons, is already achieved during the gasification of the carbonaceous masses by the substances forming the fluidized bed.
  • a particular embodiment of the method according to the invention is to be seen in that the fluidized bed leaving raw gas after a dedusting, ie after the deposition of the resulting from the fluidized bed dust particles, is subjected to a catalytic aftertreatment, in which the residual contents of higher hydrocarbons are almost completely split.
  • the fluidized bed leaving and dedusted raw gas is passed through honeycomb catalysts or bulk catalysts.
  • the still existing higher hydrocarbons are split catalytically at the gasification temperatures prevailing there in gas components which are not condensable at ambient temperatures.
  • catalysts can be dispensed with if up to 15% of the particles forming the fluidized bed consist of a conventional cobalt / molybdenum and / or nickel catalyst.
  • the raw gas at the inlet into the catalyst has such a high concentration of flue dust that this results in a cleaning effect.
  • FIG. 1 a flow chart shown in the drawing (FIG. 1) and an exemplary embodiment.
  • FIG. 2 the influence of different substances of the fluidized bed forming particles on the tar reduction in the raw gas is shown as a bar chart.
  • the crude gas formed by the gasification and leaving the reactor in an amount of 800 m 3 / hour still contains 0.329 g / Nm 3 of hydrocarbons which consist of 0.012 g / Nm 3 of naphthalene and 0.285 g / Nm 3 of BTX aromatics ,
  • naphthalene is dominantly present in the volatile higher aromatic hydrocarbons and can be considered as a guide for the cleavage of hydrocarbons, ie, if it is possible to reduce the naphthalene content to ⁇ 50 mg / Nm 3 , it can be assumed that the raw gas in terms of Content of hydrocarbons is so pure that it is easily suitable for further use in boiler systems, gas turbines, gas engines or the like.
  • the Rchgas is directly in the downstream of the fluidized bed reactor (1) recirculation cyclone (2) pre-dedusted from the particles forming the fluidized bed and fed the deposited particles to the fluidized bed reactor (1) via line (11) again.
  • the raw gas is passed through a in the dip tube (9) of the recycle cyclone (2) arranged honeycomb catalyst (10).
  • the honeycomb catalyst (10) via line (8) leaving raw gas is almost ⁇ 0.05 g / Nm 3 free of higher aromatic hydrocarbons and thus can be supplied to the further gas cleaning without the use of special separator stages.
  • the dedusted raw gas is fed to a boiler plant (12) with a heat exchanger and leaves it via line (16).
  • the crude gas is purified in a downstream bag filter (13) and then fed via line (15) for thermal utilization.
  • the fly ash and debris particles of the particles forming the fluidized bed are removed, discharged via line (17), agglomerated and returned to the fluidized-bed reactor.
  • the column diagram shown in Fig. 2 shows the effect of different fluidizing bed forming materials with a grain size of 0.03 to 3 mm on higher hydrocarbons contained in the raw gas.
  • the value of 100% corresponds to a content of hydrocarbons of 3 to 20 g / Nm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Sludge (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur katalytischen Spaltung von bei der Vergasung von kohlenstoffhaltigen Massen, insbesondere Biomassen und Klärschlamm, in einer Wirbelschicht bei Temperaturen von 700 bis 1200°C, vorzugsweise 850 bis 950°C, und einem stöchiometrischen Luftfaktor λ, bezogen auf den C- und H-Gehalt der kohlenstoffhaltigen Massen, von 0,28 bis 0,60 anfallenden, im Rohgas enthaltenen flüchtigen höheren, vorzugsweise aromatischen Kohlenwasserstoffen der C6- bis C22-Bindungssysteme.
  • Das bei der Vergasung kohlenstoffhaltiger Massen, wie Bioabfällen, Müll, Klärschlamm, Kohlen und dergleichen in einer Wirbelschicht unter Sauerstoffmangel bei Temperaturen von 700 bis 1200°C entstehende Rohgas enthält bis zu 20 g/Nm3 höhere, vorzugsweise aromatische Kohlenwasserstoffe der C6-bis C22-Bindungssysteme.
  • Das Rohgas muß in der Regel vor der der Vergasung nachgeschalteten Weiterverwertung, beispielsweise in Drehrohröfen, Kesselanlagen für Energieerzeugung, Strommaschinen, Kolbenmaschinen oder dergleichen einer Gasreinigung unterworfen werden. Die dabei häufig auskondensierenden höheren aromatischen Kohlenwasserstoffe behindern die Gasreinigung erheblich.
  • Üblicherweise wird der Teergehalt des Rohgases durch Waschen erniedrigt. Die dabei eintretende Bildung von Aerosolen erschwert die Teerentfernung. Diesem Nachteil versucht mittels einem aus der EP-B 0 310 584 bekannten Verfahren zur Reinigung von aus einem kohlenstoffhaltigen Material durch Vergasung hergestellten Rohgas abzuhelfen. Bei diesem Verfahren wird das in einer ersten Stufe erzeugten Rohgas in einer zweiten, aus einer zirkulierenden Wirbelschicht gebildeten Stufe in Gegenwart von Magnesium-Calciumcarbonat enthaltendem Material einer katalytischen Behandlung unterworfen. Dabei wird der Teergehalt im Rohgas auf weniger als 500 mm/Nm3 gesenkt. Ein solch niedriger Teergehalt erlaubt in aller Regel die Reinigung des Rohgases mittels Schlauchfiltern, da die niedrigen Teergehalte an den noch vorhandenen kohlenstoffreichen Flugstaubpartikeln absorbiert sind, so daß die Partikel rieselfähig bleiben und die Schlauchfilter nicht verkleben.
  • Die D1 betrifft statt dessen ein Verfahren zur Herstellung von Synthesegas. Das aus CO und Wasserstoff bestehende Synthesegas wird in einem Vergasungsprozeß von Festbrennstoffen bei einem Druck von ungefähr 5 bar bis 150 bar durch Behandlung mit Sauerstoff und Wasserdampf bei 350°C bis 700°C gewonnen. Das so gewonnene Rohgas wird in einem nachfolgenden Reaktor bei einer Temperatur zwischen 800°C und 1.400°C unter Zugabe eines Staubbrennstoffes oder von flüssigen Kohlenwasserstoffen und Sauerstoff in der Anwesenheit von Katalysatoren in einer Wirbelschicht nachbehandelt, um höhere Kohlenwasserstoffe zu entfernen. Als für die Wirbelschicht geeignete Katalysatoren werden Nickel, Cobalt oder Chromoxide und/oder Sulfide offenbart. Die Wirbelschicht enthält darüber hinaus Oxide, Spinelle oder Silikate des Aluminiums und/oder Magnesiums.
  • Die Lösung diese Aufgabe ergibt sich aus dem Verfahren mit den Merkmalen des Patentanspruches 1.
  • Die Merkmale der Ansprüche 2 bis 7 stellen Ausgestaltungen der Merkmale des Anspruchs 1 dar.
  • Es ist die Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren zur weitgehenden Entfernung der in den durch die Vergasung von kohlenstoffhaltigen Massen in einer Wirbelschicht erzeugten Rohgas enthaltenen höheren, vorzugsweise aromatischen Kohlenwaserstoffen der C6- bis C22-Bindungssysteme bereitzustellen.
  • Die das Wirbelbett bildenden Partikel bestehen aus wenigstens einem der Stoffe, ausgewählt aus Oxiden, Hydroxiden und Carbonaten des Calciums, Aluminiums, Siliciums, Nickels, Magnesiums, Titans, Eisens, Cobalts und Molybdäns und sind bezogen auf den Gehalt an Kohlenwasserstoffen im Rohgas, in stöchiometrischem Überschuß eingesetzt. Durch diese Maßnahme wird eine beachtliche Senkung des Gehalts an höheren aromatischen Kohlenstoffen, insbesondere der C6- bis C22-Bindungssysteme auf Gehalte < 500 mg/Nm3 erreicht. Durch die das Wirbelbett bildenden Stoffe wird während der Vergasung der kohlenstoffhaltigen Massen eine "in-situ"-Spaltung, d. h. eine Spaltung der höheren aromatischen Kohlenwasserstoffe bereits während der Vergasung der kohlenstoffhaltigen Massen erreicht.
  • Eine besondere Ausbildung des erfindungsgemäßen Verfahrens ist darin zu sehen, daß das die Wirbelschicht verlassende Rohgas nach einer Vorentstaubung, d. h. nach dem Abscheiden der aus dem Wirbelbett stammenden Flugstaubpartikel, einer katalytischen Nachbehandlung unterworfen wird, bei der die Restgehalte an höheren Kohlenwasserstoffen nahezu vollständig gespalten werden.
  • Zweckmäßigerweise wird das die Wirbelschicht verlassende und vorentstaubte Rohgas über Wabenkatalysatoren oder Schüttgutkatalysatoren geleitet. Dabei werden die noch vorhandenen höheren Kohlenwasserstoffe bei den dort vorherrschenden Vergasungstemperaturen katalytisch in bei Umgebungstemperaturen nicht kondensierbare Gaskomponenten gespalten. Auf derartige Katalysatoren kann jedoch verzichtet werden, wenn bis zu 15 % der die Wirbelschicht bildenden Partikel aus einem üblichen Cobalt/Molybdän- und/oder Nickel-Katalysator bestehen.
  • Eventuell vorhandener oder sich am Katalysator bildender Ruß wird durch gezielte Sauerstoff- und/oder Dampfzugabe vor dem Katalysator vermieden. Darüber hinaus besitzt das Rohgas am Eintritt in den Katalysator eine so hohe Flugstaubkonzentration, daß dadurch ein Reinigungseffekt eintritt.
  • Die Erfindung ist nachstehend anhand eines in der Zeichnung (Fig. 1) dargestellten Fließbilds und eines Ausführungsbeispiels näher erläutert. In Fig. 2 ist der Einfluß unterschiedlicher Stoffe der das Wirbelbett bildenden Partikel auf die Teerreduktion im Rohgas als Säulendiagramm wiedergegeben.
  • Die Anlage zur Durchführung des erfindungsgemäßen Verfahrens besteht aus einer zirkulierenden Wirbelschichteinrichtung mit vertikalem Reaktor (1), dem über Leitung (3) ein Gemisch aus 100 kg Aluminiumoxid und 600 kg Rohbauxit mit einer mittleren Korngröße d50 von 1,5 mm zur Ausbildung des Wirbelbetts zugeführt wird. Über Leitung (4) wird dem Reaktor (1) 300 kg Holz aufgegeben, das bei einer Temperatur von 910°C und einem stöchiometrischen Luftfaktor von λ = 0,39 und einer Gasgeschwindigkeit von 3,0 m/sec vergast wird. Die Luft wird über Leitung (5) in den Reaktor (1) eingeleitet. Die Rückstände aus der Vergasung werden aus dem Reaktor (1) über Leitung (7) entfernt. Das durch die Vergasung gebildete, aus dem Reaktor in einer Menge von 800 m3/Stunde austretende Rohgas enthält noch 0,329 g/Nm3 Kohlenwasserstoffe, die zu 0,012 g/Nm3 aus Naphthalin und zu 0,285 g/Nm3 aus BTX-Aromaten bestehen.
  • Das Naphthalin ist in den flüchtigen höheren aromatischen Kohlenwasserstoffen dominierend vorhanden und kann als Leitgröße für die Spaltung der Kohlenwasserstoffe angesehen werden, d. h., wenn es gelingt, den Naphthalingehalt auf < 50 mg/Nm3 zu senken, ist davon auszugehen, daß das Rohgas hinsichtlich des Gehalts an Kohlenwasserstoffen so rein ist, daß es für die Weiterverwertung in Kesselanlagen, Gasturbinen, Gasmotoren oder dergleichen problemlos geeignet ist.
  • Das Rchgas wird unmittelbar in dem dem Wirbelschichtreaktor (1) nachgeschalteten Rückführzyklon (2) von den das Wirbelbett bildenden Partikeln vorentstaubt und die abgeschiedenen Partikel dem Wirbelschichtreaktor (1) über Leitung (11) wieder zugeführt. Für den Fall, daß nahezu vollkommene Freiheit von flüchtigen höheren aromatischen Kohlenwasserstoffen im Rohgas verlangt wird, wird das Rohgas über einen im Tauchrohr (9) des Rückführzyklons (2) angeordneten Wabenkatalysator (10) geleitet. Das den Wabenkatalysator (10) über Leitung (8) verlassende Rohgas ist nahezu mit < 0,05 g/Nm3 frei von höheren aromatischen Kohlenwasserstoffen und kann somit der weiteren Gasreinigung ohne Einsatz besonderer Abscheiderstufen zugeführt werden. Das entstaubte Rohgas wird einer Kesselanlage (12) mit Wärmeaustauscher aufgegeben und verläßt diese über Leitung (16). Das Rohgas wird in einem nachgeschalteten Schlauchfilter (13) gereinigt und dann über Leitung (15) einer thermischen Verwertung zugeführt. Aus dem aus dem Rückführzyklon (2) austretenden Rohgas werden die noch darin enthaltenen Flugasche- und Abriebteilchen der das Wirbelbett bildenden Partikel entfernt, über Leitung (17) ausgetragen, agglomeriert und in den Wirbelschichtreaktor zurückgeleitet.
  • Das in Fig. 2 dargestellte Säulendiagramm zeigt die Wirkung unterschiedlicher das Wirbelbett bildenden Stoffe mit einer Körnung von 0,03 bis 3 mm auf im Rohgas enthaltene höhere Kohlenwasserstoffe. Der Wert von 100 % entspricht dabei einem Gehalt an Kohlenwasserstoffen von 3 bis 20 g/Nm3.

Claims (10)

  1. Verfahren zur katalytischen Spaltung von bei der Vergasung von kohlenstoffhaltigen Massen, insbesondere Biomassen und Klärschlamm, in einer Wirbelschicht bei Temperaturen von 700 bis 1200°C, vorzugsweise 850 bis 950°C und einem stöchiometrischen Luftfaktor λ, bezogen auf den C- und H-Gehalt der kohlenstoffhaltigen Massen, von 0,28 bis 0,60 anfallenden im Rohgas enthaltenen flüchtigen, höheren, vorzugsweise aromatischen Kohlenwasserstoffen der C6- bis C22-Bindungssysteme, dadurch gekennzeichnet, daß die katalytische Spaltung bereits während der Vergasung stattfindet und die das Wirbelschicht bildenden Partikel aus wenigstens einem der Stoffe, ausgewählt aus Oxiden, Hydroxiden und Carbonaten des Calciums, Aluminiums, Siliciums, Nickels, Magnesiums, Titans, Eisens, Cobalts und Molybdäns bestehen und, bezogen auf den Gehalt an Kohlenwasserstoffen im Rohgas, im stöchiometrischen Überschuß eingesetzt sind, wobei bis zu 15 % der die Wirbelschicht bildenden Partikel aus einem herkömmlichen Cobalt/Molybdän-Katalysator und/oder einem Nickel-Katalysator mit einer mittleren Korngröße d50 von 0,5 bis 3,0 mm bestehen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die das Wirbelbett bildenden Partikel aus wenigstens einem der Stoffe, ausgewählt aus Sand, Dolomit, Zeolith, Tonerde, Laterit und nickelhaltigen Materialien bestehen.
  3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die mittlere Korngröße d50 der das Wirbelbett bildenden Partikel 0,03 bis 3,0 mm beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Gasgeschwindigkeit 1,0 bis 7,0 m/sec beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Gasverweilzeit 2,0 bis 15,0 sec beträgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Rohgas in einem dem Wirbelschichtreaktor nachgeschalteten Rückführzyklon vorentstaubt wird, wobei die darin enthaltenen Flugasche- und Abriebteilchen der die Wirbelschicht bildenden Partikel abgetrennt und in die Wirbelschicht zurückgeführt werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Flugasche- und Abriebteilchen nach der Abtrennung agglomeriert werden.
  8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das die Wirbelschicht verlassende anschließend vorentstaubte Rohgas einer katalytischen Nachbehandlung unterzogen wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Rohgas über einen Wabenkatalysator strömt.
  10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Rohgas über einen Schüttgutkatalysator strömt.
EP00101992A 1999-02-24 2000-02-02 Verfahren zur katalytischen Spaltung von flüchtigen höheren Kohlenwasserstoffen Expired - Lifetime EP1031623B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19907901 1999-02-24
DE19907901A DE19907901C2 (de) 1999-02-24 1999-02-24 Verfahren zur katalytischen Spaltung von flüchtigen höheren Kohlenwasserstoffen

Publications (3)

Publication Number Publication Date
EP1031623A2 EP1031623A2 (de) 2000-08-30
EP1031623A3 EP1031623A3 (de) 2002-12-18
EP1031623B1 true EP1031623B1 (de) 2007-06-13

Family

ID=7898658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00101992A Expired - Lifetime EP1031623B1 (de) 1999-02-24 2000-02-02 Verfahren zur katalytischen Spaltung von flüchtigen höheren Kohlenwasserstoffen

Country Status (3)

Country Link
EP (1) EP1031623B1 (de)
AT (1) ATE364672T1 (de)
DE (2) DE19907901C2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1142981A3 (de) * 2000-03-23 2003-04-02 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Vorrichtung zur Stromerzeugung aus Biomasse durch Vergasung mit anschliessender katalytischer Beseitigung von Teerverbindungen aus dem Brenngas
DE10037762B4 (de) * 2000-03-23 2010-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Stromerzeugung aus Biomasse durch Vergasung mit anschließender katalytischer Beseitigung von Teerverbindungen aus dem Brenngas
AR047413A1 (es) 2004-01-13 2006-01-18 Dsm Ip Assets Bv Proceso para el blanqueado enzimatico de productos alimenticios
DE102007025420B4 (de) * 2007-05-31 2011-12-08 Karlsruher Institut für Technologie Verfahren zur Entfernung von Teersubstanzen aus Rohsynthesegasen mittels Katalysator
US8460410B2 (en) 2008-08-15 2013-06-11 Phillips 66 Company Two stage entrained gasification system and process
CN102827641B (zh) * 2012-09-10 2014-07-23 庆华集团新疆和丰能源化工有限公司 一种煤气化热解炉
CN114836225A (zh) * 2022-04-29 2022-08-02 浙江科技学院 一种酸性生物炭的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2532197C3 (de) * 1975-07-18 1980-05-22 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Erzeugung von Synthesegasen
GB1558996A (en) * 1976-07-27 1980-01-09 Gulf Oil Corp Fliud bed gasifier
US4828581A (en) * 1985-09-20 1989-05-09 Battelle Development Corporation Low inlet gas velocity high throughput biomass gasifier
SE8605211L (sv) * 1986-12-04 1988-06-05 Skf Steel Eng Ab Sett att framstella en gas lempad for energiproduktion
SE459584B (sv) * 1987-10-02 1989-07-17 Studsvik Ab Foerfarande foer foeraedling av raagas framstaelld ur ett kolhaltigt material
AT392079B (de) * 1988-03-11 1991-01-25 Voest Alpine Ind Anlagen Verfahren zum druckvergasen von kohle fuer den betrieb eines kraftwerkes
CA2127394A1 (en) * 1993-07-12 1995-01-13 William Martin Campbell Transport gasifier

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Biomass Gasification and Pyrolysis", August 1997, M. KALTSCHMITT & A.V. BRIDGEWATER, EUROPEAN COMMISION *
"Catalytic hot gas cleaning of gasification gas", VALTION TEKNILLINEN TUTKIMUSKESKUS (VTT), 1997, VTT Publication 330 *
IND. ENG. RES., vol. 36, 1997, pages 3800 - 3808 *
IND. ENG. RES., vol. 36, 1997, pages 5220 - 5226 *
IND. ENG. RES., vol. 36, 1997, pages 5227 - 5239 *
POWDER TECHNOLOGY, vol. 93, 1997, pages 93 - 100 *

Also Published As

Publication number Publication date
DE19907901C2 (de) 2001-11-29
DE50014394D1 (de) 2007-07-26
EP1031623A2 (de) 2000-08-30
ATE364672T1 (de) 2007-07-15
EP1031623A3 (de) 2002-12-18
DE19907901A1 (de) 2000-09-07

Similar Documents

Publication Publication Date Title
Hasler et al. Gas cleaning for IC engine applications from fixed bed biomass gasification
US8137655B2 (en) Production and conditioning of synthesis gas obtained from biomass
DE3102819C2 (de)
DE2914937A1 (de) Verfahren zum herstellen eines sauberen, praktisch hcn-freien synthesegases
US4755282A (en) Process for the reduction of NH3 in regeneration zone off gas by select recycle of certain-sized NH3 decomposition catalysts
EP0412587B1 (de) Verfahren zum Reinigen von Rohbrenngas aus der Vergasung fester Brennstoffe
JPS5884046A (ja) 石炭液化触媒の回収
EP0948583B1 (de) Verfahren zum vergasen fester brennstoffe in der zirkulierenden wirbelschicht
WO2007118736A1 (de) VERFAHREN UND VORRICHTUNG ZUR PROZESSINTEGRIERTEN HEIßEN GASREINIGUNG VON STAUB- UND GASFÖRMIGEN INHALTSSTOFFEN EINES SYNTHESEGASES
DE102006022265A1 (de) Verfahren und Vorrichtung zur optimierten Wirbelschichtvergasung
EP1031623B1 (de) Verfahren zur katalytischen Spaltung von flüchtigen höheren Kohlenwasserstoffen
DE3835494C2 (de) Katalytische Zweistufen-Verflüssigung von Kohle unter Verwendung von Kaskaden aus benutztem Siedebett-Katalysator
EP0264810B1 (de) Kraftwerksprozess mit einer Gasturbine
EP3805340B1 (de) Verfahren und verwendung einer anlage zur erzeugung eines kohlenwasserstoff- und wasserstoff-haltigen gasgemisches aus kunststoff
SU764616A3 (ru) Способ получени синтез-газа
DE2530761A1 (de) Verfahren zur herstellung eines brenngases aus oel
US3907662A (en) Process of preparing desulfurized light oil and fuel gas from heavy oil
DE102014203639A1 (de) Staubabscheidung aus dem Rohgas einer Flugstromvergasung
DE3130031A1 (de) Verfahren zur vergasung von kohle
DE2657601C2 (de) Verfahren und Vorrichtung zum Regenerieren von Fließbett-Krackkatalysatoren
EP3485961B1 (de) Waschkolonne zur reinigung von gasströmen
DE2556436A1 (de) Verfahren zum entfernen von ablagerungen an oberflaechen oder zum verhindern ihrer bildung
DE102014203593A1 (de) Vorrichtung zur Behandlung von Rohsynthesegas
DE1260666B (de) Verfahren zur Erzeugung von kohlenmonoxydarmem Fern-, Stadt- oder Synthesegas durch Druckvergasung und CO-Konvertierung des Rohgases
DD241609B3 (de) Verfahren zur verwertung von teer-oel-feststoff-wassergemischen aus festbettvergasungsanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MG TECHNOLOGIES AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 10J 3/54 A, 7C 10G 11/18 B

17P Request for examination filed

Effective date: 20030618

AKX Designation fees paid

Designated state(s): AT DE FR GB IT NL

17Q First examination report despatched

Effective date: 20040915

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENVIROTHERM GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070613

REF Corresponds to:

Ref document number: 50014394

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140212

Year of fee payment: 15

Ref country code: FR

Payment date: 20140219

Year of fee payment: 15

Ref country code: IT

Payment date: 20140225

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140403

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50014394

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 364672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302