EP0948583B1 - Verfahren zum vergasen fester brennstoffe in der zirkulierenden wirbelschicht - Google Patents

Verfahren zum vergasen fester brennstoffe in der zirkulierenden wirbelschicht Download PDF

Info

Publication number
EP0948583B1
EP0948583B1 EP97952838A EP97952838A EP0948583B1 EP 0948583 B1 EP0948583 B1 EP 0948583B1 EP 97952838 A EP97952838 A EP 97952838A EP 97952838 A EP97952838 A EP 97952838A EP 0948583 B1 EP0948583 B1 EP 0948583B1
Authority
EP
European Patent Office
Prior art keywords
gas
solids
hydrocarbons
dust
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97952838A
Other languages
English (en)
French (fr)
Other versions
EP0948583A1 (de
Inventor
Johannes Albrecht
Johannes Loeffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Technologies AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0948583A1 publication Critical patent/EP0948583A1/de
Application granted granted Critical
Publication of EP0948583B1 publication Critical patent/EP0948583B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/62Processes with separate withdrawal of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/008Reducing the tar content by cracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the invention relates to a process for gasifying solid fuels in the circulating fluidized bed, the fuels being gasified in a gasification reactor with the supply of oxygen-containing gas at temperatures in the range from 700 to 1000.degree. C., a gas-solid mixture from the upper area of the gasification reactor Separator feeds, from the separator dust and hydrocarbons including higher hydrocarbons with more than 6 carbon atoms in the molecule (C 6+ hydrocarbons) containing gas with a calorific value of 2000 to 8000 kJ / m 3 and separately separated solids and the solids leads at least partially back into the lower region of the gasification reactor.
  • the invention has for its object to modify the known methods so that the dust is removed dry and wet washing with the formation of waste water in the gas cleaning is eliminated. According to the invention, this is achieved in the process mentioned at the outset by passing the dust-containing gas from the separator through a cracking chamber, with the gas contained in the cracking chamber with the addition of gaseous oxygen in the temperature range from 800 to 1200 ° C.
  • Hydrocarbons largely splits and the content of the higher hydrocarbons (C 6+ hydrocarbons) in the gas is reduced to a maximum of 10% by weight of the content of these higher hydrocarbons in the gas coming from the separator by cooling the gas coming from the splitting chamber which conducts the cooled gas through a dedusting device and separates flue dust, that the cooled and dedusted gas is passed through at least one bed or a reactor with granular solids which binds pollutants and then dedusts the gas, and that at least part of the flue dust extracted from the dedusting device is removed s in a combustion chamber at temperatures in the range of 1000 to 1500 ° C with the addition of gas containing O 2 .
  • the solid fuels to be gasified can e.g. B. um municipal or industrial waste, biomass or coal act in different ways.
  • Municipal waste is gasified this is usually done before gasification pre-sorted, especially metal and glass parts be discarded.
  • the remaining waste is then still crushed, e.g. B. to piece sizes of at most 70 mm before it is gassed.
  • To increase the calorific value of the from the Gasification reactor coming gas can be the solid fuel dry before gasification.
  • the one from the bottom of the gasification reactor drawn ash is usually so inert that it z. B. still is usable for road construction, but at least the ashes are easy to deposit.
  • the one in the dust collector Air dust can be heavy metal and then disposed of in the usual way. You burn or gasifies at least part of the airborne dust in a combustion chamber at temperatures in the range of 1000 to 1500 ° C. It is recommended that in the combustion chamber formed gaseous products in the gasification reactor give.
  • the solid fuels to be gasified are fed in line (1) to a gasification reactor (2), where they come into contact with hot gases and particles in the state of the circulating fluidized bed.
  • Oxygen-containing fluidizing gas is introduced in line (3) and passed through a distribution chamber (4) with a grate (5) into the fluidized bed of the reactor (2).
  • the oxygen-containing gas in line (3) can be, for example, air or air enriched with O 2 .
  • the gasification in the reactor (2) takes place at temperatures of 700 to 1000 ° C and mostly at temperatures of at least 800 ° C.
  • Ash is drawn off through line (6) and, if necessary, is deposited after removal of metal components or for further use, e.g. B. in road construction.
  • the dust-containing gas of line (10) contains condensable hydrocarbons and mostly carbon-containing fly dusts. It is important to at least largely eliminate the higher hydrocarbons (C 6+ ) and convert them into substances that do not condense at the given temperatures and partial pressures.
  • the gas is passed through a cracking chamber (12) through which line (13) O 2 -containing gas, for. B. air, oxygen-enriched air or technically pure oxygen. Temperatures in the range from 800 to 1200 ° C and mostly 900 to 1100 ° C are ensured in the gap chamber (12). It is important here that the temperature and the residence time in the cracking chamber (12) are chosen so that the formation of liquid slag is avoided and at the same time an adequate cracking of the C 6+ hydrocarbons is ensured.
  • the gas coming from the gap chamber (12) in line (15) contains various types of solids and ash particles, which are here be referred to as flying dust.
  • a waste heat boiler (16) cooling the gas to temperatures of about 150 to 300 ° C and then there is one through line (17) Dedusting device (18).
  • This can be, for. B. um act a tissue or electrostatic precipitator.
  • the accruing Airborne dust which usually contains heavy metals, is in the Line (19) withdrawn, part of it can be transported (20) to a combustion chamber (21). The rest Airborne dust is removed from the process through line (22) away.
  • oxygen-containing gas for. B. air, enriched with O 2 or technically pure oxygen and burns the supplied dust at temperatures in the range of 1000 to 1500 ° C.
  • the resulting solid or liquid and gaseous combustion products are put together in the upper area of the reactor (2), where they are taken up by the fluidized bed. 1, liquid slag can also be drawn off from the combustion chamber (21) in such a way that it does not get into the reactor (2), see FIG. 2.
  • a gas which still contains an interfering content Has pollutants.
  • pollutants are e.g. B. mercury, chlorine and sulfur compounds.
  • the cooled gas is led through the Line (27) for cleaning, whereby the formation of Avoids waste water.
  • the gas to be cleaned is in contact with granular adsorbents brought.
  • These adsorbents can e.g. B. in a fixed bed, Moving bed or fluidized bed can be arranged or you can get one Use entrained flow reactor.
  • Moving bed reactor (30) shown which one through the line (31) feeds granular adsorbent material in the reactor (30) forms a bed (33) which slowly moves downwards.
  • the fill is approximately in the horizontal direction from to flows through cleaning gas.
  • the gas leaves the reactor (30) through the line (35) and is dusted by the filter (36) performed, for. B. a tissue or Can act electrostatic precipitator.
  • Cleaned gas leaves the filter (36) in line (37). That coming from the reactor (30) loaded adsorbent is removed in line (38), with the solids in the line separated in the filter (36) (39) mixed and subtracted.
  • Adsorption materials are particularly the following Options: hydrated lime, activated carbon, stove coke or Zeolites.
  • the mercury removal using a Low-aluminum zeolites are described in EP patent 638 351.
  • FIG. 2 gives the pollutant gas line (27) one Spray absorber (40), to which one passes through the line (41) milk of lime and possibly other adsorbents.
  • Gas and Solids flow through line (42) to a filter (43), which is e.g. B. can be a fabric or electrostatic filter can.
  • Chloride-containing solids are drawn off in line (45).
  • In the combustion chamber (21) is pulled through the liquid slag Line (23) and leads the combustion gas through the line (32) into the reactor (2).
  • Residual municipal waste is fed to a process according to FIG. 2.
  • the following data are partially calculated.
  • the residual waste which is delivered in an amount of 7500 kg / h, contains 24.5% by weight moisture and 30% by weight ash.
  • This waste is first dried to 5% by weight of residual moisture and then gasified in the reactor (2) at 900 ° C. and with the supply of 6230 Nm 3 / h of air.
  • the residence time of the gas in the gap chamber (12) is 1.5 seconds, air is supplied through line (13) and an outlet temperature of 1000 ° C. is reached.
  • the content of C 6+ hydrocarbons in line (15) is only 0.1% by volume.
  • 400 kg / h of dust are fed through the line (20) into the combustion chamber (21), which is fed with 1860 Nm 3 / h of air and in which 1300 ° C. can be reached.
  • Lime milk is added to the spray absorber (40) and the outlet temperature is kept at 160 ° C.
  • the adsorber (46) contains a zeolite fixed bed for mercury removal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Vergasen von Festbrennstoffen in der zirkulierenden Wirbelschicht, wobei man die Brennstoffe in einem Vergasungsreaktor unter Zufuhr von sauerstoffhaltigem Gas bei Temperaturen im Bereich von 700 bis 1000°C vergast, vom oberen Bereich des Vergasungsreaktors ein Gas-Feststoff-Gemisch einem Abscheider zuführt, aus dem Abscheider Staub und Kohlenwasserstoffe einschließlich höherer Kohlenwasserstoffe mit mehr als 6 C-Atomen im Molekül (C6+-Kohlenwasserstoffe) enthaltendes Gas mit einem Heizwert von 2000 bis 8000 kJ/m3 und getrennt davon abgeschiedene Feststoffe ableitet und die Feststoffe mindestens teilweise in den unteren Bereich des Vergasungsreaktors zurückführt.
Verfahren dieser Art sind aus DE-A-42 35 412 (hierzu korrespondiert US-A-5 425 317) und DE-A-44 12 004 bekannt. Bei den bekannten Verfahren wird das aus dem Abscheider kommende, brennbare Bestandteile enthaltende Gas unter Bildung flüssiger Schlacke vergast oder verbrannt, und die flüssige Schlacke wird aus dem Verfahren entfernt. Das bei der Verbrennung oder Vergasung entstehende Gas wird im Kontakt mit Waschflüssigkeit gereinigt. Dabei wird es notwendig, die gebrauchte Waschflüssigkeit aufzubereiten oder zu entsorgen. Beim aus DE-A-27 29 764 bekannten Verfahren wird die Asche aus der Vergasung nachverbrannt, und das aus dem Zyklon-Abscheider kommende heiße Gas wird sofort gekühlt, bevor es naß gereinigt wird.
Der Erfindung liegt die Aufgabe zugrunde, die bekannten Verfahren so abzuwandeln, daß der Flugstaub trocken entfernt wird und die Naßwäsche mit Bildung von Abwasser in der Gasreinigung entfällt. Erfindungsgemäß gelingt dies beim eingangs genannten Verfahren dadurch, daß man das staubhaltige Gas aus dem Abscheider durch eine Spaltkammer leitet, wobei man in der Spaltkammer unter Zufuhr von gasförmigem Sauerstoff im Temperaturbereich von 800 bis 1200°C und unter der Temperatur des Ascheschmelzpunktes die im Gas enthaltenen Kohlenwasserstoffe weitgehend spaltet und dabei den Gehalt an den höheren Kohlenwasserstoffen (C6+-Kohlenwasserstoffen) im Gas auf höchstens 10 Gew.-% des Gehalts an diesen höheren Kohlenwasserstoffen im aus dem Abscheider kommenden Gas verringert, daß man das aus der Spaltkammer kommende Gas kühlt, das gekühlte Gas durch eine Entstaubungseinrichtung leitet und Flugstaub abtrennt, daß man das gekühlte und entstaubte Gas durch mindestens ein Bett oder einen Reaktor mit Schadstoffe bindenden körnigen Feststoffen leitet und das Gas anschließend entstaubt, und daß man mindestens einen Teil des aus der Entstaubungseinrichtung abgezogenen Flugstaubs in einer Brennkammer bei Temperaturen im Berreich von 1000 bis 1500°C unter Zugabe von O2-haltigem Gas umsetzt.
Durch die Bedingungen in der Spaltkammer und den Bedingungen in der Gasreinigung unterbleibt die Kondensation und Sublimation der höheren Kohlenwasserstoffe (C6+) in den nachgeschalteten Gasreinigungseinrichtungen.
Bei den zu vergasenden Festbrennstoffen kann es sich z. B. um kommunalen oder industriellen Müll, Biomassen oder Kohlen verschiedener Art handeln. Bei der Vergasung von kommunalem Müll wird dieser üblicherweise vor der Vergasung zunächst vorsortiert, wobei insbesondere Metall- und Glasteile ausgesondert werden. Der verbleibende Restmüll wird dann noch zerkleinert, z. B. auf Stückgrößen von höchstens 70 mm, bevor er vergast wird. Zur Erhöhung des Heizwertes des aus dem Vergasungsreaktor kommenden Gases kann man die Festbrennstoffe vor der Vergasung trocknen.
Beim erfindungsgemäßen Verfahren fallen keine flüssigen Reststoffe an. Die vom unteren Bereich des Vergasungsreaktors abgezogene Asche ist üblicherweise so inert, daß sie z. B. noch für den Straßenbau verwertbar ist, zumindest aber ist die Asche leicht deponierbar. Der in der Entstaubungseinrichtung anfallende Flugstaub kann schwermetallhaltig sein und wird dann in üblicher Weise entsorgt. Man verbrennt oder vergast mindestens einen Teil des anfallenden Flugstaubes in einer Brennkammer bei Temperaturen im Bereich von 1000 bis 1500°C. Dabei empfiehlt es sich, die in der Brennkammer gebildeten gasförmigen Produkte in den Vergasungsreaktor zu geben.
Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert. Es zeigt
  • Fig. 1 das Fließschema einer ersten Verfahrensvariante und
  • Fig. 2 das Fließschema einer zweiten Verfahrensvariante.
  • Gemäß Fig. 1 werden die zu vergasenden Festbrennstoffe in der Leitung (1) einem Vergasungsreaktor (2) zugeführt, wo sie mit heißen Gasen und Partikeln im Zustand der zirkulierenden Wirbelschicht in Kontakt kommen. Sauerstoffhaltiges Fluidisierungsgas wird in der Leitung (3) herangeführt und durch eine Verteilkammer (4) mit einem Rost (5) in die Wirbelschicht des Reaktors (2) geleitet. Beim sauerstoffhaltigen Gas der Leitung (3) kann es sich zum Beispiel um Luft oder mit O2 angereicherte Luft handeln. Die Vergasung im Reaktor (2) erfolgt bei Temperaturen von 700 bis 1000°C und zumeist bei Temperaturen von mindestens 800°C. Asche wird durch die Leitung (6) abgezogen und wird, falls nötig, nach Entfernung von Metallbestandteilen deponiert oder einer weiteren Verwendung, z. B. im Straßenbau, zugeführt.
    Am oberen Ende des Reaktors (2) verläßt ein Gas-Feststoff-Gemisch den Reaktor durch den Kanal (8) und strömt in einen Zyklon-Abscheider (9), aus welchem durch die Leitung (10) staubhaltiges Brenngas abgezogen wird. Im Abscheider (9) anfallende Feststoffe werden durch die Leitung (11) zurück in den unteren Bereich des Reaktors (2) geführt.
    Das staubhaltige Gas der Leitung (10) enthält kondensierbare Kohlenwasserstoffe und zumeist kohlenstoffhaltige Flugstäube. Wichtig ist, die höheren Kohlenwasserstoffe (C6+) zumindest weitgehend zu beseitigen und sie in Substanzen zu überführen, die bei den gegebenen Temperaturen und Partialdrücken nicht kondensieren. Zu diesem Zweck führt man das Gas durch eine Spaltkammer (12), der man durch die Leitung (13) O2-haltiges Gas, z. B. Luft, mit Sauerstoff angereicherte Luft oder technisch reinen Sauerstoff zuführt. In der Spaltkammer (12) sorgt man für Temperaturen im Bereich von 800 bis 1200°C und zumeist 900 bis 1100°C. Wichtig ist hierbei, daß man die Temperatur und die Verweilzeit in der Spaltkammer (12) so wählt, daß die Bildung flüssiger Schlacke vermieden wird und gleichzeitig eine ausreichende Spaltung der C6+-Kohlenwasserstoffe gewährleistet ist.
    Das in der Leitung (15) aus der Spaltkammer (12) kommende Gas enthält verschiedenartige Feststoffe und Aschepartikel, die hier als Flugstaub bezeichnet werden. In einem Abhitzekessel (16) kühlt man das Gas auf Temperaturen von etwa 150 bis 300°C und gibt es dann durch die Leitung (17) einer Entstaubungseinrichtung (18) auf. Hierbei kann es sich z. B. um ein Gewebe- oder Elektrofilter handeln. Der anfallende Flugstaub, der üblicherweise schwermetallhaltig ist, wird in der Leitung (19) abgezogen, ein Teil davon kann auf dem Transportweg (20) zu einer Brennkammer (21) geführt werden. Der restliche Flugstaub wird durch die Leitung (22) aus dem Verfahren entfernt.
    Man führt der Brennkammer (21) durch die Leitung (24) sauerstoffhaltiges Gas, z. B. Luft, mit O2 angereicherte Luft oder technisch reinen Sauerstoff zu und verbrennt den zugeführten Flugstaub bei Temperaturen im Bereich von 1000 bis 1500°C. Die dabei entstehenden festen oder flüssigen und gasförmigen Verbrennungsprodukte gibt man gemeinsam in den oberen Bereich des Reaktors (2), wo sie vom Wirbelbett aufgenommen werden. Abweichend von Fig. 1 kann flüssige Schlacke aus der Brennkammer (21) auch so abgezogen werden, daß sie nicht in den Reaktor (2) gelangt, vergleiche Fig. 2.
    Aus der Entstaubungseinrichtung (18) zieht man in der Leitung (25) ein Gas ab, welches noch einen störenden Gehalt an Schadstoffen aufweist. Bei diesen Schadstoffen handelt es sich z. B. um Quecksilber-, Chlor- und Schwefel-Verbindungen. Um diese Schadstoffe weitgehend zu entfernen, führt man das Gas zunächst durch einen indirekten Kühler (26) und stellt die für die nachfolgende Behandlung günstige Temperatur z. B. im Bereich von 100 bis 150°C ein. Das gekühlte Gas führt man durch die Leitung (27) einer Reinigung zu, wobei man die Bildung von Abwasser vermeidet. In einem oder mehreren Betten oder Reaktoren wird das zu reinigende Gas mit körnigen Adsorbentien in Kontakt gebracht. Diese Adsorbentien können z. B. im Festbett, Wanderbett oder Wirbelbett angeordnet werden oder man kann einen Flugstromreaktor einsetzen.
    In der Zeichnung ist in schematischer Darstellung ein Wanderbettreaktor (30) dargestellt, dem man durch die Leitung (31) körniges Adsorptionsmaterial zuführt, das im Reaktor (30) eine Schüttung (33) bildet, die sich langsam nach unten bewegt. Dabei wird die Schüttung etwa in horizontaler Richtung vom zu reinigenden Gas durchströmt. Das Gas verläßt den Reaktor (30) durch die Leitung (35) und wird zum Entstauben durch das Filter (36) geführt, bei dem es sich z. B. um ein Gewebe- oder Elektrofilter handeln kann. Gereinigtes Gas verläßt das Filter (36) in der Leitung (37). Das aus dem Reaktor (30) kommende beladene Adsorptionsmittel wird in der Leitung (38) abgeführt, mit den im Filter (36) abgeschiedenen Feststoffen in der Leitung (39) gemischt und abgezogen.
    Bei der Auswahl und der Anwendung geeigneter, an sich bekannter Adsorptionsmaterialien gibt es insbesondere folgende Möglichkeiten: Kalkhydrat, Aktivkohle, Herdofenkoks oder Zeolithe. Die Quecksilber-Entfernung mit Hilfe eines aluminiumarmen Zeolithen ist im EP-Patent 638 351 beschrieben.
    Im Fließschema der Fig. 2 haben die bereits zusammen mit Fig. 1 erwähnten Bezugsziffern die dort erläuterte Bedeutung. Gemäß Fig. 2 gibt man das schadstoffhaltige Gas der Leitung (27) einem Sprühabsorber (40) auf, dem man durch die Leitung (41) Kalkmilch und möglicherweise noch andere Adsorbentien zuführt. Gas und Feststoffe strömen durch die Leitung (42) zu einem Filter (43), bei dem es sich z. B. um ein Gewebe- oder Elektrofilter handeln kann. Gereinigtes Gas gelangt in der Leitung (44) zu einem Adsorber (46) zur Abscheidung von Quecksilber, z. B. in einem Zeolith-Festbett, wie im EP-Patent 638 351 beschrieben. Chloridhaltige Feststoffe zieht man in der Leitung (45) ab. In der Brennkammer (21) zieht man flüssige Schlacke durch die Leitung (23) ab und leitet das Verbrennungsgas durch die Leitung (32) in den Reaktor (2).
    Beispiel:
    Einer Verfahrensführung gemäß Fig. 2 wird kommunaler Restmüll zugeführt. Die nachfolgenden Daten sind teilweise berechnet. Der Restmüll, der in einer Menge von 7500 kg/h angeliefert wird, enthält 24,5 Gew.-% Feuchte und 30 Gew.-% Asche. Dieser Müll wird zunächst auf 5 Gew.-% Restfeuchte getrocknet und dann im Reaktor (2) bei 900°C und unter Zufuhr von 6230 Nm3/h Luft vergast. Pro Stunde strömen 13000 Nm3 Gas durch die Leitung (-10), das Gas enthält 48 g/Nm3 Staub und 1 Vol.-% C6+-Kohlenwasserstoffe. In der Spaltkammer (12) beträgt die Verweilzeit des Gases 1,5 Sekunden, Luft wird durch die Leitung (13) zugeführt, und es wird eine Austrittstemperatur von 1000°C erreicht. Der Gehalt an C6+-Kohlenwasserstoffen in der Leitung (15) beträgt nur noch 0,1 Vol.-%. Durch die Leitung (20) gibt man 400 kg/h Staub in die Brennkammer (21), die mit 1860 Nm3/h Luft gespeist wird und in der 1300°C erreicht werden. Dem Sprühabsorber (40) führt man Kalkmilch zu und hält die Auslaßtemperatur auf 160°C. Der Adsorber (46) enthält ein Zeolith-Festbett zur Hg-Entfernung.

    Claims (2)

    1. Verfahren zum Vergasen von Festbrennstoffen in der zirkulierenden Wirbelschicht, wobei man die Brennstoffe in einem Vergasungsreaktor (2)unter Zufuhr von sauerstoffhaltigem Gas bei Temperaturen im Bereich von 700 bis 1000°C vergast, vom oberen Bereich des Vergasungsreaktors ein Gas-Feststoff-Gemisch einem Abscheider (9) zuführt, aus dem Abscheider Staub und Kohlenwasserstoffe einschließlich höherer Kohlenwasserstoffe mit mehr als 6 C-Atomen im Molekül enthaltendes Gas mit einem Heizwert von 2000 bis 8000 kJ/m3 und getrennt davon abgeschiedene Feststoffe ableitet und die Feststoffe mindestens teilweise in den unteren Bereich des Vergasungsreaktors zurückführt, dadurch gekennzeichnet, daß man das staubhaltige Gas aus dem Abscheider (9) durch eine Spaltkammer (12) leitet, wobei man in der Spaltkammer unter Zufuhr von gasförmigem Sauerstoff im Temperaturbereich von 800 bis 1200°C und unter der Temperatur des Ascheschmelzpunktes die im Gas enthaltenen Kohlenwasserstoffe weitgehend spaltet und dabei den Gehalt an den höheren Kohlenwasserstoffen (C6+-Kohlenwasserstoffen) im Gas auf höchstens 10 Gew.-% des Gehalts an diesen höheren Kohlenwasserstoffen im aus dem Abscheider kommenden Gas verringert, daß man das aus der Spaltkammer kommende Gas kühlt, das gekühlte Gas durch eine Entstaubungseinrichtung (18) leitet und Flugstaub abtrennt, daß man das gekühlte und entstaubte Gas durch mindestens ein Bett oder einen Reaktor (40) mit Schadstoffe bindenden körnigen Feststoffen leitet und das Gas anschließend entstaubt, und daß man mindestens einen Teil des aus der Entstaubungseinrichtung (18) abgezogenen Flugstaubs in einer Brennkammer (21) bei Temperaturen im Bereich von 1000 bis 1500°C unter Zugabe von 02-haltigem Gas umsetzt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die in der Brennkammer (21) gebildeten gasförmigen Produkte dem im Vergasungsreaktor (2) gebildeten, feststoffhaltigen Gas zumischt.
    EP97952838A 1996-12-18 1997-12-01 Verfahren zum vergasen fester brennstoffe in der zirkulierenden wirbelschicht Expired - Lifetime EP0948583B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19652770 1996-12-18
    DE19652770A DE19652770A1 (de) 1996-12-18 1996-12-18 Verfahren zum Vergasen fester Brennstoffe in der zirkulierenden Wirbelschicht
    PCT/EP1997/006716 WO1998027182A1 (de) 1996-12-18 1997-12-01 Verfahren zum vergasen fester brennstoffe in der zirkulierenden wirbelschicht

    Publications (2)

    Publication Number Publication Date
    EP0948583A1 EP0948583A1 (de) 1999-10-13
    EP0948583B1 true EP0948583B1 (de) 2001-01-24

    Family

    ID=7815198

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97952838A Expired - Lifetime EP0948583B1 (de) 1996-12-18 1997-12-01 Verfahren zum vergasen fester brennstoffe in der zirkulierenden wirbelschicht

    Country Status (8)

    Country Link
    EP (1) EP0948583B1 (de)
    JP (1) JP2001506288A (de)
    AU (1) AU722068B2 (de)
    BR (1) BR9714421A (de)
    CA (1) CA2275646A1 (de)
    DE (2) DE19652770A1 (de)
    ES (1) ES2155270T3 (de)
    WO (1) WO1998027182A1 (de)

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2003326241A (ja) * 2002-05-14 2003-11-18 Mitsubishi Heavy Ind Ltd バイオマスのガス化装置
    FI20055237L (fi) 2005-05-18 2006-11-19 Foster Wheeler Energia Oy Menetelmä ja laitteisto hiilipitoisen materiaalin kaasuttamiseksi
    US8475551B2 (en) 2006-05-05 2013-07-02 Plasco Energy Group Inc. Gas reformulating system using plasma torch heat
    NZ573217A (en) 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
    KR20090031863A (ko) 2006-05-05 2009-03-30 플라스코에너지 아이피 홀딩스, 에스.엘., 빌바오, 샤프하우젠 브랜치 측면 이동 시스템을 구비한 수평으로 배향된 가스화기
    AU2007247899A1 (en) 2006-05-05 2007-11-15 Plascoenergy Ip Holdings, S.L., Bilbao, Schaffhausen Branch A gas conditioning system
    BRPI0712491A2 (pt) 2006-05-05 2012-10-09 Plascoenergy Ip Holdings S L Bilbao sistema de homogeneização de gás para regular caracterìsticas de gás e processo para converter um gás de entrada a um gás regulado
    CN103995503A (zh) 2006-05-05 2014-08-20 普拉斯科能源Ip控股集团毕尔巴鄂沙夫豪森分公司 用于将含碳原料转化成气体的控制系统
    CN102057222B (zh) 2007-02-27 2013-08-21 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 具有加工过的原料/焦炭转化和气体重组的气化系统
    EP2034003A1 (de) * 2007-09-07 2009-03-11 ReSeTec Patents Geneva S.A. i.o. Verfahren und Vorrichtung zur Herstellung von Synthesegas aus Abfall
    DE102008035604A1 (de) * 2008-07-31 2010-02-04 Uhde Gmbh Vorrichtung und Verfahren zur Entgasung von Stäuben
    DE102010006192A1 (de) * 2010-01-29 2011-08-04 Uhde GmbH, 44141 Verfahren zur Biomasse-Vergasung in einer Wirbelschicht
    US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
    JP6163206B2 (ja) * 2012-07-09 2017-07-12 サザン カンパニー 高灰分で高灰分溶融温度を有する瀝青炭のガス化
    CN103224813B (zh) * 2013-04-15 2014-11-05 中国五环工程有限公司 煤炭气化的加压流化床工艺及加压流化床系统
    AT516987B1 (de) * 2015-03-24 2017-07-15 Gussing Renewable Energy Int Holding Gmbh Verfahren zum Kühlen eines heißen Synthesegases
    DE102015015594A1 (de) * 2015-12-04 2017-06-08 Wincip Gmbh Verfahren und Anlage zur Synthesegaserzeugung durch Vergasung von flüssigen, festen oder pastösen Kohlenstoffträgern in einer Wirbelschicht,
    DE102018002086A1 (de) * 2018-03-09 2019-09-12 Borsig Gmbh Quenchsystem
    CN110564453A (zh) * 2019-09-17 2019-12-13 昆明理工大学 一种分布式生物质气化与燃烧耦合的多联产系统和方法
    CN112961695A (zh) * 2020-12-31 2021-06-15 童铨 一种固体废弃物绝氧热解及高温熔融处理工艺及系统
    CN113263040B (zh) * 2021-03-26 2023-01-10 童铨 一种固体废弃物的低碳协同处理工艺

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4235412A1 (de) * 1992-10-21 1994-04-28 Metallgesellschaft Ag Verfahren zum Vergasen von brennbare Bestandteile enthaltenden Abfallstoffen
    DE4412004A1 (de) * 1994-04-07 1995-10-12 Metallgesellschaft Ag Verfahren zum Vergasen von Abfallstoffen in der zirkulierenden Wirbelschicht

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1491465A (en) * 1974-02-21 1977-11-09 Shell Int Research Process for the production of hydrogen and carbon monoxide-containing gas
    DE2729764A1 (de) * 1977-07-01 1979-01-04 Davy Bamag Gmbh Verfahren zur vergasung von kohlenstoffhaltigem material
    DE2945508C2 (de) * 1979-11-10 1983-11-24 Didier Engineering Gmbh, 4300 Essen Verfahren zum Vergasen von Kohlen bzw. kohlenstoffhaltigen Materialien und Anlage zur Durchführung dieses Verfahrens
    JPS57147590A (en) * 1981-03-06 1982-09-11 Agency Of Ind Science & Technol Gasification of coal and its device
    DE69008757T2 (de) * 1989-03-02 1994-09-08 Kawasaki Heavy Ind Ltd Verfahren und Einrichtung zur trockenen, simultanen Entschwefelung und Entstaubung.
    US5484465A (en) * 1993-08-02 1996-01-16 Emery Recycling Corporation Apparatus for municipal waste gasification

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4235412A1 (de) * 1992-10-21 1994-04-28 Metallgesellschaft Ag Verfahren zum Vergasen von brennbare Bestandteile enthaltenden Abfallstoffen
    DE4412004A1 (de) * 1994-04-07 1995-10-12 Metallgesellschaft Ag Verfahren zum Vergasen von Abfallstoffen in der zirkulierenden Wirbelschicht

    Also Published As

    Publication number Publication date
    ES2155270T3 (es) 2001-05-01
    EP0948583A1 (de) 1999-10-13
    WO1998027182A1 (de) 1998-06-25
    BR9714421A (pt) 2000-05-02
    AU722068B2 (en) 2000-07-20
    DE19652770A1 (de) 1998-06-25
    JP2001506288A (ja) 2001-05-15
    AU5657598A (en) 1998-07-15
    CA2275646A1 (en) 1998-06-25
    DE59702967D1 (de) 2001-03-01

    Similar Documents

    Publication Publication Date Title
    EP0948583B1 (de) Verfahren zum vergasen fester brennstoffe in der zirkulierenden wirbelschicht
    EP0594231B1 (de) Verfahren zum Vergasen von brennbare Bestandteile enthaltenden Abfallstoffen
    EP0828549B1 (de) Verfahren zur trockenen entschwefelung eines verbrennungsabgases
    EP0545241B1 (de) Verfahren zur thermischen Verwertung von Abfallstoffen
    EP0412587B1 (de) Verfahren zum Reinigen von Rohbrenngas aus der Vergasung fester Brennstoffe
    WO2007118736A1 (de) VERFAHREN UND VORRICHTUNG ZUR PROZESSINTEGRIERTEN HEIßEN GASREINIGUNG VON STAUB- UND GASFÖRMIGEN INHALTSSTOFFEN EINES SYNTHESEGASES
    EP0479350A1 (de) Verfahren zur Abtrennung von Schwermetallen und Dioxinen aus Verbrennungsabgasen
    DD296217A5 (de) Verfahren zur reinigung von rauchgasen aus verbrennungsanlagen
    EP1201731A1 (de) Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür geeigneter Vergaser
    EP0676465B1 (de) Verfahren zum Vergasen von Abfallstoffen in der zirkulierenden Wirbelschicht
    EP2011558B1 (de) Anlage und Verfahren zum Entfernen von Schadstoffen aus Abgas
    DE4128106C2 (de) Verfahren zur Abtrennung von hochkondensierten, polyzyklischen Kohlenwasserstoffen aus Abgasen
    DE3439600C2 (de)
    CH701016A2 (de) Verfahren zum Entfernen von Stickstoff aus Gichtgas um eine zusätzliche Einspeisung in eine Gasturbinenmaschine zu bilden.
    DE19714593A1 (de) Verfahren zum Verbrennen von Abfallstoffen in einer zirkulierenden Wirbelschicht
    DE19513832B4 (de) Verfahren zur Verwertung von Rest- und Abfallstoffen durch Kombination einer Wirbelschichtthermolyse mit einer Flugstromvergasung
    EP3323495B1 (de) Produktgasfilter für abgase von holz-gasreaktoren umfassend filterkerzen und eine zeolith-einspeisung
    DE3130031A1 (de) Verfahren zur vergasung von kohle
    EP0677319B1 (de) Verfahren und Vorrichtung zur Abtrennung von Dioxinen und Furanen aus dem Abgas eines Sinterprozesses
    DE4339973C1 (de) Verfahren zur Vergasung von Abfallstoffen
    DE19940683B4 (de) Verfahren zur trockenen Reinigung von Abgasen aus Sinteranlagen, Hüttenwerken oder sekundär metallurgischen Schmelzanlagen sowie staubförmiges Sorbens zur trockenen Reinigung solcher Abgase
    DE19729114A1 (de) Verfahren zum thermischen Behandeln von Flugstaub aus einem Abgas aus der Vergasung oder Verbrennung von Abfallstoffen
    AT393232B (de) Verfahren zum entfernen von schadstoffen aus heissen produktgasen
    WO2016001409A1 (de) Adsorption von voc an flugasche und bodenprodukt aus vergasungsprozessen
    DE2556436A1 (de) Verfahren zum entfernen von ablagerungen an oberflaechen oder zum verhindern ihrer bildung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990719

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT NL

    17Q First examination report despatched

    Effective date: 19991209

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT NL

    REF Corresponds to:

    Ref document number: 59702967

    Country of ref document: DE

    Date of ref document: 20010301

    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2155270

    Country of ref document: ES

    Kind code of ref document: T3

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: MG TECHNOLOGIES AG

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010418

    ET Fr: translation filed
    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: MG TECHNOLOGIES AG

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20011116

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20011120

    Year of fee payment: 5

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20011211

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20011212

    Year of fee payment: 5

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030701

    GBPC Gb: european patent ceased through non-payment of renewal fee
    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030901

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20021202

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20041213

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060701