EP1000271A1 - Vibration damper for a tubular drive shaft - Google Patents

Vibration damper for a tubular drive shaft

Info

Publication number
EP1000271A1
EP1000271A1 EP98943782A EP98943782A EP1000271A1 EP 1000271 A1 EP1000271 A1 EP 1000271A1 EP 98943782 A EP98943782 A EP 98943782A EP 98943782 A EP98943782 A EP 98943782A EP 1000271 A1 EP1000271 A1 EP 1000271A1
Authority
EP
European Patent Office
Prior art keywords
mass body
sleeve
rubber spring
spring elements
vibration damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98943782A
Other languages
German (de)
French (fr)
Inventor
Christian Lauble
Franz Moser
Gunther Schlimpert
Roland Flinspach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of EP1000271A1 publication Critical patent/EP1000271A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1414Masses driven by elastic elements
    • F16F15/1435Elastomeric springs, i.e. made of plastic or rubber
    • F16F15/1442Elastomeric springs, i.e. made of plastic or rubber with a single mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/371Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3835Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by the sleeve of elastic material, e.g. having indentations or made of materials of different hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/023Shafts; Axles made of several parts, e.g. by welding

Definitions

  • the invention relates to a vibration damper for a tubular cardan shaft in the drive train of a motor vehicle with a mass body mounted concentrically in a sleeve by means of rubber spring elements, wherein stop elements limiting the vibration path of the mass body are arranged at least in the radial direction between the mass body and the sleeve.
  • a vibration damper is known, the mass of which is fastened directly in a hollow drive shaft via a rubber spring element encasing it radially.
  • a second vibration damper is known, the mass body of which is mounted in a sleeve via a rubber spring element also encasing it. The sleeve is embedded in an elastic layer.
  • the vibration dampers described here are mainly installed in drive shafts or drive shaft tubes.
  • the cardan shaft tubes are stressed on the one hand by the drive torque on torsion and on the other hand by their own weight and the mass effect on bending. They must therefore be nich ⁇ only adequate torsional but also as light as possible.
  • the vibration damper In order for the vibration damper to increase the total mass of the propeller shaft tube with its mass body as little as possible, the vibration damper must be able to be arranged at the optimal location. This point is, for example, the vibration belly of a disturbing vibration to be repaid. The weight of the mass body can be the smallest at the optimal point.
  • each cardan shaft as a flexurally elastic rotor, usually due to their manufacturing tolerances, the centrifugal force increases with the speed.
  • the PTO shaft bends in the direction of its center of gravity.
  • the cardan shaft deflection initially increases proportionally to the centrifugal force component, which is only related to the center of gravity of the center of gravity, since the centrifugal force component related to the shaft deflection is still small. Above half the critical rotation speed, the shaft deflection rate quickly increases to a multiple of the center of gravity. In this area, the well-known rubber-sprung mass bodies can dangerously increase the unbalance of the overall construction due to an eccentric shift in the direction of the center of gravity of the drive shaft.
  • a pressure roller is known from GB 2 073 363 A, in which a rubber-sprung mass body is mounted.
  • the mass body is arranged in a sleeve clamped in the pressure roller via two rubber rings.
  • the rubber rings sit on the two free ends of the mass body.
  • a metal ring is arranged next to each rubber ring, which limits the radial deflection of the mass body.
  • the present invention is therefore based on the problem of creating a vibration damper which effectively dampens the bending vibrations of the cardan shaft for certain frequencies without noticeably increasing the unbalance of the cardan shaft in other frequency ranges - and thus also the noise development. Due to its design, the vibration damper should be able to be installed anywhere in the propeller shaft tube with little effort. Also the installation of several vibration dampers should be possible. Furthermore, safe vehicle operation should also be ensured if the rubber spring elements fixing the body are torn or torn.
  • the rubber-elastic stop elements - seen in the circumferential direction - are arranged between the rubber spring elements connecting the mass body and the sleeve.
  • the stop elements extend over a relatively large circumferential angle and fill up a large proportion of the space between the mass body, the adjacent rubber spring elements and the sleeve.
  • the mass body and / or the sleeve are formed in mutually opposite regions - seen in the circumferential direction - between the rubber spring elements in sections as stop elements which limit the vibration path of the mass body at least in the radial direction.
  • the stop elements limit the deflection of the mass body to the extent necessary in terms of vibration.
  • the vibration dampers dampen the vibration excited by the vehicle engine and / or the transmission.
  • the stop elements prevent a noticeable increase in the total imbalance by mechanically limiting the displacement of the mass body. This significantly reduces the noise level of the drive train.
  • the stop elements between the rubber spring elements also prevent increased unbalance if, for example, the rubber spring elements are torn due to aging and the mass body lies loosely in the propeller shaft tube. In this case, without the stop elements, the imbalance additionally generated by the mass body could destroy the cardan shaft.
  • This also applies to a vibration damper with a mass body arranged in the drive shaft by means of at least one rubber spring element.
  • the rubber-elastic stop elements are arranged directly between the mass body and the cardan shaft.
  • the mass body and / or the propeller shaft can be formed in mutually opposite areas - seen in the circumferential direction - between the rubber spring elements in sections as stop elements which limit the vibration path of the mass body at least in the radial direction.
  • the rubber spring elements are not supported by a sleeve on the drive shaft tube. They are glued in the cardan shaft, possibly with profiling to compensate for the bore tolerances of the cardan shaft.
  • the rubber spring elements and / or stop elements are coated, for example, with an adhesive which binds in the drive shaft tube when the wall is heated.
  • Figure 3 as Figure 2, but with radial stops
  • Figure 4 like Figure 2, but with an external mass body
  • Figure 5 as Figure 2, but with rubber spring elements located on both sides of the mass body.
  • FIG. 1 shows in a cross section four different exemplary embodiments of a vibration damper for an articulated shaft tube (1), such as is arranged in the drive train of a motor vehicle.
  • Vibration dampers each consist of a mass body (51-53) which is mounted centrally in a sleeve (10, 15) via rubber spring elements (31, 32).
  • the bonds between the rubber spring elements (31, 32) and the respective sleeves (10, 15) and the associated mass bodies (51-53) are preferably formed during vulcanization.
  • the sleeves (10) are cylindrical in the embodiments of the first two quadrants I and II.
  • the mass body (51) is a cylindrical tube. It is held, for example, by four rubber spring elements (31).
  • a rubber-elastic stop element (41) is arranged between two load-bearing rubber spring elements (31).
  • the stop element (41) of the exemplary embodiment in the first quadrant is attached to the mass body (51), while the stop element (42) of the exemplary embodiment in the second quadrant is fixed to the sleeve (10). In this case, a lateral migration of the mass body (51) is prevented, for example, by a flanged sleeve edge.
  • the stop elements (41, 42) extend over a relatively large circumferential angle, ie they fill a large proportion of that between the mass body (51), the adjacent rubber spring elements (41) and the sleeve (10 ) located Freiraume ⁇ (45).
  • the vibration path in the central compression direction becomes a Rubber spring element (31, 32) only slightly larger than in the central upset direction of a stop element (41, 42).
  • the free space (45) between each two adjacent rubber elements (31) has an almost circular cross section.
  • the resulting shape of the rubber elements (31) ensures an optimal bond to the metal components (10) and (51).
  • a sleeve (15) with a wavy longitudinal profile is used.
  • the longitudinal cuts to the profile shown here in cross section run parallel to the center line of the cardan shaft tube (1). Due to the wave shape of the profile, the sleeve (15) is at least so elastic that it can be pressed into the cardan shaft tube (1) without fitting problems.
  • the residual clamping force of the sleeve (15) required for a secure fit in the cardan shaft tube (1) is guaranteed over the entire tolerance range for the inside diameter of the cardan shaft tube (1). A special reworking of the inner wall (2) of the propeller shaft tube (1) can therefore be dispensed with.
  • a mass body (53) which has the cross section of a quad polygon.
  • the exposed polygon areas lie opposite the free wave valleys (16) the sleeve (15).
  • a thin rubber layer (44) or a layer of a comparable material is applied between the rubber spring elements (32).
  • the rubber layer (44) prevents, among other things, undesirable noises when the mass body (53) springs through suddenly and additionally dampens vibration excitation due to this movement.
  • FIG. 2 shows a vibration damper with a cylindrical sleeve (10), a tubular mass body (51) and one of the intermediate rubber spring elements (31).
  • the latter are narrower in the longitudinal direction than the sleeve (10).
  • the protrusion of the sleeve (10) serves, among other things. the protection of the rubber spring and stop elements (31, 41, 42) during assembly. Since the vibration dampers are installed by inserting the sleeves (10) into the cardan shaft tube (1), the insertion tools must be placed on the sleeve (10) so that the rubber spring elements (31) are not stressed during insertion.
  • the vibration damper can be attached to the laterally projecting sections, for example by means of spot welding on the propeller shaft tube (1). If necessary, attachment to a protruding section is sufficient.
  • the sleeve (10, 15) can be locked in front of and behind it, punched into the cardan shaft tube (1). Circumferential beads can be rolled in instead of the center points. The beads can only be attached to partial areas of the sleeve circumference.
  • the sleeve can adhere in the propeller shaft tube by means of an adhesive connection.
  • the sleeve can be joined using a cross-press fit.
  • a longitudinally slotted sleeve can be used for pipes with large bore tolerances.
  • a smooth or profiled rubber coating of the outer contour is also conceivable to produce better adhesion.
  • the rubber spring element (33) is installed between a mass body (52) delimited with rims (55, 56) and a sleeve (10) with a flanged edge (11).
  • the rims (55, 56) and the flanged edge (11) serve as radial stops.
  • the mass body (52) is deflected radially, the flange (55) comes into contact with the flanged edge (11) and the flange (56) with the projecting cylindrical section (12).
  • the contact zones can be covered with an elastic coating.
  • Figure 4 shows a vibration damper with a stepped sleeve (21).
  • the section with the larger diameter is the mounting section (22).
  • the vibration damper is fixed in the drive shaft tube (1) via this section.
  • the section with the smaller diameter is the support section (23).
  • the rubber spring elements (31) carrying the mass body (51) are arranged on the latter. Between the tubular mass body (51) here and the inner wall (2) of the cardan shaft tube (1) there is a narrow gap, the width of which corresponds to half the maximum deflection of the mass body (51). In the event of an unbalanced rotation of the cardan shaft tube (1), the mass body (51) hugs a large contact zone on the inner wall (2). If appropriate, the mass body (51) is coated on its outer surface with an elastic material.
  • the mass body (51) can also have the cross-sectional shape of a pot, so that it encompasses the support section (23) of the sleeve (21), cf. dashed extension of the mass body (51).
  • the mass body can have, for example, a cylindrical extension (59). The latter would be concentric within the outer tubular section (57) of the mass body (51).
  • a second vibration damper with a shape described in FIGS. 1 to 3 and 5 can be arranged in the carrier section (23).
  • FIG. 5 shows a vibration damper, the rubber spring elements (34, 35) of which are primarily subjected to thrust when the mass body (51) is radially deflected.
  • This stress which is favorable for the metal / rubber binding, is made possible by a sleeve (25) which is delimited on its end faces by, for example, flat disks (26, 27), with a disk (26, 27) and the mass body (51) between each Rubber spring element (34, 35) is arranged.
  • the rubber spring elements (34, 35) are designed here, for example, as closed rings.
  • the e.g. tubular body (51) can have a coating (44) on its outer contour.
  • the sleeve (25) is designed as a sleeve which is closed by a spot-welded cover (27).
  • the central bore of the vibration damper makes production easier, but is not absolutely necessary. If necessary, the mass body (51) can be widened as shown in dashed lines in FIG.
  • the radial play of the individual mass bodies (51-53) in the corresponding sleeves or in relation to the inner wall (2) of the cardan shaft tube (1) is, for example, approx. 5 to 1 mm.
  • the gap can have a fixed dimension. As a rule, higher interference frequencies will require smaller gaps in order not to make the unbalance of the combination of the propeller shaft tube (1) and mass body (51-53) too large.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

The invention relates to a vibration damper for a tubular drive shaft in the drive train of an automobile. According to the invention, a mass body is concentrically located either in the drive shaft or in a sleeve fixed to the drive shaft, by means of at least one rubber spring element. Metal and/or rubber spring stop elements are arranged between the mass body and the sleeve, said stop elements limiting the vibration path of said mass body at least in a radial direction. Alternatively, the mass body and/or the sleeve are configured as stop elements limiting the vibration path of said mass body at least in a radial direction, in opposite areas, at least in sections. The inventive vibration damper efficiently damps the beaming movements of the drive shaft for certain frequencies without noticeably increasing the imbalance of the drive shaft in other frequency ranges.

Description

Schwingungsdämpfer für eine rohrförmige Gelenkwelle Vibration damper for a tubular drive shaft
Die Erfindung betrifft einen Schwingungsdämpfer für eine rohrförmige Gelenkwelle im Antriebssträng eines Kraftfahrzeugs mit einem in einer Hülse mittels Gummifederelementen konzentrisch gelagerten Massekorper, wobei zwischen dem Massekorper und der Hülse zumindest in Radialrichtung den Schwingungsweg des Masse- körpers begrenzende Anschlagelemente angeordnet sind.The invention relates to a vibration damper for a tubular cardan shaft in the drive train of a motor vehicle with a mass body mounted concentrically in a sleeve by means of rubber spring elements, wherein stop elements limiting the vibration path of the mass body are arranged at least in the radial direction between the mass body and the sleeve.
Aus der DE 36 32 418 ist zum einen ein Schwingungsdämpfer bekannt, dessen Massekorper über ein ihn radial ummantelndes Gummifederelement direkt in einer hohlen Antriebswelle befestigt ist. Zum anderen ist ein zweiter Schwingungsdämpfer bekannt, dessen Massekorper über ein ihn ebenfalls ummantelndes Gummifederelement in einer Hülse gelagert ist. Die Hülse ist hierbei in einer elastischen Schicht eingebettet.From DE 36 32 418, on the one hand, a vibration damper is known, the mass of which is fastened directly in a hollow drive shaft via a rubber spring element encasing it radially. On the other hand, a second vibration damper is known, the mass body of which is mounted in a sleeve via a rubber spring element also encasing it. The sleeve is embedded in an elastic layer.
Die hier beschriebenen Schwingungsdämpfer, auch Tilger genannt, werden hauptsächlich in Gelenkwellen bzw. Gelenkwellenrohren eingebaut. Die Gelenkwellenrohre werden zum einen durch das Antriebsdrehmomen- auf Torsion und zum anderen durch ihr Eigengewicht und die Massenwirkung auf Biegung beansprucht. Sie müssen daher nich~ nur genügend torsionssteif , sondern auch möglichst leicht sein. Damit die Schwingungsdämpfer mit ihrem Massekorper so wenig wie möglich die Gesamtmasse des Gelenkwellenrohres erhöhen, müssen die Schwingungsdämpfer an der optimalen Stelle angeordnet werden können. Diese Stelle ist beispielsweise der Schvingungsbauch einer zu tilgenden StörSchwingung. An der optimalen Stelle kann das Gewicht des Massekörpers am kleinsten sein.The vibration dampers described here, also called absorbers, are mainly installed in drive shafts or drive shaft tubes. The cardan shaft tubes are stressed on the one hand by the drive torque on torsion and on the other hand by their own weight and the mass effect on bending. They must therefore be nich ~ only adequate torsional but also as light as possible. In order for the vibration damper to increase the total mass of the propeller shaft tube with its mass body as little as possible, the vibration damper must be able to be arranged at the optimal location. This point is, for example, the vibration belly of a disturbing vibration to be repaid. The weight of the mass body can be the smallest at the optimal point.
Da jede Gelenkwelle als biegeelastischer Läufer in der Regel u.a. aufgrund ihrer Fertigungstoleranzen eine Unwucht aufweist, steigt mit der Drehzahl auch die Fliehkraft. Dabei biegt sich die Gelenkwelle in Richtung ihrer Schwerpunktexzentrizität aus. Im unteren Bereich der für Gelenkwellen üblichen Drehzahlen wächst die Gelenkwellenausbiegung zunächst proportional zum Fliehkraftanteil, der nur auf die Schwerpunktexzentrizität bezogen ist, da der auf die Wellenausbiegung bezogene Flieh- kraftanteil noch klein ist . Oberhalb der halben biegekritischen Drehzahl wächst der Wellenausbiegungsanteil schnell auf das Mehrfache des Anteils der Schwerpunktexzentrizität. In diesem Bereich können die bekannten gummigefederten Massekörper durch eine exzentrische Verlagerung in Richtung der Schwerpunktexzen- trizität der Gelenkwelle die Unwucht der Gesamtkonstruktion gefährlich verstärken.Since each cardan shaft, as a flexurally elastic rotor, usually due to their manufacturing tolerances, the centrifugal force increases with the speed. The PTO shaft bends in the direction of its center of gravity. In the lower range of the usual speeds for cardan shafts, the cardan shaft deflection initially increases proportionally to the centrifugal force component, which is only related to the center of gravity of the center of gravity, since the centrifugal force component related to the shaft deflection is still small. Above half the critical rotation speed, the shaft deflection rate quickly increases to a multiple of the center of gravity. In this area, the well-known rubber-sprung mass bodies can dangerously increase the unbalance of the overall construction due to an eccentric shift in the direction of the center of gravity of the drive shaft.
Ferner ist aus der GB 2 073 363 A eine Druckwalze bekannt, in der ein gummigefederter Massekörper gelagert ist. Dazu ist der Massekorper in einer in der Druckwalze eingeklemmten Hülse über zwei Gummiringe angeordnet. Die Gummiringe sitzen an den beiden freien Enden des Massekörpers. Neben jedem Gummiring ist ein Metallring angeordnet, der den radialen Ausschlag des Massekör- pers begrenzt.Furthermore, a pressure roller is known from GB 2 073 363 A, in which a rubber-sprung mass body is mounted. For this purpose, the mass body is arranged in a sleeve clamped in the pressure roller via two rubber rings. The rubber rings sit on the two free ends of the mass body. A metal ring is arranged next to each rubber ring, which limits the radial deflection of the mass body.
Der vorliegenden Erfindung liegt daher das Problem zugrunde, einen Schwingungsdämpfer zu schaffen, der die Biegeschwingungen der Gelenkwelle für bestimmte Frequenzen wirksam dämpft ohne in anderen Frequenzbereichen die Unwucht der Gelenkwelle - und damit auch die Geräuschentwicklung - merklich zu erhöhen. Aufgrund seiner Konstruktion soll der Schwingungsdämpfer im Gelenkwellenrohr an einer beliebigen Stelle mit geringem Aufwand montierbar sein. Auch die Montage mehrerer Schwingungsdämpfer soll möglich sein. Ferner soll auch bei einem Ab- oder Einreißen der den Massekorper fixierenden Gummifederelemente ein sicherer Fahrzeugbetrieb gewährleistet sein.The present invention is therefore based on the problem of creating a vibration damper which effectively dampens the bending vibrations of the cardan shaft for certain frequencies without noticeably increasing the unbalance of the cardan shaft in other frequency ranges - and thus also the noise development. Due to its design, the vibration damper should be able to be installed anywhere in the propeller shaft tube with little effort. Also the installation of several vibration dampers should be possible. Furthermore, safe vehicle operation should also be ensured if the rubber spring elements fixing the body are torn or torn.
Das Problem wird u.a. mit den Merkmalen des Hauptanspruchs gelöst. Bei diesem Schwingungsdämpfer sind die gummielastischen Anschlagelemente - in Umfangsrichtung gesehen - zwischen den den Massekörper und die Hülse verbindenden Gummifederelementen angeordnet. Dabei erstrecken sich die Anschlagelemente im Vergleich zu den Gummifederelementen über einen relativ großen Um- fangswinkel und füllen einen großen Anteil des zwischen dem Massekörper, den benachbarten Gummifederelementen und der Hülse gelegenen Freiraums aus. Alternativ sind der Massekörper und/oder die Hülse in einander gegenüberliegenden Bereichen - in Umfangsrichtung gesehen - zwischen den Gummifederelementen abschnittsweise als zumindest in Radialrichtung den Schwin- gungsweg des Massekörpers begrenzende Anschlagelemente ausgebildet.The problem is solved with the features of the main claim. In this vibration damper, the rubber-elastic stop elements - seen in the circumferential direction - are arranged between the rubber spring elements connecting the mass body and the sleeve. Compared to the rubber spring elements, the stop elements extend over a relatively large circumferential angle and fill up a large proportion of the space between the mass body, the adjacent rubber spring elements and the sleeve. Alternatively, the mass body and / or the sleeve are formed in mutually opposite regions - seen in the circumferential direction - between the rubber spring elements in sections as stop elements which limit the vibration path of the mass body at least in the radial direction.
Die Anschlagelemente begrenzen die Massekörperauslenkung auf das schwingungstechnisch notwendige Maß. Die Schwingungsdämpfer dämpfen die durch den Fahrzeugmotor und/oder das Getriebe angeregten Schwingung. Zugleich verhindern die Anschlagelemente eine merkliche Erhöhung der Gesamtunwucht durch eine mechanische Begrenzung der Verlagerung des Massekörpers . Dadurch wird die Geräuschentwicklung des AntriebsStrangs erheblich gemindert .The stop elements limit the deflection of the mass body to the extent necessary in terms of vibration. The vibration dampers dampen the vibration excited by the vehicle engine and / or the transmission. At the same time, the stop elements prevent a noticeable increase in the total imbalance by mechanically limiting the displacement of the mass body. This significantly reduces the noise level of the drive train.
Auch verhindern die Anschlagelemente zwischen den Gummifederelementen eine vergrößerte Unwucht, wenn beispielsweise die Gummifederelemente durch Alterung gerissen sind und der Massekörper lose im Gelenkwellenrohr liegt. Ohne die Anschlagelemente könnte in diesem Fall die durch den Massekörper zusätzlich erzeurte Unwucht die Gelenkwelle zerstören. Dies gilt auch für einen Schwingungsdämpfer mit einem in der Gelenkwelle mittels mindestens einem Gummifederelement angeordneten Massekorper. Dort sind die gummielastischen Anschlagelemente direkt zwischen dem Massekorper und der Gelenkwelle angeordnet. Auch hier können der Massekörper und/oder die Gelenkwelle in einander gegenüberliegenden Bereichen - in Umfangsrichtung gesehen - zwischen den Gummifederelementen abschnittsweise als zumindest in Radialrichtung den Schwingungsweg des Massekörpers begrenzende Anschlagelemente ausgebildet sein.The stop elements between the rubber spring elements also prevent increased unbalance if, for example, the rubber spring elements are torn due to aging and the mass body lies loosely in the propeller shaft tube. In this case, without the stop elements, the imbalance additionally generated by the mass body could destroy the cardan shaft. This also applies to a vibration damper with a mass body arranged in the drive shaft by means of at least one rubber spring element. There the rubber-elastic stop elements are arranged directly between the mass body and the cardan shaft. Here, too, the mass body and / or the propeller shaft can be formed in mutually opposite areas - seen in the circumferential direction - between the rubber spring elements in sections as stop elements which limit the vibration path of the mass body at least in the radial direction.
Bei dieser Ausführung stützen sich die Gummifederelemente nicht über eine Hülse am Gelenkwellenrohr ab. Sie werden, gegebenenfalls mit einer Profilerung zum Ausgleich der Bohrungtoleranzen des Gelenkwellenrohres, im Gelenkwellenrohr verklebt. Dazu sind die Gummifederelemente und/oder Anschlagelemente beispielsweise mit einem Klebstoff beschichtet, der im Gelenkwellenrohr bei dessen Wandungserwärmung bindet.In this version, the rubber spring elements are not supported by a sleeve on the drive shaft tube. They are glued in the cardan shaft, possibly with profiling to compensate for the bore tolerances of the cardan shaft. For this purpose, the rubber spring elements and / or stop elements are coated, for example, with an adhesive which binds in the drive shaft tube when the wall is heated.
Weitere Einzelheiten der Erfindung ergeben sich aus den nachfolgenden Beschreibungen von mehreren schematisch dargestellten Ausführungεformen:Further details of the invention result from the following descriptions of several schematically represented embodiments:
Figur 1: Schwingungsdämpfer im Viertelquerschnitt;Figure 1: Vibration damper in quarter cross-section;
Figur 2: Schwingungsdämpfer im halben Längsschnitt;Figure 2: Vibration damper in half longitudinal section;
Figur 3: wie Figur 2, jedoch mit radialen Anschlägen;Figure 3: as Figure 2, but with radial stops;
Figur 4: wie Figur 2, jedoch mit außenliegendem Massekörper; Figur 5: wie Figur 2, jedoch mit beiderseits des Massekörpers gelegenen Gummifederelementen.Figure 4: like Figure 2, but with an external mass body; Figure 5: as Figure 2, but with rubber spring elements located on both sides of the mass body.
Figur 1 zeigt in einem Querschnitt vier verschiedene Ausführungsbeispiele eines Schwingungsdämpfers für ein Gelenkwellenrohr (1) , wie er beispielsweise im Antriebsstrang eines Kraftfahrzeugs angeordnet ist. Die vierFIG. 1 shows in a cross section four different exemplary embodiments of a vibration damper for an articulated shaft tube (1), such as is arranged in the drive train of a motor vehicle. The four
Schwingungsdämpfer bestehen jeweils aus einem Massekörper (51- 53) , der über Gummifederelemente (31, 32) in einer Hülse (10, 15) zentrisch gelagert ist. Die Bindungen zwischen den Gummifederelementen (31, 32) und den jeweiligen Hülsen (10, 15) sowie den dazu gehörenden Massenkörpern (51-53) entstehen vorzugsweise während des Vulkanisierens .Vibration dampers each consist of a mass body (51-53) which is mounted centrally in a sleeve (10, 15) via rubber spring elements (31, 32). The bonds between the rubber spring elements (31, 32) and the respective sleeves (10, 15) and the associated mass bodies (51-53) are preferably formed during vulcanization.
Die Hülsen (10) sind bei den Ausführungsbeispielen der ersten beiden Quadranten I und II zylindrisch ausgebildet. Der Massekörper (51) ist ein zylindrisches Rohr. Er wird beispielsweise über jeweils vier Gummifederelemente (31) gehalten. Zwischen zwei tragenden Gummifederelementen (31) ist jeweils ein gummielastisch.es Anschlagelement (41) angeordnet. Das Anschlagelement (41) des Ausführungsbeispiels im I. Quadranten ist am Massekorper (51) befestigt, während das Anschlagelement (42) des Ausführungsbeispiels im II. Quadranten an der Hülse (10) fixiert ist. In diesem Fall wird beispielsweise durch einen umgebördelten Hülsenrand ein seitliches Auswandern des Massekörpers (51) verhindert.The sleeves (10) are cylindrical in the embodiments of the first two quadrants I and II. The mass body (51) is a cylindrical tube. It is held, for example, by four rubber spring elements (31). A rubber-elastic stop element (41) is arranged between two load-bearing rubber spring elements (31). The stop element (41) of the exemplary embodiment in the first quadrant is attached to the mass body (51), while the stop element (42) of the exemplary embodiment in the second quadrant is fixed to the sleeve (10). In this case, a lateral migration of the mass body (51) is prevented, for example, by a flanged sleeve edge.
Die Anschlagelemente (41, 42) erstrecken sich im Vergleich zu den Gummifederelementen (31, 32) über einen relativ großen Umfangswinkel, d.h. sie füllen einen großen Anteil des zwischen dem Massekörper (51) , den benachbarten Gummifederelementen (41) und der Hülse (10) gelegenen Freiraumeε (45) aus. Hierdurch wird der Schwingungsweg in der zentralen Stauchrichtung eines Gummifederelementes (31, 32) nur unwesentlich größer als in zentraler Stauchrichtung eines Anschlagelementes (41, 42) .In comparison to the rubber spring elements (31, 32), the stop elements (41, 42) extend over a relatively large circumferential angle, ie they fill a large proportion of that between the mass body (51), the adjacent rubber spring elements (41) and the sleeve (10 ) located Freiraumeε (45). As a result, the vibration path in the central compression direction becomes a Rubber spring element (31, 32) only slightly larger than in the central upset direction of a stop element (41, 42).
Der Freiraum (45) zwischen jeweils zwei benachbarten Gummielementen (31) hat einen nahezu kreisförmigen Querschnitt. Die dadurch bedingte Form der Gummielemente (31) gewährleistet eine optimale Bindung gegenüber den metallenen Bauteilen (10) und (51) .The free space (45) between each two adjacent rubber elements (31) has an almost circular cross section. The resulting shape of the rubber elements (31) ensures an optimal bond to the metal components (10) and (51).
In dem III. und dem IV. Quadranten wird eine Hülse (15) mit einer wellenförmigen Längsprofilierung verwendet. Die Längsschnitte zu dem hier im Querschnitt gezeigten Profil verlaufen parallel zur Mittellinie des Gelenkwellenrohrs (1) . Aufgrund der Wellenform des Profils ist die Hülse (15) zumindest so elastisch, daß sie ohne Passungsprobleme in das Gelenkwellenrohr (1) eingepreßt werden kann. Die für einen sicheren Sitz im Gelenkwellenrohr (1) notwendige Restklemmkraft der Hülse (15) ist über den gesamten Toleranzbereich für den Innendurchmesser des Gelenkwellenrohres (1) gewährleistet. Auf ein spezielles Nacharbeiten der Innenwandung (2) des Gelenkwellenrohres (1) kann folglich verzichtet werden.In the III. and the fourth quadrant, a sleeve (15) with a wavy longitudinal profile is used. The longitudinal cuts to the profile shown here in cross section run parallel to the center line of the cardan shaft tube (1). Due to the wave shape of the profile, the sleeve (15) is at least so elastic that it can be pressed into the cardan shaft tube (1) without fitting problems. The residual clamping force of the sleeve (15) required for a secure fit in the cardan shaft tube (1) is guaranteed over the entire tolerance range for the inside diameter of the cardan shaft tube (1). A special reworking of the inner wall (2) of the propeller shaft tube (1) can therefore be dispensed with.
Im Quadrant III liegt zwischen den Gummifederelementen (32) ein an dem Massekörper (52) befestigtes Anschlagelement (43,) das zumindest teilweise an die Kontur eines Wellentals (16) angepaßt ist. Diese Anpassung ermöglicht eine Dämpfung der TorsionsSchwingung des Massekörpers (52) . Durch ein Verdrehen des Massekörpers (52) gegenüber der Hülse (15) verringert sich der Spalt zwischen dem Anschlagelement (43) und dem Wellental (16) gegebenenfalls bis auf Null.In quadrant III, between the rubber spring elements (32), there is a stop element (43,) fastened to the mass body (52), which is at least partially adapted to the contour of a wave trough (16). This adaptation enables damping of the torsional vibration of the mass body (52). By rotating the mass body (52) relative to the sleeve (15), the gap between the stop element (43) and the wave trough (16) may be reduced to zero.
Im Quadrant IV wird ein Massekorper (53) verwendet, der den Querschnitt eines Viererpolygons hat . Die exponierten Polygonbereiche liegen gegenüber den freien Wellentälern (16) der Hülse (15) . Damit zwischen der Hülse (15) und dem Massekorper (53) kein Metall/Metall-Kontakt entsteht, ist zwischen den Gummifederelementen (32) jeweils eine dünne Gummischicht (44) oder eine Schicht aus einem vergleichbaren Material aufgetragen. Die Gummischicht (44) verhindert u.a. unerwünschte Geräusche beim ruckartigen Durchfedern des Massekörpers (53) und dämpft zusätzlich eine Schwingungsanregung aufgrund dieser Bewegung.In Quadrant IV, a mass body (53) is used, which has the cross section of a quad polygon. The exposed polygon areas lie opposite the free wave valleys (16) the sleeve (15). So that there is no metal / metal contact between the sleeve (15) and the mass body (53), a thin rubber layer (44) or a layer of a comparable material is applied between the rubber spring elements (32). The rubber layer (44) prevents, among other things, undesirable noises when the mass body (53) springs through suddenly and additionally dampens vibration excitation due to this movement.
Die Figur 2 zeigt einen Schwingungsdämpfer mit einer zylindrischen Hülse (10) , einem rohrförmigen Massekörper (51) und eines der dazwischenliegenden Gummifederelemente (31) . Letztere sind in Längsrichtung schmäler ausgebildet als die Hülse (10) . Das Überstehen der Hülse (10) dient u.a. dem Schutz der Gummifeder- und Anschlagelemente (31, 41, 42) bei der Montage. Da die Schwingungsdämpfer durch Einschieben der Hülsen (10) in das Gelenkwellenrohr (1) montiert werden, müssen die Einschubwerkzeuge an der Hülse (10) angelegt werden, um so die Gummifederelemente (31) beim Einschieben nicht zu belasten.Figure 2 shows a vibration damper with a cylindrical sleeve (10), a tubular mass body (51) and one of the intermediate rubber spring elements (31). The latter are narrower in the longitudinal direction than the sleeve (10). The protrusion of the sleeve (10) serves, among other things. the protection of the rubber spring and stop elements (31, 41, 42) during assembly. Since the vibration dampers are installed by inserting the sleeves (10) into the cardan shaft tube (1), the insertion tools must be placed on the sleeve (10) so that the rubber spring elements (31) are not stressed during insertion.
Zum axialen Fixieren kann der Schwingungsdämpfer an den seitlich überstehenden Abschnitten beispielsweise mittels Punktschweißen am Gelenkwellenrohr (1) befestigt werden. Gegebenenfalls reicht eine Befestigung an einem überstehenden Abschnitt aus. Alternativ hierzu kann die Hülse (10, 15) durch vor und hinter ihr in das Gelenkwellenrohr (1) eingeschlagene Kδrnerpunkte arretiert werden. Anstelle der Körnerpunkte können Umfangssicken eingerollt werden. Die Sicken können hierbei auch nur an Teilbereichen des Hülsenumfangs angebracht werden. Des weiteren ist es möglich die Schwingungsdämpfer einseitig an einem Bund im Innern des Gelenkwellenrohres anzulegen oder die Hülse an einem sich dort verjüngenden Innenkegel zu verklemmen. Ferner kann die Hülse mittels einer Klebeverbindung im Gelenkwellenrohr haften. Bei Gelenkwellenrohren mit einer hochpräzis gefertigten Rohrwandung kann die Hülse mittels Querpreßsitz gefügt werden. Bei Rohren mit großen Bohrungstoleranzen kann eine längsgeschlitzte Hülse verwendet werden. Hierbei ist zur Erzeugung einer besseren Haftung auch eine glatte oder profilierte Gummierung der Außenkontur denkbar.For axial fixing, the vibration damper can be attached to the laterally projecting sections, for example by means of spot welding on the propeller shaft tube (1). If necessary, attachment to a protruding section is sufficient. As an alternative to this, the sleeve (10, 15) can be locked in front of and behind it, punched into the cardan shaft tube (1). Circumferential beads can be rolled in instead of the center points. The beads can only be attached to partial areas of the sleeve circumference. Furthermore, it is possible to place the vibration damper on one side on a collar inside the propeller shaft tube or to clamp the sleeve on an inner cone that tapers there. Furthermore, the sleeve can adhere in the propeller shaft tube by means of an adhesive connection. In the case of cardan shaft tubes with a high-precision tube wall, the sleeve can be joined using a cross-press fit. A longitudinally slotted sleeve can be used for pipes with large bore tolerances. In this case, a smooth or profiled rubber coating of the outer contour is also conceivable to produce better adhesion.
Nach Figur 3 ist das Gummifederelement (33) zwischen einem mit Borden (55, 56) begrenzten Massekorper (52) und einer Hülse (10) mit einem Bördelrand (11) eingebaut. Die Borde (55, 56) und der Bördelrand (11) dienen als radiale Anschläge. Bei einer radialen -Auslenkung des Massekörpers (52) kommt der Bord (55) mit dem Bördelrand (11) und der Bord (56) mit dem überstehenden, zylindrischen Abschnitt (12) in Kontakt. Die Kontaktzonen können mit einer elastischen Beschichtung überzogen sein.According to FIG. 3, the rubber spring element (33) is installed between a mass body (52) delimited with rims (55, 56) and a sleeve (10) with a flanged edge (11). The rims (55, 56) and the flanged edge (11) serve as radial stops. When the mass body (52) is deflected radially, the flange (55) comes into contact with the flanged edge (11) and the flange (56) with the projecting cylindrical section (12). The contact zones can be covered with an elastic coating.
Figur 4 zeigt einen Schwingungsdämpfer mit einer gestuften Hülse (21) . Der -Abschnitt mit dem größeren Durchmesser ist der Montageabschnitt (22) . Über diesen Abschnitt wird der Schwingungsdämpfer im Gelenkwellenrohr (1) fixiert. Der Abschnitt mit dem kleineren Durchmesser ist der Trägerabschnitt (23) . Auf letzterem sind die den Massekörper (51) tragenden Gummifederelemente (31) angeordnet. Zwischen dem hier rohrförmigen Massekorper (51) und der Innenwandung (2) des Gelenkwellenrohres (1) befindet sich ein schmaler Spalt, dessen Breite der Hälfte der maximalen Auslenkung des Massekörpers (51) entspricht. Im Falle einer unwuchtigen Rotation des Gelenkwellenrohres (1) schmiegt sich der Massekorper (51) über eine große Konktaktzone an der Innenwandung (2) an. Gegebenenfalls ist der Massekörper (51) an seinem Außenmanrel mit einem elastischen Material beschichtet . Der Massekörper (51) kann auch die Querschnittsform eines Topfes haben, so daß er den Trägerabschnitt (23) der Hülse (21) umgreift, vgl. gestrichelte Erweiterung des Massekörpers (51). Zusätzlich kann am Boden (58) des Topfes der Massekorper einen beispielsweise zylindrischen Ansatz (59) haben. Letzterer würde konzentrisch innerhalb des außenliegenden rohrförmigen Abschnitts (57) des Massekörpers (51) liegen.Figure 4 shows a vibration damper with a stepped sleeve (21). The section with the larger diameter is the mounting section (22). The vibration damper is fixed in the drive shaft tube (1) via this section. The section with the smaller diameter is the support section (23). The rubber spring elements (31) carrying the mass body (51) are arranged on the latter. Between the tubular mass body (51) here and the inner wall (2) of the cardan shaft tube (1) there is a narrow gap, the width of which corresponds to half the maximum deflection of the mass body (51). In the event of an unbalanced rotation of the cardan shaft tube (1), the mass body (51) hugs a large contact zone on the inner wall (2). If appropriate, the mass body (51) is coated on its outer surface with an elastic material. The mass body (51) can also have the cross-sectional shape of a pot, so that it encompasses the support section (23) of the sleeve (21), cf. dashed extension of the mass body (51). In addition, at the bottom (58) of the pot, the mass body can have, for example, a cylindrical extension (59). The latter would be concentric within the outer tubular section (57) of the mass body (51).
Des weiteren kann im Trägerabschnitt (23) ein zweiter Schwingungsdämpfer mit einer in den Figuren 1 bis 3 und 5 beschriebenen Gestalt angeordnet sein.Furthermore, a second vibration damper with a shape described in FIGS. 1 to 3 and 5 can be arranged in the carrier section (23).
In Figur 5 wird ein Schwingungsdämpfer gezeigt, dessen Gummifederelemente (34, 35) bei einer radialen Auslenkung des Massekörpers (51) primär auf Schub belastet werden. Diese für die Metall/Gummibindung günstige Beanspruchung wird durch eine Hülse (25) möglich, die an ihren Stirnseiten durch beispielsweise plane Scheiben (26, 27) begrenzt ist, wobei zwischen je einer Scheibe (26, 27) und dem Massekörper (51) ein Gummifederelement (34, 35) angeordnet ist. Die Gummifederelemente (34, 35) sind hier beispielsweise als geschlossene Ringe ausgeführt. Der z.B. rohrförmig ausgeführte Massekörper (51) kann an seiner außenliegenden Kontur eine Beschichtung (44) tragen. Im Ausführungsbeispiel ist die Hülse (25) als Büchse ausgeführt die durch einen punktgeschweißten Deckel (27) verschlossen ist.FIG. 5 shows a vibration damper, the rubber spring elements (34, 35) of which are primarily subjected to thrust when the mass body (51) is radially deflected. This stress, which is favorable for the metal / rubber binding, is made possible by a sleeve (25) which is delimited on its end faces by, for example, flat disks (26, 27), with a disk (26, 27) and the mass body (51) between each Rubber spring element (34, 35) is arranged. The rubber spring elements (34, 35) are designed here, for example, as closed rings. The e.g. tubular body (51) can have a coating (44) on its outer contour. In the exemplary embodiment, the sleeve (25) is designed as a sleeve which is closed by a spot-welded cover (27).
Die zentrale Bohrung des Schwingungsdämpfers erleichtert die Herstellung, isr aber nicht zwingend notwendig. Gegebenenfalls kann der Massekörper (51) , wie gestrichelt in Figur 5 eingezeichnet erweitert sein.The central bore of the vibration damper makes production easier, but is not absolutely necessary. If necessary, the mass body (51) can be widened as shown in dashed lines in FIG.
Derartige Erweiterungen, vgl. auch Figur 4, haben den Vorteil, daß ohne konstruktive Änderung der Hülsen (21-25) die Masse des jeweiligen Massekörpers (51-53) verändert werden kann, um das Schwingungsverhalten des Schwingungsdämpfers an bestimmte Störfrequenzen unterschiedlicher Gelenkwellenrohre (1) - mit dem gleichen Innendurchmesser - anzupassen.Such extensions, cf. also Figure 4, have the advantage that without changing the design of the sleeves (21-25) the mass of respective mass body (51-53) can be changed in order to adapt the vibration behavior of the vibration damper to certain interference frequencies of different propeller shaft tubes (1) - with the same inner diameter.
Unabhängig vom Befestigungsort der Anschlagelemente (41-43) beträgt das radiale Spiel der einzelnen Massekorper (51-53) in den entsprechenden Hülsen oder gegenüber der Innenwandung (2) des Gelenkwellenrohres (1) bezogen auf den Hülseninnen- oder Gelenkwellenrohrinnenradius beispielsweise ca. 0,5 bis 1 mm. Je nach dem Schwingungsverhalten des Gelenkwellenrohres (1) kann der Spalt ein festgelegtes Maß haben. In der Regel werden höhere Störfrecruenzen kleinere Spalte erfordern, um die Unwucht der Kombination aus Gelenkwellenrohr (1) und Massekorper (51- 53) nicht zu groß werden zu lassen. Regardless of the location of attachment of the stop elements (41-43), the radial play of the individual mass bodies (51-53) in the corresponding sleeves or in relation to the inner wall (2) of the cardan shaft tube (1) is, for example, approx. 5 to 1 mm. Depending on the vibration behavior of the cardan shaft tube (1), the gap can have a fixed dimension. As a rule, higher interference frequencies will require smaller gaps in order not to make the unbalance of the combination of the propeller shaft tube (1) and mass body (51-53) too large.
Be *?:ιιgF! 7:e r*hen1 *i steBe * ?: ΙιgF! 7: he * hen1 * i ste
1 Gelenkwellenrohr, Gelenkwelle1 cardan shaft, cardan shaft
2 Innenwandung2 inner wall
10 Hülse, zylindrisch10 sleeve, cylindrical
11 Hülsenbördelrand11 sleeve flange edge
12 zylindrischer Randbereich, Abschnitt12 cylindrical edge area, section
15 Hülse, wellenförmig15 sleeve, wavy
16 Wellental16 trough
21 Hülse, gestuft21 sleeve, stepped
22 Montageabschnitt, Rohrabschnitt22 assembly section, pipe section
23 Trägerabschnitt, Rohrabschnitt23 beam section, pipe section
25 Hülse, topfförmig25 sleeve, pot-shaped
26 Scheibe, links26 disc, left
27 Scheibe, rechts, Deckel27 disc, right, cover
31 , 32 , 33 Gummifederelemente31, 32, 33 rubber spring elements
34 , 35 Gummifederelement , schubbeansprucht34, 35 rubber spring element, shear stressed
41 , 42 , 43 -Anschlagelemente41, 42, 43 stop elements
44 elastische Beschichtung, , Gummischicht44 elastic coating,, rubber layer
45 Freiraum45 free space
51 Massekörper, rohrförmig51 mass body, tubular
52 Massekörper, voll52 mass bodies, full
53 Massekorper, polygonförmig 55, 56 Borde53 mass bodies, polygonal 55, 56 shelves
57 rohrförmiger Abschnitt57 tubular section
58 3oden58 3odes
59 zylindrischer Ansatz 59 cylindrical approach

Claims

Patentansprüche claims
1. Schwingungsdämpfer für eine rohrförmige Gelenkwelle im Antriebsstrang eines Kraftfahrzeugs mit einem in einer Hülse mittels Gummifederelementen konzentrisch gelagerten Massekörper, wobei zwischen dem Massekorper und der Hülse zumindest in Radialrichtung den Schwingungsweg des Massekörpers begrenzende Anschlagelerneut:e angeordnet sind, dadurch gekennzeichnet,1. Vibration damper for a tubular cardan shaft in the drive train of a motor vehicle with a mass body mounted concentrically in a sleeve by means of rubber spring elements, wherein stops are again arranged between the mass body and the sleeve, at least in the radial direction, limiting the vibration path of the mass body, characterized in that
- daß gummielastische Anschlagelemente (41-43) - in Umfangsrichtung gesehen - zwischen den den Massekorper (51, 52) und die Hülse (10, 16, 21-25) verbindenden Gummifederelementen (31-33) angeordnet sind, wobei sich die Anschlagelemente (41-43) im Vergleich zu den Gummifederelementen (31- 33) über einen relativ großen Umfangswinkel erstrecken und einen großen Anteil des zwischen dem Massekorper, den benachbarten Gummifederelementen (41-43) und der Hülse (10, 16, 21-25) gelegenen Freiraumε (45) ausfüllen oder- That rubber-elastic stop elements (41-43) - seen in the circumferential direction - between the mass body (51, 52) and the sleeve (10, 16, 21-25) connecting rubber spring elements (31-33) are arranged, the stop elements ( 41-43) in comparison to the rubber spring elements (31-33) extend over a relatively large circumferential angle and a large proportion of that located between the mass body, the adjacent rubber spring elements (41-43) and the sleeve (10, 16, 21-25) Fill in free space (45) or
- daß der Massekorper (51-53) und/oder die Hülse (21-25) in einander gegenüberliegenden Bereichen - in Umfangsrichtung gesehen - zwischen den Gummifederelementen (41-43) abschnittsweise als zumindest in Radialrichtung den Schwingungsweg des Massekörpers (51-53) begrenzende Anschlagelemente (16, 53) ausgebildet sind.- That the mass body (51-53) and / or the sleeve (21-25) in opposite areas - seen in the circumferential direction - between the rubber spring elements (41-43) in sections as at least in the radial direction the vibration path of the mass body (51-53) limiting stop elements (16, 53) are formed.
2. Schwingungsdämpfer gemäß Anspruch 1, dadurch gekennzeichnet, daß die Hülse (15) eine wellenförmige Längsprofilierung auf- weist, wobei die Gummifederelemente (32) in den Wellentälern (16) der Längsprofilierung angeordnet sind, während zumindest ein Teil der restlichen Wellentäler (16) als Anschlag"1 bereiche dienen.2. Vibration damper according to claim 1, characterized in that the sleeve (15) has a wavy longitudinal profile. has, the rubber spring elements (32) being arranged in the troughs (16) of the longitudinal profile, while at least some of the remaining troughs (16) serve as stop "1 areas.
3. Schwingungsdämpfer gemäß Anspruch 1, dadurch gekennzeichnet, daß eine Hülse (21) aus zwei miteinander verbundenen Rohrabschnitten (22, 23) unterschiedlichen Außendurchmessers besteht, wobei der Rohrabschnitt (22) mit dem größeren Außendurchmesser annähernd dem Innendurchmesser der Gelenkwelle (1) entspricht, während der Rohrabschnitt (23) mit dem kleineren Außendurchmesser an seiner Außenkontur einen zumindest bereichsweise ringförmigen Massekorper (51) über mindestens ein Gummifederelement (31) trägt.3. Vibration damper according to claim 1, characterized in that a sleeve (21) consists of two interconnected pipe sections (22, 23) of different outside diameters, the pipe section (22) with the larger outside diameter approximately corresponding to the inside diameter of the cardan shaft (1), while the tube section (23) with the smaller outer diameter carries an at least partially annular mass body (51) on its outer contour via at least one rubber spring element (31).
4. Schwingungsdämpfer gemäß Anspruch 1, dadurch gekennzeichnet, daß eine Hülse (25) einen axial zwischen mindestens zwei Gummifederelementen (34, 35) gelagerten Massekorper (51) in axialer Richtung umgrei t.4. Vibration damper according to claim 1, characterized in that a sleeve (25) encompasses a mass body (51) axially mounted between at least two rubber spring elements (34, 35) in the axial direction.
5. Schwingungsdämpfer gemäß Anspruch 4, dadurch gekennzeichnet, daß die Hülse (25) einen rohrförmigen Abschnitt aufweist, der beiderseits an seinen Stirnseiten in plane, scheibenförmige Bereiche (26, 27) übergeht, an denen die Gummifederelemente (34, 35) befestigt sind. 5. Vibration damper according to claim 4, characterized in that the sleeve (25) has a tubular portion which merges on both sides at its end faces in flat, disc-shaped areas (26, 27) to which the rubber spring elements (34, 35) are attached.
6. Schwingungsdämpfer für eine rohrförmige Gelenkwelle im Antriebsstrang eines Kraftfahrzeugs mit einem in der Gelenkwelle mittels Gummifederelementen konzentrisch angeordneten Massekörper, dadurch gekennzeichnet,6. Vibration damper for a tubular cardan shaft in the drive train of a motor vehicle with a mass body arranged concentrically in the cardan shaft by means of rubber spring elements, characterized in that
- daß zwischen dem Massekorper und der Gelenkwelle zumindest in Radialrichtung den Schwingungsweg des Massekörpers begrenzende me allische und/oder gummielastische Anschlagelemente angeordnet sind, wobei die Anschlagelemente - in Um- fangsrichtung gesehen - zwischen den Gummifederelementen angeordnet sind oder- That between the mass body and the propeller shaft at least in the radial direction limiting the vibration path of the mass body me allische and / or rubber-elastic stop elements are arranged, the stop elements - seen in the circumferential direction - are arranged between the rubber spring elements or
- daß der Massekorper und/oder die Gelenkwelle in einander gegenüberliegenden Bereichen - in Umfangsrichtung gesehen - zwischen den Gummifederelementen abschnittsweise als zumindest in Radialrichtung den Schwingungsweg des Massekörpers begrenzende Anschlagelemente ausgebildet sind. - That the mass body and / or the cardan shaft in opposite areas - seen in the circumferential direction - between the rubber spring elements in sections as at least in the radial direction limiting the vibration path of the mass body stop elements.
EP98943782A 1997-08-02 1998-07-24 Vibration damper for a tubular drive shaft Withdrawn EP1000271A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19733478A DE19733478B4 (en) 1997-08-02 1997-08-02 Vibration damper for a tubular cardan shaft
DE19733478 1997-08-02
PCT/EP1998/004659 WO1999006730A1 (en) 1997-08-02 1998-07-24 Vibration damper for a tubular drive shaft

Publications (1)

Publication Number Publication Date
EP1000271A1 true EP1000271A1 (en) 2000-05-17

Family

ID=7837807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98943782A Withdrawn EP1000271A1 (en) 1997-08-02 1998-07-24 Vibration damper for a tubular drive shaft

Country Status (4)

Country Link
US (1) US6837345B1 (en)
EP (1) EP1000271A1 (en)
DE (1) DE19733478B4 (en)
WO (1) WO1999006730A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142822A1 (en) * 2001-08-22 2003-03-27 Woco Avs Gmbh Innentilger
US20030139217A1 (en) * 2002-01-23 2003-07-24 Lin Zhu Shaft damper
JP2003240052A (en) * 2002-02-19 2003-08-27 Showa Corp Dynamic damper and propeller shaft
JP3897609B2 (en) * 2002-02-22 2007-03-28 株式会社ショーワ Dynamic damper and propeller shaft
JP3882903B2 (en) * 2002-02-22 2007-02-21 株式会社ショーワ Dynamic damper and propeller shaft
JP3882902B2 (en) 2002-02-22 2007-02-21 株式会社ショーワ Dynamic damper and propeller shaft
JP3897610B2 (en) * 2002-02-22 2007-03-28 株式会社ショーワ Dynamic damper manufacturing method
CA2511210A1 (en) * 2004-07-14 2006-01-14 The Pullman Company Multi-direction tuned mass damper with unique assembly
JP4421500B2 (en) * 2005-03-23 2010-02-24 倉敷化工株式会社 Vibration isolator
US7774911B2 (en) * 2006-02-27 2010-08-17 American Axle & Manufacturing, Inc. Method for attenuating driveline vibrations
WO2007137041A2 (en) * 2006-05-16 2007-11-29 A.O.Smith Corporation Vibration damping rotor assembly for rotating machinery
US20100113164A1 (en) * 2006-06-09 2010-05-06 Sgf Suddeutsche Gelenkscheibenfabrik Gmbh & Co., Kg Torque transmission device for the low vibration transmission of torque via at least one shaft
FR2918107B1 (en) * 2007-06-26 2013-04-12 Snecma SHOCK ABSORBER DEVICE ADAPTED TO TURBOMACHINE TREES.
US8342058B2 (en) * 2007-06-28 2013-01-01 Hillsdale Automotive, Llc Recessed belt damper
US8038133B2 (en) * 2007-09-13 2011-10-18 Mcpherson Mathew A Coaxial tube damper
US8308588B2 (en) * 2009-04-28 2012-11-13 Schaeffler Technologies AG & Co. KG Timing chain pivoting guide having a rubber spring element
US8167730B2 (en) * 2009-09-21 2012-05-01 Gkn Driveline North America, Inc. Tuned absorber
DE102011054110B4 (en) * 2011-09-30 2013-05-16 Gkn Driveline Deutschland Gmbh Drive shaft assembly
US9115840B2 (en) * 2012-06-29 2015-08-25 Denso International America, Inc. Snap on vibration damper
US9360271B1 (en) 2013-03-14 2016-06-07 Mcp Ip, Llc Vibration damper
DE102013106291B4 (en) * 2013-06-17 2015-03-26 Trelleborgvibracoustic Gmbh vibration absorber
US9234549B2 (en) 2013-09-13 2016-01-12 Paladin Brands Group, Inc. Torsional coupling for a mobile attachment device
US9033807B1 (en) 2013-10-30 2015-05-19 American Axle & Manufacturing, Inc. Propshaft assembly with damper
US8832941B1 (en) 2013-11-14 2014-09-16 Cardinal Machine Company Method for assembling a propshaft assembly
DE102013112854B4 (en) * 2013-11-21 2016-05-19 Trelleborgvibracoustic Gmbh A torsional vibration damper
US9895779B2 (en) * 2014-04-10 2018-02-20 Temper Axle Products Corporation Radial springs and methods of installing and uninstalling radial springs
US8863390B1 (en) 2014-04-16 2014-10-21 American Axle & Manufacturing, Inc. Method for fabricating damped propshaft assembly
US9297435B2 (en) * 2014-05-20 2016-03-29 The Pullman Company Tuned vibration absorber
EP3172455B1 (en) 2014-07-25 2020-09-02 Dayco IP Holdings, LLC Low frequency torsional vibration damper
FR3036153B1 (en) * 2015-05-12 2017-06-09 Messier Bugatti Dowty TRAINING ROLL.
CN105240431A (en) * 2015-09-23 2016-01-13 无锡市中捷减震器有限公司 Chassis shaft bush damping device
US9849971B2 (en) * 2015-12-21 2017-12-26 Goodrich Corporation Brake axle sleeve
WO2018111957A1 (en) * 2016-12-14 2018-06-21 Borgwarner Inc. Powertrain damper system for selectable one-way clutch module
JP6917200B2 (en) * 2017-06-06 2021-08-11 Nok株式会社 Dynamic damper
JP6917199B2 (en) * 2017-06-06 2021-08-11 Nok株式会社 Dynamic damper
JP6936051B2 (en) * 2017-06-06 2021-09-15 Nok株式会社 Dynamic damper
JP2019070396A (en) * 2017-10-06 2019-05-09 Nok株式会社 Dynamic damper
DE102017217987A1 (en) 2017-10-10 2019-04-11 Martin Schmid vibration absorber
US10677312B2 (en) * 2018-02-15 2020-06-09 General Electric Company Friction shaft damper for axial vibration mode
JP7125274B2 (en) * 2018-03-30 2022-08-24 倉敷化工株式会社 Vibration isolator manufacturing method
US10907698B2 (en) 2018-05-03 2021-02-02 Nissan North America, Inc. Dynamic damper
CN108506417A (en) * 2018-05-23 2018-09-07 威固技术(安徽)有限公司 Built-in transmission shaft dynamic vibration absorber
JP7401206B2 (en) * 2018-12-04 2023-12-19 Nok株式会社 dynamic damper
JP7329372B2 (en) * 2019-06-25 2023-08-18 Nok株式会社 dynamic damper
NL2023862B1 (en) * 2019-09-20 2021-05-25 Mps Holding Bv A mandrel for printing apparatus, a printing cylinder, a printing apparatus
CN112165233B (en) * 2020-09-07 2023-08-18 黄开午 Circular vibration motor
JP7359128B2 (en) 2020-10-28 2023-10-11 トヨタ自動車株式会社 dynamic damper
JP7327352B2 (en) * 2020-10-28 2023-08-16 トヨタ自動車株式会社 dynamic damper
DE102021108890A1 (en) * 2021-04-09 2022-10-13 Vibracoustic Se wave absorber
EP4403750A1 (en) * 2023-01-20 2024-07-24 Honeywell International Inc. Mounting system for gearbox including corrugated bushing
US12116936B2 (en) 2023-01-20 2024-10-15 Honeywell International Inc. Mounting system for gearbox including corrugated bushing
SE2350248A1 (en) * 2023-03-06 2024-01-12 Volvo Truck Corp Propeller shaft assembly for a motor vehicle

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1850210A (en) * 1929-09-27 1932-03-22 Walter E Krotee Insulated driving connection
US3403899A (en) * 1966-04-29 1968-10-01 Gen Motors Corp Viscous damped bushing
DE2061625C3 (en) * 1970-12-15 1980-03-06 Daimler-Benz Ag, 7000 Stuttgart Intermediate bearings for the cardan shaft of motor vehicles
IT1053964B (en) * 1975-02-26 1981-10-10 Daimler Benz Ag DEVICE FOR DAMPING OSCILLATIONS IN THE TRANSMISSION OF MOTOR VEHICLES
DE2747225C2 (en) 1977-10-21 1982-04-22 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Drive unit elastically mounted in a motor vehicle
DE2841505C2 (en) * 1978-09-23 1983-04-07 Boge Gmbh, 5208 Eitorf Hydraulically damping rubber mount
DE3011384A1 (en) * 1980-03-25 1981-10-08 E.C.H. Will (Gmbh & Co), 2000 Hamburg DEVICE FOR PRINTING AN ENDLESS MATERIAL LEVEL
DE3012886C2 (en) 1980-03-31 1982-02-25 Rud-Kettenfabrik Rieger & Dietz Gmbh U. Co, 7080 Aalen Component for chain harnesses
US4486183A (en) * 1980-06-30 1984-12-04 The Gates Rubber Company Torsionally elastic power transmitting device and drive
JPS57200741A (en) * 1981-06-03 1982-12-09 Nissan Motor Co Ltd Power unit mount body of car
US4571215A (en) * 1983-06-08 1986-02-18 Boroloy Industries International, Inc. Vibration dampener apparatus
JPS6014627A (en) * 1983-07-06 1985-01-25 Nissan Motor Co Ltd Sleeve-like elastic bush
GB2165333A (en) * 1984-09-26 1986-04-09 Steven Odobasic Laminated torsion elements
DE3509128C1 (en) * 1985-03-14 1986-10-02 Jean Walterscheid Gmbh, 5204 Lohmar Bearing ring
DE3632418A1 (en) * 1986-09-24 1988-03-31 Bayerische Motoren Werke Ag Arrangement for the vibration damping of a hollow component
EP0264833B1 (en) * 1986-10-17 1991-03-20 Sanden Corporation Mounting mechanism for compressor in an automotive air conditioning system
US4826145A (en) * 1987-01-23 1989-05-02 Dunlop Limited A British Company Resilient torsion bearing
US4935651A (en) * 1987-12-04 1990-06-19 Hyundai Heavy Industries Co., Ltd. Automatically controlled dynamic absorber
US4889578A (en) * 1988-01-29 1989-12-26 Kurashiki Kako Co., Ltd. Method for manufacturing rubber vibration insulator using a halogen compound solution
JPH0253543U (en) * 1988-10-08 1990-04-18
DE4142359C2 (en) * 1991-05-31 1996-12-12 Ntn Toyo Bearing Co Ltd Outer ring for a vibration-protected homokinetic joint
DE9112268U1 (en) * 1991-10-02 1991-12-05 Vorwerk & Sohn Gmbh & Co Kg, 5600 Wuppertal Vibration bushing, especially for chassis of motor vehicles
DE4201049C2 (en) * 1992-01-17 1995-11-02 Freudenberg Carl Fa Speed-adaptive torsional vibration damper
JPH07119778A (en) * 1993-09-02 1995-05-09 Tokai Rubber Ind Ltd Vibration proof rubber with blacket and its manufacture
FR2720132B1 (en) 1994-05-18 1996-07-26 Caoutchouc Manuf Plastique Elastic support comprising at least two coaxial cylindrical sleeves linked together by an elastic material, sleeves for such a support and method of manufacturing said support.
US5865429A (en) * 1994-05-18 1999-02-02 Caoutchouc Manufacture Et Plastiques Elastic support including at least two cylindrical sleeves with folds
JPH08312703A (en) * 1995-05-18 1996-11-26 Hokushin Ind Inc Damper
DE19521967C1 (en) * 1995-06-16 1996-12-05 Metzeler Gimetall Ag Radial bearing
DE19613912C2 (en) * 1996-04-06 2001-02-15 Boge Gmbh Hydraulically damping rubber bearing
DE19726293A1 (en) * 1997-06-20 1998-12-24 Contitech Formteile Gmbh Hollow drive shaft with integrated vibration damper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9906730A1 *

Also Published As

Publication number Publication date
DE19733478A1 (en) 1999-02-04
US6837345B1 (en) 2005-01-04
WO1999006730A1 (en) 1999-02-11
DE19733478B4 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
WO1999006730A1 (en) Vibration damper for a tubular drive shaft
EP0382197B1 (en) Clutch disc
DE102015109107B4 (en) Vibration damping device
DE19948009C1 (en) Brake disc for automobile disc brakes has 2 friction ring discs attached to disc head with ventilation channels between radial struts of friction disc rings provided with radial rupture points
DE102013106291B4 (en) vibration absorber
DE69618226T2 (en) AUTOMATIC BALANCING DEVICE
DE69016707T2 (en) Dynamic damper.
DE3137343A1 (en) ELASTIC BEARING
DE102005055800B4 (en) Device for damping torsional vibrations and arrangement
WO1997043138A1 (en) Radial bearing for a vehicle drive shaft
DE102012209459A1 (en) Bearing for continuously variable transmission gear box for motor car, has shell located in contact with side flanges at two axial surfaces of outer bearing ring, where one side flange is fixed at outer bearing ring in form-fit manner
EP0620379B1 (en) Torsional vibration damper
DE10326037B4 (en) Center bearing resonance absorber
DE102015213113A1 (en) Crankshaft and use of a centrifugal pendulum in a crankshaft
EP3622196A1 (en) Centrifugal pendulum device having a pre-stressing element for guiding the cylindrical rollers
DE102012219800B4 (en) Torsional vibration damper and clutch unit
EP0257272A1 (en) Radial shock absorber
DE102012216447A1 (en) Antifriction bearing unit i.e. safety bearing unit, for use in magnetic bearing for supporting shaft of continuously variable transmission in e.g. lorry, has damping coating arranged radially on surface at outer side of bearing outer ring
DE102008019173A1 (en) Rotary vibration damper has supporting element in form of rotary element and at least one elastomer element as damping medium arranged radially between supporting element and damping material
DE19641695C2 (en) Dual mass flywheel
DE19711145B4 (en) Torsion damper with washer, especially for motor vehicles
EP3877670B1 (en) Torsion absorber for wind turbines
DE102010060781A1 (en) Ventilated brake disc for motor car, has connection node and rib element which are arranged in periphery of brake disc to locally change rigidity of brake disc in circumferential direction or in radial direction
DE102010029055B4 (en) Torsional vibration damper for high speeds
EP0291942A2 (en) Torsional vibration damper, in particular for motor car transmissions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20001122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20010224