EP0989787A2 - Procédé et circuit de commande de l' intensité lumineuse et du comportement de lampes à décharge - Google Patents

Procédé et circuit de commande de l' intensité lumineuse et du comportement de lampes à décharge Download PDF

Info

Publication number
EP0989787A2
EP0989787A2 EP99126075A EP99126075A EP0989787A2 EP 0989787 A2 EP0989787 A2 EP 0989787A2 EP 99126075 A EP99126075 A EP 99126075A EP 99126075 A EP99126075 A EP 99126075A EP 0989787 A2 EP0989787 A2 EP 0989787A2
Authority
EP
European Patent Office
Prior art keywords
brightness
circuit
lamp
control
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99126075A
Other languages
German (de)
English (en)
Other versions
EP0989787A3 (fr
Inventor
Siegfried Luger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonicatco GmbH and Co KG
Original Assignee
Tridonic Bauelemente GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6419851&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0989787(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tridonic Bauelemente GmbH filed Critical Tridonic Bauelemente GmbH
Publication of EP0989787A2 publication Critical patent/EP0989787A2/fr
Publication of EP0989787A3 publication Critical patent/EP0989787A3/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3922Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations and measurement of the incident light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2827Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2983Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal power supply conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission

Definitions

  • the present invention relates to a method and a circuit arrangement for Control of the brightness and operating behavior of gas discharge lamps.
  • An electronic ballast of modern design are used to control Fluorescent lamps. On the one hand, the fluorescent lamps are gentler operated and on the other hand, the efficiency of such lamp types be raised.
  • An electronic ballast regularly has the following features:
  • a supply voltage which can be a DC or AC voltage, is fed to a rectifier and an intermediate capacitor via a mains input filter. If the device is operated exclusively with DC voltage, the rectifier can also be omitted.
  • a high intermediate circuit voltage U 0 is formed on your intermediate circuit capacitor, which is of the order of magnitude of approximately 300 V with a conventional mains voltage supply of 220 V.
  • An AC voltage generator is connected to the DC link, which is formed by a half-bridge or full-bridge inverter. It outputs a frequency-variable output voltage to an output load circuit which, unless a half-bridge circuit with an artificial voltage means tap is provided, has a series resonance circuit. The discharge path of the gas discharge lamp or fluorescent lamp to be controlled lies in the series with the series resonance circuit.
  • the output frequency of the inverter is approximately 10 kHz to 50 kHz.
  • the efficiency of the connected Fluorescent lamps increased compared to operation on the 50 Hz supply network.
  • An increased level of yield is achieved with the same electrical power consumption.
  • the inverter output side The inductance of the series resonance circuit can be kept small.
  • the variable frequency control a brightness control of the above - on the normal network Difficult to control (dimmable) fluorescent lamp.
  • the frequency control also ignites the fluorescent lamp can be prepared and initiated.
  • the central point of view for the development of a modern ECG is however, the most versatile control option possible, especially one Brightness control. This with regard to the operating behavior and the Brightness control of the fluorescent lamps connected to a respective electronic ballast. The most accurate possible brightness adjustment should be achieved.
  • a ballast described in US-4,523,128 has one for this purpose Control device on the power supply line using the Powerline Carrier Procedure (PLC) digital control commands are supplied.
  • PLC Powerline Carrier Procedure
  • These digital control commands include in particular dimming value commands for regulating the brightness of the lamp. she are decoded in a decoding device and in control signals for control of the inverter, so that the desired lamp brightness is achieved.
  • each dimming value command corresponds to exactly one brightness value, which has the consequence that a control of the lamp brightness is not continuous but in Brightness levels occur.
  • the digital control commands are a predetermined one Length (for example, a length of eight bits) is the number of Dimming value commands and thus the available brightness values are limited.
  • the solution according to the invention enables the control functions and Brightness control is particularly precise and easy to use.
  • About a one Control and regulating device associated interface can control commands and Brightness commands are supplied by the control device depending on the currently applicable process variables (measured variables) of the respective Ballast are executed. Everybody corresponds with a digital one Command signal represented setpoint a brightness value of the lamp.
  • control and regulating device is designed such that the by the digital setpoints dependent brightness levels, i.e. the differences in brightness between two neighboring - each corresponding to a digital setpoint - Brightness values that are incrementally increasing.
  • the Difference in brightness between neighboring brightness values at lower Lamp brightness is lower than with high lamp brightness. This exceeds however, the relative change in lamp brightness when changing from one Brightness value to the next a predetermined limit value.
  • the relative change is when switching between neighboring brightness values even constant, which results in a logarithmic Dimming characteristic results.
  • the control and regulating device allows also a targeted increase in the lifespan of fluorescent lamps and one Granting security interests.
  • the operating behavior and the respective operating condition of the fluorescent lamp supplied by an electronic ballast are controlled and monitored precisely. So warm start, ignition, dimming and Switch-off process (IGNIT; DIMM, OFF, ON) with high precision and lined up gently to protect the lamp. Inadmissible operating conditions is avoided before a respective ignition is used for adequate preheating of the Heating coils.
  • Dimming operation DIMM
  • SLEEP shut down
  • the TOE only takes minimal power, which actually avoids avoidable losses.
  • the mains voltage U N is supplied to the input circuit 20 (rectifier circuit), possibly via a switch S1. This generates the intermediate circuit voltage U 0 , U dc , which is fed to the alternating voltage generator 30 (inverter).
  • the AC voltage generator 30 outputs its high-frequency output voltage U HF to an output load circuit 40 which contains one or more fluorescent lamps LA1, LA2.
  • a plurality of system measured values can be taken from both the AC voltage generator 30 and the load circuit 40. Together, the measured values are fed to a control and regulating circuit 17, which in turn generates the digital control signals for the inverter 30.
  • control and regulating device 17 is also assigned a transmitting and receiving device 10, which is connected via a bus line 12 to other electronic ballasts and / or to a central control device 50.
  • a plurality of electronic ballasts 60-1, 60-2, 60-3, ..., 60-i are connected to a common bus line 12. All ECGs are connected via this bus line to the central control device 50, to which a display unit 51 is assigned. Via bus line 12, it is now possible to control one or more of the aforementioned electronic ballasts and to transmit commands to them, such as switching off, switching on, igniting or the like. Brightness values can also be preset and, in return, error information can be queried from the individual devices. The control unit 50 is thus informed of the overall system status at all times, as a result of which a high degree of operational reliability can be guaranteed and accelerated maintenance of the decentralized ECGs or their fluorescent lamps is possible.
  • FIG. 3 shows the control and regulating device 17 as an integrated circuit.
  • the multitude of measured values m which correspond to the process signals of FIG. 1 are fed to it. It emits two digital control signals for the output stage transistors of the inverter 30, which are amplified and potential-shifted via a driver circuit 31.
  • control and regulating device 17 In addition to the m measured values, the control and regulating device 17 also receives n target values fed. These influence the predeterminable control behavior. Still is as part of the control and regulating circuit 17 or separately a transmission and Receiving device 10 provided directly or by means of a coupling circuit is connected to the bus line 12. It forms the serial interface that the Control and regulating device enables error and operating status information to be transmitted to the central control unit 50.
  • n target values can also be transmitted and received by this transmitting and receiving device 10 are fed to the control circuit after appropriate preparation 17 passes on.
  • Setpoints can be, for example, the emergency lighting level (NOT), the minimum brightness level (MIN) and the maximum brightness level (MAX), within the latter two the predeterminable brightness level (DIMM) in the Moving operations.
  • Each A decentralized ECG is assigned an address that enables individual ECGs to be to address the address of the transmitting and receiving device 10 and information to query them or give them orders.
  • the bidirectional way of working the bus line 12 enables problem-free and low-effort wiring of one Large number of decentralized ECGs with a central control unit (50).
  • FIG. 4 shows a basic circuit diagram of an input circuit as can be used to supply the AC voltage generator 30 from a supply network with the voltage U N.
  • the input circuit consists of capacitive input filters and possibly a harmonic choke.
  • the Y-circuit capacitors are used for radio interference suppression.
  • a surge arrester or a VDR is connected in parallel. This is followed by a full-wave rectifier, which can be omitted if the device is operated with direct voltage.
  • An intermediate circuit capacitor C4 is connected downstream of the rectifier, which charges up to approx. 300 V with a residual ripple of approx. 10% at 220 V mains voltage.
  • the intermediate circuit voltage U 0 should be smoothed well.
  • a voltage divider R18, R28 is connected to the intermediate circuit capacitor C4 a measurement signal proportional to the intermediate circuit voltage can be tapped.
  • a signal proportional to the supply voltage is detected and just like the DC link voltage-dependent measurement signal of the control and Control device 17 supplied. Both measurement signals are used for supply voltage monitoring and thus the operational security of the TOE.
  • FIG. 5 shows an exemplary embodiment of a load circuit 40 according to the invention with a heat exchanger L5 for preheating the filaments of the fluorescent lamp LA1.
  • the exemplary embodiment of the invention has a pair of these branches, that is to say two fluorescent lamps LA1, LA2 at an AC voltage output which emits the high-frequency AC voltage U HF between the power switching transistors V21 and V28 which are connected.
  • the AC voltage generator is supplied with an intermediate circuit voltage U dc from the input circuit 20 shown in FIG. 4. Since the fluorescent lamps have a negative internal resistance during operation, they must be supplied with high voltage peaks during the ignition process (IGNIT) and with the appropriate heating energy when heating the filaments.
  • IGNIT ignition process
  • a visual resonance circuit L2, C15 leads via a balancing element TR1, which will be explained later, to the discharge path H2, H4 of the fluorescent lamp. Furthermore, a measuring resistor R32 is connected in series with the fluorescent tube, at which a voltage proportional to the lamp current I L1 is tapped and fed to the control and regulating circuit 17.
  • An ignition capacitor C17 is connected to ground (ZERO) between coil L2 and capacitor C15.
  • Parallel to the ignition capacitor C17 is also the primary winding of the heat exchanger L5 and, in addition to this, a Zener diode V15 and a measuring resistor R10.
  • a voltage proportional to the heating turning current I W1 is tapped off at the latter and fed to the control and regulating circuit 17 as a further system measured variable. Since the inverter 30 impresses an output voltage and the heat exchanger is essentially parallel to the fluorescent lamp LA1, a voltage is impressed on its secondary windings via the heat exchanger.
  • the two secondary windings each supply one of the two heating coils H1, H2 and H3, H4.
  • the sum of the heating coil currents I W1 is measured at the primary-side measuring resistor R10.
  • the Zener diode V15 which is still switched on, generates a DC component in the primary winding of L5, which is not transmitted, however, but is missing in the lamp current I L1 and thus supplies the discharge of the lamp with an additional DC component in the order of approximately 1% of the actual discharge current .
  • the "running layers” consist in particular of light / dark zones which occur during dimming and run along the tube at a predetermined speed. A superimposition of low direct current accelerates this running effect in such a way that it no longer has a disturbing effect.
  • the inverter 30 is operated at a high frequency f max , so that an alternating voltage occurs at C17 which is not suitable for igniting the lamp LA1.
  • the filaments of the lamp are heated via L5, the lamp absorbing a high and then a lower heating current due to the thermistor effect of the filaments.
  • the ignition (IGNITION) of the lamp is initiated.
  • the series resonance circuit L2, C15 or L3, C16 is strongly damped. On the one hand, this causes a shift in the resonance frequencies f 0 and, on the other hand, an immediate drop in the AC voltage applied to the respective lamp. The decrease is detected by the control and regulating circuit 17 via the voltage divider R27, R25 connected in parallel to the lamp. This then initiates the actual operating phase (DIMM) of the lamps.
  • DIMM actual operating phase
  • the frequency f of the inverter 30 is regulated so that the lamp output corresponds to the predetermined target value, ie the desired brightness level.
  • the operating frequency of the alternating voltage generator 30 can also be shifted to values which are in the order of magnitude of the heating frequency or above.
  • an output frequency can also be set which is below the ignition frequency but still above the resonance frequency of the series resonance circuit L2, C15.
  • the operating state of the lamp circuit 14 can vary greatly depending on the lamp used, for example argon or krypton lamps, or depending on the lamp power selected.
  • the combination of the capacitor C24 and the diodes V30, V31 causes a frequency-dependent Damping the output circuit in the event of a voltage surge. It is in front important when high frequencies and high impedances occur, e.g. if there is no lamp or if the filament is already warm.
  • the wiring This type helps the voltage surge when the lamp is not ignited or missing to limit if it is undesirable.
  • C24 is selected so that the damping remains small enough at the time of ignition.
  • FIG. 6 shows the output circuit of FIG. 5 for the two-lamp operation - two fluorescent lamps on one inverter.
  • the symmetry transformer TR1 is also shown here in full. Each winding is traversed by one of the two lamp currents. This takes place in opposite directions, so that when there is a deviation in the current amplitude, a resulting magnetization occurs, which induces a voltage in the inductive element which has a symmetrical effect.
  • Such a transformer is advantageous if the two lamps would burn differently bright in the dimmed state due to component tolerances and lamp tolerances as well as different temperature conditions.
  • the symmetry element TR1 avoids this in the case of two-lamp luminaires. If several pairs of lamps are operated at an AC voltage output, such a balancing element TR1 must be provided for each pair.
  • a signal proportional to the lamp current is obtained from them, which signal can be multiplied in the control and regulating circuit 17 by the aforementioned lamp voltage signal. In this way it is ensured that at any time of the actual lamp power is P or E brightness proportional signal is available, which can be preset to a precise brightness control as the feedback.
  • FIG. 7 shows the inverter 30 in more detail with its output power transistors V28, V21. Between them, the high-frequency alternating voltage U HF is output to the load circuit 40 explained above.
  • the two power transistors are controlled via a control circuit 31, which receives its control signals from the control and regulating circuit 17. Possibly. asymmetrical switch-off / switch-on delays for the respective transistors come into consideration, so that a common conduction of both transistors V21, V28 can be avoided in principle.
  • the upper transistor is supplied via a bootstrap circuit (not shown), the lower transistor and the system controller 10, 17, 31 receive their drive voltage via a series resistor and a smoothing capacitor C5 from the intermediate circuit voltage U 0 .
  • the current that can be supplied to the smoothing capacitor C5 through the series resistor or a current source I q is sufficient to supply the IC31 and the control and regulating circuit 17 in the switched-off mode (SLEEP).
  • the load circuit 40 of the inverter 30 is in an impermissible capacitive range. It represents a danger for the controlling inverter.
  • a phase position analysis can also be used, in which the load current I L1 is set in relation to the inverter branch current I max and from this the relative phase of both currents Detection of the operating state is used.
  • the control circuit detects an inadmissible capacitive operating behavior 17 with an increase in the operating frequency f of the inverter 30 answered, with which the load circuit 40 is again operated inductively.
  • the aforementioned capacitive mode of operation mainly occurs with a low supply voltage. With the Branch current detection can reliably avoid the destruction of components.
  • the digital interface 10 shows the transmitting and receiving device 10 and the coupling filter connected upstream of it, with which the bus coupling to the control line 12 takes place.
  • the digital interface 10 is given the setpoints for minimum, maximum and emergency lighting brightness (U NOT , U MIN , U MAX ).
  • a digital input DAT is provided, via which both the control signals arrive from a central control device to the decentralized ECG and the error signals are transmitted from the decentralized ECG to the central control device.
  • the serial interface enables remote control of the electronic ballast by means of a digital command signal or command word.
  • An 8 bit data word is provided as such a digital signal.
  • FIG. 8c An advantageous further development of this circuit is shown in FIG. 8c.
  • the circuit is protected against polarity reversal by using a secondary winding with center tap.
  • Optical coupling can also be used, but this has an increased power consumption.
  • Control signal "OFF" represented by the binary word "zero” is possible.
  • SLEEP power-saving shutdown mode
  • the inverter 30 and the control circuit 31 are shut down and possibly after a little more Time delay also the essential components of the control and regulating circuit 17. Only the receiving circuit of the transmitting and receiving device 10 and the Monitoring circuit for the detection of an emergency operation (EMERGENCY) remain activated. The total circuit power drops below 1 W.
  • control and regulating circuit 17 immediately takes the Switch-on sequence before, with preheating and ignition process (IGNITION) in the stationary Operation transferred and there is an immediate adjustment of the desired Brightness value (DIMM).
  • IGNITION preheating and ignition process
  • control and regulating circuit 17 In addition to controlling the brightness and the emergency lighting mode as well as the switch-off mode (SLEEP mode), the control and regulating circuit 17 also has the task of to take all the above-mentioned process variables the information required for Monitoring and control of the TOE are important.
  • control and regulating circuit 17 switches all functions if the voltage becomes too high and can only be restored The function will function once the voltage has been switched off and on again.
  • An emergency mode switchover to a predeterminable emergency lighting brightness takes place, for example, when a DC voltage U N is detected by the control circuit 17 via the usual AC voltage input of the switch-on circuit 20 and via the sensors R21, C25 (FIG. 4).
  • a counter logic is used for this purpose, which initiates emergency operation if there is no exceeding or falling below a predetermined threshold value. This can take place after a predetermined dead time that bridges individual, possibly missing, half-waves.
  • an emergency voltage supply U B which is obtained from batteries or a generator, is placed on the mains voltage line.
  • the ECGs recognize this automatically.
  • the brightness of the fluorescent lamps is no longer specified by the digitally specified brightness value DIMM, but by a trim value that can be specified locally on the device and can be specified via the input U NOT .
  • the ECG is in switch-off mode (SLEEP) when this emergency operation occurs, ie the lamp and the inverter are switched off, it will first carry out the normal ignition process (IGNIT) and then switch to the emergency operating brightness.
  • SLEEP switch-off mode
  • the ECG When the end of the emergency operating state is recognized, the ECG returns to the previous state back, this can be the OFF state if the TOE was previously there. This However, it can also be the original brightness value (DIMM), if this is required of emergency operation.
  • DIMM original brightness value
  • the detection of the filament current detects whether either a lamp is not inserted or one of the two filaments is broken.
  • the inverter 30 is operated at its maximum frequency f max , which on the one hand results in a heating current still flowing when the defective lamp has been replaced and on the other hand reduces the voltage on the defective lamp to the smallest possible extent .
  • f max maximum frequency
  • the inductive part of the series resonant circuit in the output becomes so high at the above-mentioned high frequency f max with respect to the capacitive resistance of the ignition capacitor C17 that the voltage at the output is limited to non-hazardous values and there is no danger for the maintenance personnel.
  • the internal sequence control in the control and regulating circuit 17 also continues to limit the number of start attempts to two and sets (sends) whenever one There is an error if e.g. B. the lamp is missing if a filament break or a There is a gas defect, an error signal via the transmitting and receiving device 10 the bidirectional bus 12. This also applies in emergency operation, since the lamp is defective emergency operation cannot be maintained.
  • Wiring errors that lead to a short circuit in the discharge path of the lamp can be detected on the basis of the process signals when the lamp voltages be monitored for a predetermined minimum value. One leads Falling below this specified value, as in the case of mains overvoltage monitoring to switch off the entire ECG.
  • the unwillingness to ignite the lamp is from the control and Control circuit 17 detected. If the lamp is within a predetermined ignition timing cannot be ignited, d. H. when there is a drop in voltage across the ignition capacitor C17 does not occur within this period, the lock mentioned applies on.
  • a repeat time can also be waited for after which a new attempt to start and start is made. If no ignition success is achieved here either, the control and regulating circuit 17 reacts as in the case of a broken heating coil and sets the frequency of the inverter 30 to the maximum value f max .
  • the following is explained for the brightness control of the fluorescent lamps.
  • a real brightness control is used, since this guarantees the same lamp outputs regardless of the lamp type - with essentially the same lamp efficiency.
  • the measured values determining the actual value, lamp current and lamp voltage are multiplied and compared in analog or digital form with the soli values predetermined by remote control via the transmitting and receiving device 10.
  • the comparison result controls the frequency f of the alternating voltage generator 30 directly or via a controller. If a more precise gradation of brightness is desired, a logarithmic adjustment of the soli value can take place. Exponential actual value weighting can be carried out in the same way. In addition to the independence of the lamp type, compensation is also achieved for lamp age, the existing operating temperature and also the possibly fluctuating mains voltage U N.
  • FIG. 9 shows a brightness-time diagram in which the brightness of the lamp controlled by the electronic ballast according to FIG. 1 is varied as a function of time.
  • maximum brightness is provided, followed by a switch-off cycle specified via the bus line 12 and the digital interface 10.
  • the brightness is acc. a predetermined slope reduced to zero, then the inverter 30, its driver circuit 31 and essential parts of the control IC 17 turn off to save electricity.
  • a subsequent emergency lighting state leads - despite the system being switched off - to controlled ignition and a build-up of the brightness of the lamp to the preset emergency lighting brightness (EMERGENCY). This can be changed for each decentralized ECG via the setpoint specification U NOT .
  • the maximum and minimum brightness value (MIN, MAX) shown in FIG. 9 can be set or adjusted via a corresponding setpoint value.
  • Fig. 10 is a programmatically controlled "soft start” as a brightness-time diagram shown schematically.
  • the ECG 60 is initially in the switched off state (OUT).
  • the "Softstart” command now either leads to an automatic one slope-controlled increase in lamp brightness - after ignition - or closed a program-controlled incremental increase in lamp brightness levels. in the the latter case are determined by the central control device 50 in certain Periods of incrementally increasing brightness values are sent.
  • the decentralized ECGs follow the requirements almost instantaneously. This will be a rate of change-controlled (regulated) rise and fall of the decentralized light sources possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Regulation And Control Of Combustion (AREA)
EP99126075A 1990-12-07 1991-12-09 Procédé et circuit de commande de l' intensité lumineuse et du comportement de lampes à décharge Ceased EP0989787A3 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4039161 1990-12-07
DE4039161A DE4039161C2 (de) 1990-12-07 1990-12-07 System zur Steuerung der Helligkeit und des Betriebsverhaltens von Leuchtstofflampen
EP91121150A EP0490329B1 (fr) 1990-12-07 1991-12-09 Système de contrÔle de l'intensité lumineuse et du comportement de lampes à décharge
EP95114340A EP0688153A3 (fr) 1990-12-07 1991-12-09 Procédé et circuit pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP95114340A Division EP0688153A3 (fr) 1990-12-07 1991-12-09 Procédé et circuit pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge

Publications (2)

Publication Number Publication Date
EP0989787A2 true EP0989787A2 (fr) 2000-03-29
EP0989787A3 EP0989787A3 (fr) 2000-05-24

Family

ID=6419851

Family Applications (9)

Application Number Title Priority Date Filing Date
EP95114340A Withdrawn EP0688153A3 (fr) 1990-12-07 1991-12-09 Procédé et circuit pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge
EP91121151A Expired - Lifetime EP0490330B1 (fr) 1990-12-07 1991-12-09 Circuit de commande de lampes à décharge
EP95114759A Withdrawn EP0706307A3 (fr) 1990-12-07 1991-12-09 Circuit pour commander l'intensité lumineuse et le mode de functionnement de lampes à décharge
EP95114571A Withdrawn EP0701390A3 (fr) 1990-12-07 1991-12-09 Circuit pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge
EP99126075A Ceased EP0989787A3 (fr) 1990-12-07 1991-12-09 Procédé et circuit de commande de l' intensité lumineuse et du comportement de lampes à décharge
EP99126074A Expired - Lifetime EP0989786B1 (fr) 1990-12-07 1991-12-09 Procédé et circuit de commande de l' intensité lumineuse et du comportement de lampes à décharge
EP95114483A Withdrawn EP0689373A3 (fr) 1990-12-07 1991-12-09 Circuits pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge
EP91121150A Revoked EP0490329B1 (fr) 1990-12-07 1991-12-09 Système de contrÔle de l'intensité lumineuse et du comportement de lampes à décharge
EP95114670A Expired - Lifetime EP0701389B1 (fr) 1990-12-07 1991-12-09 Circuit pour commander l'intensité lumineuse et le mode de functionnement de lampes à décharge

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP95114340A Withdrawn EP0688153A3 (fr) 1990-12-07 1991-12-09 Procédé et circuit pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge
EP91121151A Expired - Lifetime EP0490330B1 (fr) 1990-12-07 1991-12-09 Circuit de commande de lampes à décharge
EP95114759A Withdrawn EP0706307A3 (fr) 1990-12-07 1991-12-09 Circuit pour commander l'intensité lumineuse et le mode de functionnement de lampes à décharge
EP95114571A Withdrawn EP0701390A3 (fr) 1990-12-07 1991-12-09 Circuit pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge

Family Applications After (4)

Application Number Title Priority Date Filing Date
EP99126074A Expired - Lifetime EP0989786B1 (fr) 1990-12-07 1991-12-09 Procédé et circuit de commande de l' intensité lumineuse et du comportement de lampes à décharge
EP95114483A Withdrawn EP0689373A3 (fr) 1990-12-07 1991-12-09 Circuits pour commander l'intensité lumineuse et le mode de fonctionnement de lampes à décharge
EP91121150A Revoked EP0490329B1 (fr) 1990-12-07 1991-12-09 Système de contrÔle de l'intensité lumineuse et du comportement de lampes à décharge
EP95114670A Expired - Lifetime EP0701389B1 (fr) 1990-12-07 1991-12-09 Circuit pour commander l'intensité lumineuse et le mode de functionnement de lampes à décharge

Country Status (6)

Country Link
EP (9) EP0688153A3 (fr)
AT (4) ATE215770T1 (fr)
DE (5) DE4039161C2 (fr)
ES (1) ES2087222T3 (fr)
FI (1) FI117464B (fr)
NO (1) NO300750B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369060B2 (en) 2004-12-14 2008-05-06 Lutron Electronics Co., Inc. Distributed intelligence ballast system and extended lighting control protocol
US7619539B2 (en) 2004-02-13 2009-11-17 Lutron Electronics Co., Inc. Multiple-input electronic ballast with processor

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287040A (en) * 1992-07-06 1994-02-15 Lestician Ballast, Inc. Variable control, current sensing ballast
ATE147926T1 (de) * 1992-09-24 1997-02-15 Knobel Lichttech Schaltungsanordnung zum betrieb einer leuchtstofflampe und zur messung des lampenstroms
DE4330114B4 (de) * 1992-11-24 2004-05-06 Tridonicatco Gmbh & Co. Kg Schaltungsanordnung zum Steuern einer Mehrzahl von Verbrauchern, insbesondere Vorschaltgerät von Lampen
ATE149768T1 (de) * 1992-11-24 1997-03-15 Tridonic Bauelemente Schaltungsanordnung zum steuern einer mehrzahl von verbrauchern, insbesondere vorschaltgeräten von lampen
AT499U1 (de) * 1992-12-23 1995-11-27 Tridonic Bauelemente Schaltungsanordnung zur spannungsversorgung und helligkeitssteuerung einer niedervolt-halogenlampe
DE4245092B4 (de) * 1992-12-23 2012-07-26 Tridonic Gmbh & Co Kg Vorschaltgerät für mindestens ein parallel betriebenes Gasentladungslampen-Paar
DE4243955B4 (de) * 1992-12-23 2010-11-18 Tridonicatco Gmbh & Co. Kg Vorschaltgerät für mindestens ein parallel betriebenes Gasentladungslampen-Paar
JPH06283283A (ja) * 1993-03-26 1994-10-07 Toshiba Lighting & Technol Corp 放電灯点灯装置
DE4330942C2 (de) * 1993-09-08 1997-05-22 Smi Syst Microelect Innovat Verfahren zum Erkennen einer defekten Leuchtstofflampe bei Betrieb mit höherfrequenter Spannung
BE1007869A3 (nl) * 1993-12-13 1995-11-07 Koninkl Philips Electronics Nv Schakelinrichting.
JP2745379B2 (ja) * 1994-02-24 1998-04-28 株式会社遠藤照明 蛍光灯照明調光システム
DE4421736C2 (de) * 1994-06-22 1998-06-18 Wolfgang Nuetzel Steuerbare Lichtanlage
DE4425890A1 (de) * 1994-07-11 1996-01-18 Priamos Licht Ind & Dienstleis Schaltungsanordnung für den Betrieb einer Entladungslampe
US5656891A (en) * 1994-10-13 1997-08-12 Tridonic Bauelemente Gmbh Gas discharge lamp ballast with heating control circuit and method of operating same
DE19501695B4 (de) * 1994-10-13 2008-10-02 Tridonicatco Gmbh & Co. Kg Vorschaltgerät für mindestens eine Gasentladungslampe mit vorheizbaren Lampenwendeln
FI95985C (fi) * 1994-11-24 1996-04-10 Helvar Oy Menetelmä ja piirijärjestely valaistusteknisen elektroniikkalaitteen ohjaamiseksi
EP0722263B1 (fr) * 1995-01-13 1999-06-30 Siemens Aktiengesellschaft Circuit pour le préchauffage des électrodes d'une lampe fluorescente
US5633564A (en) * 1995-06-01 1997-05-27 Edwards; M. Larry Modular uninterruptible lighting system
BE1009717A3 (nl) * 1995-10-20 1997-07-01 Philips Electronics Nv Schakelinrichting.
EP0773708A1 (fr) * 1995-11-09 1997-05-14 MAGNETEK S.p.A. Adaptateur pour charge électrique, avec dispositif de contrÔle incorporé
GB2307321A (en) * 1995-11-15 1997-05-21 Delmatic Ltd Failed light detector
DE29617553U1 (de) * 1996-10-09 1997-01-02 Gövert, Ulrich, 48167 Münster Schaltung für Tastdimmer
DE19705985A1 (de) * 1997-02-17 1998-07-02 Bosch Gmbh Robert Anordnung zum Betrieb und zur Steuerung von mit Steuergeräten versehenen Gasentladungslampen
US6094016A (en) * 1997-03-04 2000-07-25 Tridonic Bauelemente Gmbh Electronic ballast
DE29724657U1 (de) * 1997-03-04 2002-09-05 TridonicAtco GmbH & Co. KG, Dornbirn Elektronisches Vorschaltgerät
DE19708791C5 (de) * 1997-03-04 2004-12-30 Tridonicatco Gmbh & Co. Kg Steuerschaltung und elektronisches Vorschaltgerät mit einer derartigen Steuerschaltung
DE19708792A1 (de) * 1997-03-04 1998-09-10 Tridonic Bauelemente Verfahren und Vorrichtung zum Erfassen des in einer Gasentladungslampe auftretenden Gleichrichteffekts
DE19715028B4 (de) * 1997-04-11 2008-07-03 Insta Elektro Gmbh Busfähige Dimmer, elektronische Transformatoren und Vorschaltgeräte zur Helligkeitssteuerung von Leuchten
US7161313B2 (en) 1997-08-26 2007-01-09 Color Kinetics Incorporated Light emitting diode based products
US20030133292A1 (en) 1999-11-18 2003-07-17 Mueller George G. Methods and apparatus for generating and modulating white light illumination conditions
EP0903968B1 (fr) * 1997-09-18 2003-11-12 CEAG Sicherheitstechnik GmbH Système d'éclairage
ATE237919T1 (de) * 1997-09-18 2003-05-15 Ceag Sicherheitstechnik Gmbh Beleuchtungssystem
DE19748007A1 (de) * 1997-10-30 1999-05-12 Tridonic Bauelemente Schnittstelle für ein Lampenbetriebsgerät
US6069455A (en) * 1998-04-15 2000-05-30 Electro-Mag International, Inc. Ballast having a selectively resonant circuit
US6157093A (en) * 1999-09-27 2000-12-05 Philips Electronics North America Corporation Modular master-slave power supply controller
US20020176259A1 (en) 1999-11-18 2002-11-28 Ducharme Alfred D. Systems and methods for converting illumination
DE10006408A1 (de) * 2000-02-14 2001-08-16 Zumtobel Staff Gmbh Beleuchtungssystem
DE10011306A1 (de) 2000-03-10 2001-09-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorrichtung zur Steuerung von Lichtquellen mit Vorschaltgerät
DE10013279A1 (de) * 2000-03-17 2001-09-27 Trilux Lenze Gmbh & Co Kg Verfahren zur Überwachung der Eingangsspannung eines elektronischen Vorschaltgerätes zum Betrieb von Leuchtstofflampen
DE10049842A1 (de) * 2000-10-09 2002-04-11 Tridonic Bauelemente Schaltungsanordnung zum Betreiben von mehreren Gasentladungslampen
DE10052826A1 (de) * 2000-10-24 2002-04-25 Wittenstein Gmbh & Co Kg Schaltung und Verfahren zur Ansteuerung von zwei oder mehreren elektrischen Verbrauchern
WO2002067636A1 (fr) * 2001-02-20 2002-08-29 Noontek Limited Regulateur de lampe numerique pour fonctionnement a basse frequence
DE10127135B4 (de) * 2001-06-02 2006-07-06 Insta Elektro Gmbh Dimmbares elektronisches Vorschaltgerät
DE10145766A1 (de) 2001-09-17 2003-04-03 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorrichtung und Verfahren zum Vorheizen der Wendelelektroden einer Leuchtstofflampe
DE10163957A1 (de) * 2001-12-23 2003-07-03 Der Kluth Decke Und Licht Gmbh Elektronisches Vorschaltgerät
DE10206731B4 (de) * 2002-02-18 2016-12-22 Tridonic Gmbh & Co Kg Lampensensor für ein Vorschaltgerät zum Betrieb einer Gasentladunslampe
CN1910966A (zh) * 2004-01-20 2007-02-07 皇家飞利浦电子股份有限公司 具有多斜率电流反馈的电子镇流器
ITVI20040062A1 (it) * 2004-03-19 2004-06-19 Beghelli Spa Sistema integrato di diagnosi e gestione di lampade fluorescenti
ZA200701563B (en) * 2004-07-23 2009-03-25 Tridonicatco Gmbh & Co Kg Interface circuit for transmission of digital signals
DE102004040947A1 (de) * 2004-07-23 2006-03-16 Tridonicatco Gmbh & Co. Kg Schnittstellenschaltung zur Übertragung von digitalen Signalen
US7245224B2 (en) * 2004-08-13 2007-07-17 Dell Products Lp Methods and systems for diagnosing projection device failure
DE102004051162B4 (de) * 2004-10-20 2019-07-18 Tridonic Gmbh & Co Kg Modulation eines PFC bei DC-Betrieb
DE102005018774A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Einstellbare digitale Leuchtmittelleistungsregelung
DE102005018763A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Betriebsgeräte mit Auswertung der Lampentemperatur bei der Lampenregelung
DE102005018775A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Parametrisierbarer digitaler PFC
DE102005045618B4 (de) 2005-09-23 2019-02-07 Osram Gmbh Notstromleuchte mit einem elektronischen Vorschaltgerät für die Ansteuerung eines Notstromleuchtmittels, sowie Notstromanlage mit derartigen Notstromleuchten
DE102006042954A1 (de) * 2006-09-13 2008-03-27 Tridonicatco Gmbh & Co. Kg Zündung von Gasentladungslampen unter variablen Umgebungsbedingungen
EP2080423A1 (fr) * 2006-11-07 2009-07-22 Pantec Engineering AG Procédé de fonctionnement d'une lampe à uv
WO2008116496A1 (fr) * 2007-03-27 2008-10-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Appareil de commande et système d'éclairage pour des lampes à décharge basse pression à régulation de puissance en fonction de la température
EP2088837B1 (fr) 2008-02-04 2011-06-01 Uviterno AG Procédé de fonctionnement d'une lampe UV
CN101603648B (zh) * 2008-06-10 2012-05-30 矽诚科技股份有限公司 并联式单线寻址灯光装置
CN101640967B (zh) * 2008-07-30 2013-01-02 普诚科技股份有限公司 荧光灯驱动电路、荧光灯调光电路及方法
DE102008056814A1 (de) * 2008-11-11 2010-05-27 HÜCO Lightronic GmbH Elektronisches Vorschaltgerät, Beleuchtungsgerät und Verfahren zum Betrieb dieser
DE102010039154A1 (de) 2010-08-10 2012-02-16 Tridonic Gmbh & Co. Kg Modulation eines PFC bei DC-Betrieb
EP2468746A1 (fr) 2010-12-23 2012-06-27 The University of Queensland Composés benzothiazinone et leur utilisation comme anti-tuberculeux
DE102013107872B3 (de) * 2013-08-07 2014-12-11 Vossloh-Schwabe Deutschland Gmbh Vorrichtung und Verfahren zum Betreiben einer Leuchtmittelanordnung
CN106797689B (zh) * 2014-09-17 2019-05-10 伊顿保护系统Ip有限两合公司 电子镇流器和用于驱控负载的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002537A1 (fr) * 1982-01-15 1983-07-21 Vossough, Eshan Dispositif electronique commande a haute frequence pour l'allumage de lampes a decharge gazeuse
US4523128A (en) * 1982-12-10 1985-06-11 Honeywell Inc. Remote control of dimmable electronic gas discharge lamp ballasts
DE4009267A1 (de) * 1989-03-22 1990-09-27 Nedap Nv Hochfrequenzvorschaltgeraet

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747173B2 (de) * 1977-10-20 1979-11-15 Praezisa Industrieelektronik Gmbh, 4300 Essen Notleuchte mit Lichtstromsteuerung
FR2417876A1 (fr) * 1978-02-16 1979-09-14 Aglo Sa Dispositif de commande d'un eclairage de secours
DE3025249A1 (de) * 1980-07-03 1982-01-28 Helmut Ulrich Apparatebau, 8000 München Schaltung zur helligkeitssteurung von leuchtstofflampen
US4346332A (en) * 1980-08-14 1982-08-24 General Electric Company Frequency shift inverter for variable power control
EP0059064B1 (fr) * 1981-02-21 1985-10-02 THORN EMI plc Circuit de démarrage et d'exploitation de lampes
US4396872A (en) * 1981-03-30 1983-08-02 General Mills, Inc. Ballast circuit and method for optimizing the operation of high intensity discharge lamps in the growing of plants
US4484190A (en) * 1981-05-26 1984-11-20 General Electric Company System for load output level control
US4695769A (en) * 1981-11-27 1987-09-22 Wide-Lite International Logarithmic-to-linear photocontrol apparatus for a lighting system
US4441054A (en) * 1982-04-12 1984-04-03 Gte Products Corporation Stabilized dimming circuit for lamp ballasts
FI65524C (fi) * 1982-04-21 1984-05-10 Helvar Oy Foerfarande och anordning foer matning av hoegfrekvent vaexelstroem till en fluorescenslampa
DE3524681A1 (de) * 1985-07-11 1987-01-22 Trilux Lenze Gmbh & Co Kg Dimmerschaltung fuer ein elektronisches leuchtstofflampen-vorschaltgeraet
US4704563A (en) * 1986-05-09 1987-11-03 General Electric Company Fluorescent lamp operating circuit
US4870327A (en) * 1987-07-27 1989-09-26 Avtech Corporation High frequency, electronic fluorescent lamp ballast
DE3729383A1 (de) * 1987-09-03 1989-03-16 Philips Patentverwaltung Schaltungsanordnung zum starten einer hochdruckgasentladungslampe
GB2212995A (en) * 1987-10-23 1989-08-02 Rockwell International Corp Fluorescent lamp dimmer
DE3888675D1 (de) * 1988-04-20 1994-04-28 Zumtobel Ag Dornbirn Vorschaltgerät für eine Entladungslampe.
US4904905A (en) * 1988-08-05 1990-02-27 American Sterilizer Company Dual resonant frequency arc lamp power supply
DE3910738A1 (de) * 1989-04-03 1990-10-04 Zumtobel Ag Vorschaltgeraet fuer eine direkt geheizte entladungslampe
EP0408121B1 (fr) * 1989-07-10 1995-06-14 Philips Electronics North America Corporation Circuit
US5027034A (en) * 1989-10-12 1991-06-25 Honeywell Inc. Alternating cathode florescent lamp dimmer
NL8902811A (nl) * 1989-11-14 1991-06-03 Arkalite B V Verlichtingssysteem.
US5099176A (en) * 1990-04-06 1992-03-24 North American Philips Corporation Fluorescent lamp ballast operable from two different power supplies
DE4021131A1 (de) * 1990-07-03 1992-01-09 Zumtobel Ag Schaltungsanordnung und verfahren zum annaehern einer nichtlinearen uebertragungsfunktion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002537A1 (fr) * 1982-01-15 1983-07-21 Vossough, Eshan Dispositif electronique commande a haute frequence pour l'allumage de lampes a decharge gazeuse
US4523128A (en) * 1982-12-10 1985-06-11 Honeywell Inc. Remote control of dimmable electronic gas discharge lamp ballasts
DE4009267A1 (de) * 1989-03-22 1990-09-27 Nedap Nv Hochfrequenzvorschaltgeraet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619539B2 (en) 2004-02-13 2009-11-17 Lutron Electronics Co., Inc. Multiple-input electronic ballast with processor
US8111008B2 (en) 2004-02-13 2012-02-07 Lutron Electronics Co., Inc. Multiple-input electronic ballast with processor
US7369060B2 (en) 2004-12-14 2008-05-06 Lutron Electronics Co., Inc. Distributed intelligence ballast system and extended lighting control protocol
US7880638B2 (en) 2004-12-14 2011-02-01 Lutron Electronics Co., Inc. Distributed intelligence ballast system
US8035529B2 (en) 2004-12-14 2011-10-11 Lutron Electronics Co., Inc. Distributed intelligence ballast system
US8125315B2 (en) 2004-12-14 2012-02-28 Lutron Electronics Co., Inc. Default configuration for a lighting control system

Also Published As

Publication number Publication date
EP0989786A3 (fr) 2000-08-23
NO300750B1 (no) 1997-07-14
EP0701390A3 (fr) 1996-06-05
FI915757A (fi) 1992-06-08
EP0701389A3 (fr) 1998-08-26
EP0490329A1 (fr) 1992-06-17
DE59109260D1 (de) 2004-04-29
EP0989786B1 (fr) 2004-03-24
FI117464B (fi) 2006-10-13
ES2087222T3 (es) 1996-07-16
FI915757A0 (fi) 1991-12-05
EP0706307A2 (fr) 1996-04-10
EP0989786A2 (fr) 2000-03-29
ATE137078T1 (de) 1996-05-15
EP0490330A1 (fr) 1992-06-17
ATE262774T1 (de) 2004-04-15
EP0701389B1 (fr) 2002-04-03
EP0989787A3 (fr) 2000-05-24
DE59106372D1 (de) 1995-10-05
EP0490330B1 (fr) 1995-08-30
EP0706307A3 (fr) 1996-07-10
ATE127312T1 (de) 1995-09-15
EP0490329B1 (fr) 1996-04-17
EP0701390A2 (fr) 1996-03-13
DE4039161C2 (de) 2001-05-31
NO914820L (no) 1992-06-09
DE4039161A1 (de) 1992-06-11
EP0688153A3 (fr) 1997-02-26
NO914820D0 (no) 1991-12-06
EP0701389A2 (fr) 1996-03-13
ATE215770T1 (de) 2002-04-15
DE59109232D1 (de) 2002-05-08
EP0689373A2 (fr) 1995-12-27
EP0688153A2 (fr) 1995-12-20
EP0689373A3 (fr) 1997-05-07
DE59107686D1 (de) 1996-05-23

Similar Documents

Publication Publication Date Title
EP0701389B1 (fr) Circuit pour commander l'intensité lumineuse et le mode de functionnement de lampes à décharge
DE69628739T2 (de) Steuerung und überwachung von dimmbaren vorschaltgeräten mit breitem beleuchtungshub
DE69828484T2 (de) Entladungslampe und beleuchtungsvorrichtung
DE69626603T2 (de) Vorschaltgerät
DE69916251T2 (de) Elektron9sches hochfrequenzvorschaltgerät zum unabhängigen betrieb von mehreren lampen
EP0801881B1 (fr) Procede permettant de faire fonctionner au moins une lampe a fluorescence au moyen d'un ballast electronique et ballast electronique utilise a cet effet
EP0669789B1 (fr) Circuit pour alimenter au moins une lampe à décharge basse-pression
DE69019862T2 (de) Anordnung zur Versorgung einer Entladungslampe.
EP0422255B1 (fr) Ballast électronique
DE19923945A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
EP0264765A2 (fr) Disposition de circuit pour la mise en oeuvre de lampe à incandescence halogène basse tension
EP0957662B1 (fr) Circuit pour alimenter des lampes électriques
EP1330946B1 (fr) Circuit pour faire fonctionner plusieurs lampes a decharge gazeuse
EP0707438A2 (fr) Ballast pour au moins une lampe à décharge
EP0965251B1 (fr) Procede et dispositif pour reguler le fonctionnement des lampes a decharge gazeuse
DE3235197C2 (fr)
EP1635620B1 (fr) Ballast électronique de pompe a charge pour lampes a décharge avec électrodes de préchauffage
EP0862844B1 (fr) Transformateur electronique
EP1860925B1 (fr) Appareil de montage de lampe électronique à connexion à chaud
EP0165893B2 (fr) Dispositif de commande de luminosité pour une lampe fluorescente
EP0320944B1 (fr) Convertisseur pour une lampe à décharge
DE102011000441B4 (de) Betriebssteuergerät und Verfahren zum Dimmen eines Leuchtmittels über die Versorgungsspannung und die Spannungsfrequenz
EP1040732B1 (fr) Procede de detection de changement de lampe et ballast electronique destine au fonctionnement de lampes a decharge a l'aide d'un tel procede de detection de changement de lampe
EP2468078B1 (fr) Ballast électronique et procédé pour faire fonctionner au moins une lampe à décharge
DE19501695A1 (de) Vorschaltgerät für mindestens eine Gasentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 688153

Country of ref document: EP

Ref document number: 490329

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 20000808

17Q First examination report despatched

Effective date: 20001012

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FR GB IT LI LU NL SE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDONICATCO GMBH & CO. KG

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20040713

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE