JP7327352B2 - ダイナミックダンパ - Google Patents

ダイナミックダンパ Download PDF

Info

Publication number
JP7327352B2
JP7327352B2 JP2020180717A JP2020180717A JP7327352B2 JP 7327352 B2 JP7327352 B2 JP 7327352B2 JP 2020180717 A JP2020180717 A JP 2020180717A JP 2020180717 A JP2020180717 A JP 2020180717A JP 7327352 B2 JP7327352 B2 JP 7327352B2
Authority
JP
Japan
Prior art keywords
peripheral surface
rotating shaft
flow path
inner peripheral
mass body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020180717A
Other languages
English (en)
Other versions
JP2022071649A (ja
Inventor
智幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020180717A priority Critical patent/JP7327352B2/ja
Priority to US17/451,821 priority patent/US11644092B2/en
Priority to CN202111244417.9A priority patent/CN114483880A/zh
Publication of JP2022071649A publication Critical patent/JP2022071649A/ja
Application granted granted Critical
Publication of JP7327352B2 publication Critical patent/JP7327352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0006Vibration-damping or noise reducing means specially adapted for gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/1201Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon for damping of axial or radial, i.e. non-torsional vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/124Elastomeric springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1414Masses driven by elastic elements
    • F16F15/1435Elastomeric springs, i.e. made of plastic or rubber
    • F16F15/1442Elastomeric springs, i.e. made of plastic or rubber with a single mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/108Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0493Gearings with spur or bevel gears
    • F16H57/0495Gearings with spur or bevel gears with fixed gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/025Elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/08Linear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0018Shaft assemblies for gearings
    • F16H57/0025Shaft assemblies for gearings with gearing elements rigidly connected to a shaft, e.g. securing gears or pulleys by specially adapted splines, keys or methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vibration Prevention Devices (AREA)
  • General Details Of Gearings (AREA)
  • Structure Of Transmissions (AREA)
  • Support Of The Bearing (AREA)

Description

本発明は、ダイナミックダンパに関する。
特許文献1には、動力伝達装置で発生した振動がケースに伝達することを防止するために、中空状のカウンタシャフトの内部に、ダイナミックダンパを配置することが開示されている。このダイナミックダンパでは、質量体がカウンタシャフトの軸心に沿って延在しており、その質量体が円筒状の弾性体を介してカウンタシャフトの内周部に連結されている。
特許第3852208号公報
ところで、動力伝達装置では、潤滑必要部に潤滑液を供給して、潤滑必要部を潤滑する必要がある。そのため、中空状の回転軸の内部は、潤滑液が流通する流路として利用されることがある。回転軸の内部に潤滑液を供給した場合、潤滑液は遠心力により回転軸の内周面に沿って流動する。
特許文献1に記載の構成では、質量体が円筒状であるため、質量体の内周面により形成された内部空間を、潤滑液の流路として利用することが考えられる。しかしながら、質量体の内周面は回転軸の内周面よりも径方向内側に位置するため、回転軸の内周面に沿って潤滑液が流動する場合と比べて、流路内の潤滑液に作用する遠心力が小さくなり、潤滑液の流動性が低くなる虞がある。
本発明は、上記事情に鑑みてなされたものであって、回転軸の内部において潤滑液が容易に流動することができるダイナミックダンパを提供することを目的とする。
本発明は、中空状の回転軸の内部に配置され、前記回転軸の軸心に沿って延在する質量体と、前記質量体を前記回転軸に連結する弾性体と、を備え、前記回転軸に取り付けられた歯車により生じる振動を抑制するダイナミックダンパであって、前記回転軸の内周面と前記質量体との間に、潤滑液が流通する流路が設けられ、前記流路は、前記弾性体が配置された軸方向位置で、前記回転軸の内周面によって形成されていることを特徴とする。
この構成によれば、回転軸の内周面と質量体との間に、潤滑液が流動する流路を備える。この流路は回転軸の内周面によって形成されているため、潤滑液が遠心力によって回転軸の内周面に沿って流動して流路の内部を流通する。これにより、ダイナミックダンパが配置された回転軸の内部を、潤滑液が容易に流動できる。また、流路が質量体の内周面によって形成された場合と比べて、潤滑液に作用する遠心力が大きくなるため、潤滑液の流動性が向上する。
また、前記質量体は、前記回転軸の軸心に沿って往復動する直動状態に振動可能であり、前記弾性体は、前記質量体と接触し、前記回転軸の軸方向に平行な第1接触面と、前記第1接触面とは異なる位置で前記質量体と接触し、前記回転軸の軸方向に対して平行でない第2接触面と、を有し、前記歯車が前記回転軸の径方向から前記回転軸の軸方向側へと倒れ込むように振動する場合、当該振動に応じて前記質量体が前記第1接触面を押し込むように振動することにより前記弾性体に圧縮応力が作用し、前記歯車が前記回転軸の軸方向に沿って振動する場合、当該振動に応じて前記質量体が前記直動状態となり前記第2接触面を押し込むように振動することにより前記弾性体に圧縮応力が作用してもよい。
この構成によれば、歯車が回転軸の径方向から軸方向側へと倒れ込むように振動する場合にも、歯車が回転軸の軸方向に沿って振動する場合にも、弾性体に圧縮応力が作用する。また、弾性体と質量体との接触面が回転軸の軸方向に平行な面のみにより構成された場合と比べて、第2接触面により軸方向振動時の圧縮方向の弾性率を大きくすることができる。これにより、歯車の倒れ込みによる振動と歯車の軸方向振動との両方に対応して制振効果を発揮することが可能になる。
また、前記弾性体は、軸方向全域に亘って形成されたスリット部を有し、前記流路は、前記回転軸の内周面と前記スリット部とにより形成された第1流路を含んでもよい。
この構成によれば、弾性体において、第2接触面が形成される軸方向位置にスリット部が設けられているので、スリット部を設けない場合と比べて、質量体と第2接触面との接触面積を小さくすることができる。これにより、弾性体にスリット部を設けない場合と比べて、軸方向振動時の圧縮方向の弾性率を低減することができる。
また、前記回転軸の内周面に取り付けられ、前記質量体および前記弾性体を一体的に保持する筒状のホルダ、をさらに備え、前記流路は、前記回転軸の内周面と前記ホルダとにより形成されてもよい。
この構成によれば、ホルダによって質量体と弾性体とを一体的に保持することができる。さらに、ホルダに質量体と弾性体とを組み付ける際の組付け性が向上する。
また、前記ホルダは、軸方向全域に亘り形成された第1スリット部を有し、前記流路は、前記回転軸の内周面と前記第1スリット部とにより形成された第1流路を含んでもよい。
この構成によれば、回転軸の内周面に沿った第1流路を形成できるとともに、第1スリット部によって第1流路の流路断面積を確保することができる。
また、前記ホルダは、前記回転軸の内周面と接触する第1外周面と、前記回転軸の内周面と接触しない第2外周面とを有し、前記流路は、前記回転軸の内周面と前記第2外周面とにより形成された第2流路を含んでもよい。
この構成によれば、回転軸の内周面に沿った第2流路を形成できるとともに、第2外周面と回転軸の内周面との間の隙間によって第2流路の流路断面積を確保することができる。
また、前記ホルダは、前記回転軸の内周面と接触する第1外周面と、前記第1スリット部とは異なる周方向位置に設けられ、前記回転軸の内周面と接触しない第2外周面とを有し、前記流路は、前記回転軸の内周面と前記第2外周面とにより形成された第2流路を含み、前記弾性体は、前記第1スリット部に対応する位置に設けられ、軸方向全域に亘り形成された第2スリット部を有し、前記第1流路は、前記回転軸の内周面と前記第1スリット部と前記第2スリット部とにより形成されてもよい。
この構成によれば、回転軸の内周面に沿って形成された第1流路と第2流路とを有することにより、流路断面積が大きくなり、流路を流通する潤滑液の流量が多くなる。
また、前記質量体は、外周部のうち、前記第1スリット部および前記第2スリット部に対応する位置に設けられ、軸方向に沿って延在する溝部と、前記外周部のうち、前記溝部とは前記回転軸の軸心に対して対称の位置に設けられた平面部とを有し、前記第1流路は、前記回転軸の内周面と前記第1スリット部と前記第2スリット部と前記溝部とにより形成され、前記第2流路は、前記第1流路とは前記回転軸の軸心に対して対称の位置に設けられてもよい。
この構成によれば、第1流路が溝部により形成されることで、第1流路の流路断面積を大きくできる。また、質量体の外周部では、回転軸の軸心に対して対称の位置に溝部と平面部とを配置することにより、回転時の質量のアンバランスを改善することができる。
本発明では、回転軸の内周面と質量体との間に、潤滑液が流動する流路を備える。この流路は回転軸の内周面によって形成されているため、潤滑液が遠心力によって回転軸の内周面に沿って流動して流路の内部を流通する。これにより、ダイナミックダンパが配置された回転軸の内部を、潤滑液が容易に流動できる。また、流路が質量体の内周面によって形成された場合と比べて、潤滑液に作用する遠心力が大きくなるため、潤滑液の流動性が向上する。
図1は、第1実施形態のダイナミックダンパが設けられた車両を模式的に示すスケルトン図である。 図2は、カウンタギヤ機構を模式的に示す断面図である。 図3は、第1実施形態のダイナミックダンパを説明するための分解図である。 図4は、第1実施形態のダイナミックダンパを説明するための部分断面図である。 図5は、第1実施形態のダイナミックダンパを説明するための部分断面図である。 図6は、第1実施形態のダイナミックダンパを模式的に示す断面図である。 図7は、図6のA-A線断面を示す断面図である。 図8は、図6のB-B線断面を示す断面図である。 図9は、潤滑液の流れを説明するための模式図である。 図10は、ホルダの変形例を示す斜視図である。 図11は、ホルダの別の変形例を示す斜視図である。 図12は、第1実施形態の変形例におけるダイナミックダンパを示す断面図である。 図13は、第2実施形態のダイナミックダンパを説明するための分解図である。 図14は、第2実施形態のダイナミックダンパを説明するための断面図である。 図15は、変形例のダイナミックダンパを説明するための分解図である。 図16は、変形例のダイナミックダンパを説明するための断面図である。
以下、図面を参照して、本発明の実施形態におけるダイナミックダンパについて具体的に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
(第1実施形態)
図1は、第1実施形態のダイナミックダンパが設けられた車両を模式的に示すスケルトン図である。図1に示すように、車両Veは、動力源として、エンジン1と、第1モータ2と、第2モータ3とを備えたハイブリッド車両である。各モータ2,3は、モータ機能と発電機能とを有するモータ・ジェネレータであり、インバータを介してバッテリに電気的に接続されている。車両Veでは、動力源から出力された動力が動力伝達装置4を介して車輪5に伝達される。
動力伝達装置4は、入力軸6と、遊星歯車機構7と、出力ギヤ8と、カウンタギヤ機構9と、デファレンシャルギヤ機構10と、ドライブシャフト11とを備える。また、車両Veは、動力伝達装置4に含まれるギヤ機構を収容するケース12を備える。ケース12の内部には、第1モータ2、第2モータ3、遊星歯車機構7、出力ギヤ8、カウンタギヤ機構9、デファレンシャルギヤ機構10が収容されている。
エンジン1のクランクシャフトと同一軸線上に、入力軸6と、遊星歯車機構7と、第1モータ2とが配置されている。第1モータ2は、遊星歯車機構7に隣接し、軸方向でエンジン1とは反対側に配置されている。この第1モータ2は、ロータ2aと、コイルが巻き回されたステータ2bと、ロータシャフト2cとを備えている。
遊星歯車機構7は、動力分割機構であり、エンジン1が出力した動力を第1モータ2側と車輪5側とに分割する。その際、第1モータ2はエンジン1が出力した動力によって発電する。この電力はバッテリに蓄電され、あるいはインバータを介して第2モータ3に供給される。
この遊星歯車機構7は、シングルピニオン型の遊星歯車機構であり、三つの回転要素として、サンギヤ7S、キャリア7C、リングギヤ7Rを備えている。サンギヤ7Sには、第1モータ2のロータシャフト2cが一体回転するように連結されている。キャリア7Cには、入力軸6が一体回転するように連結されている。エンジン1は入力軸6を介してキャリア7Cに連結されている。リングギヤ7Rには、遊星歯車機構7から車輪5側へ向けてトルクを出力する出力ギヤ8が一体化されている。出力ギヤ8は、リングギヤ7Rと一体回転する歯車であり、カウンタギヤ機構9のカウンタドリブンギヤ91と噛み合っている。
カウンタギヤ機構9は、カウンタドリブンギヤ91と、入力軸6と平行に配置されたカウンタシャフト92と、カウンタドライブギヤ93とを有する。カウンタシャフト92には、カウンタドリブンギヤ91とカウンタドライブギヤ93とが一体回転するように取り付けられている。カウンタドライブギヤ93は、デファレンシャルギヤ機構10のデフリングギヤ10aと噛み合っている。デファレンシャルギヤ機構10には、左右のドライブシャフト11を介して車輪5が連結されている。
また、車両Veは、エンジン1から車輪5に伝達されるトルクに、第2モータ3が出力したトルクを付加することができる。第2モータ3は、ロータ3aと、コイルが巻き回されたステータ3bと、ロータシャフト3cとを備えている。
ロータシャフト3cは、カウンタシャフト92と平行に配置されている。ロータシャフト3cには、リダクションギヤ13が設けられている。リダクションギヤ13は、カウンタドリブンギヤ91と噛み合っている。
ケース12は、ケース部材12aと、フロントカバー12bと、リアカバー12cとによって構成されている。ケース部材12aは、動力伝達装置4を収容する部材である。フロントカバー12bは、エンジン1側のカバー部材であり、ケース部材12aにボルト締結されている。リアカバー12cは、各モータ2,3側のカバー部材であり、ケース部材12aにボルト締結されている。
ケース12の内部では、各モータ2,3を収容するモータ室と、ギヤ機構を含む動力伝達装置4を収容するギヤ室とが、センタサポート16によって仕切られている。センタサポート16は、モータ室とギヤ室とを仕切る隔壁であり、ケース12に一体化された固定部である。センタサポート16には、第1モータ2のロータシャフト2cが挿通される貫通孔と、第2モータ3のロータシャフト3cが挿通される貫通孔とが設けられている。各ロータシャフト2c,3cは各貫通孔を介してモータ室とギヤ室とに延在している。
ギヤ室内では、カウンタシャフト92の両端部が第1軸受14と第2軸受15とによってケース12に支持されている。第1軸受14は、カウンタシャフト92の一方側の端部に取り付けられた転がり軸受であり、外輪がセンタサポート16に取り付けられている。第2軸受15は、カウンタシャフト92の他方側の端部に取り付けられた転がり軸受であり、外輪がフロントカバー12bに取り付けられている。
また、カウンタシャフト92には、図2に示すように、カウンタドリブンギヤ91がスプライン嵌合している。このカウンタドリブンギヤ91は、はすば歯車により構成されている。すなわち、カウンタドリブンギヤ91と出力ギヤ8との噛み合い部、およびカウンタドリブンギヤ91とリダクションギヤ13との噛み合い部は、はすば歯車同士の噛み合い部である。そのため、カウンタドリブンギヤ91では、はすば歯車の噛み合いにより生じる軸方向の荷重(スラスト力)を強制力として振動が発生する。そこで、カウンタギヤ機構9では、カウンタドリブンギヤ91で生じた振動が第1軸受14および第2軸受15を介してケース12へ伝達することを抑制するために、カウンタシャフト92にダイナミックダンパ20(図2等に示す)が設けられている。これにより、各軸受14,15からケース12へと振動が伝達する前に、カウンタシャフト92で制振することにより振動伝達を抑制し、ケース12からの放射音を低減する。
また、ケース12の内部では、動力伝達装置4の潤滑必要部に潤滑液が供給される。例えば、デフリングギヤ10aによって掻き上げられた潤滑液が潤滑必要部に供給される。潤滑液としては、オイルを用いることができる。潤滑必要部は、ギヤに限らず、軸受を含む。そのため、掻き上げ潤滑によって第1軸受14と第2軸受15にも潤滑液が供給される。この第1軸受14と第2軸受15とはカウンタシャフト92の両端部に取り付けられている。そこで、カウンタギヤ機構9では、カウンタシャフト92の内部で潤滑液が軸方向に流通可能に構成されている。これにより、第1軸受14と第2軸受15とについて、一方の軸受を潤滑した潤滑液がカウンタシャフト92の内部を介して他方の軸受へと供給可能になる。
(ダンパ)
ダイナミックダンパ20は、図2に示すように、中空状のカウンタシャフト92の内部に配置されている。このダイナミックダンパ20は、図3に示すように、質量体21と、ゴム22と、ホルダ23とを備えている。
質量体21は、カウンタシャフト92の振動に応じて振動する棒状の慣性質量体である。この質量体21は、カウンタシャフト92の軸心Oに沿って延在しており、ゴム22を介してカウンタシャフト92の内部に連結されている。そして、質量体21はゴム22に保持された状態でカウンタシャフト92の振動に応じて振動する。
ゴム22は、質量体21と接触している筒状の部材である。ダイナミックダンパ20は、高分子材をバネに使用したものであり、弾性体としてゴム22を備えている。そして、カウンタドリブンギヤ91の振動に応じて質量体21が振動することによりゴム22に圧縮応力が作用する。
ホルダ23は、質量体21とゴム22とを一体的に保持する筒状の部材である。このホルダ23はカウンタシャフト92の内部に取り付けられている。例えば、図3に示す組付け前の状態から、質量体21の外周部にゴム22が装着される。そして、一体化されたゴム22と質量体21とが、ホルダ23の内部に軸方向から挿入される。図4および図5に示す組付け後の状態では、カウンタシャフト92の内部へと軸方向の一方側からホルダ23が挿入されて、ホルダ23がカウンタシャフト92の内部に圧入されている。ホルダ23が組付け時に収縮し、カウンタシャフト92の内部で拡張することにより、カウンタシャフト92の内周面92aに保持される。なお、この説明では、カウンタシャフト92の軸方向を単に軸方向と記載し、カウンタシャフト92の径方向を単に径方向と記載する。
また、ホルダ23は、スリット部231と、平坦部232とを有する。このスリット部231と平坦部232とはいずれも、カウンタシャフト92の内部において、潤滑液が流通するための流路30を形成する。
スリット部231は、軸方向に沿って延在し、ホルダ23の軸方向全域に亘って設けられている。このスリット部231は、幅が一定に形成されている。また、スリット部231は、ホルダ23のうち、外周面および内周面が円弧面に形成された部分に一つ設けられている。そのため、ホルダ23を軸方向から見た場合、ホルダ23は略C字状に形成されている。スリット部231は、ホルダ23の組付け時に収縮、拡張するための開口部として機能する。
平坦部232は、ホルダ23のうち、外周面および内周面が平面に形成された部分である。この平坦部232は、軸方向に沿って延在し、ホルダ23の軸方向全域に亘って設けられている。また、平坦部232は、図6に示すように、軸心Oに対して対称の位置に二つ設けられている。この二つの平坦部232は、スリット部231から周方向に90度の位置にそれぞれ設けられている。このように、ホルダ23は、一つのスリット部231と、二つの平坦部232とを有する。
そして、ホルダ23がカウンタシャフト92の内部に圧入された際、図6に示すように、平坦部232は、カウンタシャフト92の内周面92aとは接触しない非接触部である。ホルダ23は、カウンタシャフト92の内周面92aと接触する第1外周面23aと、カウンタシャフト92の内周面92aと接触しない第2外周面としての平坦部232の外周面232aとを有する。第1外周面23aは円弧面に形成された接触面である。平坦部232の外周面232aは、平面に形成された非接触面である。
さらに、ホルダ23は、径方向において、カウンタシャフト92の内周面92aとゴム22との間に配置されている。そのため、カウンタシャフト92の内部では、カウンタシャフト92の内周面92aとゴム22との間に、スリット部231とカウンタシャフト92の内周面92aとにより形成された第1流路31が設けられている。
加えて、カウンタシャフト92の内部では、カウンタシャフト92の内周面92aとホルダ23の平坦部232との間に、平坦部232の外周面232aとカウンタシャフト92の内周面92aとに形成された第2流路32が設けられている。
第1流路31は、潤滑液が流通する流路である。この第1流路31は、図6に示すように、カウンタシャフト92の内周面92aとスリット部231とゴム22の第1外周面22cとにより囲まれた空間により構成される。すなわち、第1流路31はカウンタシャフト92の内周面92aとゴム22とが径方向に対向して形成された隙間により構成される。さらに、第1流路31は、図7に示すように、ゴム22が設けられた軸方向位置で、カウンタシャフト92の内周面92aに沿って軸方向に延在している。つまり、第1流路31は、ゴム22よりも径方向外側の位置で、ホルダ23の軸方向両端側に開口する開口部を連通するように軸方向に延在している。そして、第1流路31の内部では、遠心力によりカウンタシャフト92の内周面92aに膜状となった潤滑液を流動させることができる。
第2流路32は、潤滑液が流通する流路である。この第2流路32は、図6に示すように、カウンタシャフト92の内周面92aと平坦部232の外周面232aとにより囲まれた空間により構成される。すなわち、第2流路32はカウンタシャフト92の内周面92aと平坦部232とが径方向に対向して形成された隙間により構成される。さらに、第2流路32は、図8に示すように、ゴム22が設けられた軸方向位置で、カウンタシャフト92の内周面92aに沿って軸方向に延在している。つまり、第2流路32は、平坦部232よりも径方向外側の位置で、ホルダ23の軸方向両端側に開口する開口部を連通するように軸方向に延在している。そして、第2流路32の内部では、遠心力によりカウンタシャフト92の内周面92aに膜状となった潤滑液を流動させることができる。
また、第2流路32は、図6に示すように、軸心Oに対して対称の位置に二つ設けられている。この二つの第2流路32は、第1流路31から周方向に90度の位置にそれぞれ設けられている。このように、第1実施形態では、潤滑液が流通するための流路30として、一つの第1流路31と二つの第2流路32とを有する。これにより、カウンタギヤ機構9では、図9に示すように、第1軸受14を潤滑した潤滑液がカウンタシャフト92の内部で流路30を流通して第2軸受15に供給されることが可能になる。
また、ホルダ23は、全体的に同じ厚さに形成されている。一方、ゴム22は、部分的に異なる厚さに形成されている。ゴム22は、図6に示すように、内周面が全体的に円弧状に形成されているのに対して、外周面の一部が平面状に形成されている。そして、ゴム22では、第1接触面22aが設けられた部分が、第2接触面22bが設けられた部分よりも薄いように、軸方向位置によって厚さが異なる。そのため、ゴム22では、軸方向位置が同じ位置での比較において、第2接触面22bが設けられた部分の厚さが、第1外周面22cが設けられた部分の厚さよりも薄い。
さらに、ダイナミックダンパ20は、図3に示すように、質量体21の外周部に凹部211を設け、質量体21が軸方向に振動する際にゴム22に圧縮応力が作用するように構成されている。ゴム22は、内周部が径方向内側へ突出する凸部221を有する。そして、質量体21の凹部211は、ゴム22の凸部221と接触している。つまり、質量体21の凹部211とゴム22の凸部221とは互いに対応する位置に設けられている。
また、質量体21は、軸方向に並んで配置された二つの凹部211を有する。すなわち、ゴム22は、軸方向に並んで配置された二つの凸部221を有する。さらに、質量体21は、ゴム22に接触しない非接触部212,213を軸方向両端側に有する。非接触部212は軸方向の他方側の部位であり、非接触部213は軸方向の一方側の部位である。
ゴム22は、筒状に形成されているため、内周面が質量体21と接触し、外周面がホルダ23と接触する。ゴム22の内周面は、質量体21との接触面として、軸方向に平行な第1接触面22aと、軸方向に対して平行でない第2接触面22bとを有する。ゴム22の外周面は、円弧状の第1外周面22cと、平坦状の第2外周面22dとを有する。第1外周面22cは、ホルダ23のうち平坦部232以外の部分と接触する第3接触面と、スリット部231に露出する外周面とを含む。第2外周面22dは、ホルダ23の平坦部232と接触する第4接触面となる。
質量体21は、図7および図8に示すように、ゴム22と接触する接触部として、第1接触面22aと接触する第1接触部21aと、第2接触面22bと接触する第2接触部21bとを有する。
第1接触部21aは、非接触部212と同径の円柱状に形成された部分である。第2接触部21bは、第1接触部21aから径方向内側に凹んだ凹部211に含まれる。すなわち、凹部211は、軸方向に対して傾斜した第2接触部21bと、軸方向に平行な底面211aとを有する。
底面211aは、第1接触部21aの外径によりも小径な外周面であり、ゴム22の凸部221における内周面221aと接触している。底面211aの軸方向両側には、傾斜方向が反転した一対の第2接触部21bが設けられている。つまり、一つの凹部211において、軸方向一方側に設けられた一方の傾斜面としての第2接触部21bと、軸方向他方側に設けられた他方の傾斜面としての第2接触部21bとを有する。これにより、質量体21が軸方向に沿って前後動する際、第2接触部21bによる傾斜面がゴム22を押し込むことができ、ゴム22に圧縮応力を作用することが可能になる。
また、第2接触部21bは、径方向に対して傾斜した傾斜面、すなわちテーパ面である。第2接触部21bの傾斜角度は、0degよりも大きくかつ90deg未満に設定されている。この傾斜角度に設定された第2接触部21bを有することにより、ゴム22との接触面を増やすことができ、ゴム22の軸方向弾性率、すなわち軸方向振動時の圧縮方向の弾性率を上げることができる。要するに、第2接触部21bの傾斜面を径方向に沿った平面に投影した面積を増やすことにより、軸方向振動時の圧縮方向の弾性率を上げることができる。
ホルダ23の内周面は、ゴム22と接触する接触面として、第1外周面22cと接触する円弧状の第1内周面23bと、第2外周面22dと接触する平坦部232の内周面232bとを有する。第1内周面23bは、第1外周面23aが形成された部分の内周面である。内周面232bは、ホルダ23の第2外周面を形成する平面である。
このダイナミックダンパ20では、例えば、ゴム22が質量体21に接合されているとともに、ゴム22がホルダ23に接合されている。これにより、質量体21が振動する際に、ホルダ23によって確実に保持することができる。
(カウンタドリブンギヤの共振モード)
カウンタドリブンギヤ91の共振モードについて説明する。カウンタドリブンギヤ91では、はすば歯車の噛み合いにより生じるスラスト力を強制力として、倒れ込み共振と、軸方向共振とが発生する。
倒れ込み共振とは、大径ギヤであるカウンタドリブンギヤ91が軸方向側に倒れ込むように振動する振動モード(倒れ込み共振モード)のことである。言い換えれば、軸方向共振とは、カウンタドリブンギヤ91が軸方向に振動する振動モード(軸方向共振モード)のことである。
このように、カウンタドリブンギヤ91は、倒れ込み共振モードの共振周波数と、軸方向共振モードの共振周波数という、二つの共振周波数を有することになる。つまり、カウンタドリブンギヤ91と一体回転するカウンタシャフト92を制振対象とする場合には、対象の共振周波数が二つ存在することになる。
さらに、カウンタドリブンギヤ91において、倒れ込み共振モードの共振周波数は、軸方向共振モードの共振周波数よりも低い。具体的には、倒れ込み共振モードの共振周波数は約2.6kHz、軸方向共振モードの共振周波数は約3.6kHzとなる。これは、カウンタドリブンギヤ91が大径ギヤであるため、倒れ込み共振時にはスポーク部91aの曲げ一次モードとなるのに対して、軸方向共振時には二次モードとなるためである。
そこで、本実施形態では、ダイナミックダンパ20の共振周波数を対象の共振周波数に一致させ、対象の共振モードを打ち消すようなダイナミックダンパ20の共振モードとすることで、両方の共振モードに対応した制振効果を発揮する。つまり、ダイナミックダンパ20の共振周波数を、倒れ込み共振モードの共振周波数に一致させ、かつ軸方向共振モードの共振周波数に一致させるように構成されている。
(ダイナミックダンパの共振モード)
ダイナミックダンパ20は、倒れ込み共振モードに対応した動吸振器の共振モードとしてのダンパ傾きモードと、軸方向共振モードに対応した動吸振器の共振モードとしてのダンパ前後モードとに振動することが可能である。
ダンパ傾きモードとは、質量体21が軸心Oに対して傾いた姿勢を取るように振動する共振モードである。すなわち、ダンパ傾きモードでは質量体21が軸心Oに対して揺動する。一方、ダンパ前後モードとは、質量体21が軸心Oに沿って軸方向に前後動する共振モードである。すなわち、ダンパ前後モードでは質量体21が軸方向に沿って往復動する。
そして、カウンタドリブンギヤ91が倒れ込み共振を生じる場合、ダイナミックダンパ20はダンパ傾きモードとなり、質量体21が揺動状態となる。このように、ダイナミックダンパ20が傾き方向(軸心Oに対して傾いた方向)に共振することによって、カウンタドリブンギヤ91の倒れ込み共振の振動伝達をキャンセルする。
また、カウンタドリブンギヤ91が軸方向共振を生じる場合、ダイナミックダンパ20はダンパ前後モードとなり、質量体21が直動状態となる。このように、ダイナミックダンパ20が軸方向に沿って共振することによって、カウンタドリブンギヤ91の軸方向共振の振動伝達をキャンセルする。
ダイナミックダンパ20がダンパ傾きモードとなる場合、質量体21が揺動することにより、第1接触部21aがゴム22の第1接触面22aを押し込むように振動し、ゴム22に圧縮応力を作用する。ダイナミックダンパ20がダンパ前後モードとなる場合、質量体21が直動することにより、第2接触部21bがゴム22の第2接触面22bを押し込むように振動し、ゴム22に圧縮応力が作用する。
(ダイナミックダンパの共振周波数)
動吸振器の共振周波数fは、バネ定数kと質量mとを用いて、下式(1)により表される。
f=(1/2π)√k/m ・・・(1)
ダイナミックダンパ20では、動吸振器のバネとして、高分子材からなるゴム22が設けられている。そのため、ダイナミックダンパ20の共振周波数は、上式(1)のバネ定数kに代えて、ゴム22の弾性率を用いて表すことができる。
ゴム22の弾性率には、圧縮方向の弾性率Eと、せん断方向の弾性率Gとが含まれる。そして、圧縮方向の弾性率Eと、せん断方向の弾性率Gとの関係は、ゴム22のポアソン比νを用いて、下式(2)により表される。
G=E/[2(1+ν)] ・・・(2)
上式(2)について、ゴム22のポアソン比νは約0.5である。そのため、せん断方向の弾性率Gは、圧縮方向の弾性率Eよりも小さくなる。
そして、動吸振器において質量mが一定の場合、共振周波数fはバネ定数kに基づいて決定する。すなわち、ダイナミックダンパ20では、質量体21の質量が一定であるため、ゴム22の弾性率に基づいて共振周波数が決定する。
ここで、比較例として、特許文献1(特許第3852208号公報)に開示された従来構造のように、円筒状の質量体と円筒状のゴムとを備えたダイナミックダンパについて説明する。この比較例では、ゴムと質量体との接触面が軸方向に平行な面のみにより構成されるため、カウンタドリブンギヤの軸方向共振時、ゴムに圧縮力が作用せず、せん断力のみが作用する。そのため、比較例のダイナミックダンパでは、軸方向共振に対応して質量体が軸方向に振動する際(ダンパ前後モード)、せん断方向の弾性率Gにより共振周波数fが決定される。一方、比較例では、カウンタドリブンギヤの倒れ込み共振時、ゴムに圧縮力が作用する。
つまり、比較例のダイナミックダンパでは、ゴムにせん断力のみが作用する場合(ダンパ前後モード)の共振周波数が、ゴムに圧縮力が作用する場合(ダンパ傾きモード)の共振周波数よりも低くなる。具体的にはCAE解析を行った結果、この比較例では、ダンパ前後モードの共振周波数が約1.6kHz、ダンパ傾きモードの共振周波数が約2.6kHzとなった。
これに対して、制振対象のカウンタドリブンギヤ91では、軸方向共振モードの共振周波数が、倒れ込み共振モードの共振周波数よりも高くなる。具体的には、カウンタドリブンギヤ91の共振周波数は、軸方向共振モードの場合に約3.6kHz、倒れ込み共振モードの場合に約2.6kHzとなる。つまり、比較例のダイナミックダンパでは、共振周波数の大小関係が制振対象と逆になるため、制振対象における二つの共振モードの両方に対応することはできない。
そこで、ダイナミックダンパ20では、カウンタドリブンギヤ91における二つの共振モードの両方に対応して制振効果を発揮することができるように構成されている。ダイナミックダンパ20では、軸方向共振モードに対応したダンパ前後モードの共振周波数が、倒れ込み共振モードに対応したダンパ傾きモードの共振周波数よりも高くなるように構成されている。
以上説明した通り、第1実施形態によれば、カウンタシャフト92の内部で、潤滑液が流路30を通じて軸方向に流動する。流路30はカウンタシャフト92の内周面92aにより形成されているため、流路30内で潤滑液に作用する遠心力が大きくなり、潤滑液の流動性が向上する。これにより、潤滑液が容易に流動することができる。その結果、カウンタシャフト92の軸方向で両端側に配置された第1軸受14と第2軸受15とにカウンタシャフト92の内部を通じて潤滑液が供給され、各軸受の潤滑と冷却とを行うことができる。
また、ダイナミックダンパ20の共振周波数について、ダンパ前後モードの共振周波数がダンパ傾きモードの共振周波数よりも高くなる。これにより、ダイナミックダンパ20の共振周波数を倒れ込み共振モードと軸方向共振モードとの両方の周波数に合わせることができ、カウンタドリブンギヤ91の倒れ込み共振と軸方向共振との両方を制振することが可能になる。
また、第1軸受14および第2軸受15からケース12へと振動が伝達する前に、カウンタシャフト92の内部(軸心部)に配置されたダイナミックダンパ20によって制振することで振動伝達を抑制して、ケース12からの放射音を低減することができる。
また、ダイナミックダンパ20を、簡素な構造で、小型かつ軽量に構成することが可能になる。これにより、低コストで振動と騒音を抑制することができる。さらに、ケース12の防音カバーを簡素化することができ、ユニット全体として小型化、低コスト化を図れる。
なお、上述した第1実施形態では、ゴム22が質量体21に接合され、かつゴム22がホルダ23に接合された例について説明したが、本発明はこれに限定されない。
また、質量体21の底面211aには、周方向に向けて延在し、周方向全域に亘って形成された環状の溝部が設けられてもよい。この環状の溝部は、ゴム22を質量体21に組付ける時のゴム圧縮による逃げスペースのための構造であり、軸方向に離れた位置に複数設けられてもよい。
また、質量体21は、円柱状の非接触部212よりも径方向内側に窪んだ形状の凹部211を有する構造に限定されず、この凹部の代わりに、円柱状の非接触部212よりも径方向外側に突出した凸部を有する構造であってもよい。つまり、上述した凹凸構造は逆の関係となる形状の質量体21とゴム22であってもよい。この場合、質量体21は凹部211に代えて凸部と有し、ゴム22は凸部221に代えて凹部を有することになる。
また、第1流路31の流路断面積と第2流路32の流路断面積との大小関係は特に限定されない。例えば、第1流路31のほうが第2流路32よりも小さい流路断面積に形成されている。
また、スリット部231の形状は、上述した第1実施形態の形状に限定されない。例えば、スリット部231は、図10に示すように、軸方向に対して斜めに延在してもよい。あるいは、スリット部231は、図11に示すように、スリット幅が徐々に変化してもよい。この場合、スリット部231は、流入側の開口部が広く、流出側の開口部が狭くなるように、上流側から下流側へとスリット幅が徐々に狭くなるように形成される。これにより、スリット部231を潤滑液が流動し易くなり、潤滑液の流動性が向上する。
また、第1実施形態の変形例として、図12に示すように、第1流路31と第2流路32とが軸心Oに対して対称の位置に設けられてもよい。この変形例では、第1流路31と第2流路32とがそれぞれ一つ設けられた構造を有する。つまり、この変形例のホルダ23は、スリット部231から周方向に180度の位置に設けられた平坦部232を有する。そのため、第2流路32は、第1流路31とは軸心Oを対して対称の位置に形成される。
(第2実施形態)
第2実施形態は、第1実施形態とは異なり、ホルダ23に加えて、ゴム22にもスリット部が設けられている。なお、第2実施形態の説明では、第1実施形態あるいはその変形例と同様の構成については説明を省略し、その参照符号を引用する。
第2実施形態のダイナミックダンパ20は、図13に示すように、スリット部231が設けられたホルダ23と、スリット部222が設けられたゴム22と、溝部214が設けられた質量体21とを備えている。
ゴム22は、軸方向に沿って延在し、ゴム22の軸方向全域に亘って設けられたスリット部222を有する。スリット部222は、幅が一定に形成されている。また、スリット部222は、ゴム22のうち、外周面と内周面がいずれも円弧面に形成された部分に一つ設けられている。そのため、ゴム22を軸方向から見た場合、ゴム22は略C字状に形成されている。さらに、スリット部222は、図14に示すように、ホルダ23のスリット部231と対応する位置に設けられている。
質量体21は、凹部211に形成された溝部214を有する。溝部214は、凹部211から径方向内側に窪んだ形状を有し、軸方向に沿って延在している。この溝部214は、溝幅が一定に形成されている。さらに、溝部214は、所定の深さに形成されている。
また、溝部214は、第2接触部21bが設けられた軸方向位置を含む範囲に設けられている。図13に示すように、溝部214は、軸方向の一方側から他方側に向けて、第2接触部21b、凹部211の底面211a、第2接触部21b、第1接触部21a、第2接触部21b、凹部211の底面211a、第2接触部21bの順に延在している。
さらに、溝部214は、図14に示すように、ホルダ23のスリット部231と対応する位置に設けられている。つまり、スリット部222と溝部214は、スリット部231とともに第1流路31を形成するための部位である。そのため、スリット部231とスリット部222と溝部214は、周方向位置が同じ位置となるように配置されている。なお、第2実施形態では、ホルダ23のスリット部231が第1スリット部であり、ゴム22のスリット部222が第2スリット部である。
第2実施形態では、スリット部231の径方向内側でスリット部222と溝部214とにより第1流路31が拡大されている。そのため、第1流路31の流路断面積を大きくすることができる。例えば、スリット部222の幅はスリット部231の幅よりも狭い。溝部214の溝幅はスリット部222の幅と同じ大きさである。
さらに、質量体21には、図14に示すように、外周部のうち、溝部214が設けられた周方向位置と反対側の位置に、平面部215が設けられている。すなわち、平面部215は、溝部214とは軸心Oに対して対称の位置に設けられている。
平面部215は、質量体21に溝部214を設けたことによる質量のアンバランスを改善するための部位である。この平面部215は、図14に示すように、円弧状の外周面の一部が弦状となるように、外周面が平面に形成された部分である。この平面部215は、底面211aよりも径方向内側に形成されている。そのため、質量体21において、平面部215が設けられた周方向範囲では、外周面が底面211aにより円弧状に形成された周方向範囲よりも外径が小さくなるため、その分だけ質量が軽くなる。
また、平面部215は、軸方向において、溝部214が設けられた範囲と同じ範囲に設けられている。そのため、平面部215は、軸方向の一方側から他方側に向けて、第2接触部21b、凹部211の底面211a、第2接触部21b、第1接触部21a、第2接触部21b、凹部211の底面211a、第2接触部21bの順に延在している。
ホルダ23は、スリット部231と平坦部232とを一つずつ有する。平坦部232は、周方向においてスリット部231の位置と対称の位置に設けられている。言い換えれば、図14に示すように、平坦部232は、軸心Oに対してスリット部231とは対称の位置に設けられている。そして、スリット部231は第1流路31を形成する部位であり、平坦部232の外周面232aは第2流路32を形成する部位である。このように、第2実施形態では、第1流路31と第2流路32とが軸心Oに対して対称の位置に設けられている。
また、ホルダ23の平坦部232は、質量体21の平面部215が設けられた周方向位置と対応する位置に設けられている。そのため、図14に示すように、ホルダ23の平坦部232の径方向内側に、質量体21の平面部215が配置されている。さらに、平坦部232の内周面232bは、ゴム22の外周面のうち、平面状の第2外周面22dと接触している。
ゴム22は、同じ軸方向位置において、厚さが均一となるように構成されている。そのため、外周面が第2外周面22dにより形成された部分では、その内周面が、周方向に対して平面状の内周面により形成されている。図14に示すように、ゴム22の凸部221と質量体21の凹部211とが接触する部分では、第2外周面22dに対応する内周面として、凸部221における平面状の内周面221bが、質量体21の平面部215と接触している。また、ゴム22において、第2外周面22dと平面状の内周面221bとにより形成される部分の厚さは、第1外周面22cと円弧状の内周面221aとにより形成される部分の厚さと同じ厚さである。
また、ゴム22は、第1接触面22aを内周面とする軸方向位置において、第2外周面22dに対応する周方向位置に、平面状の内周面22eを有する。同様に、ゴム22は、第2接触面22bを内周面とする軸方向位置において、第2外周面22dに対応する周方向位置に、平面状の内周面22fを有する。
このように、第2実施形態によれば、質量体21に平面部215を設けることにより、ダイナミックダンパ20の回転時に質量のアンバランスを改善することができる。
また、ダイナミックダンパ20では、軸方向位置が同じ位置にある部位において、ゴム22の厚さが均一に形成されていることにより、軸方向と直交する方向(径方向)で、各方向のバネ定数(圧縮方向の弾性率)が同一となる。これにより、径方向における各方向の共振周波数が一定となる。
また、ダイナミックダンパ20は、平面部215と平坦部232と第2外周面22dとを有することにより、軸方向と直交する断面形状が真円にならないため、第1流路31を形成するための各部位(溝部214,スリット部231,スリット部222)の周方向位置がずれることを防止できる。
また、ゴム22がスリット部222を有することにより、第2接触面22bが形成される軸方向位置にも、スリット部222が設けられていることになる。そのため、スリット部222を設けない場合と比べて、質量体21と第2接触面22bとの接触面積を小さくすることができる。これにより、ゴム22にスリット部222を設けない場合に比べて、軸方向振動時の圧縮方向の弾性率を低減することができる。このように、第2接触面22bが設けられる軸方向範囲に、スリット部222を設けることにより、ダンパ前後モードでの弾性率を調整することが可能になる。つまり、第2接触面22bの大きさによって、ダンパ前後モードでの共振周波数を調整することができる。
なお、第2実施形態では、スリット部222に対応する位置に溝部214を設けたが、軸方向振動時の圧縮方向の弾性率を調整する際、溝部214は設けなくてもよい。これは、スリット部222により第2接触面22bの面積を調整できるとともに、そもそも質量体21のうちスリット部222に対応する部分はゴム22と接触できないためである。このように、軸方向振動時の圧縮方向の弾性率を調整する際、第2接触面22bと質量体21との接触面積を調整するため、スリット部222が設けられたことにより第2接触面22bの面積が小さくなるため、溝部214の有無を問わず、第2接触面22bと質量体21との接触面積が小さくなる。そのため、スリット部231とスリット部222とが設けられているものの、質量体21には溝部214が設けられていない構造のダイナミックダンパ20であってもよい。さらに、溝部214を有さない場合、質量体21の回転時に質量のアンバランスが生じないため、質量体21には平面部215が設けられていない。つまり、この場合、第1実施形態のゴム22に第2実施形態のスリット部222を設けたダイナミックダンパ20であってもよい。
また、上述した各実施形態では、ホルダ23が一つの部材により構成された例について説明したが、本発明はこれに限定されない。例えば、ホルダ23は、二つの部材により構成されてもよい。この変形例の一例が図15および図16に例示されている。
変形例のホルダ23は、図15に示すように、筒状の部材が半割された形状を有する一対の部材23A,23Bにより構成されている。図15に示す組付け前の状態から、ゴム22の外周部を覆うようにして一対の部材23A,23Bが一体化される。
また、ホルダ23は、図16に示すように、第2流路32を形成する部分として、周方向に対して平坦状の平坦部234を有する。平坦部234は、各部材23A,23Bにおいて、半割された周方向位置において周方向両側に設けられている。そのため、第2流路32は、一方の部材23Aに設けられた平坦部234と、他方の部材23Bに設けられた平坦部234と、カウンタシャフト92の内周面92aとにより囲まれている。そして、周方向で対称となる位置に二つの第2流路32が設けられている。
さらに、この変形例では、ゴム22は、スリット部222と、凹部223とを有する。凹部223は、質量体21の凹部211と接触する部位である。凹部223の内周面は、凹部211の底面211aと接触する。このゴム22では全体が均一の厚さに形成されているため、凹部223の外周面が凹部223の内周面に沿った形状に形成されている。そのため、ホルダ23は、ゴム22の凹部223と接触する部分として、径方向内側に突出する凸部233を有する。凸部233の内周面233aは、凹部223の外周面と接触する。
なお、図15および図16に示す変形例では、ホルダ23は、ゴム22のスリット部222に対応する位置にスリット部を有さない。そのため、このスリット部222は第1流路31を形成するための部位ではない。この変形例のスリット部222は、ゴム22を質量体21に取り付ける際の組付け性を向上するための構成である。つまり、スリット部222を有することにより、組付け時、ゴム22と質量体21との摩擦力を軽減することができる。
また、図15および図16に示す変形例にように、流路30として、第2流路32のみを有する構造のダイナミックダンパ20であってもよい。つまり、第1流路31と第2流路32とのうち、少なくとも一方を有するダイナミックダンパ20であってもよい。そのため、第1実施形態の変形例として、第2流路32が設けられていない構造のダイナミックダンパ20を構成することができる。
20 ダイナミックダンパ
21 質量体
21a 第1接触部
21b 第2接触部
22 ゴム
22a 第1接触面
22b 第2接触面
22c 第1外周面
22d 第2外周面
23 ホルダ
23a 第1外周面
23b 第1内周面
211 凹部
211a 底面
214 溝部
215 平面部
221 凸部
222 スリット部(第2スリット部)
231 スリット部(第1スリット部)
232 平坦部
232a 外周面
232b 内周面

Claims (7)

  1. 中空状の回転軸の内部に配置され、前記回転軸の軸心に沿って延在する質量体と、
    前記質量体を前記回転軸に連結する弾性体と、
    を備え、前記回転軸に取り付けられた歯車により生じる振動を抑制するダイナミックダンパであって、
    前記回転軸の内周面と前記質量体との間に、潤滑液が流通する流路が設けられ、
    前記流路は、前記弾性体が配置された軸方向位置で、前記回転軸の内周面によって形成されており、
    前記質量体は、前記回転軸の軸心に沿って往復動する直動状態に振動可能であり、
    前記弾性体は、
    前記質量体と接触し、前記回転軸の軸方向に平行な第1接触面と、
    前記第1接触面とは異なる位置で前記質量体と接触し、前記回転軸の軸方向に対して平行でない第2接触面と、を有し、
    前記歯車が前記回転軸の径方向から前記回転軸の軸方向側へと倒れ込むように振動する場合、当該振動に応じて前記質量体が前記第1接触面を押し込むように振動することにより前記弾性体に圧縮応力が作用し、
    前記歯車が前記回転軸の軸方向に沿って振動する場合、当該振動に応じて前記質量体が前記直動状態となり前記第2接触面を押し込むように振動することにより前記弾性体に圧縮応力が作用する
    ことを特徴とするダイナミックダンパ。
  2. 前記弾性体は、軸方向全域に亘って形成されたスリット部を有し、
    前記流路は、前記回転軸の内周面と前記スリット部とにより形成された第1流路を含む
    ことを特徴とする請求項に記載のダイナミックダンパ。
  3. 前記回転軸の内周面に取り付けられ、前記質量体および前記弾性体を一体的に保持する筒状のホルダ、をさらに備え、
    前記流路は、前記回転軸の内周面と前記ホルダとにより形成されている
    ことを特徴とする請求項に記載のダイナミックダンパ。
  4. 前記ホルダは、軸方向全域に亘り形成された第1スリット部を有し、
    前記流路は、前記回転軸の内周面と前記第1スリット部とにより形成された第1流路を含む
    ことを特徴とする請求項に記載のダイナミックダンパ。
  5. 前記ホルダは、前記回転軸の内周面と接触する第1外周面と、前記回転軸の内周面と接触しない第2外周面とを有し、
    前記流路は、前記回転軸の内周面と前記第2外周面とにより形成された第2流路を含む
    ことを特徴とする請求項またはに記載のダイナミックダンパ。
  6. 前記ホルダは、
    前記回転軸の内周面と接触する第1外周面と、
    前記第1スリット部とは異なる周方向位置に設けられ、前記回転軸の内周面と接触しない第2外周面とを有し、
    前記流路は、前記回転軸の内周面と前記第2外周面とにより形成された第2流路を含み、
    前記弾性体は、前記第1スリット部に対応する位置に設けられ、軸方向全域に亘り形成された第2スリット部を有し、
    前記第1流路は、前記回転軸の内周面と前記第1スリット部と前記第2スリット部とにより形成されている
    ことを特徴とする請求項に記載のダイナミックダンパ。
  7. 前記質量体は、
    外周部のうち、前記第1スリット部および前記第2スリット部に対応する位置に設けられ、軸方向に沿って延在する溝部と、
    前記外周部のうち、前記溝部とは前記回転軸の軸心に対して対称の位置に設けられた平面部とを有し、
    前記第1流路は、前記回転軸の内周面と前記第1スリット部と前記第2スリット部と前記溝部とにより形成され、
    前記第2流路は、前記第1流路とは前記回転軸の軸心に対して対称の位置に設けられている
    ことを特徴とする請求項に記載のダイナミックダンパ。
JP2020180717A 2020-10-28 2020-10-28 ダイナミックダンパ Active JP7327352B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020180717A JP7327352B2 (ja) 2020-10-28 2020-10-28 ダイナミックダンパ
US17/451,821 US11644092B2 (en) 2020-10-28 2021-10-21 Dynamic damper
CN202111244417.9A CN114483880A (zh) 2020-10-28 2021-10-26 动态减振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180717A JP7327352B2 (ja) 2020-10-28 2020-10-28 ダイナミックダンパ

Publications (2)

Publication Number Publication Date
JP2022071649A JP2022071649A (ja) 2022-05-16
JP7327352B2 true JP7327352B2 (ja) 2023-08-16

Family

ID=81256950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180717A Active JP7327352B2 (ja) 2020-10-28 2020-10-28 ダイナミックダンパ

Country Status (3)

Country Link
US (1) US11644092B2 (ja)
JP (1) JP7327352B2 (ja)
CN (1) CN114483880A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359128B2 (ja) * 2020-10-28 2023-10-11 トヨタ自動車株式会社 ダイナミックダンパ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247597A (ja) 2002-02-22 2003-09-05 Showa Corp ダイナミックダンパ及びプロペラシャフト
JP2011220445A (ja) 2010-04-09 2011-11-04 Nok Corp 中空回転軸用ダイナミックダンパ
JP2018135934A (ja) 2017-02-21 2018-08-30 トヨタ自動車株式会社 フリクションダンパ
JP2020020356A (ja) 2018-07-30 2020-02-06 株式会社Ijtt 歯車構造
JP2020118284A (ja) 2019-01-28 2020-08-06 Nok株式会社 防振ブッシュ及び防振ブッシュの製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3075406A (en) * 1961-07-13 1963-01-29 Gen Motors Corp Propeller shaft damper
FR1404519A (fr) 1964-05-15 1965-07-02 Aquitaine Petrole Dispositif amortisseur destiné à un arbre soumis simultanément à des oscillations longitudinales et angulaires
US3307419A (en) 1965-01-11 1967-03-07 Gen Electric Quiet gear
US4325589A (en) * 1977-01-21 1982-04-20 Carl Hurth Maschinen- Und Zahnradfabrik Gmbh & Co. Support of a machine part which rotates on a bolt or the like
JPS57190924U (ja) * 1981-05-30 1982-12-03
JPS5919770A (ja) * 1982-07-23 1984-02-01 Nissan Motor Co Ltd デイフアレンシヤルギヤ装置の潤滑構造
JPH0517488Y2 (ja) * 1984-09-19 1993-05-11
JP3430669B2 (ja) * 1994-05-13 2003-07-28 東海ゴム工業株式会社 ダイナミックダンパ付ロッド状振動体
US5865429A (en) * 1994-05-18 1999-02-02 Caoutchouc Manufacture Et Plastiques Elastic support including at least two cylindrical sleeves with folds
DE19726293A1 (de) * 1997-06-20 1998-12-24 Contitech Formteile Gmbh Hohle Antriebswelle mit integriertem Schwingungstilger
DE19733478B4 (de) * 1997-08-02 2006-03-23 Daimlerchrysler Ag Schwingungsdämpfer für eine rohrförmige Gelenkwelle
JP3852208B2 (ja) * 1998-05-14 2006-11-29 マツダ株式会社 変速機の防振装置
JP3897609B2 (ja) * 2002-02-22 2007-03-28 株式会社ショーワ ダイナミックダンパ及びプロペラシャフト
JP5382345B2 (ja) * 2009-12-28 2014-01-08 Nok株式会社 中空回転軸用ダイナミックダンパ
DE102011101701A1 (de) * 2011-05-17 2012-11-22 Audi Ag Rotationsdämpfer
DE102013112854B4 (de) * 2013-11-21 2016-05-19 Trelleborgvibracoustic Gmbh Drehschwingungstilger
US9927064B2 (en) * 2014-03-10 2018-03-27 Toyota Motor Engineering & Manufacturing North America, Inc. Flow-restricting plug and differential drive pinion having the same
JP6324233B2 (ja) * 2014-06-25 2018-05-16 Big Daishowa株式会社 回転体の防振構造
WO2016052062A1 (ja) * 2014-10-03 2016-04-07 株式会社ブリヂストン 防振装置
CN107532677B (zh) * 2015-05-11 2019-12-24 本田技研工业株式会社 减振装置
US20170175846A1 (en) 2015-12-17 2017-06-22 GM Global Technology Operations LLC Propshaft liner
US20170241471A1 (en) * 2016-02-19 2017-08-24 GM Global Technology Operations LLC Composite vehicle shaft assembly
JP2018040475A (ja) * 2016-09-09 2018-03-15 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
JP6791057B2 (ja) * 2017-08-09 2020-11-25 トヨタ自動車株式会社 振り子式捩り振動低減装置
JP7359128B2 (ja) * 2020-10-28 2023-10-11 トヨタ自動車株式会社 ダイナミックダンパ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247597A (ja) 2002-02-22 2003-09-05 Showa Corp ダイナミックダンパ及びプロペラシャフト
JP2011220445A (ja) 2010-04-09 2011-11-04 Nok Corp 中空回転軸用ダイナミックダンパ
JP2018135934A (ja) 2017-02-21 2018-08-30 トヨタ自動車株式会社 フリクションダンパ
JP2020020356A (ja) 2018-07-30 2020-02-06 株式会社Ijtt 歯車構造
JP2020118284A (ja) 2019-01-28 2020-08-06 Nok株式会社 防振ブッシュ及び防振ブッシュの製造方法

Also Published As

Publication number Publication date
US20220128141A1 (en) 2022-04-28
US11644092B2 (en) 2023-05-09
JP2022071649A (ja) 2022-05-16
CN114483880A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
JP5169725B2 (ja) ダンパー装置及び流体伝達装置
JP6489228B2 (ja) 振動減衰装置
WO2015020102A1 (ja) 遠心振子式吸振装置
JP2003004101A (ja) トルク伝達装置
US10253842B2 (en) Torque transmission apparatus
JP7359128B2 (ja) ダイナミックダンパ
JP7327352B2 (ja) ダイナミックダンパ
JP5708791B2 (ja) 車両の噛合歯車
JP2018040475A (ja) ダンパ装置
JP6344328B2 (ja) 流体伝動装置
EP3404286A1 (en) Centrifugal pendulum damper and torque transmission device
JP6182192B2 (ja) 流体式動力伝達装置
JP5716645B2 (ja) 捩り振動低減装置
JP2003194188A (ja) ロックアップ装置付き流体式トルク伝達装置
JP2007315416A (ja) ビスカスラバーダンパー
JP6344326B2 (ja) 流体伝動装置
JP6534943B2 (ja) ハイブリッド車両の動力伝達装置
US8776636B2 (en) Vibration damping device and power transmission device
JPH09273618A (ja) 低騒音ギヤ
CA2945470A1 (en) Toroidal continuously variable transmission
JP6776615B2 (ja) 動吸振器
JP7198145B2 (ja) 動力伝達装置
JP2017053460A (ja) 流体伝動装置
JP3317747B2 (ja) フライホイール組立体
JP2004084681A (ja) ダンパ機構、及びフライホイールダンパ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R151 Written notification of patent or utility model registration

Ref document number: 7327352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151