EP1005049A1 - Dispositif amortisseur de chocs pour conteneurs de matières radioactives - Google Patents

Dispositif amortisseur de chocs pour conteneurs de matières radioactives Download PDF

Info

Publication number
EP1005049A1
EP1005049A1 EP99402871A EP99402871A EP1005049A1 EP 1005049 A1 EP1005049 A1 EP 1005049A1 EP 99402871 A EP99402871 A EP 99402871A EP 99402871 A EP99402871 A EP 99402871A EP 1005049 A1 EP1005049 A1 EP 1005049A1
Authority
EP
European Patent Office
Prior art keywords
parts
symmetry
elementary
container
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99402871A
Other languages
German (de)
English (en)
Inventor
Dominique Francois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TN International SA
Original Assignee
Societe pour les Transports de lIndustrie Nucleaire Transnucleaire SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe pour les Transports de lIndustrie Nucleaire Transnucleaire SA filed Critical Societe pour les Transports de lIndustrie Nucleaire Transnucleaire SA
Publication of EP1005049A1 publication Critical patent/EP1005049A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/08Shock-absorbers, e.g. impact buffers for containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers

Definitions

  • the invention relates to shock absorbing devices arranged around radioactive material containers (or packaging), especially those with a mass ranging from a few tonnes to more than 100 or 150 tonnes, generally used for the transport and / or storage of spent nuclear fuel or for all other radioactive materials; these devices allow the so-called packaging to withstand regulatory drop tests under conditions as they meet the safety criteria required by regulations applicable for the transport and storage of said radioactive material.
  • Containers for transporting and / or storing irradiated fuel or all other radioactive material often involves, due to the need for a shielding against radiation, thick metal walls (e.g. several centimeters to several tens of centimeters) made of steel or cast iron iron, and therefore have a high mass which can range from a few tonnes to over 150 tonnes.
  • these metal containers have at least one ferrule thick cylindrical, inside which the radioactive material takes place or the combustible elements, closed at its two ends by a bottom and a also thick cover. They are usually handled using pins attached to the ferrule.
  • the cylindrical shell can have a cross section circular or polygonal (rectangular, square ).
  • shock absorbing devices to enable them to withstand the tests prescribed by the applicable regulations, in particular the so-called free fall tests from a height of 9 meters.
  • the shock absorbers must be designed to be effective in all possible angles of fall.
  • these damping devices include metal covers which cover the ends of the container projecting beyond the metal body, which allows to take into account not only vertical falls along the longitudinal axis of the container, but also lateral (along a perpendicular axis above) or oblique (on the end angles of the container).
  • FIG. 1 shows an example of a known shock absorbing device, covering the end of a container comprising a ferrule (1) closed by a cover (2) and can be manipulated using the pins (3).
  • Said damping device comprises a metal cover (4) divided into compartments filled with pieces of wood (5) including fibers have a chosen orientation to provide effective cushioning in several directions; we see that the result is limited to obtaining amortization effective only when the stress caused by the shock is exerted in one direction parallel to the fibers. So with this shock absorbing device it is not possible to obtain isotropic damping (that is to say of the same efficiency whatever the angle of fall) over the entire surface of the hood.
  • the applicant sought a device providing shock absorption which is intrinsically isotropic in the event of a fall container at all possible angles, while being homogeneous, the lightest possible and simple to carry out.
  • the invention is a shock absorbing device secured to a container typically metallic for transporting or storing radioactive materials, characterized in that it comprises at least one cover covering at least in part of said container and forming a closed enclosure filled with a stack elementary parts having at least three concurrent axes of symmetry, the rotational symmetry is at least of order 3, that is to say that from a point it is necessary rotate no more than 120 ° to obtain an identical point.
  • the point of intersection of these axes preferably constitutes a center of symmetry of the part which is thus a part with centered symmetry.
  • these elementary pieces include regular polyhedra like tetrahedron with equilateral faces, the cube and all regular polyhedra having a greater number of equal faces, but also the sphere.
  • parts can be of various materials provided they have a capacity of sufficient deformation, for example ceramic, resin, reinforced or not.
  • metal parts preferably steel, aluminum, copper or their alloys, which have a good capacity to deform by absorbing a high energy without breaking during violent shocks, as is the case in a fall from a container.
  • the elementary parts are resin we can use massive parts, whereas in the case of elementary metal parts, it is particularly advantageous that they are hollowed out, respecting the conditions of symmetry above, so that they can deform better.
  • a cover is attached to each end of the container and therefore covers the ends of the shell, the bottom and the cover; it also overlaps the ends of the side wall of the shell.
  • the cover may cover the end of the container in whole or only in part; in the latter case it typically has the shape of a crown of L-shaped cross section covering the end angle of the container and leaving partly visible the center of the lid or of the bottom. It is possible to install intermediate covers filled with elementary parts according to the invention, encircling the shell between its ends.
  • the covers are generally metallic and made of sheet steel having a thickness sufficient not to be deformed by the load of the spheres under the usual conditions of handling and positioning of the cover and however sufficiently thin to be able to deform without breaking in the event of a fall.
  • the thickness of the sheet is typically between 2 and 8 mm depending on the mass of the container to be absorbed. They can be made of other materials, for example plastic.
  • the enclosure formed by the cover also has a height (or thickness) included generally between 10 and 100 cm; it is all the more important as the desired depreciation is high (for example for the most heavy) or that the elementary parts are more easily deformable.
  • symmetrical elementary parts make it easy to achieve regular, compact and homogeneous stacking in the entire enclosure without the need to take any special precautions; in particular the spheres are set up in a random way then are ordered automatically; stacking presents no risk of segregation. So the use of symmetrical elementary parts, such as spheres with symmetry centered, therefore isotropic and leading to an isotropic stacking, provides a isotropic damping by construction, whatever the angle of fall.
  • the elementary parts advantageously have an average diameter of between 20 and 80 mm. When they are too small, their manufacture and in particular their recess leading to thin parts can cause problems, and when they are too large the distribution of the homogeneity of the crushing forces can be affected. It is advantageous that the ratio between the height of the enclosure of the cover and the diameter of the elementary parts is between 2 and 20%.
  • the elementary parts are hollowed out, in particular the metallic spheres, they are preferably hollow parts with constant wall thickness; But they can also be obtained from solid parts in which there are drilled several identical holes of constant diameter, which can pass through them part by part, the distribution of which always respects the conditions of symmetry mentioned above.
  • the vacuum rate (ratio between the vacuum volume and the volume of the part) is adapted to the resistance to crushing that one wants to obtain. It is generally between 30 and 90% and preferably between 40 and 80%.
  • the ratio between the wall thickness and the average diameter, based on the largest dimension or the circumscribed circle, is typically between 0.03 and 0.3, which is complies with the above vacuum rate ranges.
  • the elementary parts according to the invention are deformable during impacts and it is remarkable to note that, unlike the use of tubular parts, they have, due to their specific symmetry characteristics, the property to deform in an identical or very similar manner whatever the direction of the force applied and that thus they provide the shock-absorbing device according to the invention, an isotropic and effective shock absorption whatever the angle of fall.
  • the device according to the invention can be adapted to all types of vacuum containers while retaining the essential property of isotropic behavior.
  • the elementary parts are all identical; however we can use parts of different diameters or vacuum rates in the same hood, for example bunk beds, to obtain characteristics progressive amortization.
  • a binder for example cement, glue, resin
  • the device according to the invention can easily be used for all container types ranging from heavier to lighter; just adjust the size and the vacuum rate of elementary metal parts to give them the crushing characteristics necessary for cushioning the container considered.
  • This cover is divided into compartments by walls (4a), each of the compartments containing a piece of wood whose fibers are oriented judiciously. It can be seen that the damping at a determined location depends both on the direction of the wood fibers and on the direction of the impact with respect to said fibers. Similar observations would be made by replacing the wood with a stack of arranged tubes whose orientation would be that of the fibers.
  • FIG. 2 which illustrates the invention
  • the cover (4) is filled with hollow spheres (6) all identical (only a few are shown) and that it covers the entire end of the container.
  • the cover has internal stiffeners (8). It might not cover it entirely and thus leave part of the cover (2) visible, it would then form a crown of straight section in the shape of an L.
  • the shell is equipped with an intermediate cover (7) surrounding it, according to the invention. It is filled with hollow spheres (6a) different from that of the end cover, because the crushing stresses sought in this area are different.
  • Figure 3 which illustrates elementary parts hollowed out according to the invention we see first of all in Figure 3a spheres, in profile and exploded, in which have were drilled holes (10) so as not to destroy the centered symmetry of the room. It is thus noted that there is a hole (10) opening on the surface at each of the ends of a system of 3 perpendicular axes of symmetry and that each holes centered on one of the axes of symmetry cross the sphere right through passing through its center. The sphere with its holes retains a symmetry of order 4.

Abstract

Dispositif amortisseur de chocs solidaire d'un conteneur de transport ou stockage de matières radioactives caractérisé en ce qu'il comprend au moins un capot (4,7) recouvrant au moins en partie ledit conteneur (1,2) et formant une enceinte fermée remplie d'un empilement de pièces élémentaires (6) ayant au moins trois axes de symétrie concourants dont la symétrie en rotation est au moins d'ordre 3, par exemple de petites sphères pleines ou creuses. <IMAGE>

Description

DOMAINE TECHNIQUE
L'invention concerne les dispositifs amortisseurs de chocs disposés autour de conteneurs (ou d'emballages) de matières radioactives, en particulier ceux ayant une masse allant de quelques tonnes à plus de 100 ou 150 tonnes, généralement utilisés pour le transport et/ou le stockage de combustibles nucléaires irradiés ou pour toutes autres matières radioactives; ces dispositifs permettent aux dits emballages de résister aux épreuves de chute réglementaires dans des conditions telles qu'ils satisfassent les critères de sûreté requis par les réglementations applicables pour le transport et pour le stockage desdites matières radioactives.
ETAT DE LA TECHNIQUE
Les conteneurs de transport et/ou stockage de combustibles irradiés ou de toutes autres matières radioactives comportent souvent, du fait de la nécessité d'un blindage contre les radiations, des parois métalliques épaisses (par exemple de plusieurs centimètres à plusieurs dizaines de centimètres) en acier ou en fonte de fer, et présentent donc une masse élevée pouvant aller de quelques tonnes à plus de 150 tonnes.
Généralement ces conteneurs métalliques comportent au moins une virole cylindrique épaisse, à l'intérieur de laquelle prennent place la matière radioactive ou les éléments combustibles, fermée à ses deux extrémités par un fond et un couvercle également épais. Ils sont manipulés habituellement à l'aide de tourillons fixés sur la virole. La virole cylindrique peut avoir une section droite circulaire ou polygonale (rectangulaire, carrée ...).
Tous ces conteneurs doivent être équipés de dispositifs amortisseurs de chocs pour leur permettre de résister aux épreuves prescrites par les réglementations applicables, en particulier les épreuves dites de chute libre d'une hauteur de 9 mètres. Les amortisseurs doivent être conçus pour être efficaces dans tous les angles de chute possibles.
En général, ces dispositifs amortisseurs comprennent des capots métalliques qui coiffent les extrémités du conteneur en débordant du corps métallique, ce qui permet de prendre en compte les chutes non seulement verticales selon l'axe longitudinal du conteneur, mais aussi latérales (selon un axe perpendiculaire au précédent) ou obliques (sur les angles d'extrémité du conteneur).
La figure 1 montre un exemple de dispositif amortisseur de chocs connu, coiffant l'extrémité d'un conteneur comprenant une virole (1) obturée par un couvercle (2) et manipulable à l'aide des tourillons (3). Ledit dispositif amortisseur comprend un capot métallique (4) divisé en compartiments remplis de pièces de bois (5) dont les fibres ont une orientation choisie pour procurer un amortissement efficace dans plusieurs directions; on voit que le résultat se limite à obtenir un amortissement efficace seulement quand la contrainte due au choc s'exerce dans une direction parallèle aux fibres. Ainsi avec ce dispositif amortisseur de choc il n'est pas possible d'obtenir un amortissement isotrope (c'est-à-dire d'une même efficacité quel que soit l'angle de chute) sur toute la surface du capot.
Il est connu de remplacer ledit capot compartimenté rempli de pièces de bois, par une couverture en métal massif tendre comme l'aluminium, par exemple selon le brevet US 4806771. L'emploi de métal massif comme amortisseur de chocs présente l'avantage d'être isotrope et d'avoir des propriétés d'écrasement bien identifiées, reproductibles et stables dans le temps. Par contre il entraíne un accroissement de poids significatif et comme le métal massif présente une contrainte à l'écrasement élevée, les accélérations transmises au conteneur lors d'une chute sont également élevées, en général supérieures à celles obtenues avec un capot rempli de bois, ce qui peut limiter son domaine d'emploi.
Pour avoir un dispositif d'amortissement moins raide que le métal massif et plus léger, il est connu d'utiliser, par exemple dans le brevet US 3675746, une pluralité de tubes métalliques rangés et empilés dans un plus gros tube. Un tel dispositif présente une résistance suffisante à l'écrasement dans une direction perpendiculaire au grand axe des tubes, par contre dans la direction axiale (flambage) elle est beaucoup trop élevée, l'amortissement étant alors trop raide et inefficace. Ainsi, même en disposant ces tubes dans un capot compartimenté et en les rangeant dans chaque compartiment selon un orientation particulière, il ne serait possible au mieux que de réduire l'anisotropie d'amortissement, comme cela est obtenu avec les capots remplis de pièces de bois ayant des orientations de fibre variées, évoqués plus haut.
Pour améliorer l'isotropie d'amortissement il est enfin connu du brevet JP 04042097 d'utiliser un capot compartimenté, chaque compartiment étant rempli de petites pièces métalliques, mises en vrac, du type anneaux de Raschig ou des morceaux de pièces découpés, par exemple de l'aluminium extrudé.
Lesdites petites pièces ayant un comportement individuel anisotrope, elles ne peuvent améliorer l'isotropie de l'amortissement qu'en moyenne et sous certaines conditions :
  • d'une part, l'empilement doit être aléatoire, chaque pièce devant avoir une orientation différente de celle de ses voisines; l'isotropie moyenne ainsi obtenue malgré un comportement anisotrope de chaque pièce ne peut pas écarter tout risque d'empilement anisotrope;
  • d'autre part, l'empilement doit, dans toutes les circonstances, demeurer le plus régulier possible, avec une bonne cohésion des pièces et des espaces entre elles aussi réduits et réguliers que possible, de façon à assurer une répartition homogène des pièces; cette condition pour avoir une isotropie acceptable de l'amortissement ne peut qu'être imparfaitement réalisée car elle est peu compatible avec la première condition d'une distribution aléatoire des pièces qui entraíne une orientation différente de chacune d'elles; ainsi la présence de compartiments dans le capot est essentielle pour favoriser et surtout tenter de maintenir un répartition suffisamment homogène des pièces en limitant leur possibilité de mouvements.
Malgré ces précautions, on voit qu'il est difficile, avec un tel dispositif, de justifier vis à vis des réglementations en vigueur que l'amortissement est intrinsèquement isotrope, tout risque d'empilement anisotrope n'étant pas écarté, et que la répartition des pièces est suffisamment homogène dans chaque compartiment ou d'un compartiment à l'autre.
Au vu de ces inconvénients, la demanderesse a recherché un dispositif procurant un amortissement de choc qui soit intrinsèquement isotrope en cas de chute du conteneur selon tous les angles possibles, tout en étant homogène, le plus léger possible et simple à réaliser.
DESCRIPTION DE L'INVENTION
L'invention est un dispositif amortisseur de chocs solidaire d'un conteneur typiquement métallique de transport ou stockage de matières radioactives, caractérisé en ce qu'il comprend au moins un capot recouvrant au moins en partie ledit conteneur et formant une enceinte fermée remplie d'un empilement de pièces élémentaires ayant au moins trois axes de symétrie concourants dont la symétrie en rotation est au moins d'ordre 3, c'est-à-dire qu'à partir d'un point il faut faire une rotation d'au plus 120° pour obtenir un point identique.
Le point d'intersection de ces axes constitue de préférence un centre de symétrie de la pièce qui est ainsi une pièce à symétrie centrée.
Ainsi ces pièces élémentaires comprennent les polyèdres réguliers comme le tétraèdre à faces équilatérales, le cube et tous les polyèdres réguliers ayant un plus grand nombre de faces égales, mais également la sphère.
Il est particulièrement avantageux d'utiliser un cube ou surtout une sphère qui ont une symétrie centrée, la sphère ayant de plus une forme simple et un nombre illimité d'axes de symétrie et donc une homogénéité et une isotropie parfaites.
Ces pièces peuvent être en matériaux variés pourvu qu'ils aient une capacité de déformation suffisante, par exemple céramique, résine, armés ou non. On utilise généralement des pièces métalliques, de préférence en acier, aluminium, cuivre ou leurs alliages, qui ont une bonne capacité à se déformer en absorbant une forte énergie sans se rompre lors de chocs violents, comme c'est le cas dans une chute d'un conteneur.
Quand les pièces élémentaires sont en résine on peut utiliser des pièces massives, tandis que dans le cas de pièces élémentaires métalliques, il est particulièrement avantageux qu'elles soient évidées, en respectant les conditions de symétrie ci-dessus, pour qu'elles puissent mieux se déformer.
En général un capot est fixé à chaque extrémité du conteneur et recouvre donc les extrémités de la virole, le fond et le couvercle; il recouvre également par débordement les extrémités de la paroi latérale de la virole. Le capot peut recouvrir l'extrémité du conteneur en totalité ou seulement en partie; dans ce dernier cas il a typiquement la forme d'une couronne de section droite en forme de L recouvrant l'angle d'extrémité du conteneur et laissant apparent en partie le centre du couvercle ou du fond. On peut installer des capots intermédiaires remplis de pièces élémentaires selon l'invention, ceinturant la virole entre ses extrémités.
Les capots sont généralement métalliques et confectionnés en tôle d'acier ayant une épaisseur suffisante pour ne pas être déformés par la charge des sphères dans les conditions habituelles de manutention et de mise en place du capot et toutefois suffisamment mince pour pouvoir se déformer sans se rompre en cas de chute. L'épaisseur de la tôle est typiquement comprise entre 2 et 8 mm suivant la masse du conteneur à amortir. Ils peuvent être en autres matériaux, par exemple plastique.
On peut prévoir d'améliorer la rigidité des capots par tout type de renforts extérieurs ou intérieurs, par exemple des entretoises reliant deux parois dudit capot et disposées entre les sphères de remplissage; ils peuvent participer à l'amortissement des chocs. Un tel capot est particulièrement performant tout en étant simple à réaliser, la présence de compartiments ne s'imposant pas.
L'enceinte formée par le capot a également une hauteur (ou épaisseur) comprise généralement entre 10 et 100 cm; elle est d'autant plus importante que l'amortissement recherché est élevé (par exemple pour les conteneurs les plus lourds) ou que les pièces élémentaires sont plus facilement déformables.
De plus le fait d'utiliser des pièces élémentaires symétriques selon l'invention permet de réaliser aisément un empilement régulier, compact et homogène dans toute l'enceinte sans qu'il soit nécessaire de prendre de précautions particulières; en particulier les sphères se mettent en place de façon aléatoire puis s'ordonnent automatiquement; l'empilement ne présente aucun risque de ségrégation. Ainsi l'emploi de pièces élémentaires symétriques, comme les sphères à symétrie centrée, donc isotropes et conduisant à un empilement isotrope, procure un amortissement isotrope par construction, quel que soit l'angle de chute.
Les pièces élémentaires ont avantageusement un diamètre moyen compris entre 20 et 80 mm. Quand elles sont trop petites, leur fabrication et en particulier leur évidement conduisant à des pièces minces peuvent poser des problèmes, et quand elles sont trop grosses la répartition de l'homogénéité des efforts d'écrasement peut être affectée.
Il est avantageux que le rapport entre la hauteur de l'enceinte du capot et le diamètre des pièces élémentaires soit compris entre 2 et 20 %.
Quand les pièces élémentaires sont évidées, en particulier les sphères métalliques, elles sont de préférence des pièces creuses à épaisseur de paroi constante ; mais elles peuvent être aussi obtenues à partir de pièces pleines dans lesquelles on a percé plusieurs trous identiques de diamètre constant, pouvant les traverser de part en part, dont la répartition respecte toujours les conditions de symétrie évoquées plus haut.
Le taux de vide (rapport entre le volume de vide et le volume de la pièce) est adapté à la résistance à l'écrasement que l'on veut obtenir. Il est généralement compris entre 30 et 90% et de préférence entre 40 et 80%. Pour les pièces creuses à épaisseur de paroi constante, le rapport entre l'épaisseur de la paroi et le diamètre moyen, basé sur la plus grande dimension ou le cercle circonscrit, est typiquement compris entre 0,03 et 0,3, ce qui est conforme aux plages de taux de vide précitées.
Les pièces élémentaires selon l'invention, en particulier les pièces évidées, sont déformables lors des chocs et il est remarquable de constater que, contrairement à l'emploi de pièces tubulaires, elles possèdent, du fait de leurs caractéristiques de symétrie spécifiques, la propriété de se déformer de façon identique ou très similaire quelle que soit la direction de l'effort appliqué et qu'ainsi elles procurent au dispositif amortisseur selon l'invention, un amortissement des chocs isotrope et efficace quel que soit l'angle de chute.
De plus on voit qu'en combinant le diamètre des pièces élémentaires et leur taux de vide on peut adapter le dispositif selon l'invention à tous les types de conteneurs en conservant la propriété essentielle d'un comportement isotrope.
Ainsi pour un même type de capot, ayant par exemple un encombrement constant et adaptable sur des conteneurs ayant un diamètre extérieur constant et des longueurs variables, il est possible de faire varier la dimension et/ou le taux de vide des pièces remplissant ledit capot de façon à adapter les caractéristiques d'amortissement du dispositif selon l'invention à la masse du conteneur, variable selon sa longueur et la charge qu'il contient.
En général les pièces élémentaires sont toutes identiques; cependant on peut utiliser des pièces de diamètres ou de taux de vide différents dans un même capot, par exemple mises en lits superposés, pour obtenir des caractéristiques d'amortissement progressives.
On peut aussi introduire avantageusement dans le capot, après mise en place des pièces élémentaires, un liant (par exemple ciment, colle, résine) se répandant dans les interstices entre lesdites pièces; cela permet, après solidification, d'améliorer leur cohésion, en particulier lorsqu'elles ne sont pas toutes identiques, ou d'éviter leur dispersion en cas de déchirure partielle du capot, tout en conservant alors leur capacité d'amortissement.
On voit que le dispositif selon l'invention peut aisément être utilisé pour tous les types de conteneurs allant des plus lourds aux plus légers; il suffit d'adapter la taille et le taux de vide des pièces métalliques élémentaires pour leur donner les caractéristiques d'écrasement nécessaires à l'amortissement du conteneur considéré.
On peut noter que la symétrie des pièces selon l'invention n'est pas considérée comme affectée par la présence de défauts ou reliquats, liés par exemple au procédé de fabrication desdites pièces (tels que bourrelets, trous d'accès à la cavité intérieure, traces d'usinage etc.), qui ne présenteraient pas la symétrie selon l'invention, dans la mesure où lesdits défauts ne sont pas de nature à remettre significativement en question le comportement isotrope des pièces. Autrement dit les pièces à symétrie au moins d'ordre 3 comportant ce type de défauts font partie de l'invention.
  • La figure 1 illustre un dispositif amortisseur de l'art antérieur comportant un capot compartimenté rempli de bois.
  • La figure 2 illustre un conteneur équipé à une de ses extrémités d'un dispositif amortisseur de choc selon l'invention.
  • La figure 3 illustre différents types de pièces évidées à symétrie centrée.
Sur la figure 1 on voit, comme cela a été déjà dit, la virole métallique épaisse (1) du conteneur, fermée à une extrémité par le couvercle épais (2). Le conteneur est manipulé par les tourillons (3). Un capot (4) coiffe la totalité de l'extrémité du conteneur et par débordement l'extrémité de la paroi extérieure de la virole (1).
Ce capot est divisé en compartiments par des parois (4a), chacun des compartiments contenant une pièce de bois dont les fibres sont orientées judicieusement. On s'aperçoit que l'amortissement à un endroit déterminé dépend à la fois du sens des fibres de bois et de la direction de l'impact par rapport aux dites fibres.
Des constatations de même type seraient faites en remplaçant le bois par un empilement de tubes rangés dont l'orientation serait celle des fibres.
Sur la figure 2, qui illustre l'invention, on voit que le capot (4) est rempli de sphères évidées (6) toutes identiques (seulement quelques unes sont représentées) et qu'il coiffe la totalité de l'extrémité du conteneur. Le capot comporte des raidisseurs intérieurs (8). Il pourrait ne pas la coiffer en totalité et laisser ainsi apparente une partie du couvercle (2), il formerait alors une couronne de section droite en forme de L.
On voit également que la virole est équipée d'un capot intermédiaire (7) la ceinturant, selon l'invention. Il est rempli des sphères évidées (6a) différentes de celle du capot d'extrémité, car les contraintes d'écrasement recherchées dans cette zone sont différentes.
Sur la figure 3 qui illustre des pièces élémentaires évidées selon l'invention on voit tout d'abord sur la figure 3a des sphères, en profil et en éclaté, dans lesquelles ont été percés des trous (10) de façon à ne pas détruire la symétrie centrée de la pièce. On note ainsi qu'il y a un trou (10) débouchant en surface à chacune des extrémités d'un système de 3 axes de symétrie perpendiculaires et que chacun des trous centrés sur un des axes de symétrie traverse la sphère de part en part en passant par son centre. La sphère avec ses trous conserve une symétrie d'ordre 4.
On pourrait également faire 4 trous disposés aux sommets d'un tétraèdre équilatéral inscrit dans la sphère qui traverseraient le tétraèdre depuis ses sommets jusqu'à son centre ou au centre des faces opposées.
Sur la figure 3b on voit, en profil et éclaté, une pièce élémentaire en forme de sphère creuse. Ce type de pièce peut comporter une trace de son procédé de fabrication sous la forme d'un trou dont le diamètre peut par exemple atteindre environ 10 mm pour des sphères creuses de diamètre 60 à 80 mm.
Sur la figure 3c on voit, en profil et éclaté, une pièce élémentaire en forme de cube possédant un trou (11) centré sur l'axe de symétrie de chacune de ses faces, ledit trou traversant le cube de part en part en passant par son centre. Ces trous n'altèrent pas la symétrie du cube.

Claims (13)

  1. Dispositif amortisseur de chocs solidaire d'un conteneur de transport ou stockage de matières radioactives caractérisé en ce qu'il comprend au moins un capot (4,7) recouvrant au moins en partie ledit conteneur (1,2) et formant une enceinte fermée remplie d'un empilement de pièces élémentaires (6) ayant au moins trois axes de symétrie concourants dont la symétrie en rotation est au moins d'ordre 3.
  2. Dispositif selon la revendication 1 caractérisé en ce que les pièces élémentaires ont un centre de symétrie qui est le point de concours des axes de symétrie.
  3. Dispositif selon l'une quelconque des revendications 1 ou 2 caractérisé en ce que les pièces élémentaires (6) sont choisies parmi soit de préférence les sphères, soit les polyèdres réguliers, de préférence les cubes.
  4. Dispositif selon l'une quelconque des revendications 1 à 3 caractérisé en ce que les pièces élémentaires sont métalliques, de préférence en acier, aluminium, cuivre ou leurs alliages.
  5. Dispositif selon l'une quelconque des revendications 1 à 4 caractérisé en ce que les pièces élémentaires (6) sont évidées, de préférence des pièces creuses à épaisseur de paroi constante ou des pièces dans lesquelles ont été percés des trous de diamètre constant disposés symétriquement sans détruire la symétrie desdites pièces élémentaires au moins d'ordre 3.
  6. Dispositif selon la revendication 5 caractérisé en ce que le taux de vide des pièces élémentaires (6) évidées, défini comme le rapport entre le volume de vide et le volume de la pièce, est compris entre 30 et 90% et de préférence entre 40 et 80%.
  7. Dispositif selon l'une quelconque des revendications 5 ou 6 caractérisé en ce que les pièces élémentaires (6) creuses à épaisseur de paroi constante ont un rapport entre leur épaisseur de matière et leur diamètre moyen compris entre 0,03 et 0,3.
  8. Dispositif selon l'une quelconque des revendications 1 à 7 caractérisé en ce que le diamètre moyen des pièces élémentaires (6) est compris entre 20 et 80 mm.
  9. Dispositif selon l'une quelconque des revendications 1 à 8 caractérisé en ce que l'enceinte formée par le capot (4) a une hauteur comprise entre 10 et 100 cm.
  10. Dispositif selon l'une quelconque des revendications 1 à 9 caractérisé en ce que le capot (4) a des renforts à l'extérieur ou de préférence dans l'enceinte sous forme d'entretoises.
  11. Dispositif selon l'une quelconque des revendications 1 à 10 caractérisé en ce que les pièces élémentaires (6) sont noyées dans un liant.
  12. Conteneur de transport ou stockage de matières radioactives caractérisé en ce qu'il comprend au moins un dispositif amortisseur de chocs de l'une quelconque des revendications 1 à 11.
  13. Conteneur selon la revendication 12 caractérisé en ce qu'il comprend un dispositif amortisseur de chocs à chacune de ses extrémités et optionnellement au moins un dispositif amortisseur de chocs autour de la virole (1).
EP99402871A 1998-11-23 1999-11-19 Dispositif amortisseur de chocs pour conteneurs de matières radioactives Withdrawn EP1005049A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9814868 1998-11-23
FR9814868A FR2786309B1 (fr) 1998-11-23 1998-11-23 Dispositif amortisseur de chocs pour conteneurs de matieres radioactives

Publications (1)

Publication Number Publication Date
EP1005049A1 true EP1005049A1 (fr) 2000-05-31

Family

ID=9533193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99402871A Withdrawn EP1005049A1 (fr) 1998-11-23 1999-11-19 Dispositif amortisseur de chocs pour conteneurs de matières radioactives

Country Status (6)

Country Link
US (1) US6234311B1 (fr)
EP (1) EP1005049A1 (fr)
JP (1) JP2000162386A (fr)
KR (1) KR20000035613A (fr)
FR (1) FR2786309B1 (fr)
TW (1) TW444208B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7107728B2 (en) 2000-05-23 2006-09-19 British Nuclear Fuels Plc Apparatus for the storage of hazardous materials

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111037B2 (ja) * 2003-04-04 2008-07-02 株式会社日立製作所 キャスク用緩衝体
JP4250474B2 (ja) * 2003-07-31 2009-04-08 株式会社東芝 キャスク
CN1839447B (zh) * 2004-08-10 2010-11-17 三菱重工业株式会社 重屏蔽容器的缓冲体
JP2011247701A (ja) * 2010-05-25 2011-12-08 Mitsubishi Heavy Ind Ltd 放射性物質格納容器
JP4681681B1 (ja) * 2010-07-02 2011-05-11 三菱重工業株式会社 キャスク用緩衝体
JP2014048190A (ja) * 2012-08-31 2014-03-17 Mitsubishi Heavy Ind Ltd 緩衝装置及び緩衝装置の製造方法
FR3020173B1 (fr) * 2014-04-22 2019-06-21 Tn International Emballage pour le transport et/ou l'entreposage de matieres radioactives, comprenant un amortisseur d'angle a efficacite renforcee
JP6722553B2 (ja) * 2016-09-07 2020-07-15 日立造船株式会社 緩衝構造体
FR3080705B1 (fr) * 2018-04-27 2020-10-30 Tn Int Emballage de transport et/ou d'entreposage de matieres radioactives permettant une fabrication facilitee ainsi qu'une amelioration de la conduction thermique
US11721447B2 (en) * 2019-12-27 2023-08-08 Holtec International Impact amelioration system for nuclear fuel storage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1411473A (fr) * 1964-10-09 1965-09-17 Lemer & Cie Conteneur de transport pour produits radioactifs résistant aux chocs et au feu
EP0035064A2 (fr) * 1980-02-21 1981-09-09 Nukem GmbH Protection pour le stockage des matériaux radioactifs autochauffants
SU1295076A1 (ru) * 1985-02-13 1987-03-07 Busarov Yurij P Виброудароизол тор
DE3929491A1 (de) * 1988-09-06 1990-03-15 Exploweld Ab Verfahren zur konstruktion von werkzeugen fuer das arbeiten mit stosswellen erzeugenden energiequellen
JPH0442097A (ja) * 1990-06-07 1992-02-12 Kimura Chem Plants Co Ltd 緩衝構造体
DE4025257A1 (de) * 1990-08-09 1992-02-13 Bio Pack Verpackungs Gmbh Co Stossdaempfendes huellmaterial zur verwendung in verpackungsbehaelter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304219A (en) * 1962-05-02 1967-02-14 Little Inc A Energy absorbing materials
US3667593A (en) * 1970-03-30 1972-06-06 John M Pendleton Flowable dunnage apparatus and method of packaging with flowable and compliable inflated dunnage material
US3999653A (en) * 1975-03-11 1976-12-28 The Dow Chemical Company Packaging for hazardous liquids
DE3028424C2 (de) * 1980-07-26 1984-05-30 Transnuklear Gmbh, 6450 Hanau Stoßdämpfer
DE3503057A1 (de) * 1985-01-30 1986-07-31 Hoechst Ag, 6230 Frankfurt Aufschaeumbares kunststoffgranulat und daraus hergestelltes packmaterial
US4972087A (en) * 1988-08-05 1990-11-20 Transnuclear, Inc. Shipping container for low level radioactive or toxic materials
US5312665A (en) * 1992-08-20 1994-05-17 Michelsen Packaging Company Biodegradable loose-fill packing material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1411473A (fr) * 1964-10-09 1965-09-17 Lemer & Cie Conteneur de transport pour produits radioactifs résistant aux chocs et au feu
EP0035064A2 (fr) * 1980-02-21 1981-09-09 Nukem GmbH Protection pour le stockage des matériaux radioactifs autochauffants
SU1295076A1 (ru) * 1985-02-13 1987-03-07 Busarov Yurij P Виброудароизол тор
DE3929491A1 (de) * 1988-09-06 1990-03-15 Exploweld Ab Verfahren zur konstruktion von werkzeugen fuer das arbeiten mit stosswellen erzeugenden energiequellen
JPH0442097A (ja) * 1990-06-07 1992-02-12 Kimura Chem Plants Co Ltd 緩衝構造体
DE4025257A1 (de) * 1990-08-09 1992-02-13 Bio Pack Verpackungs Gmbh Co Stossdaempfendes huellmaterial zur verwendung in verpackungsbehaelter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ Week 8740, Derwent World Patents Index; Class Q63, AN 87-282996, XP002111577 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 218 (P - 1357) 21 May 1992 (1992-05-21) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7107728B2 (en) 2000-05-23 2006-09-19 British Nuclear Fuels Plc Apparatus for the storage of hazardous materials

Also Published As

Publication number Publication date
TW444208B (en) 2001-07-01
US6234311B1 (en) 2001-05-22
KR20000035613A (ko) 2000-06-26
JP2000162386A (ja) 2000-06-16
FR2786309B1 (fr) 2001-01-26
FR2786309A1 (fr) 2000-05-26

Similar Documents

Publication Publication Date Title
EP1005049A1 (fr) Dispositif amortisseur de chocs pour conteneurs de matières radioactives
EP0058615B1 (fr) Dispositif d&#39;amortissement contre les chocs provoqués par des objets lourds
EP2577678B1 (fr) Emballage pour le transport et/ou entreposage de matieres radioactives, comprenant des moyens de conduction thermique ameliores
EP1580763B1 (fr) Dispositif de rangement prévu pour être placé dans un emballage destiné au transport de matières radioactives
EP3134901B1 (fr) Emballage pour le transport et/ou l&#39;entreposage de matieres radioactives, comprenant un amortisseur d&#39;angle a efficacite renforcee
WO1993023626A1 (fr) Attenuateur de choc d&#39;un vehicule contre un obstacle fixe
EP1344227B1 (fr) Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes
EP3347901B1 (fr) Dispositif de rangement ameliore pour l&#39;entreposage et/ou le transport d&#39;assemblages de combustible nucleaire
FR2804941A1 (fr) Structure de paroi amortisseuse de choc a hauteur energie et conteneur utilisant une telle structure
EP1525591B1 (fr) Paroi de protection a blindage anti-poincon pour conteneur et conteneur comprenant au moins une telle paroi
EP1576621B1 (fr) Conteneur pour le stockage/transport de matieres radioactives non irradiees telles que des assemblages de combustible nucleaire
EP4073822B1 (fr) Dispositif de rangement pour l&#39;entreposage et/ou le transport d&#39;assemblages de combustible nucleaire, présentant une conception à coûts réduits
EP2831888B1 (fr) Procede et dispositif mobile permettant de reduire les resistances thermiques entre deux solides
EP3743928B1 (fr) Panier de rangement pour matieres radioactives, presentant un encombrement optimise ainsi que des logements de geometrie plus precise
FR2744278A1 (fr) Procede pour le transport en securite d&#39;une matiere combustible nucleaire
EP3719814A1 (fr) Plot de guidage a deformation controlee pour structure destinee au chargement/dechargement d&#39;un emballage, notamment de transport et/ou d&#39; entreposage de matieres radioactives
FR3121265A1 (fr) Ensemble pour le transport d’hexafluorure d’uranium
WO2022038325A1 (fr) Ensemble pour le transport d&#39;hexafluorure d&#39;uranium
FR3121264A1 (fr) Ensemble pour le transport d’hexafluorure d’uranium, comprenant des capots amortisseurs de choc
WO2021209700A1 (fr) Dispositif de rangement pour l&#39;entreposage et/ou le transport d&#39;assemblages de combustible nucleaire, presentant une conception a couts reduits
EP3365896A1 (fr) Dispositif de stockage de materiaux dangereux
WO2022229216A1 (fr) Piece composite sacrificielle absorbant l&#39;energie lors d&#39;une collision d&#39;un vehicule
FR3024441A1 (fr) Emballage individuel de protection contre les chocs pour le conditionnement de bouteilles en cartons ou en caisses
EP0192856A1 (fr) Amortisseur pour panier d&#39;assemblages nucléaires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001117

AKX Designation fees paid

Free format text: BE DE FR GB SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGEMA LOGISTICS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050601