EP0986629B1 - Granulares waschmittel - Google Patents

Granulares waschmittel Download PDF

Info

Publication number
EP0986629B1
EP0986629B1 EP98930735A EP98930735A EP0986629B1 EP 0986629 B1 EP0986629 B1 EP 0986629B1 EP 98930735 A EP98930735 A EP 98930735A EP 98930735 A EP98930735 A EP 98930735A EP 0986629 B1 EP0986629 B1 EP 0986629B1
Authority
EP
European Patent Office
Prior art keywords
acid
organic
weight
detergent
organic acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98930735A
Other languages
English (en)
French (fr)
Other versions
EP0986629A1 (de
EP0986629B2 (de
Inventor
Eduard Smulders
Peter Sandkühler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7831510&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0986629(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0986629A1 publication Critical patent/EP0986629A1/de
Publication of EP0986629B1 publication Critical patent/EP0986629B1/de
Application granted granted Critical
Publication of EP0986629B2 publication Critical patent/EP0986629B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof

Definitions

  • the invention relates to the use of organic acids / organic acid anhydrides, in particular citric acid, to support the removal of bleachable soiling on textiles in the essential bleach-free granular detergents.
  • the invention also relates granular detergents with bulk weights above 600 g / l, which can be used separately or subsequently admixed organic acids, especially citric acid, and especially are suitable for cleaning colored textiles, and a manufacturing process granular detergent.
  • Citric acid has long been known as a detergent ingredient. It was mainly used for Lowering the pH of the mostly strongly alkaline agents in the aqueous liquor, the added benefit was achieved that both the citric acid and that by Neutralize the citric acid obtained citrate (co) builder properties.
  • German patent application DE-A-28 27 571 (Akzo) already describes this in general Detergent, which is a granular alkaline, especially carbonate-containing slower solvent component and 5 to 30 wt .-% of a separate organic acid, preferably Citric acid.
  • a separate organic acid preferably Citric acid.
  • the citric acid that is already dissolving at these temperatures softens the liquor reached so that at temperatures around 40 ° C when the alkaline component begins to dissolve, the liquor is already softened such that the risk of calcium carbonate and This largely minimizes the formation of calcium carbonate residues on the textiles becomes.
  • Other components of the funds include et al Peroxy bleaches such as perborates.
  • Detergents are also used in international patent application WO-A-91/17232 (P&G) described, which as a builder 20 to 30 wt .-% zeolite, 5 to 20 wt .-% alkali metal carbonate and 1 to 3% by weight of alkali metal silicate and 4 to 10% by weight of citric acid.
  • Other ingredients are, for example, peroxy bleaching agents such as perborate.
  • the granular agents for the formation of a bulk density of 500 to 600 g / l usually be spray-dried and also contain the carbonate in the spray-dried portion the citric acid which values the pH in 1% solution in water at 20 ° C should drop between 7 and 9.3, subsequently mixed in, as the Citric acid in the spray-dried slurry already neutralizes the citric acid in the Slurry and not - as desired - would take place in the aqueous wash liquor.
  • the Particle size distribution of the separately added citric acid plays again not matter. Due to the relatively low pH in the aqueous liquor, the colors should of colored textiles are better preserved.
  • Other common ingredients are in the Agents contain peroxy bleach.
  • bleaching agents have not only the effect that bleachable soiling from textiles removed, they also often catch - especially in the case of those sensitive to oxidation Qualities of textile dyes - colored textiles, so that over time the intensity the textile colors wear off and the textiles look "washed out”. It can also Use of bleaching agents for spot color removals on the textiles so-called pinhole spotting effect. Detergents have therefore been in use for some time Trade that are explicitly used for colored textiles and therefore no or only small amounts, for example less than 10% by weight, based on the total agent Have bleaching agents. With such small amounts, the bleach is only used hygienic purposes; the risk of color removal or staining of the textiles the bleaching agent can then almost be excluded. Nevertheless, it is precisely that Stain removal from colored textiles remains a problem to this day.
  • the invention therefore relates to the use of organic acids / organic acid anhydrides, in particular citric acid, as separate or subsequently admixed Component in detergents which contain less than 10% by weight of bleaching agent, based on the total detergent, as a support the removal of bleachable stains.
  • the invention also relates to a granular detergent with a bulk density from 650 g / l to 1100 g / l, containing anionic and / or nonionic surfactants and builder substances including 1 to 15 wt .-% of a separately or subsequently mixed organic acid, the agent being less than 10% by weight Contains bleach and a particle size distribution of organic acids / organic Has acid anhydrides of at least 80% of the particles larger than 1500 microns.
  • organic acids preference is given to those which are poor in that they also have a significant builder effect. These include organic acids all of which are already listed in German patent application DE 28 27 571. Also the polyhydroxydicarboxylic acids mentioned in the international patent application WO-A-94/04650 can be used. Citric acid is particularly preferred, Tartaric acid, succinic acid, maleic acid and / or malic acid. But also acid anhydrides count in the context of the present invention to the organic acids; here succinic anhydride and maleic anhydride are preferred. Under special Citric acid is preferred.
  • the organic acids / organic acid anhydrides are used as raw material, i.e. not in the form of a processed compound used and are therefore in the agents according to the invention as separate or subsequently admixed component.
  • "separately admixed” means that the organic acid as one of several components with the other components is mixed to the detergent.
  • all other components are first manufactured and if necessary together premixed and possibly further shaping steps of the mixed components take place and the organic acid only afterwards, ie "subsequently mixed in” becomes.
  • the organic acids can be in their commercial form with the others Components are mixed.
  • the coarser goods with particle diameters of at least 80 % By weight greater than 1500 ⁇ m can be used in the agents according to the invention without loss of performance be used.
  • This coarser product can even be advantageous from an aesthetic point of view if it is mixed into components, which also have a coarser grain spectrum have, for example granules or extrudates, which may be rounded can be and at least 80 wt .-% of particles with a particle diameter above 400 ⁇ m and especially those that have an average particle diameter have 0.8 to 1.4 mm.
  • a preferred coarser commodity of organic Acids, especially citric acid consist of at least 80% by weight of particles of one Particle size between 1500 and 2000 ⁇ m. Even more finely divided goods (80% by weight less than 350 ⁇ m) can be used in principle. But then it is preferably used for powdering of the granular components and should advantageously not be used as a separate component available in the funds.
  • this fine-particle product Particle diameters of at least 80 wt .-% less than 350 microns used.
  • Granular detergents mean particulate detergents which include at least 60 wt .-% consist of particles with a particle size above 350 microns and preferably contain at least one component which is at least 80% by weight have a particle size above 350 microns.
  • the bulk density of the agents is of less importance because the effect according to the invention is not dependent on the bulk weight.
  • Claimed according to the invention granular detergents with bulk weights between 650 and 1100 g / l, bulk densities above 700 g / l and especially above 750 g / l particularly are preferred.
  • the organic acids / organic acid anhydrides are used in the agents according to the invention in amounts of 1 to 15 % By weight, but preferably in amounts of less than 10% by weight and in particular in Amounts of 2 to 6 wt .-% used.
  • which means includes both coarse (at least 80 wt .-% greater than 1500 microns) and fine particles contain (at least 80 wt .-% less than 350 microns) organic acids, the proportion of the finely divided organic acids in the total amount of organic acids used Acids preferably at most 50% by weight and in particular 5 to 30% by weight.
  • the agents according to the invention are essentially free of bleaching agents and in particular essentially free of peroxy bleaching agents, in the context of this invention under "im is understood to be essentially free from "0 to 10% by weight.
  • the agents are absolutely free of bleach.
  • the usual peroxy bleaching agents such as perborate monohydrate, Perborate tetrahydrate and / or percarbonate are preferred.
  • agents according to the invention also include anionic and / or nonionic surfactants, it being particularly preferred if the agents contain both anionic and nonionic surfactants.
  • Preferred anionic surfactants of the sulfonate type are C 9 -C 13 alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates, and disulfonates such as are obtained, for example, from C 12 -C 18 monoolefins with an end or internal double bond by sulfonating with gaseous Sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products is considered.
  • the use of the alkylbenzenesulfonates mentioned is particularly preferred.
  • esters of ⁇ -sulfo fatty acids e.g. the ⁇ -sulfonated Methyl ester of hydrogenated coconut, palm kernel or tallow fatty acids.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters, which are mono-, di- and Triester and their mixtures represent how they are produced by esterification by a monoglycerin with 1 to 3 moles of fatty acid or in the transesterification of triglycerides can be obtained with 0.3 to 2 mol of glycerol.
  • alk (en) yl sulfates the alkali and in particular the sodium salts of the sulfuric acid half-esters of the C 12 -C 18 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical prepared on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates are particularly preferred from the point of view of washing technology.
  • 2,3-Alkyl sulfates which are produced, for example, according to US Pat. Nos. 3,234,258 or 5,075,041 and can be obtained as commercial products from the Shell Oil Company under the name DAN (R), are also suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7 -C 21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl branched C 9 -C 11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12 -C 18 -Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in detergents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which represent monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are fatty acid derivatives of amino acids, for example of N-methyl taurine (tauride) and / or of N-methyl glycine (sarcoside).
  • the sarcosides or sarcosinates are particularly preferred, and above all Sarcosinates of higher and optionally mono- or polyunsaturated fatty acids such as oleyl sarcosinate.
  • the anionic surfactants are preferably used in relatively high amounts, i.e. in quantities above 15% by weight.
  • Anionic surfactants are advantageously in amounts between 16 and 30 wt .-%, based on the finished agent, included in the agents.
  • Suitable anionic surfactants also include soaps, preferably in quantities from 0.5 to 3 wt .-%, based on the finished agent, are included.
  • soaps preferably in quantities from 0.5 to 3 wt .-%, based on the finished agent.
  • saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid, Stearic acid, hydrogenated erucic acid and behenic acid and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures. Together with these soaps or as a substitute for soaps you can also use them known alkenyl succinic acid salts are used.
  • the proportion of soaps and alkenyl succinic acid salts the total surfactant system is preferably below 10% by weight and in particular at a maximum of 5% by weight.
  • the anionic surfactants including the soaps can be in the form of their sodium, potassium or Ammonium salts and as soluble salts of organic bases, such as mono-, di- or Triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium and / or potassium salts.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, palm kernel, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 alcohols with 3 EO or 4 EO, C 9 -C 11 alcohols with 7 EO, C 13 -C 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12 -C 14 alcohol with 3 EO and C 12 -C 18 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as described for example in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half from that.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I), in the R 2 CO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 3 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups stands.
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars with 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in which R 3 represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 4 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 5 represents a linear, branched or cyclic alkyl radical or Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C 1 -C 4 -alkyl or phenyl radicals being preferred, and [Z] for a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this radical.
  • R 3 represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 4 represents a linear, branched or cyclic alkyl radical or an
  • [Z] is also preferably obtained here by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted, for example according to the teaching of international patent application WO-A-95/07331, into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • gemini surfactants can be considered as further surfactants.
  • the two hydrophilic groups and two hydrophobic Have groups per molecule are usually identified by a so-called "Spacer" separated from each other. This spacer is usually a carbon chain, which should be long enough that the hydrophilic groups have a sufficient Have a distance so that they can act independently.
  • Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. In exceptional cases However, under the term Gemini surfactants, not only dimeric but also also understood trimeric surfactants.
  • Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers according to the German patent application DE-A-43 21 022 or dimer alcohol bis and trimer alcohol trissulfates and ether sulfates according to the earlier German patent application P 195 03 061.3.
  • End group capped dimeric and trimeric mixed ethers according to the older German Patent application P 195 13 391.9 is particularly characterized by its bi- and multifunctionality out.
  • the end group-capped surfactants have good wetting properties and are low-foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • Gemini polyhydroxy fatty acid amides or poly polyhydroxy fatty acid amides can also be used. as described in international patent applications WO-A-95/19953, WO-A-95/19954 and WO95-A- / 19955 can be described.
  • surfactants such as amphoteric surfactants, cationic surfactants and / or zwitterionic surfactants can be contained in the agents according to the invention.
  • Cationic surfactants with softening properties can be used to improve the softness of the textiles after the wash cycle or after drying.
  • the anionic and / or nonionic surfactants in the agents according to the invention is preferably 15 to 40% by weight, in particular 20 to 35% by weight, advantageously at least one non-soap anionic surfactant and at least one nonionic surfactant and possibly soap are included in the funds.
  • Agents with a nonionic content have proven to be particularly powerful Surfactants of at least 2% by weight, preferably of at least 4% by weight, have, for example, at least 5% by weight, the contents of the finished product being at nonionic surfactants between 5 and 12 wt .-% are particularly preferred, in particular when the agents are used at low temperatures below 50 ° C become.
  • the content of the agents in nonionic surfactants can exceed 12% by weight in principle lead to a further increase in the performance of the funds, but it has in Several cases have shown that the granular agents are at such high levels of nonionic surfactants increasingly lose their flowability and tend to stick to clumping can. For this reason, amounts of nonionic surfactants above 12% by weight are not special prefers.
  • Weight ratios of anionic surfactants: nonionic surfactants of at least 1: 1, preferably of 2.5: 1 up to 1.1: 1, have proven to be particularly advantageous, especially if the Soap content, based on the total surfactant content, is a maximum of 5% by weight.
  • Acids in the agents according to the invention normally contain customary inorganic and / or organic builder substances in customary amounts. For example 10 to 30% by weight of additional builder substances can be contained in the compositions.
  • the inorganic builder substances include above all zeolites, crystalline layered silicates, Carbonates, amorphous silicates and, to a lesser extent, also phosphates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • Zeolite P can contain, for example, zeolite MAP (R) (commercial product from Crosfield) in the compositions.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension which is still moist from its production.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • the preferred builder substances also include amorphous sodium silicates with a modulus Na 2 O: SiO 2 from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which are delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024. Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • phosphates are also used as builder substances possible if such use is not avoided for ecological reasons should be.
  • the sodium salts of orthophosphates, pyrophosphates are particularly suitable and especially the tripolyphosphates.
  • Your salary in general no longer than 25% by weight, preferably not more than 20% by weight, in each case based on the finished product Medium.
  • tripolyphosphates in particular are already in smaller amounts, for example up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances to a synergistic improvement of the Secondary washing power.
  • Both the monoalkali metal salts and the dialkali metal salts of the Carbon dioxide as well as sesquicarbonates can be included in the funds.
  • Preferred alkali metal ions represent sodium and / or potassium ions.
  • the carbonate content or the bicarbonate content the average is preferably 5 to 20% by weight, in one embodiment may be preferred, the carbonate and / or bicarbonate at least partially as further Mix component separately or subsequently.
  • compounds from, for example Carbonate, silicate and optionally other auxiliary substances such as anionic surfactants or other, especially organic builder substances, can be used as separate Component present in the finished funds.
  • Another component, which is retrofitted can be admixed is silicate, for example metasilicate and / or crystalline layered disilicate.
  • the additives mentioned subsequently Components but especially carbonate, bicarbonate, metasilicate - as above described for the citric acid - to mix in coarse-grained form, being particularly it is advantageous if carbonate, bicarbonate and / or metasilicate to at least 50 wt .-% a particle size above 1 mm and in particular at least 50% by weight have above 1.2 mm.
  • carbonate, bicarbonate and / or metasilicate to at least 50 wt .-% a particle size above 1 mm and in particular at least 50% by weight have above 1.2 mm.
  • those which have an alkaline reaction in aqueous liquor are mixed or mixed separately Components, in particular carbonate, bicarbonate and / or metasilicate and / or crystalline layered disilicate, in amounts of 1 to 15% by weight, advantageously in amounts of 2 to 10% by weight.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, such as citric acid, adipic acid, succinic acid, Glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and Mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, Adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures from these.
  • the salts of the polycarboxylic acids can be in addition to the organic ones Acids may be included in the agents; however, their presence in the media is less prefers.
  • dextrins for example oligomers or polymers of carbohydrates obtained by partial hydrolysis of starches can be.
  • the hydrolysis can be carried out according to customary methods, for example acid-catalyzed or enzyme-catalyzed Procedures are carried out. They are preferably hydrolysis products with average molecular weights in the range of 400 to 500,000.
  • DE dextrose equivalent
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be in lactone form, and which have at least 4 carbon atoms and at least one hydroxyl group and at most contain two acid groups.
  • Such cobuilders are used, for example, in the international Patent application WO-A-95/20029.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight from 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are in particular those of acrylic acid with methacrylic acid and acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid have been found to be particularly suitable Maleic acid proved to be 50 to 90 wt .-% acrylic acid and 50 to 10 wt .-% maleic acid contain.
  • Their relative molecular weight, based on free acids is in general 5000 to 200000, preferably 10000 to 120000 and in particular 50000 to 100000.
  • the (co) polymeric polycarboxylates can be either as a powder or as an aqueous solution are used, 20 to 55% by weight aqueous solutions being preferred.
  • Polymers composed of more than two different monomer units are also particularly preferred, for example those which, according to DE-A-43 00 772, are monomers as salts acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or according to DE-C-42 21 381 as monomer salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives.
  • copolymers are those described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 are described and preferably as monomers Have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • Suitable builder substances are oxidation products of carboxyl-containing ones Polyglucosans and / or their water-soluble salts, such as those in the international patent application WO-A-93/08251 can be described or their preparation described, for example, in international patent application WO-A-93/16110 becomes.
  • Oxidized oligosaccharides according to the German are also suitable Patent application DE 196 00 018.
  • further preferred builder substances are polymeric aminodicarboxylic acids, to name their salts or their precursors.
  • Polyaspartic acids are particularly preferred or their salts and derivatives.
  • polyacetals which are obtained by reacting dialdehydes with polyol carboxylic acids, which have 5 to 7 carbon atoms and at least 3 hydroxyl groups have, for example as in European patent application EP-A-0 280 223 described, can be obtained.
  • Preferred polyacetals are made from dialdehydes such as Glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the agents can also contain components that make the oil and fat washable made of textiles. This effect is particularly evident when a textile is soiled that has already been washed several times with an inventive one Detergent containing this oil and fat-dissolving component has been washed.
  • non-ionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups from 15 to 30% by weight and from 1 to 15% by weight of hydroxypropoxyl groups, in each case based on the nonionic cellulose ether and those from the prior art known polymers of phthalic acid and / or terephthalic acid or of their Derivatives, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these. Of these, particular preference is given to the sulfonated derivatives of phthalic acid and Terephthalic acid polymers.
  • the agents can usually be found in detergents additives used, for example foam inhibitors, salts of polyphosphonic acids, optical brighteners, enzymes, enzyme stabilizers, graying inhibitors, contain small amounts of neutral filling salts as well as colors and fragrances.
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica, and paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica or bistearylethylenediamide. Mixtures of various foam inhibitors are also used with advantages, for example those made of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bisstearylethylenediamides are particularly preferred.
  • the salts of polyphosphonic acids are preferably the neutral sodium salts for example 1-hydroxyethane-1,1-diphosphonate, diethylenetriaminepentamethylenephosphonate or ethylenediaminetetramethylene phosphonate in amounts of 0.1 to 1.5 % By weight used.
  • hydrolases such as proteases, Esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned in question. All these Hydrolases contribute to the removal of stains, such as protein, fat or in the laundry starchy stains and graying. Cellulases and other glycosyl hydrolases can remove color and microf
  • Proteases of the subtilisin type and in particular are preferred Proteases obtained from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic acting enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic acting enzymes or protease, lipase or lipolytically acting enzymes and cellulase, in particular, however, mixtures or mixtures containing protease and / or lipase with lipolytic enzymes of particular interest.
  • lipolytic acting enzymes are the well-known cutinases. Also peroxidases or oxidases have proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • As cellulases are preferably cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which also Cellobiases are called, or mixtures of these are used. Because the different Distinguish cellulase types by their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases become.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances, to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules can, for example, about 0.1 to 5 wt .-%, preferably 0.1 to about 2% by weight.
  • the agents can contain, for example, 0.5 to 1% by weight of sodium formate as enzyme stabilizers. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme. In addition to calcium salts, magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyrobic acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
  • Graying inhibitors have the task of removing the dirt detached from the fiber in the Keep the liquor suspended and thus prevent the dirt from re-opening.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters cellulose or starch. Also water-soluble containing acidic groups Polyamides are suitable for this purpose. Soluble starch preparations can also be used and use starch products other than the above, e.g. degraded starch, Aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
  • Cellulose ethers such as carboxymethyl cellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methylhydroxyethyl cellulose, methyl hydroxypropyl cellulose, Methyl carboxymethyl cellulose and mixtures thereof, and also polyvinyl pyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the composition.
  • the agents can be derivatives of diaminostilbenedisulfonic acid or their Contain alkali metal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similar connections, which instead of the morpholino group is a diethanolamino group, a methylamino group, carry an anilino group or a 2-methoxyethylamino group. Can continue Present brighteners of the substituted diphenylstyryl type, e.g.
  • the agents according to the invention or the agents produced according to the invention have in particular significant advantages in bleachable soiling.
  • Other benefits can but can also be found on enzymatic soiling, for example the primary washing performance compared to greasy and pigmented soiling in the Average is to be classified as the same.
  • the advantages occur in particular on the bleachable stains even at wash temperatures of 60 ° C and below.
  • the use of the agents according to the invention or those produced according to the invention Agent in a machine washing process at temperatures up to a maximum of 60 ° C, preferably at temperatures below 60 ° C and especially in washing programs Temperatures up to 40 ° C. Also for hand washing at 30 ° C or up to 40 ° C the agents according to the invention show advantages.
  • the application-related testing of the primary washing ability was carried out under practical Conditions in household washing machines (Miele Novotronic W918).
  • the Machines loaded with 3.5 kg of clean laundry and 0.5 kg of test fabric.
  • the test fabric were made of cotton and were made with the natural and impregnated artificial soiling. The soiling showed an aging of 5 up to 6 days.
  • red wine red wine
  • tea Messmer, TEE
  • instant coffee Neescafé, IK
  • currant juice Eden, J
  • blueberry juice Eden, H
  • compositions had the following compositions (in parts by weight).
  • the basic granulate 1 was produced in accordance with the teaching of the European patent EP-B-0 486 592 produced and essentially had the following composition: 14 wt .-% anionic surfactants (Alkyl benzene sulfonate and fatty alkyl sulfate), additionally 2% by weight of soap, 8% by weight ethoxylated fatty alcohols, 40% by weight zeolite (based on anhydrous active substance), 7 % By weight trisodium citrate dihydrate, 5.5% by weight copolymer of acrylic acid and maleic acid, 8% by weight sodium carbonate, 2% by weight polyvinylpyrrolidone (balance: water and salts from solutions).
  • the bulk density was 780 to 800 g / l.
  • the basic extrudate 2 was made according to the teaching of EP-A-0931137 produced and essentially had the following composition: 23 % By weight of anionic surfactants (alkylbenzenesulfonate and fatty alkylsulfate), additionally 1% by weight of soap, 8 % By weight of ethoxylated fatty alcohols, 27.5% by weight of zeolite (based on anhydrous active substance), 12% by weight trisodium citrate dihydrate, 5.5% by weight copolymer of acrylic acid and of maleic acid, 6.5% by weight of sodium carbonate and 5% by weight of polyethylene glycol with a relative molecular mass of 4000.
  • the bulk density was about 800 g / l.
  • the enzyme granules contained protease, amylase and cellulase in a weight ratio of 1: 1: 1.
  • the "coarse" qualities of citric acid and citrate indicated more than 50 % By weight of particles with a particle diameter above 1.5 mm.
  • the foam inhibitor granulate was a paraffin defoamer on soda as a carrier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Description

Die Erfindung betrifft die Verwendung von organischen Säuren/organischen Säureanhydriden insbesondere der Citronensäure, zur Unterstützung der Entfernung von bleichbaren Anschmutzungen auf Textilien in im wesentlichen bleichmittelfreien granularen Waschmitteln. Die Erfindung betrifft ebenfalls granulare Waschmittel mit Schüttgewichten oberhalb 600 g/l, welche separat bzw. nachträglich zugemischte organische Säuren, insbesondere Citronensäure, aufweisen und besonders zur Reinigung von farbigen Textilien geeignet sind, und ein Verfahren zur Herstellung der granularen Waschmittel. Weiterhin wird die Verwendung der Mittel in maschinellen Waschverfahren bei Temperaturen bis maximal 60 °C beansprucht.
Citronensäure ist seit langer Zeit als Waschmittelinhaltsstoff bekannt. Sie diente vor allem zur Herabsetzung des pH-Werts der zumeist stark alkalischen Mittel in der wäßrigen Flotte, wobei der Zusatznutzen erzielt wurde, daß sowohl die Citronensäure als auch das durch die Neutralisation der Citronensäure erhaltene Citrat (Co-)Buildereigenschaften aufweisen.
So beschreibt bereits die deutsche Patentanmeldung DE-A-28 27 571 (Akzo) allgemein Waschmittel, welche eine granulare alkalische, insbesondere Carbonat-haltige sich langsamer lösende Komponente sowie 5 bis 30 Gew.-% einer separaten organischen Säure, vorzugsweise Citronensäure, enthalten. Dabei wird im Rahmen einer "sauren Vorwäsche" in handelsüblichen Haushaltswaschmaschinen bereits bei Temperaturen von 25 °C durch die sich bei diesen Temperaturen bereits lösende Citronensäure eine Enthärtung der Flotte erreicht, so daß bei Temperaturen um 40 °C bei Lösebeginn der alkalischen Komponente, die Flotte bereits derart enthärtet ist, daß die Gefahr der Bildung von Calciumcarbonat und damit der Bildung von Calciumcarbonatrückständen auf den Textilien weitgehend minimiert wird. Es werden hierbei weder das Schüttgewicht noch die Teilchengrößenverteilung der zugesetzten organischen Säuren genannt. Zu den weiteren Bestandteilen der Mittel zählen u.a. Peroxybleichmittel wie Perborate.
Auch in der internationalen Patentanmeldung WO-A-91/17232 (P&G) werden Waschmittel beschrieben, welche als Builder 20 bis 30 Gew.-% Zeolith, 5 bis 20 Gew.-% Alkalimetallcarbonat sowie 1 bis 3 Gew.-% Alkalimetallsilikat und 4 bis 10 Gew.-% Citronensäure aufweisen. Weitere Inhaltsstoffe sind beispielsweise Peroxybleichmittel wie Perborat. Während die granularen Mittel zur Ausbildung eines Schüttgewichts von 500 bis 600 g/l üblicherweise sprühgetrocknet werden und auch das Carbonat im sprühgetrockneten Anteil enthalten, wird die Citronensäure, welche den pH-Wert in 1%iger Lösung in Wasser bei 20 °C auf Werte zwischen 7 und 9,3 absenken soll, nachträglich zugemischt, da bei Mitversprühung der Citronensäure im sprühzutrocknenden Slurry die Neutralisation der Citronensäure bereits im Slurry und nicht - wie gewünscht - in der wäßrigen Waschflotte vonstatten gehen würde. Die Teilchengrößenverteilung der separat zugesetzten Citronensäure spielt dabei wiederum keine Rolle. Aufgrund des relativ niedrigen pH-Werts in der wäßrigen Flotte sollen die Farben von farbigen Textilien besser erhalten bleiben.
Granuläre Wasch- oder Reinigungsmittel mit einer Schüttdichte von 650 bis 1100 g/l, welche anionische und/oder nichtionische Tenside sowie als Buildermaterialien u.a. 5 bis 30 Gew.-% Natriumcarbonat und/oder -bicarbonat und/oder -sesquicarbonat enthalten, zeigen gemäß der Lehre des europäischen Patents EP-B-0 534 525 (Henkel) gute Dispergiereigenschaften in der wäßrigen Flotte, wenn sie als weitere Komponente 1 bis 15 Gew.-% nachträglich zugesetzte Citronensäure enthalten, wobei diese Citronensäure zu mindestens 80 Gew.-% Teilchen einer Teilchengröße von 350 und 1500 µm aufweisen muß. Sowohl geringere Teilchengrößen als auch gröbere Granulate führen nicht zu dem gewünschten Effekt der erhöhten Dispergierung in wäßriger Flotte. Als weitere übliche Bestandteile sind in den Mitteln Peroxybleichmittel enthalten.
So wie zur Herabsetzung des pH-Werts in der wäßrigen Flotte und zur Wasserenthärtung organische Säuren und insbesondere Citronensäure in Waschmitteln eingesetzt werden, so werden üblicherweise - wie auch oben angegeben - Bleichmittel und insbesondere Peroxybleichmittel wie Perborat oder Percarbonat in Waschmitteln normalerweise in Mengen von 15 Gew.-% und darüber eingesetzt, um bleichbare Anschmutzungen aus Textilien zu entfernen.
Bleichmittel haben jedoch nicht nur die Wirkung, daß bleichbare Anschmutzungen aus Textilien entfernt werden, sie greifen auch häufig - insbesondere bei oxidationsempfindlichen Qualitäten von Textilfarbstoffen - farbige Textilien an, so daß im Laufe der Zeit die Intensität der Textilfarben nachläßt und die Textilien "verwaschen" aussehen. Auch kann die Anwendung von Bleichmitteln zu punktartigen Farbentfernungen auf den Textilien, dem sogenannten pinhole spotting-Effekt, führen. Seit geraumer Zeit sind deshalb Waschmittel im Handel, die explizit für farbige Textilien angewendet werden und die deshalb keine oder nur geringe Mengen, beispielsweise weniger als 10 Gew.-%, bezogen auf das gesamte Mittel, an Bleichmitteln aufweisen. Bei derartig geringen Mengen dient das Bleichmittel lediglich zu hygienischen Zwecken; die Gefahr der Farbentfernung oder Verfleckung der Textilien durch das Bleichmittel sind dann nahezu auszuschließen. Nichtsdestotrotz stellt gerade die Fleckentfemung aus farbigen Textilien bis heute ein Problem dar.
Es wurde nun gefunden, daß der Einsatz von separat bzw. nachträglich zugemischten organischen Säuren/organischen Säureanhydriden, insbesondere von Citronensäure, zur Unterstützung der Entfernung von bleichbaren Anschmutzungen auf Textilien führt, wenn das eingesetzte Waschmittel im wesentlichen bleichmittelfrei ist.
Gegenstand der Erfindung ist daher in einer ersten Ausführungsform die Verwendung von organischen Säuren/organischen Säureanhydriden, insbesondere von Citronensäure, als separate bzw. nachträglich zugemischte Komponente in Waschmitteln, die bezogen auf das gesamte Mittel weniger als 10 Gew.-% Bleichmittel enthalten, zur Unterstützung der Entfernung von bleichbaren Anschmutzungen.
Gegenstand der Erfindung ist ebenfalls ein granulares Waschmittel mit einem Schüttgewicht von 650 g/l bis 1100 g/l, enthaltend anionische und/oder nichtionische Tenside sowie Buildersubstanzen einschließlich 1 bis 15 Gew.-% einer separat bzw. nachträglich zugemischten organischen Säure, wobei das Mittel weniger als 10 Gew.% Bleichmittel enthält und eine Teilchengröβenverteilung der organischen Säuren/organischen Säureanhydride von mindestens 80% der Teilchen größer als 1500 µm aufweist.
Als organische Säuren werden vorzugsweise solche eingesetzt, von denen bekarmt ist, daß sie auch eine signifikante Builderwirkung aufweisen. Zu diesen organischen Säuren gehören alle, welche bereits in der deutschen Patentanmeldung DE 28 27 571 aufgeführt sind. Auch die in der internationalen Patentanmeldung WO-A-94/04650 genannten Polyhydroxydicarbonsäuren können verwendet werden. Insbesondere bevorzugt sind dabei Citronensäure, Weinsäure, Bernsteinsäure, Maleinsäure und/oder Äpfelsäure. Aber auch Säureanhydride zählen im Rahmen der vorliegenden Erfindung zu den organischen Säuren; hier werden vor allem Bernsteinsäureanhydrid und Maleinsäureanhydrid bevorzugt. Unter besonderer Bevorzugung wird Citronensäure eingesetzt. Im Gegensatz zur Lehre der intemationalen Patentanmeldung WO-A-94/06450 weist Citronensäure über die verschiedensten Anschmutzungen gesehen eine bessere Bleichleistung auf als beispielsweise Weinsäure, obwohl Weinsäure an gezielten Anschmutzungen auch im Bleichbereich bessere Ergebnisse erzielen kann als Citronensäure.
Die organischen Säuren/organischen Säureanhydride werden als Rohstoff, also nicht in Form eines verarbeiteten Compounds verwendet und liegen daher in den erfindungsgemäßen Mitteln als separate bzw. nachträglich zugemischte Komponente vor. Unter "separat zugemischt" wird dabei verstanden, daß die organische Säure als eine von mehreren Komponenten mit den übrigen Komponenten zum Waschmittel vermischt wird. Je nach Herstellungsverfahren ist es dabei auch möglich, daß zunächst alle anderen Komponenten hergestellt und gegebenenfalls miteinander vorgemischt sowie möglicherweise weitere Formgebungsschritte der vermischten Komponenten erfolgen und die organische Säure erst danach, also "nachträglich zugemischt" wird. Die organischen Säuren können dabei in ihrer handelsüblichen Form mit den anderen Komponenten vermischt werden. Beispielsweise hat eine handelsübliche Citronensäure-Qualität eine Teilchengrößenverteilung, bei der mindestens 80 Gew.-% der Teilchen zwischen 350 und 1500 µm liegen. Aber auch feinteiligere Qualitäten mit mindestens 80 Gew.-% kleiner als 350 µm oder gröbere Qualitäten mit mindestens 80 Gew.-% größer als 1500 µm sind erhältlich. Vor allem die gröbere Ware mit Teilchendurchmessern von mindestens 80 Gew.-% größer als 1500 µm kann in den erfindungsgemäßen Mitteln ohne Leistungseinbußen verwendet werden. Diese gröbere Ware kann sogar aus ästhetischer Sicht von Vorteil sein, wenn sie zu Komponenten zugemischt wird, welche ebenfalls ein gröberes Kornspektrum aufweisen, beispielsweise Granulate oder Extrudate, die gegebenenfalls verrundet sein können und zu mindestens 80 Gew.-% aus Teilchen mit einem Teilchendurchmesser oberhalb 400 µm und insbesondere solche, die einen durchschnittlichen Teilchendurchmesser um 0,8 bis 1,4 mm aufweisen. Eine bevorzugte gröbere Ware an organischen Säuren, insbesondere Citronensäure, besteht zu mindestens 80 Gew.-% aus Teilchen einer Teilchengröße zwischen 1500 und 2000 µm. Auch feinteiligere Ware (80 Gew.-% kleiner als 350 µm) kann im Prinzip eingesetzt werden. Sie dient dann aber vorzugsweise zum Abpudern der granularen Komponenten und soll vorteilhafterweise nicht als separate Komponente in den Mitteln vorliegen. In einer bevorzugten Ausführungsform der Erfindung wird aber zusätzlich zu der obengenannten grobkörnigen Qualität mit mindestens 80 Gew.-% Teilchen mit einem Teilchendurchmesser zwischen 1500 und 2000 µm auch diese feinteilige Ware mit Teilchendurchmessern von mindestens 80 Gew.-% kleiner als 350 µm verwendet.
Unter granularen Waschmitteln werden teilchenförmige Waschmittel verstanden, welche zu mindestens 60 Gew.-% aus Teilchen mit einer Teilchengröße oberhalb 350 µm bestehen und vorzugsweise mindestens eine Komponente enthalten, welche zu mindestens 80 Gew.-% eine Teilchengröße oberhalb 350 µm aufweisen. Insbesondere bestehen die granularen Mittel zu mindestens 60 Gew.-%, vorzugsweise zu 70 bis 100 Gew.-% aus Komponenten, welche zu mindestens 80 Gew.-% eine Teilchengröße oberhalb 350 µm aufweisen.
Das Schüttgewicht der Mittel ist von geringerer Bedeutung, da der erfindungsgemäße Effekt nicht vom Schüttgewicht abhängig ist. Bevorzugt werden jedoch Kompaktwaschmittel oder sogenannte Konzentrate mit Schüttgewichten oberhalb von 600 g/l. Erfindungsgemäß beansprucht werden granulare Waschmittel mit Schüttgewichten zwischen 650 und 1100 g/l, wobei Schüttgewichte oberhalb von 700 g/l und insbesondere oberhalb von 750 g/l besonders bevorzugt sind.
Die organischen Säuren/organischen Säureanhydride werden in den erfindungsgemäßen Mitteln in Mengen von 1 bis 15 Gew.-%, vorzugsweise jedoch in Mengen von weniger als 10 Gew.-% und insbesondere in Mengen von 2 bis 6 Gew.-% eingesetzt. Werden feinteilige Qualitäten mit Teilchendurchmessem von mindestens 80 Gew.-% kleiner als 350 µm eingesetzt, so beträgt ihr Anteil bezogen auf das gesamte Mittel vorzugsweise nicht mehr als 2 Gew.-% und insbesondere nicht mehr als 1 Gew.-%. In der bevorzugten Ausführungsform der Erfindung, welche Mittel umfaßt, die sowohl grobkörnige (mindestens 80 Gew.-% größer als 1500 µm) und feinteilige (mindestens 80 Gew.-% kleiner als 350 µm) organische Säuren enthalten, beträgt der Anteil der feinteiligen organischen Säuren an der Gesamtmenge der eingesetzten organischen Säuren vorzugsweise maximal 50 Gew.-% und insbesondere 5 bis 30 Gew.-%.
Die erfindungsgemäßen Mittel sind im wesentlichen frei von Bleichmitteln und insbesondere im wesentlichen frei von Peroxybleichmitteln, wobei im Rahmen dieser Erfindung unter "im wesentlichen frei von" 0 bis 10 Gew.-% verstanden wird. In einer bevorzugten Ausführungsform sind die Mittel absolut frei von Bleichmitteln. Falls jedoch in untergeordneten Mengen, beispielsweise in Mengen von 2 bis 8 Gew.-%, bezogen auf das gesamte Mittel, Bleichmittel eingesetzt.werden sollten, so sind die üblichen Peroxybleichmittel wie Perboratmonohydrat, Perborattetrahydrat und/oder Percarbonat bevorzugt.
Zu den. wesentlichen Inhaltsstoffen der erfindungsgemäßen Mittel zählen außerdem anionische und/oder nichtionische Tenside, wobei es besonders bevorzugt ist, wenn die Mittel sowohl anionische als auch nichtionische Tenside enthalten.
Als Aniontenside vom Sulfonat-Typ kommen vorzugsweise C9-C13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-C18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Dabei ist der Einsatz der genannten Alkylbenzolsulfonate besonders bevorzugt.
Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN(R) erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Waschmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside bzw. die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
Die anionischen Tenside werden vorzugsweise in relativ hohen Mengen, d.h. in Mengen oberhalb 15 Gew.-%, eingesetzt. Aniontenside sind dabei vorteilhafterweise in Mengen zwischen 16 und 30 Gew.-%, bezogen auf die fertigen Mittel, in den Mitteln enthalten.
Zu den geeigneten anionischen Tensiden zählen auch Seifen, die vorzugsweise in Mengen von 0,5 bis 3 Gew.-%, bezogen auf die fertigen Mittel, enthalten sind. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden. Der Anteil der Seifen und Alkenylbernsteinsäuresalze am Gesamttensidsystem liegt vorzugsweise unterhalb von 10 Gew.-% und insbesondere bei maximal 5 Gew.-%.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- und/oder Kaliumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Palmkern-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-C11-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden. Besonders bevorzugt sind C12-C18-Fettsäuremethylester mit durchschnittlich 3 bis 15 EO, insbesondere mit durchschnittlich 5 bis 12 EO.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
Figure 00090001
in der R2CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R3 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
Figure 00090002
in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxysubstituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Patentanmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen und zwei hydrophobe Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden jedoch unter dem Ausdruck Gemini-Tenside nicht nur dimere, sondern auch trimere Tenside verstanden.
Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether gemäß der deutschen Patentanmeldung DE-A-43 21 022 oder Dimeralkohol-bis- und Trimeralkohol-trissulfate und -ethersulfate gemäß der älteren deutschen Patentanmeldung P 195 03 061.3. Endgruppenverschlossene dimere und trimere Mischether gemäß der älteren deutschen Patentanmeldung P 195 13 391.9 zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen.
Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide, wie sie in den internationalen Patentanmeldungen WO-A-95/19953, WO-A-95/19954 und WO95-A-/19955 beschrieben werden.
Gegebenenfalls können auch weitere Tenside wie Amphotenside, Kationtenside und/oder zwitterionische Tenside in den erfindungsgemäßen Mitteln enthalten sein. Beispielsweise können Kationtenside mit avivierenden Eigenschaften verwendet werden, um die Weichheit der Textilien nach dem Waschgang bzw. nach dem Trocknen zu erhöhen.
Der Gehalt der erfindungsgemäßen Mittel an anionischen und/oder nichtionischen Tensiden beträgt vorzugsweise 15 bis 40 Gew.-%, insbesondere 20 bis 35 Gew.-%, wobei vorteilhafterweise mindestens ein Aniontensid, das nicht aus Seife besteht, und mindestens ein Niotensid sowie gegebenenfalls Seife in den Mitteln enthalten sind.
Als besonders leistungsstark haben sich Mittel erwiesen, welche einen Gehalt an nichtionischen Tensiden von mindestens 2 Gew.-%, vorzugsweise von mindestens 4 Gew.-%, beispielsweise von mindestens 5 Gew.-% aufweisen, wobei Gehalte der fertigen Mittel an nichtionischen Tensiden zwischen 5 und 12 Gew.-% besonders bevorzugt sind, insbesondere dann, wenn die Mittel bei niederen Temperaturen unterhalb von 50 °C angewendet werden. Ein Gehalt der Mittel an nichtionischen Tensiden oberhalb von 12 Gew.-% kann zwar im Prinzip zu einer weiteren Leistungssteigerung der Mittel führen, jedoch hat es sich in mehreren Fällen erwiesen, daß die granularen Mittel bei derart hohen Niotensidgehalten zunehmend an Rieselfähigkeit verlieren und zum Verkleben bis hin zum Verklumpen neigen können. Aus diesem Grunde sind Mengen an Niotensiden oberhalb 12 Gew.-% nicht besonders bevorzugt.
Gewichtsverhältnisse Aniontenside : Niotenside von mindestens 1:1, vorzugsweise von 2,5:1 bis 1,1:1, haben sich als besonders vorteilhaft erwiesen, insbesondere dann, wenn der Seifengehalt, bezogen auf den Gesamttensidgehalt, maximal 5 Gew.-% beträgt.
Zusätzlich zu den genannten Tensiden und insbesondere zusätzlich zu den organischen Säuren enthalten die erfindungsgemäßen Mittel normalerweise übliche weitere anorganische und/oder organische Buildersubstanzen in üblichen Mengen. Dabei können beispielsweise 10 bis 30 Gew.-% an zusätzlichen Buildersubstanzen in den Mitteln enthalten sein.
Zu den anorganischen Buildersubstanzen gehören vor allem Zeolithe, kristalline Schichtsilikate, Carbonate, amorphe Silikate und mit geringerer Bedeutung auch Phosphate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P kann beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) in den Mitteln enthalten sein. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilikate der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringeren Mengen, beispielsweise bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Als Carbonate können sowohl die Monoalkalimetallsalze als auch die Dialkalimetallsalze der Kohlensäure als auch Sesquicarbonate in den Mitteln enthalten sein. Bevorzugte Alkalimetallionen stellen Natrium- und/oder Kaliumionen dar. Der Carbonatgehalt bzw. der Bicarbonatgehalt der Mittel beträgt vorzugsweise 5 bis 20 Gew.-%, wobei es in einer Ausführungsform bevorzugt sein kann, das Carbonat und/oder Bicarbonat zumindest teilweise als weitere Komponente separat bzw. nachträglich zuzumischen. Auch Compounds aus beispielsweise Carbonat, Silikat und gegebenenfalls weiteren Hilfsstoffen wie beispielsweise Aniontensiden oder anderen, insbesondere organischen Buildersubstanzen, können als separate Komponente in den fertigen Mitteln vorliegen. Eine weitere Komponente, welche nachträglich zugemischt werden kann, ist Silikat, beispielsweise Metasilikat und/oder kristallines schichtförmiges Disilikat. Insgesamt ist es bevorzugt, die genannten nachträglich zugemischten Bestandteile, insbesondere aber Carbonat, Bicarbonat, Metasilikat - wie oben auch für die Citronensäure beschrieben - in grobkörniger Form zuzumischen, wobei es besonders vorteilhaft ist, wenn Carbonat, Bicarbonat und/oder Metasilikat zu mindestens 50 Gew.-% eine Teilchengröße oberhalb von 1 mm und insbesondere zu mindestens 50 Gew.-% oberhalb von 1,2 mm aufweisen. In einer bevorzugten Ausführungsform der Erfindung liegen die in wäßriger Flotte alkalisch reagierenden, nachgemischten bzw. separat zugemischten Bestandteile, insbesondere Carbonat, Bicarbonat und/oder Metasilikat und/oder kristallines schichtförmiges Disilikat, in Mengen von 1 bis 15 Gew.-%, vorteilhafterweise in Mengen von 2 bis 10 Gew.-% vor.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Die Salze der Polycarbonsäuren können zusätzlich zu den organischen Säuren in den Mitteln enthalten sein; ihre Anwesenheit in den Mitteln ist jedoch weniger bevorzugt.
Weitere geeignete organische Buildersubstanzen, deren Einsatz zusätzlich zu den organischen Säuren durchaus Vorteile erbringen kann, sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO-A-95/20029 beschrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind.
Insbesondere bevorzugt sind auch Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE-A-43 00 772 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE-C-42 21 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Weitere geeignete Buildersubstanzen sind Oxidationsprodukte von carboxylgruppenhaltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung WO-A-93/16110 beschrieben wird. Ebenfalls geeignet sind auch oxidierte Oligosaccharide gemäß der deutschen Patentanmeldung DE 196 00 018.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0 280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-auswaschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfin-dungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nicht-ionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Außer den genannten Inhaltsstoffen können die Mittel bekannte in Waschmitteln üblicherweise eingesetzte Zusatzstoffe, beispielsweise Schauminhibitoren, Salze von Polyphosphonsäuren, optische Aufheller, Enzyme, Enzymstabilisatoren, Vergrauungsinhibitoren, geringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe enthalten.
Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bisstearylethylendiamiden bevorzugt.
Als Salze von Polyphosphonsäuren werden vorzugsweise die neutral reagierenden Natriumsalze von beispielsweise 1-Hydroxyethan-1,1-diphosphonat, Diethylentriaminpentamethylenphosphonat oder Ethylendiamintetramethylenphosphonat in Mengen von 0,1 bis 1,5 Gew.-% verwendet.
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden.
Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Als Enzymstabilisatoren können die Mittel beispielsweise 0,5 bis 1 Gew.-% Natriumformiat enthalten. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2-Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Die Herstellung der erfindungsgemäßen granularen Waschmittel kann nach jedem bekannten Verfahren wie Sprühtrocknung, Granulierung, Kompaktierung, Pelletierung, Extrusion in Kombination mit einem oder mehreren nachgeschalteten Aufbereitungsvorgängen, welche Formgebungsschritte, Trocknen oder Oberflächenmodifizierung mit flüssigen bis wachsartigen oder festen Stoffen und Mischvorgänge umfassen, durchgeführt werden, wobei zumindest die organische Säure, insbesondere die Citronensäure, gegebenenfalls aber auch weitere Komponenten separat bzw. nachträglich zugemischt werden und damit ein Mittel hergestellt wird, das die organischen Säuren im Fertigprodukt als separate Komponente enthält. Vorteilhafterweise werden zum Erreichen des hohen Schüttgewichts Granulier- und Extrusionsmethoden angewendet. Insbesondere bevorzugt ist hierbei ein Extrusionsverfahren, welches beispielsweise in den europäischen Patenten und internationalen PatentanmeldungenEP-B-0 486 592,WO-A-94/09111, WO-A-96/38530 beschrieben wird. In einer besonders bevorzugten Ausführungsform der Erfindung werden die Granulate oder Extrudate gemäß der Lehre der EP-A-0931137 hergestellt, wobei das Granulier- oder Extrusionsverfahren derart modifiziert ist, daß zunächst ein festes Vorgemisch hergestellt wird, welches Einzelrohstoffe und/oder Compounds enthält, die bei Raumtemperatur und einem Druck von 1 bar als Feststoff vorliegen und einen Schmelzpunkt bzw. Erweichungspunkt nicht unter 45 °C aufweisen, sowie gegebenenfalls bis zu 10 Gew.-% bei Temperaturen unter 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside enthält, und unter Einsatz von Verdichtungskräften bei Temperaturen von mindestens 45 °C in ein Korn überführt sowie gegebenenfalls anschließend weiterverarbeitet oder aufbereitet wird, mit den Maßgaben, daß
  • das Vorgemisch im wesentlichen wasserfrei ist und
  • im Vorgemisch mindestens ein Rohstoff oder Compound, der bzw. das bei einem Druck von 1 bar und Temperaturen unterhalb von 45 °C in fester Form vorliegt, unter den Verarbeitungsbedingungen aber als Schmelze vorliegt, wobei diese Schmelze als polyfunktioneller, in Wasser löslicher Binder dient, welche bei der Herstellung der Mittel sowohl die Funktion eines Gleitmittels als auch eine Kleberfunktion für die festen Wasch- oder Reinigungsmittelcompounds- bzw. -rohstoffe ausübt, bei der Wiederauflösung des Mittels in wäßriger Flotte hingegen desintegrierend wirkt und
  • im Aufbereitungsschritt zumindest die organischen Säuren als separate Komponente zugemischt werden.
Die erfindungsgemäßen Mittel bzw. die erfindungsgemäß hergestellten Mittel weisen insbesondere an bleichbaren Anschmutzungen signifikante Vorteile auf. Weitere Vorteile können aber beispielsweise auch an enzymatischen Anschmutzungen gefunden werden, während die Primärwaschleistung gegenüber fetthaltigen und pigmenthaltigen Anschmutzungen im Durchschnitt als gleich einzustufen ist. Überraschenderweise treten die Vorteile insbesondere an den bleichbaren Anschmutzungen auch schon bei Waschtemperaturen von 60 °C und darunter auf. In einer weiteren bevorzugten Ausführungsform der Erfindung wird daher die Verwendung der erfindungsgemäßen Mittel bzw. der erfindungsgemäß hergestellten Mittel in einem maschinellen Waschverfahren bei Temperaturen bis maximal 60 °C, vorzugsweise bei Temperaturen unterhalb 60 °C und insbesondere in Waschprogrammen mit Temperaturen bis 40 °C beansprucht. Auch bei der Handwäsche bei 30 °C oder bis 40 °C zeigen die erfindungsgemäßen Mittel Vorteile.
Beispiele
Die anwendungstechnische Prüfung des Primärwaschvermögens erfolgte unter praxisnahen Bedingungen in Haushaltswaschmaschinen (Miele Novotronic W918). Hierzu wurden die Maschinen mit 3,5 kg sauberer Füllwäsche und 0,5 kg Testgewebe beschickt. Die Testgewebe bestanden aus Baumwolle und waren mit den unten näher erläuterten natürlichen und künstlichen Anschmutzungen imprägniert. Die Anschmutzungen wiesen eine Alterung von 5 bis 6 Tagen auf.
Waschbedingungen für Primärwaschvermögen:
Leitungswasser von 16 °d (äquivalent 160 mg CaO/l), eingesetzte Waschmittelmenge pro Mittel und Maschine 76 g, Waschtemperatur 40 °C oder 60 °C (Buntwaschprogramm, 60minütige Waschzeit), 5fach-Bestimmung.
Auswertung (künstliche Anschmutzungen): Die Messung der Remission %R (460 nm/FL46; Ausblendung des Aufheller-Effekts) erfolgte mit dem Gerät Spectraflash 503.
Auswertung (natürliche Anschmutzungen): Die Messung der Farbabstandswerte dE(w)(AW-Waschwert) (1-Punktmessung) erfolgte mit dem Gerät Minolta CR200/310.
Neben fetthaltigen und pigmenthaltigen Anschmutzungen wurden insbesondere die folgenden künstlichen bleichbaren und enzymatischen Anschmutzungen auf Baumwolle getestet: Rotwein (R), Tee (T), Kakao (K), Waldbeere (W) sowie Milch-Kakao (MK).
Neben fetthaltigen, pigmenthaltigen und enzymatischen Anschmutzungen wurden insbesondere die folgenden natürlichen bleichbaren Anschmutzungen getestet: Rotwein (R), Tee (Messmer, TEE), Instant-Kaffee (Nescafé, IK), Johannisbeersaft (Eden, J) sowie Heidelbeersaft (Eden, H).
Die Mittel besaßen die nun folgenden Zusammensetzungen (in Gew.-Teilen).
M1 V V1 M2 V2 V3
Basisgranulat 1 88,0 92,0 88,0 ---- ---- ----
Basisextrudat 2 ---- ---- ---- 86,0 86,0 86,0
Enzymgranulat 2,5 2,5 2,5 2,5 2,5 2,5
Citronensäure (grob) 4,0 ---- ---- 4,0 ---- ---
Citrat (grob) ---- ---- ---- ---- 6,1 ----
Natriumhydrogensulfat ---- ---- 4,0 ---- ---- ---
Natriumcarbonat ---- ---- ---- 5,0 5,0 ----
Natrium-Bicarbonat ---- ---- ---- ---- ---- 10,0
Schauminhibitor-Granulat 4,0 4,0 4,0 4,0 4,0 4,0
Das Basisgranulat 1 wurde gemäß der Lehre des europäischen Patents EP-B-0 486 592 hergestellt und wies im wesentlichen folgende Zusammensetzung auf: 14 Gew.-% Aniontenside (Alkylbenzolsulfonat und Fettalkylsulfat), zusätzlich 2 Gew.-% Seife, 8 Gew.-% ethoxylierte Fettalkohole, 40 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz), 7 Gew.-% Trinatriumcitrat-Dihydrat, 5,5 Gew.-% Copolymeres der Acrylsäure und der Maleinsäure, 8 Gew.-% Natriumcarbonat, 2 Gew.-% Polyvinylpyrrolidon (Rest: Wasser und Salze aus Lösungen). Das Schüttgewicht betrug 780 bis 800 g/l. Ein Basisgranulat, welches durch herkömmliche GranulationNerdichtung hergestellt worden war und etwa dieselbe Zusammensetzung und dasselbe Schüttgewicht aufwies, ergab vergleichbare Ergebnisse.
Das Basisextrudat 2 wurde gemäß der Lehre der EP-A-0931137 hergestellt und wies im wesentlichen folgende Zusammensetzung auf: 23 Gew.-% Aniontenside (Alkylbenzolsulfonat und Fettalkylsulfat), zusätzlich 1 Gew.-% Seife, 8 Gew.-% ethoxylierte Fettalkohole, 27,5 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz), 12 Gew.-% Trinatriumcitrat-Dihydrat, 5,5 Gew.-% Copolymeres der Acrylsäure und der Maleinsäure, 6,5 Gew.-% Natriumcarbonat und 5 Gew.-% Polyethylenglykol mit einer relativen Molekülmasse von 4000. Das Schüttgewicht betrug etwa 800 g/l.
Das Enzymgranulat enthielt Protease, Amylase und Cellulase im Gewichtsverhältnis 1:1:1.
Die als "grob" bezeichneten Qualitäten der Citronensäure und von Citrat wiesen zu mehr 50 Gew.-% Teilchen mit einem Teilchendurchmesser oberhalb von 1,5 mm auf.
Das Schauminhibitor-Granulat war ein Paraffinentschäumer auf Soda als Träger.
Die Primärwaschergebnisse sind (auszugsweise) in den Tabellen 1 bis 6 zusammengestellt. Die Abkürzung AW bedeutet dabei immer "Anfangswert der Testanschmutzung". Alle Tabellen zeigen, daß die erfindungsgemäßen Mittel gegenüber den Vergleichsmitteln deutliche Vorteile an bleichbaren Anschmutzungen (insbesondere bei 40 °C), teilweise auch an enzymatischen Anschmutzungen aufweisen. An fetthaltigen Anschmutzungen und pigmenthaltigen Anschmutzungen waren die Ergebnisse im Durchschnitt sowohl bei 40 °C als auch bei 60 °C vergleichbar. Bei Kosmetikanschmutzungen wurden in bestimmten Fällen wiederum für die erfindungsgemäßen Mittel deutliche Vorteile erzielt (nicht in Tabellen aufgeführt).
Die Beispiele M1 und V1 wurden mit anderen organischen Säuren als Citronensäure wiederholt: Bernsteinsäureanhydrid, Weinsäure und Äpfelsäure. Auch hier waren deutlich Vorteile gegenüber V1 zu sehen; Citronensäure lieferte jedoch über alle Anschmutzungen die besten Ergebnisse.
Primärwaschvermögen von M1 (Remission in %) bei 40 °C
Anschmutzung Mittel
AW M1 V1
R 26,3 44,8 42,0
T 26,6 34,9 31,6
K 21,3 62,7 61,2
Primärwaschvermögen von M1 (Remission in %) bei 60 °C
Anschmutzung Mittel
AW M1 V1 V
R 26,0 45,5 42,2 41,5
T 25,8 35,5 32,8 30,9
K 21,4 66,0 64,6 65,0
Primärwaschvermögen von M1 (Farbabstandswerte dE(w)(AW)) bei 40 °C
Anschmutzung Mittel
AW M1 V1
R 27,0 16,1 14,3
TEE 23,7 7,3 5,1
IK 42,3 24,6 21,1
J 33,4 17,0 13,5
H 29,1 16,3 12,3
Primärwaschvermögen von M1 (Farbabstandswerte dE(w)(AW)) bei 60 °C
Anschmutzung Mittel
AW M1 V1 V
R 27,7 17,6 15,3 14,5
TEE 23,5 7,8 6,5 5,9
IK 41,7 26,7 23,9 24,0
J 33,7 16,4 13,3 15,3
H 39,1 25,6 22,3 23,4
Primärwaschvermögen von M2 (Remission in %) bei 40 °C
Anschmutzung Mittel
AW M2 V2 V3
T 29,6 37,2 29,4 30,4
K 20,1 61,8 60,3 60,1
W 21,0 54,1 49,5 48,1
MK 21,1 72,9 70,9 71,3
Primärwaschvermögen von M2 (Farbstandswerte dE(w)(AW)) bei 40 °C
Anschmutzung Mittel
AW M2 V2 V3
R 26,2 14,0 10,7 10,8
TEE 25,0 5,7 1,7 2,9
IK 43,8 27,6 26,0 25,7
J 31,9 15,6 13,9 12,4
H 30,0 16,5 12,0 11,4

Claims (10)

  1. Verwendung von organischen Säuren/organischen Säureanhydriden als separate bzw. nachträglich zugemischte Komponente in Waschmitteln, die bezogen auf das gesamte Mittel weniger als 10 Gew.-% Bleichmittel enthalten, zur Unterstützung der Entfernung von bleichbaren Anschmutzungen.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß als organische Säure/organische Säureanhydride Citronensäure, Weinsäure, Bernsteinsäure, Bernsteinsäureanhydrid, Maleinsäure, Maleinsäureanhydrid und/oder Äpfelsäure, insbesondere Citronensäure, verwendet wird.
  3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß organische Säuren/organische Säureanhydride, insbesondere Citronensäure, mit einer Teilchengrößenverteilung verwendet werden, wobei mindestens 80 Gew.-% der Teilchen eine Größe zwischen 1500 und 2000 µm aufweisen.
  4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, daß zusätzlich zu den grobkörnigen organischen Säuren/organischen Säureanhydriden auch feinteilige organische Säuren/organische Säureanhydride mit Teilchengrößen von mindestens 80 Gew.-% kleiner als 350 µm verwendet werden.
  5. Granulares Waschmittel mit einem Schüttgewicht von 650 g/l bis 1100 g/l, enthaltend anionische und/oder nichtionische Tenside sowie Buildersubstanzen einschließlich 1 bis 15 Gew.-% einer/eines separat bzw. nachträglich zugemischten organischen Säure/organischen Säureanhydrids, dadurch gekennzeichnet, daß das Mittel bezogen auf das gesamte Mittel weniger als 10 Gew.-% Bleichmittel enthält und die organischen Säuren/organischen Säureanhydride eine Teilchengrößenverteilung von mindestens 80 Gew.-% der Teilchen größer als 1500 µm aufweisen, wobei gegebenenfalls zusätzlich auch feinteilige organische Säuren/organische Säurenanhydride mit Teilchengrößen von mindestens 80 Gew.-% kleiner als 350 µm enthalten sind.
  6. Mittel nach Anspruch 5, dadurch gekennzeichnet, daß es als organische Säure/organisches Säureanhydrid Citronensäure, Weinsäure, Bernsteinsäure, Bernsteinsäureanhydrid, Maleinsäure, Maleinsäureanhydrid und/oder Äpfelsäure, insbesondere Citronensäure, enthält.
  7. Mittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es zusätzlich zu der organischen Säure/dem organischen Säureanhydrid mindestens einen in wäßriger Flotte alkalisch reagierenden Bestandteil in nachträglich bzw. separat zugemischter Form enthält, wobei die in wäßriger Flotte alkalisch reagierenden, nachgemischten bzw. separat zugemischten Bestandteile, insbesondere Carbonat, Bicarbonat und/oder Metasilikat und/oder kristallines schichtförmiges Disilikat, in Mengen von 1 bis 15 Gew.-%, vorteilhafterweise in Mengen von 2 bis 10 Gew.-% vorliegen.
  8. Verfahren zur Herstellung eines granularen Waschmittels mit einem Schüttgewicht von 650 g/l bis 1100 g/l, enthaltend anionische und/oder nichtionische Tenside sowie Buildersubstanzen einschließlich 1 bis 15 Gew.-% an organischen Säuren/organischen Säureanhydriden sowie bezogen auf das gesamte Mittel weniger als 10 Gew.-% Bleichmittel, dadurch gekennzeichnet, daß das Mittel nach üblichen Methoden wie Sprühtrocknung, Granulierung, Kompaktierung, Pelletierung, Extrusion in Kombination mit einem oder mehreren nachgeschalteten Aufbereitungsvorgängen, welche Formgebungsschritte, Trocknen oder Oberflächenmodifizierung mit flüssigen bis wachsartigen oder festen Stoffen und Mischvorgänge umfassen, hergestellt wird, wobei zumindest die organische Säure/das Säureanhydrid, insbesondere die Citronensäure, gegebenenfalls aber auch weitere Komponenten separat bzw. nachträglich zugemischt werden und damit ein Mittel hergestellt wird, das die organischen Säuren/Säureanhydride im Fertigprodukt als separate Komponente enthält.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Mittel durch ein Granulieroder Extrusionsverfahren hergestellt wird, wobei das Granulier- oder Extrusionsverfahren derart modifiziert ist, daß zunächst ein festes Vorgemisch hergestellt wird, welches Einzelrohstoffe und/oder Compounds enthält, die bei Raumtemperatur und einem Druck von 1 bar als Feststoff vorliegen und einen Schmelzpunkt bzw. Erweichungspunkt nicht unter 45 °C aufweisen, sowie gegebenenfalls bis zu 10 Gew.-% bei Temperaturen unter 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside enthält, und unter Einsatz von Verdichtungskräften bei Temperaturen von mindestens 45 °C in ein Korn überführt sowie gegebenenfalls anschließend weiterverarbeitet oder aufbereitet wird, mit den Maßgaben, daß
    das Vorgemisch im wesentlichen wasserfrei ist und
    im Vorgemisch mindestens ein Rohstoff oder Compound, der bzw. das bei einem Druck von 1 bar und Temperaturen unterhalb von 45 °C in fester Form vorliegt, unter den Verarbeitungsbedingungen aber als Schmelze vorliegt, wobei diese Schmelze als polyfunktioneller, in Wasser löslicher Binder dient, welche bei der Herstellung der Mittel sowohl die Funktion eines Gleitmittels als auch eine Kleberfunktion für die festen Wasch- oder Reinigungsmittelcompounds- bzw. -rohstoffe ausübt, bei der Wiederauflösung des Mittels in wäßriger Flotte hingegen desintegrierend wirkt und
    im Aufbereitungsschritt zumindest die organischen Säuren/Säureanhydride als separate Komponente zugemischt werden.
  10. Verwendung eines Mittels gemäß einem der Ansprüche 5 bis 7 oder eines Mittels, hergestellt nach einem der Ansprüche 8 oder 9 in einem maschinellen Waschverfahren bei Temperaturen bis maximal 60 °C, vorzugsweise bei Temperaturen unterhalb 60 °C und insbesondere in Waschprogrammen mit Temperaturen bis 40 °C.
EP98930735A 1997-06-05 1998-05-27 Granulares waschmittel Expired - Lifetime EP0986629B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19723616 1997-06-05
DE19723616A DE19723616A1 (de) 1997-06-05 1997-06-05 Granulares Waschmittel
PCT/EP1998/003109 WO1998055574A1 (de) 1997-06-05 1998-05-27 Granulares waschmittel

Publications (3)

Publication Number Publication Date
EP0986629A1 EP0986629A1 (de) 2000-03-22
EP0986629B1 true EP0986629B1 (de) 2002-09-25
EP0986629B2 EP0986629B2 (de) 2007-05-16

Family

ID=7831510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98930735A Expired - Lifetime EP0986629B2 (de) 1997-06-05 1998-05-27 Granulares waschmittel

Country Status (6)

Country Link
EP (1) EP0986629B2 (de)
JP (1) JP2002502457A (de)
AT (1) ATE224942T1 (de)
DE (2) DE19723616A1 (de)
ES (1) ES2183384T5 (de)
WO (1) WO1998055574A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854083A1 (de) * 1998-11-24 2000-05-25 Henkel Kgaa Citronensäurehaltiges Waschmittel
GC0000084A (en) * 1998-12-12 2004-06-30 Lg Household & Health Care Ltd Process for preparing laundry powder detergents.
GB0006037D0 (en) 2000-03-13 2000-05-03 Unilever Plc Detergent composition
GB0115552D0 (en) 2001-05-16 2001-08-15 Unilever Plc Particulate laundry detergent composition containing zeolite
DE10242222A1 (de) * 2002-09-12 2004-03-25 Henkel Kgaa Unter Druck kompaktiertes Wasch- oder Reinigungsmittel
US7863237B2 (en) * 2004-03-08 2011-01-04 Ecolab Inc. Solid cleaning products
KR100817687B1 (ko) 2004-09-10 2008-03-27 주식회사 엘지생활건강 산성형태의 수용성 고분자와 유기산을 함유하는 저밀도분말세제 조성물 및 그의 제조방법
WO2020109227A1 (en) 2018-11-28 2020-06-04 Unilever N.V. Large particles

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1569617A (en) 1976-03-08 1980-06-18 Procter & Gamble Liquid detergent composition
JPS6262899A (ja) 1985-09-13 1987-03-19 花王株式会社 高密度粒状洗剤組成物
DE3812455A1 (de) * 1987-04-15 1988-10-27 Sandoz Ag Bleichmittelersatz fuer waschmittel
GB8906089D0 (en) * 1989-03-16 1989-04-26 Monsanto Europe Sa Improved detergent compositions
ES2090229T3 (es) * 1990-05-08 1996-10-16 Procter & Gamble Composiciones detergentes para lavanderia granulares de bajo ph que contienen mejoradores de la detergencia de aluminosilicato, de acido citrico y de carbonato.
DE4024759A1 (de) * 1990-08-03 1992-02-06 Henkel Kgaa Bleichaktivatoren in granulatform
DE59209547D1 (de) 1991-07-17 1998-12-10 Behrensdorf Johannes Maschinengeschirrspülmittel und Verfahren zu seiner Herstellung
GB9120657D0 (en) * 1991-09-27 1991-11-06 Unilever Plc Detergent powders and process for preparing them
US5378388A (en) 1993-06-25 1995-01-03 The Procter & Gamble Company Granular detergent compositions containing selected builders in optimum ratios
DE4325787A1 (de) 1993-07-31 1995-02-02 Henkel Kgaa Waschmittel mit saurer Komponente
DE4402051A1 (de) * 1994-01-25 1995-07-27 Henkel Kgaa Gerüststoff für Wasch- oder Reinigungsmittel
GB2288187A (en) * 1994-03-31 1995-10-11 Procter & Gamble Detergent composition
ID16215A (id) 1996-03-11 1997-09-11 Kao Corp Komposisi deterjen untuk mencuci pakaian
DE19638599A1 (de) * 1996-09-20 1998-03-26 Henkel Kgaa Verfahren zur Herstellung eines teilchenförmigen Wasch- oder Reinigungsmittels

Also Published As

Publication number Publication date
WO1998055574A1 (de) 1998-12-10
ATE224942T1 (de) 2002-10-15
ES2183384T5 (es) 2007-11-16
DE59805713D1 (de) 2002-10-31
ES2183384T3 (es) 2003-03-16
DE19723616A1 (de) 1998-12-10
EP0986629A1 (de) 2000-03-22
JP2002502457A (ja) 2002-01-22
EP0986629B2 (de) 2007-05-16

Similar Documents

Publication Publication Date Title
EP0746599B1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
DE10044472A1 (de) Waschmittel
DE10044471A1 (de) Waschmittel
EP0804529B1 (de) Amorphes alkalisilikat-compound
EP0986629B1 (de) Granulares waschmittel
DE19941934A1 (de) Detergentien in fester Form
EP0828818B1 (de) Granulares wasch- oder reinigungsmittel mit hoher schüttdichte
EP0793708B1 (de) Verfahren zur herstellung extrudierter wasch- oder reinigungsmittel mit wasserlöslichen buildersubstanzen
EP0845028B1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
EP0877789B1 (de) Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel
DE19622443A1 (de) Granulare Waschmittel, enthaltend optischen Aufheller
DE19611012A1 (de) Verfahren zur Herstellung von granularen Silikaten mit hohem Schüttgewicht
DE19624415A1 (de) Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln
EP1004658A2 (de) Citronensäurehaltiges Waschmittel
WO2000037595A1 (de) Kompaktat mit silicatischem builder
EP0769045B1 (de) Waschmittel mit cellulase
DE19651072A1 (de) Additiv für Wasch- oder Reinigungsmittel
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
DE19928923A1 (de) Schaumkontrollierte feste Waschmittel
WO1998055568A1 (de) Wasch- oder reinigungsmittel mit erhöhter reinigungsleistung
DE19847569A1 (de) Phosphonathaltige Granulate
DE19939804A1 (de) Schaumkontrollierte feste Waschmittel
DE19846439A1 (de) Waschmittel mit kationischen Alkyl- und/oder Alkenylpolyglykosiden
DE19939805A1 (de) Schaumkontrollierte feste Waschmittel
EP0888450A2 (de) Wasch- oder reinigungsmitteladditiv sowie ein verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20010607

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 224942

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59805713

Country of ref document: DE

Date of ref document: 20021031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2183384

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20030624

NLR1 Nl: opposition has been filed with the epo

Opponent name: THE PROCTER & GAMBLE COMPANY

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20030624

NLR1 Nl: opposition has been filed with the epo

Opponent name: THE PROCTER & GAMBLE COMPANY

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APBW Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPO

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20070516

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE ES FR GB IT NL

NLR2 Nl: decision of opposition

Effective date: 20070516

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20070618

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140521

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140509

Year of fee payment: 17

Ref country code: IT

Payment date: 20140512

Year of fee payment: 17

Ref country code: NL

Payment date: 20140510

Year of fee payment: 17

Ref country code: AT

Payment date: 20140428

Year of fee payment: 17

Ref country code: ES

Payment date: 20140411

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140513

Year of fee payment: 17

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 224942

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150527

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59805713

Country of ref document: DE