EP1000271A1 - Amortisseur de vibrations destine a un arbre de transmission tubulaire - Google Patents

Amortisseur de vibrations destine a un arbre de transmission tubulaire

Info

Publication number
EP1000271A1
EP1000271A1 EP98943782A EP98943782A EP1000271A1 EP 1000271 A1 EP1000271 A1 EP 1000271A1 EP 98943782 A EP98943782 A EP 98943782A EP 98943782 A EP98943782 A EP 98943782A EP 1000271 A1 EP1000271 A1 EP 1000271A1
Authority
EP
European Patent Office
Prior art keywords
mass body
sleeve
rubber spring
spring elements
vibration damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98943782A
Other languages
German (de)
English (en)
Inventor
Christian Lauble
Franz Moser
Gunther Schlimpert
Roland Flinspach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of EP1000271A1 publication Critical patent/EP1000271A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1414Masses driven by elastic elements
    • F16F15/1435Elastomeric springs, i.e. made of plastic or rubber
    • F16F15/1442Elastomeric springs, i.e. made of plastic or rubber with a single mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/371Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3835Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by the sleeve of elastic material, e.g. having indentations or made of materials of different hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/023Shafts; Axles made of several parts, e.g. by welding

Definitions

  • the invention relates to a vibration damper for a tubular cardan shaft in the drive train of a motor vehicle with a mass body mounted concentrically in a sleeve by means of rubber spring elements, wherein stop elements limiting the vibration path of the mass body are arranged at least in the radial direction between the mass body and the sleeve.
  • a vibration damper is known, the mass of which is fastened directly in a hollow drive shaft via a rubber spring element encasing it radially.
  • a second vibration damper is known, the mass body of which is mounted in a sleeve via a rubber spring element also encasing it. The sleeve is embedded in an elastic layer.
  • the vibration dampers described here are mainly installed in drive shafts or drive shaft tubes.
  • the cardan shaft tubes are stressed on the one hand by the drive torque on torsion and on the other hand by their own weight and the mass effect on bending. They must therefore be nich ⁇ only adequate torsional but also as light as possible.
  • the vibration damper In order for the vibration damper to increase the total mass of the propeller shaft tube with its mass body as little as possible, the vibration damper must be able to be arranged at the optimal location. This point is, for example, the vibration belly of a disturbing vibration to be repaid. The weight of the mass body can be the smallest at the optimal point.
  • each cardan shaft as a flexurally elastic rotor, usually due to their manufacturing tolerances, the centrifugal force increases with the speed.
  • the PTO shaft bends in the direction of its center of gravity.
  • the cardan shaft deflection initially increases proportionally to the centrifugal force component, which is only related to the center of gravity of the center of gravity, since the centrifugal force component related to the shaft deflection is still small. Above half the critical rotation speed, the shaft deflection rate quickly increases to a multiple of the center of gravity. In this area, the well-known rubber-sprung mass bodies can dangerously increase the unbalance of the overall construction due to an eccentric shift in the direction of the center of gravity of the drive shaft.
  • a pressure roller is known from GB 2 073 363 A, in which a rubber-sprung mass body is mounted.
  • the mass body is arranged in a sleeve clamped in the pressure roller via two rubber rings.
  • the rubber rings sit on the two free ends of the mass body.
  • a metal ring is arranged next to each rubber ring, which limits the radial deflection of the mass body.
  • the present invention is therefore based on the problem of creating a vibration damper which effectively dampens the bending vibrations of the cardan shaft for certain frequencies without noticeably increasing the unbalance of the cardan shaft in other frequency ranges - and thus also the noise development. Due to its design, the vibration damper should be able to be installed anywhere in the propeller shaft tube with little effort. Also the installation of several vibration dampers should be possible. Furthermore, safe vehicle operation should also be ensured if the rubber spring elements fixing the body are torn or torn.
  • the rubber-elastic stop elements - seen in the circumferential direction - are arranged between the rubber spring elements connecting the mass body and the sleeve.
  • the stop elements extend over a relatively large circumferential angle and fill up a large proportion of the space between the mass body, the adjacent rubber spring elements and the sleeve.
  • the mass body and / or the sleeve are formed in mutually opposite regions - seen in the circumferential direction - between the rubber spring elements in sections as stop elements which limit the vibration path of the mass body at least in the radial direction.
  • the stop elements limit the deflection of the mass body to the extent necessary in terms of vibration.
  • the vibration dampers dampen the vibration excited by the vehicle engine and / or the transmission.
  • the stop elements prevent a noticeable increase in the total imbalance by mechanically limiting the displacement of the mass body. This significantly reduces the noise level of the drive train.
  • the stop elements between the rubber spring elements also prevent increased unbalance if, for example, the rubber spring elements are torn due to aging and the mass body lies loosely in the propeller shaft tube. In this case, without the stop elements, the imbalance additionally generated by the mass body could destroy the cardan shaft.
  • This also applies to a vibration damper with a mass body arranged in the drive shaft by means of at least one rubber spring element.
  • the rubber-elastic stop elements are arranged directly between the mass body and the cardan shaft.
  • the mass body and / or the propeller shaft can be formed in mutually opposite areas - seen in the circumferential direction - between the rubber spring elements in sections as stop elements which limit the vibration path of the mass body at least in the radial direction.
  • the rubber spring elements are not supported by a sleeve on the drive shaft tube. They are glued in the cardan shaft, possibly with profiling to compensate for the bore tolerances of the cardan shaft.
  • the rubber spring elements and / or stop elements are coated, for example, with an adhesive which binds in the drive shaft tube when the wall is heated.
  • Figure 3 as Figure 2, but with radial stops
  • Figure 4 like Figure 2, but with an external mass body
  • Figure 5 as Figure 2, but with rubber spring elements located on both sides of the mass body.
  • FIG. 1 shows in a cross section four different exemplary embodiments of a vibration damper for an articulated shaft tube (1), such as is arranged in the drive train of a motor vehicle.
  • Vibration dampers each consist of a mass body (51-53) which is mounted centrally in a sleeve (10, 15) via rubber spring elements (31, 32).
  • the bonds between the rubber spring elements (31, 32) and the respective sleeves (10, 15) and the associated mass bodies (51-53) are preferably formed during vulcanization.
  • the sleeves (10) are cylindrical in the embodiments of the first two quadrants I and II.
  • the mass body (51) is a cylindrical tube. It is held, for example, by four rubber spring elements (31).
  • a rubber-elastic stop element (41) is arranged between two load-bearing rubber spring elements (31).
  • the stop element (41) of the exemplary embodiment in the first quadrant is attached to the mass body (51), while the stop element (42) of the exemplary embodiment in the second quadrant is fixed to the sleeve (10). In this case, a lateral migration of the mass body (51) is prevented, for example, by a flanged sleeve edge.
  • the stop elements (41, 42) extend over a relatively large circumferential angle, ie they fill a large proportion of that between the mass body (51), the adjacent rubber spring elements (41) and the sleeve (10 ) located Freiraume ⁇ (45).
  • the vibration path in the central compression direction becomes a Rubber spring element (31, 32) only slightly larger than in the central upset direction of a stop element (41, 42).
  • the free space (45) between each two adjacent rubber elements (31) has an almost circular cross section.
  • the resulting shape of the rubber elements (31) ensures an optimal bond to the metal components (10) and (51).
  • a sleeve (15) with a wavy longitudinal profile is used.
  • the longitudinal cuts to the profile shown here in cross section run parallel to the center line of the cardan shaft tube (1). Due to the wave shape of the profile, the sleeve (15) is at least so elastic that it can be pressed into the cardan shaft tube (1) without fitting problems.
  • the residual clamping force of the sleeve (15) required for a secure fit in the cardan shaft tube (1) is guaranteed over the entire tolerance range for the inside diameter of the cardan shaft tube (1). A special reworking of the inner wall (2) of the propeller shaft tube (1) can therefore be dispensed with.
  • a mass body (53) which has the cross section of a quad polygon.
  • the exposed polygon areas lie opposite the free wave valleys (16) the sleeve (15).
  • a thin rubber layer (44) or a layer of a comparable material is applied between the rubber spring elements (32).
  • the rubber layer (44) prevents, among other things, undesirable noises when the mass body (53) springs through suddenly and additionally dampens vibration excitation due to this movement.
  • FIG. 2 shows a vibration damper with a cylindrical sleeve (10), a tubular mass body (51) and one of the intermediate rubber spring elements (31).
  • the latter are narrower in the longitudinal direction than the sleeve (10).
  • the protrusion of the sleeve (10) serves, among other things. the protection of the rubber spring and stop elements (31, 41, 42) during assembly. Since the vibration dampers are installed by inserting the sleeves (10) into the cardan shaft tube (1), the insertion tools must be placed on the sleeve (10) so that the rubber spring elements (31) are not stressed during insertion.
  • the vibration damper can be attached to the laterally projecting sections, for example by means of spot welding on the propeller shaft tube (1). If necessary, attachment to a protruding section is sufficient.
  • the sleeve (10, 15) can be locked in front of and behind it, punched into the cardan shaft tube (1). Circumferential beads can be rolled in instead of the center points. The beads can only be attached to partial areas of the sleeve circumference.
  • the sleeve can adhere in the propeller shaft tube by means of an adhesive connection.
  • the sleeve can be joined using a cross-press fit.
  • a longitudinally slotted sleeve can be used for pipes with large bore tolerances.
  • a smooth or profiled rubber coating of the outer contour is also conceivable to produce better adhesion.
  • the rubber spring element (33) is installed between a mass body (52) delimited with rims (55, 56) and a sleeve (10) with a flanged edge (11).
  • the rims (55, 56) and the flanged edge (11) serve as radial stops.
  • the mass body (52) is deflected radially, the flange (55) comes into contact with the flanged edge (11) and the flange (56) with the projecting cylindrical section (12).
  • the contact zones can be covered with an elastic coating.
  • Figure 4 shows a vibration damper with a stepped sleeve (21).
  • the section with the larger diameter is the mounting section (22).
  • the vibration damper is fixed in the drive shaft tube (1) via this section.
  • the section with the smaller diameter is the support section (23).
  • the rubber spring elements (31) carrying the mass body (51) are arranged on the latter. Between the tubular mass body (51) here and the inner wall (2) of the cardan shaft tube (1) there is a narrow gap, the width of which corresponds to half the maximum deflection of the mass body (51). In the event of an unbalanced rotation of the cardan shaft tube (1), the mass body (51) hugs a large contact zone on the inner wall (2). If appropriate, the mass body (51) is coated on its outer surface with an elastic material.
  • the mass body (51) can also have the cross-sectional shape of a pot, so that it encompasses the support section (23) of the sleeve (21), cf. dashed extension of the mass body (51).
  • the mass body can have, for example, a cylindrical extension (59). The latter would be concentric within the outer tubular section (57) of the mass body (51).
  • a second vibration damper with a shape described in FIGS. 1 to 3 and 5 can be arranged in the carrier section (23).
  • FIG. 5 shows a vibration damper, the rubber spring elements (34, 35) of which are primarily subjected to thrust when the mass body (51) is radially deflected.
  • This stress which is favorable for the metal / rubber binding, is made possible by a sleeve (25) which is delimited on its end faces by, for example, flat disks (26, 27), with a disk (26, 27) and the mass body (51) between each Rubber spring element (34, 35) is arranged.
  • the rubber spring elements (34, 35) are designed here, for example, as closed rings.
  • the e.g. tubular body (51) can have a coating (44) on its outer contour.
  • the sleeve (25) is designed as a sleeve which is closed by a spot-welded cover (27).
  • the central bore of the vibration damper makes production easier, but is not absolutely necessary. If necessary, the mass body (51) can be widened as shown in dashed lines in FIG.
  • the radial play of the individual mass bodies (51-53) in the corresponding sleeves or in relation to the inner wall (2) of the cardan shaft tube (1) is, for example, approx. 5 to 1 mm.
  • the gap can have a fixed dimension. As a rule, higher interference frequencies will require smaller gaps in order not to make the unbalance of the combination of the propeller shaft tube (1) and mass body (51-53) too large.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

L'invention concerne un amortisseur de vibrations destiné à un arbre de transmission tubulaire de la chaîne cinématique d'un véhicule, comprenant un corps de masse monté de façon concentrique dans l'arbre de transmission ou dans un manchon fixé à l'arbre de transmission au moyen d'au moins un élément d'amortissement par caoutchouc. Des éléments de butée métalliques et/ou élastiques, limitant la course des vibrations du corps de masse au moins dans le sens radial, sont placés entre le corps de masse et le manchon. En variante, le corps de masse et/ou le manchon sont conçus dans des zones opposées et au moins par sections sous forme d'éléments de butée limitant la course des vibrations du corps de masse au moins dans le sens radial. L'amortisseur de vibrations selon l'invention amortit efficacement les vibrations de flexion de l'arbre de transmission pour certaines fréquences sans pour autant augmenter de façon notable le déséquilibre de l'arbre de transmission dans d'autres plages de fréquences.
EP98943782A 1997-08-02 1998-07-24 Amortisseur de vibrations destine a un arbre de transmission tubulaire Withdrawn EP1000271A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19733478 1997-08-02
DE19733478A DE19733478B4 (de) 1997-08-02 1997-08-02 Schwingungsdämpfer für eine rohrförmige Gelenkwelle
PCT/EP1998/004659 WO1999006730A1 (fr) 1997-08-02 1998-07-24 Amortisseur de vibrations destine a un arbre de transmission tubulaire

Publications (1)

Publication Number Publication Date
EP1000271A1 true EP1000271A1 (fr) 2000-05-17

Family

ID=7837807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98943782A Withdrawn EP1000271A1 (fr) 1997-08-02 1998-07-24 Amortisseur de vibrations destine a un arbre de transmission tubulaire

Country Status (4)

Country Link
US (1) US6837345B1 (fr)
EP (1) EP1000271A1 (fr)
DE (1) DE19733478B4 (fr)
WO (1) WO1999006730A1 (fr)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142822A1 (de) * 2001-08-22 2003-03-27 Woco Avs Gmbh Innentilger
US20030139217A1 (en) * 2002-01-23 2003-07-24 Lin Zhu Shaft damper
JP2003240052A (ja) * 2002-02-19 2003-08-27 Showa Corp ダイナミックダンパ及びプロペラシャフト
JP3882902B2 (ja) 2002-02-22 2007-02-21 株式会社ショーワ ダイナミックダンパ及びプロペラシャフト
JP3882903B2 (ja) * 2002-02-22 2007-02-21 株式会社ショーワ ダイナミックダンパ及びプロペラシャフト
JP3897609B2 (ja) * 2002-02-22 2007-03-28 株式会社ショーワ ダイナミックダンパ及びプロペラシャフト
JP3897610B2 (ja) * 2002-02-22 2007-03-28 株式会社ショーワ ダイナミックダンパの製法
CA2511210A1 (fr) * 2004-07-14 2006-01-14 The Pullman Company Amortisseur de masse accorde multi-direction a ensemble unique
JP4421500B2 (ja) * 2005-03-23 2010-02-24 倉敷化工株式会社 防振装置
US7774911B2 (en) * 2006-02-27 2010-08-17 American Axle & Manufacturing, Inc. Method for attenuating driveline vibrations
US20070267924A1 (en) * 2006-05-16 2007-11-22 A. O. Smith Corporation Vibration damping rotor assembly for rotating machinery
JP2009540226A (ja) * 2006-06-09 2009-11-19 エスゲーエフ ジュートドイッチェ ゲレンクシャイベンファブリーク ゲーエムベーハー ウント コムパニー カーゲー 少なくとも一本のシャフトを介して振動を減衰してトルクを伝達するためのトルク伝達装置
FR2918107B1 (fr) * 2007-06-26 2013-04-12 Snecma Dispositif amortisseur adapte aux arbres de turbomachine.
US8342058B2 (en) 2007-06-28 2013-01-01 Hillsdale Automotive, Llc Recessed belt damper
US8038133B2 (en) * 2007-09-13 2011-10-18 Mcpherson Mathew A Coaxial tube damper
US8308588B2 (en) * 2009-04-28 2012-11-13 Schaeffler Technologies AG & Co. KG Timing chain pivoting guide having a rubber spring element
US8167730B2 (en) * 2009-09-21 2012-05-01 Gkn Driveline North America, Inc. Tuned absorber
DE102011054110B4 (de) * 2011-09-30 2013-05-16 Gkn Driveline Deutschland Gmbh Antriebswellenanordnung
US9115840B2 (en) * 2012-06-29 2015-08-25 Denso International America, Inc. Snap on vibration damper
US9360271B1 (en) 2013-03-14 2016-06-07 Mcp Ip, Llc Vibration damper
DE102013106291B4 (de) * 2013-06-17 2015-03-26 Trelleborgvibracoustic Gmbh Schwingungstilger
US9234549B2 (en) 2013-09-13 2016-01-12 Paladin Brands Group, Inc. Torsional coupling for a mobile attachment device
US9033807B1 (en) 2013-10-30 2015-05-19 American Axle & Manufacturing, Inc. Propshaft assembly with damper
US8832941B1 (en) 2013-11-14 2014-09-16 Cardinal Machine Company Method for assembling a propshaft assembly
DE102013112854B4 (de) * 2013-11-21 2016-05-19 Trelleborgvibracoustic Gmbh Drehschwingungstilger
US9895779B2 (en) * 2014-04-10 2018-02-20 Temper Axle Products Corporation Radial springs and methods of installing and uninstalling radial springs
US8863390B1 (en) 2014-04-16 2014-10-21 American Axle & Manufacturing, Inc. Method for fabricating damped propshaft assembly
US9297435B2 (en) * 2014-05-20 2016-03-29 The Pullman Company Tuned vibration absorber
WO2016014531A1 (fr) 2014-07-25 2016-01-28 Dayco Ip Holdings, Llc Amortisseur de vibrations de torsion basse fréquence
FR3036153B1 (fr) * 2015-05-12 2017-06-09 Messier Bugatti Dowty Galet d'entrainement.
CN105240431A (zh) * 2015-09-23 2016-01-13 无锡市中捷减震器有限公司 底盘轴衬套减震装置
US9849971B2 (en) * 2015-12-21 2017-12-26 Goodrich Corporation Brake axle sleeve
WO2018111957A1 (fr) * 2016-12-14 2018-06-21 Borgwarner Inc. Système amortisseur de groupe motopropulseur pour module d'embrayage unidirectionnel sélectionnable
JP6917200B2 (ja) * 2017-06-06 2021-08-11 Nok株式会社 ダイナミックダンパ
JP6917199B2 (ja) * 2017-06-06 2021-08-11 Nok株式会社 ダイナミックダンパ
JP6936051B2 (ja) * 2017-06-06 2021-09-15 Nok株式会社 ダイナミックダンパ
JP2019070396A (ja) * 2017-10-06 2019-05-09 Nok株式会社 ダイナミックダンパ
DE102017217987A1 (de) 2017-10-10 2019-04-11 Martin Schmid Schwingungstilger
US10677312B2 (en) * 2018-02-15 2020-06-09 General Electric Company Friction shaft damper for axial vibration mode
JP7125274B2 (ja) * 2018-03-30 2022-08-24 倉敷化工株式会社 防振装置の製造方法
US10907698B2 (en) 2018-05-03 2021-02-02 Nissan North America, Inc. Dynamic damper
CN108506417A (zh) * 2018-05-23 2018-09-07 威固技术(安徽)有限公司 一种内置式传动轴动力吸振器
JP7401206B2 (ja) * 2018-12-04 2023-12-19 Nok株式会社 ダイナミックダンパ
JP7329372B2 (ja) * 2019-06-25 2023-08-18 Nok株式会社 ダイナミックダンパ
NL2023862B1 (en) * 2019-09-20 2021-05-25 Mps Holding Bv A mandrel for printing apparatus, a printing cylinder, a printing apparatus
CN112165233B (zh) * 2020-09-07 2023-08-18 黄开午 圆振动电机
JP7327352B2 (ja) * 2020-10-28 2023-08-16 トヨタ自動車株式会社 ダイナミックダンパ
JP7359128B2 (ja) 2020-10-28 2023-10-11 トヨタ自動車株式会社 ダイナミックダンパ
DE102021108890A1 (de) * 2021-04-09 2022-10-13 Vibracoustic Se Wellentilger
EP4403750A1 (fr) * 2023-01-20 2024-07-24 Honeywell International Inc. Système de montage pour boîte de vitesses comprenant une douille ondulée
SE2350248A1 (en) * 2023-03-06 2024-01-12 Volvo Truck Corp Propeller shaft assembly for a motor vehicle

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1850210A (en) * 1929-09-27 1932-03-22 Walter E Krotee Insulated driving connection
US3403899A (en) * 1966-04-29 1968-10-01 Gen Motors Corp Viscous damped bushing
DE2061625C3 (de) * 1970-12-15 1980-03-06 Daimler-Benz Ag, 7000 Stuttgart Zwischenlager für die Gelenkwelle von Kraftfahrzeugen
IT1053964B (it) * 1975-02-26 1981-10-10 Daimler Benz Ag Dispositivo per smorzare le oscillazioni nelle trasmissione di autoveicoli
DE2747225C2 (de) 1977-10-21 1982-04-22 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart In einem Kraftfahrzeug elastisch gelagerte Antriebseinheit
DE2841505C2 (de) * 1978-09-23 1983-04-07 Boge Gmbh, 5208 Eitorf Hydraulisch dämpfendes Gummilager
DE3011384A1 (de) * 1980-03-25 1981-10-08 E.C.H. Will (Gmbh & Co), 2000 Hamburg Vorrichtung zum bedrucken einer endlosen materialbahn
DE3012886C2 (de) 1980-03-31 1982-02-25 Rud-Kettenfabrik Rieger & Dietz Gmbh U. Co, 7080 Aalen Bauteil für Kettengeschirre
US4486183A (en) * 1980-06-30 1984-12-04 The Gates Rubber Company Torsionally elastic power transmitting device and drive
JPS57200741A (en) * 1981-06-03 1982-12-09 Nissan Motor Co Ltd Power unit mount body of car
US4571215A (en) * 1983-06-08 1986-02-18 Boroloy Industries International, Inc. Vibration dampener apparatus
JPS6014627A (ja) 1983-07-06 1985-01-25 Nissan Motor Co Ltd サスペンションメンバの筒状弾性ブッシュ
GB2165333A (en) * 1984-09-26 1986-04-09 Steven Odobasic Laminated torsion elements
DE3509128C1 (de) * 1985-03-14 1986-10-02 Jean Walterscheid Gmbh, 5204 Lohmar Lagerring
DE3632418A1 (de) * 1986-09-24 1988-03-31 Bayerische Motoren Werke Ag Anordnung zur schwingungsdaempfung eines hohlfoermigen bauteils
EP0264833B1 (fr) * 1986-10-17 1991-03-20 Sanden Corporation Mécanisme de montage pour compresseur dans un système de conditionnement d'air pour véhicule
US4826145A (en) * 1987-01-23 1989-05-02 Dunlop Limited A British Company Resilient torsion bearing
US4935651A (en) * 1987-12-04 1990-06-19 Hyundai Heavy Industries Co., Ltd. Automatically controlled dynamic absorber
US4889578A (en) * 1988-01-29 1989-12-26 Kurashiki Kako Co., Ltd. Method for manufacturing rubber vibration insulator using a halogen compound solution
JPH0253543U (fr) * 1988-10-08 1990-04-18
DE4142359C2 (de) * 1991-05-31 1996-12-12 Ntn Toyo Bearing Co Ltd Außenring für ein vibrationsgeschütztes homokinetisches Gelenk
DE9112268U1 (de) * 1991-10-02 1991-12-05 Vorwerk & Sohn Gmbh & Co Kg, 5600 Wuppertal Schwingungsbuchse, insbesondere für Fahrwerke von Kraftfahrzeugen
DE4201049C2 (de) * 1992-01-17 1995-11-02 Freudenberg Carl Fa Drehzahladaptiver Drehschwingungsdämpfer
JPH07119778A (ja) * 1993-09-02 1995-05-09 Tokai Rubber Ind Ltd ブラケット付防振ゴムおよびブラケット付防振ゴムの製造方法
FR2720132B1 (fr) 1994-05-18 1996-07-26 Caoutchouc Manuf Plastique Support élastique comportant au moins deux manchons cylindriques coaxiaux liés entre eux par un matériau élastique, manchons pour un tel support et procédé de fabrication dudit support.
US5865429A (en) * 1994-05-18 1999-02-02 Caoutchouc Manufacture Et Plastiques Elastic support including at least two cylindrical sleeves with folds
JPH08312703A (ja) * 1995-05-18 1996-11-26 Hokushin Ind Inc ダンパー
DE19521967C1 (de) * 1995-06-16 1996-12-05 Metzeler Gimetall Ag Radiallager
DE19613912C2 (de) * 1996-04-06 2001-02-15 Boge Gmbh Hydraulisch dämpfendes Gummilager
DE19726293A1 (de) 1997-06-20 1998-12-24 Contitech Formteile Gmbh Hohle Antriebswelle mit integriertem Schwingungstilger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9906730A1 *

Also Published As

Publication number Publication date
DE19733478B4 (de) 2006-03-23
DE19733478A1 (de) 1999-02-04
US6837345B1 (en) 2005-01-04
WO1999006730A1 (fr) 1999-02-11

Similar Documents

Publication Publication Date Title
EP1000271A1 (fr) Amortisseur de vibrations destine a un arbre de transmission tubulaire
DE102005055800B4 (de) Vorrichtung zur Dämpfung von Torsionsschwingungen und Anordnung
EP0382197B1 (fr) Disque d'embrayage
DE102015109107B4 (de) Vibrationsdämpfungsvorrichtung
DE19948009C1 (de) Bremsscheibe
EP2000699B1 (fr) Amortisseur d'oscillations de torsions ou découpleur doté de fils de fer enroulés dans un disque d'entraînement
DE69618226T2 (de) Gerät zur automatischen auswuchtung
DE69016707T2 (de) Dynamischer Dämpfer.
DE102013106291A1 (de) Schwingungstilger
DE3137343A1 (de) Elastisches lager
WO1997043138A1 (fr) Support radial pour arbre d'entrainement de vehicule
EP0620379B1 (fr) Amortisseur de vibrations en torsion
DE10326037B4 (de) Mittellager-Resonanzdämpfer
EP3244092A1 (fr) Amortisseur de vibrations torsionnelles, en particulier pour un convertisseur de couple et convertisseur de couple le comprenant
DE102015213113A1 (de) Kurbelwelle und Verwendung eines Fliehkraftpendels in einer Kurbelwelle
EP3622196A1 (fr) Dispositif de pendule à force centrifuge comprenant un élément de précontrainte pour le guidage des galets cylindriques
DE102012219800B4 (de) Drehschwingsdämpfer und Kupplungsaggregat
EP0257272A1 (fr) Amortisseur radial de chocs
DE102012216447A1 (de) Beschichtungssystem für ein akustisch gedämpftes Lager und Wälzlager mit schwingungsdämpfendem Abkoppelungselement
DE102008019173A1 (de) Drehschwingungsdämpfer
DE19641695C2 (de) Zwei-Massen-Schwungrad
DE19711145B4 (de) Torsionsdämpfer mit Zwischenscheibe, insbesondere für Kraftfahrzeuge
DE102017114676A1 (de) Fliehkraftpendeleinrichtung und Drehmomentübertragungseinrichtung
DE102021111488A1 (de) Drehschwingungsdämpfer
DE102010060781A1 (de) Bremsscheibe, insbesondere innenbelüftete Bremsscheibe für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20001122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20010224