EP0985121B1 - Vorrichtung zum bestrahlen eines substrats mittels uv-strahlen und verfahren zum betrieb der vorrichtung - Google Patents

Vorrichtung zum bestrahlen eines substrats mittels uv-strahlen und verfahren zum betrieb der vorrichtung Download PDF

Info

Publication number
EP0985121B1
EP0985121B1 EP98916778A EP98916778A EP0985121B1 EP 0985121 B1 EP0985121 B1 EP 0985121B1 EP 98916778 A EP98916778 A EP 98916778A EP 98916778 A EP98916778 A EP 98916778A EP 0985121 B1 EP0985121 B1 EP 0985121B1
Authority
EP
European Patent Office
Prior art keywords
housing
cooling gas
lamp
reflector
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916778A
Other languages
English (en)
French (fr)
Other versions
EP0985121A1 (de
Inventor
Bernhard Max Glaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uviterno AG
Original Assignee
Glaus Bernhard Max
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaus Bernhard Max filed Critical Glaus Bernhard Max
Publication of EP0985121A1 publication Critical patent/EP0985121A1/de
Application granted granted Critical
Publication of EP0985121B1 publication Critical patent/EP0985121B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun

Definitions

  • the invention relates to a device for irradiating a Substrate by means of UV rays according to the preamble of Claim 1.
  • a device for irradiating a Substrate by means of UV rays according to the preamble of Claim 1.
  • Such a device is from the US-A-4 182 047 known.
  • Such devices are for example in printing technology for drying paints, inks, etc. Polymerization used. Treatments using UV rays but are also used, for example, in food technology used for preservation purposes etc.
  • UV radiation sources in addition to UV radiation, a very high proportion of heat-intensive Infrared radiation is emitted. On the one hand, this requires permanent cooling of the radiation source and on the other hand Measures have to be taken so that it is mostly heat-sensitive Substrate cannot be damaged. to Cooling of the UV radiation source was therefore already known an air flow through that closed with a quartz glass plate To lead housing.
  • US-A-5,094,010 shows a generic comparable UV lamp, its housing additionally is also equipped with water cooling.
  • the reflector The UV lamp is solid in a relatively massive Integrated lamp head.
  • This UV lamp is for drying large workpieces such as Boat hull made of glass fiber reinforced Plastic determines and is not suitable for irradiation of substrates moving at high speed on the Radiation source passing by. A quick fade or The radiation source cannot be turned away.
  • DE U 93 12 809.6 is a UV radiation device described for highly productive production lines, for example is intended for the production of compact discs.
  • the Outlet opening is covered with a quartz glass pane, however, the housing is not hermetic to the environment completed. Ambient air is created via an exhaust air device sucked in through side ventilation openings and slots. This has the disadvantage that dirt and dust particles in the housing can reach.
  • the reflector of the UV lamp is in two movably mounted reflector halves divided for dimming the radiation collapses overlapping each other can be. Despite the air cooling, the reflector halves exposed to very high temperatures when closed and the heat rays are also thrown back onto the lamp.
  • a UV-transparent Glass plate in particular with a quartz glass plate allows a closed inside the lamp housing Lead cooling air circuit.
  • the housing is with at least one cooling gas inlet and at least one each Provide cooling gas outlet, in such a way that the UV lamp with the gas flow between the inlet and outlet can be acted upon. Cooling with full power is therefore in every operating position possible without the environment being affected by a current becomes.
  • ozone can no longer be applied to the lamp escape. So there is no longer any risk that the The surface of the substrate is directly exposed to air containing ozone becomes what in certain cases the one with the UV rays can delay the desired drying.
  • the supply line and the discharge line at least in sections as flexible Lines or designed as telescopic tubes.
  • the housing forms in this way an autonomous module that is independent of its Operating position in a closed system with a cooling gas flow can be applied.
  • the housing is between the working position and the stand-by position can be moved linearly stored.
  • the reflector is so freely stored in the housing that it Cooling gas flows around in every operating position.
  • Cooling gas inlet with a pressure fan and when the cooling gas outlet is connected to a suction fan can flow through large amounts of cooling gas with a specific flow the lamp housing are guided. Harmful ozone is extracted.
  • only the cooling gas inlet with a pressure fan or that only the cooling gas outlet is connected to a suction fan can be connected to a suction fan.
  • a temperature sensor is arranged in the housing and that control means on the pressure fan and / or on the suction fan arranged to control the amount of air flowing through the housing which are operatively connected to the temperature sensor.
  • the amount of cooling gas can thus be controlled via the temperature sensor become.
  • the Control means a motorized flap for changing of the flow cross-section.
  • the fan drive motor therefore always works at full power, so without Delay can be worked with maximum cooling capacity can.
  • the control means can also use frequency control for the drive motor of the pressure fan and / or the suction fan.
  • cooling gas outlet or a connected to this outlet line with an ozone filter is. This makes the contamination of the environment artificial generated ozone prevented.
  • the air cleaned in this way can a suitable place in the room for heating purposes because they have temperatures of up to 80 ° Celsius can. It is also conceivable to feed the heated exhaust air in a heat exchanger for the recovery of the discharged Warmth.
  • the cooling gas inlet or an inlet line connected to it Air filter is provided.
  • the cooling gas entering the housing is cleaned of dust and contamination of the UV lamp will be prevented.
  • the UV lamp in the housing is preferably surrounded by a reflector, who with at least one opening for passing the Air flow is provided.
  • a reflector who with at least one opening for passing the Air flow is provided. This can be advantageous lying on the plane of symmetry of the reflector and parallel act on the longitudinal slot extending to the UV lamp. This can at least part of the amount of cooling gas is aimed directly at the UV lamp become.
  • a reflector with or without an opening can also be transparent to heat radiation be trained. As a result, the reflector reflects only the UV rays, while a large part of the heat-intensive IR radiation penetrates the reflector.
  • a such design of the reflector can be in the management of Cooling gas within the housing are specifically considered.
  • the reflector particularly advantageously consists of a glass ceramic (e.g. ROBAX® registered Brand). Glass ceramic materials have a very high Permeability to heat rays and are used for this purpose also used for electric hot plates. By known Coating techniques can be applied to a mirror layer so that UV rays are still reflected.
  • an absorber for absorption is advantageous the heat and UV rays are arranged in the stand-by position.
  • the absorber can be used for additional cooling with a suction device be connected.
  • the housing is automatically moved to the stand-by position, so that the substrate does not have an excessively long exposure to radiation exposed, which in extreme cases leads to spontaneous combustion could lead.
  • the UV rays are from the absorber absorbed so that the operating personnel is not at risk.
  • the maximum possible extension position of the housing to reach the working position can be adjustable in such a way that the UV lamp irradiated only a portion of the substrate while the remaining section is directed towards the absorber and irradiated this.
  • the adjustable extension position has the advantage that the radiation section is the size of the continuous Workpiece can be adjusted. This way not unnecessarily irradiated means of transport or the like which would warm up.
  • the housing can be moved linearly if it is connected to at least one Guide rail is suspended and if it is with a pneumatic cylinder between the working position and the stand-by position is movable.
  • Other drive means, such as linear motors etc. would of course also be conceivable.
  • the housing is advantageously divided into a first flow chamber, in which the UV lamp is arranged and in one second flow chamber, the cooling gas inlet at the first Flow chamber and the cooling gas outlet on the second flow chamber is arranged.
  • the two flow chambers are over one slit running parallel to the UV lamp or via a Row of openings connected together.
  • the quartz glass plate has a different coefficient of thermal expansion than the steel case. It is therefore advantageous in stored in a dilatation bearing on the housing.
  • the invention also relates to a method for operating the device mentioned at the beginning.
  • This method is characterized by the features in claims 13, 14 and 15.
  • Feeding the cooling gas at a pressure of at least 1 kilopascal causes intensive cooling of all parts within the housing.
  • the working pressure on the pressure fan can be 2 to 3 kilopascals.
  • the pressure difference compared to the housing results from the transmission lines.
  • the cooling gas throughput can be up to approx. 400 m 3 / hour.
  • the temperature of the cooling gas fed in can correspond to the ambient temperature, but should not exceed approx. 25 to 30 ° Celsius. In certain cases it would be conceivable to reduce the temperature of the cooling gas fed in with a cooling unit.
  • the temperature of the exhaust air at the outlet can be 45 to 80 ° Celsius, so that heat recovery makes sense in certain cases.
  • ambient air is used as the cooling gas.
  • air is always used instead of "Cooling gas” used.
  • UV lamp 1 shows a highly schematized UV lamp 2, which is arranged in a housing 3.
  • Exit side 4 on the housing hit the UV rays Substrate 1, for example on a conveyor belt under the Housing is passed through.
  • the exit side 4 on the housing 3 is UV-transparent Quartz glass plate 5 closed. Until an air inlet 6 and an air outlet 7 that is Housing 3 is thus largely hermetically sealed.
  • the Air inlet 6 is connected to a pressure fan 8 which Ambient air is sucked in and at a relatively high pressure Housing 3 feeds.
  • the air outlet 7 is with a suction fan 9 connected, which sucks air from the housing and releases in turn to the environment via an ozone filter 12.
  • the Feed line 10 and the discharge line 11 are preferred designed as flexible lines. Air inlet 6 and air outlet 7 are arranged on the housing such that the UV lamp 2 lies in the main flow area. Of course can additional baffles, baffles and the like be arranged to the flow effect improve.
  • the housing 3 is not closer to one here shown carriage attached to a linear guide 14 and can be moved in the direction of arrow a. From the shown working position can thus be unchanged Performance of the fans 8, 9 the housing as far as in the Illustration to the right until the UV lamp 2 lies above the absorber 13. In this stand-by position temporarily the throughput of the substrates 1 can be stopped. In this way, switching off the UV lamp 2 can be avoided become.
  • a cross section is also highly schematized in FIG represented by the housing 3, the outlet side 4 with a quartz glass plate 5 is closed.
  • the UV lamp 2 is surrounded by a reflector 15, one above the UV lamp 2 Gap 16 has. Through this gap, cooling air from the Hit the air inlet 6 directly on the UV lamp 2. On Part of the cooling air spreads on the back of the reflector 15 along and also cools it.
  • the air outlet 7 is arranged on the long side, but could just like the Air intake is also on one end. Of course could also have multiple air intakes in each embodiment or air outlets on the housing.
  • the reflector 15 is by means of a surface coating formed such that only the UV rays 21 reflect be, while heat-intensive IR rays 22 den Penetrate reflector directly. This measure also serves to keep harmful heat rays away from the substrate.
  • FIG. 3 shows schematically a lamp housing 3 with one in it arranged UV lamp 2.
  • a temperature sensor in the housing 19 attached, with the help of the internal temperature can be constantly monitored.
  • the temperature sensor 19 is in operative connection with an actuator 20 with which Flap valves 18, 18 'in the feed line 10 or in the Discharge line 11 can be operated.
  • the drive motors 17, 17 'of the pressure fan 8 or the suction fan 9 always work with full power and control the air volume is only via the flap valves.
  • the drive motors 17, 17 'could also be used a frequency control, which control pulses receives from the temperature sensor 19.
  • Figure 4 shows a lamp housing 3, in which the arranged therein UV lamp 2 together with its reflector 15 pivoted through 90 ° can be.
  • the UV rays through the quartz glass plate 5 on the exit side 4 out.
  • the standby position shown at 15 ' of the reflector the rays hit a mudguard 23.
  • UV rays via a partially transparent mirror onto the substrate or be directed away from the substrate.
  • a partially transparent mirror onto the substrate or be directed away from the substrate.
  • Such embodiments are e.g. in CH-A-660 489.
  • the partially permeable Mirror can be fixed or swiveling in the Housing be arranged.
  • FIG. 5 shows a UV lamp in which two different Operating positions are possible.
  • the UV lamp 2 is provided with a reflector 15, which can be turned into three different positions can.
  • a partially transparent mirror 24 arranged over which in a first operating position UV rays 21 can be directed onto the substrate 1, while the heat intensive IR rays 22 penetrate the mirror and absorbed on the absorber 13.
  • the reflector 15 can be 90 ° in this way that the radiation is swung directly through the glass plate 5 falls on a substrate 1.
  • This direct radiation contains the entire spectrum of rays, including the IR rays, however, which may be desirable in certain cases.
  • the reflector 15 In the stand-by position, the reflector 15 is turned upwards, so that the rays fall on the fender 23.
  • On Such a multifunctional radiation head is air cooling particularly advantageous in a closed housing because through the quartz glass plate 5 the mechanically moving parts and in particular also the sensitive mirror 24 is protected become. The cooling air can be targeted within the housing the points are directed where it is needed, e.g. also on the absorber 13.
  • Figures 6 to 8 show an irradiation head, which also is linearly displaceable in the direction of arrow a.
  • the shift takes place on a frame 25, the Can be part of an irradiation device.
  • roller bearings 26 are arranged on the frame, which in two U-shaped guide rails 27 on the top of the Intervene in housing 3.
  • a pneumatic cylinder 28 is attached, the piston rod is connected to the frame at a piston attachment 37.
  • the pneumatic cylinder is not supplied via here Pneumatic lines shown.
  • Figure 6 that is complete extended position shown so that the UV lamp 2 down the entire length of the substrate radiates.
  • the maximum possible extension position can be limited.
  • Such Limitation causes the face of the radiation head only down to the vertical plane 36 extending.
  • the UV lamp 2 only transmits part of their length down radiation.
  • the rest Section of the lamp partially overlaps the one below the housing 3 arranged absorber 13. This consists of grill-like slats and can become intense radiation Heat to red heat.
  • the UV lamp 2 irradiates the absorber via its whole length.
  • the substrate is a cylindrical one Bottle cap 35 shown on the end a mandrel 34 is attached.
  • a complete Extending the UV lamp 2 would obviously also be a Part of the mandrel 34 irradiated and thus heated. Since the mandrel 34 is not cooled, this could damage the Guide cap 35. When extending to the extended position 36, on the other hand, practically only the cap 35 irradiated.
  • the housing 3 is in a first flow chamber 29 and second flow chamber 30 divided. Serve as a subdivision separating plates 31 having a longitudinal slot 32 in the middle leave open. This longitudinal slot runs over the longitudinal slot 16, which form the two reflector halves.
  • the Cooling air enters through the supply line 10 in the front a first flow chamber 29, flows around the UV lamp 2 and their reflector 15 and then arrives in the direction of arrow b in the second flow chamber 30, which they also face leaves again via the discharge line 11.
  • the lines 10 and 11 are designed as flexible hose lines. This also applies to the absorber suction line 33, via which Ambient air through the absorber grill for cooling purposes is suctioned off.
  • the electrical lines leading to the UV lamp 2 or lead to the temperature sensor 19 are also summarized in a flexible hose 40.
  • FIG. 9 shows a dilatation bearing 38 for holding the Quartz glass plate 5.
  • the bracket 39 may be the quartz glass plate do not jam. Rather, it has proven to be beneficial proved that the quartz glass plate with sufficient Free play rests in the bracket 39 (dash-dotted Position). Will be in the housing opposite the atmosphere Maintaining negative pressure, the quartz glass plate is sucked in and presses tightly against the housing opening (hatched position). Use would also be conceivable high temperature resistant sliding seals.

Description

Die Erfindung betrifft eine Vorrichtung zum Bestrahlen eines Substrats mittels UV-Strahlen gemäss dem Oberbegriff von Anspruch 1. Eine derartige Vorrichtung ist aus der US-A-4 182 047 bekannt. Derartige Vorrichtungen werden beispielsweise in der Drucktechnik zum Trocknen von Lacken, Farben usw. durch Polymerisation eingesetzt. Behandlungen mittels UV-Strahlen werden aber beispielsweise auch in der Lebensmitteltechnik für Konservierungszwecke usw. eingesetzt.
Ein Problem bei UV-Strahlungsquellen besteht darin, dass neben der UV-Strahlung ein sehr hoher Anteil wärmeintensiver Infrarotstrahlung abgegeben wird. Einerseits bedingt dies eine permanente Kühlung der Strahlungsquelle und anderseits müssen Massnahmen getroffen werden, damit das zumeist wärmeempfindliche Substrat nicht beschädigt werden kann. Zur Kühlung der UV-Strahlungsquelle war es daher bereits bekannt, einen Luftstrom durch das mit einer Quarzglasplatte abgeschlossene Gehäuse zu leiten.
So zeigt beispielsweise die US-A-5,094,010 einen gattungsmässig vergleichbaren UV-Strahler, dessen Gehäuse zusätzlich auch noch mit einer Wasserkühlung ausgerüstet ist. Der Reflektor der UV-Lampe ist fest in einen relativ massiven Lampenkopf integriert. Dieser UV-Strahler ist zum Trocknen grosser Werkstücke wie z.B. Bootskörper aus glasfaserverstärktem Kunststoff bestimmt und eignet sich nicht zum Bestrahlen von Substraten, die mit hoher Geschwindigkeit an der Strahlungsquelle vorbeilaufen. Ein schnelles Abblenden oder Wegdrehen der Strahlungsquelle ist nicht möglich.
In der DE U 93 12 809.6 ist eine UV-Strahlungseinrichtung beschrieben, die für hochproduktive Fertigungslinien, beispielsweise zur Herstellung von Compact Discs bestimmt ist. Die Austrittsöffnung ist zwar mit einer Quarzglasscheibe abgedeckt, das Gehäuse ist jedoch gegenüber der Umgebung nicht hermetisch abgeschlossen. Über eine Ablufteinrichtung wird Umgebungsluft über seitliche Lüftungsöffnungen und Schlitze angesaugt. Dies hat den Nachteil, dass auch Schmutz und Staubpartikel in das Gehäuse gelangen können. Der Reflektor der UV-Lampe ist in zwei beweglich gelagerte Reflektorhälften unterteilt, die zum Abblenden der Strahlung sich gegenseitig überlappend zusammengefahren werden können. Trotz der Luftkühlung werden die Reflektorhälften dabei im geschlossenen Zustand sehr hohen Temperaturen ausgesetzt und ausserdem werden die Wärmestrahlen auf die Lampe zurückgeworfen.
Bei der GB A 2 258 296 ist die offene Seite des Reflektors gegenüber der Umgebung durch mehrere parallel nebeneinanderliegende Rohre, vorzugsweise aus Quarzglas abgeschlossen. Durch diese Rohre selbst, sowie auch durch das Gehäuse kann ein Kühlgasstrom geleitet werden. Zum Abblenden der starr gelagerten UV-Lampe ist eine spezielle Blendenvorrichtung vorgesehen.
Schliesslich ist durch die US A 4 182 047 eine UV-Strahlungseinheit bekannt geworden, bei der über die offene Seite des Reflektors Kühlluft angesaugt werden kann. Der Reflektor ist dabei in einem Gehäuse untergebracht, das insgesamt um eine Schwenkachse aus einer Arbeitsstellung in eine Sicherheitsstellung schwenkbar ist, in welcher das Substrat nicht beaufschlagt wird. In beiden Stellungen bleibt die Kühlfunktion aufrecherhalten
Ein wesentlicher Nachteil der offenen Luftstromkühlung besteht darin, dass die angesaugte Kühlluft verunreinigungen wie z.B. Staub oder feine Lackpartikel mit sich trägt. Diese Verunreinigungen treffen auf die Oberfläche der UV-Lampe oder des Reflektors, wo sie infolge der hohen Temperatur eingebrannt werden und mit der Zeit einen Schmutzfilm bilden. Dieser reduziert den Wirkungsgrad der Strahlungsquelle.
Anderseits können die bekannten Vorrichtungen mit geschlossenem Kühlluftsystem nicht in verschiedenen Betriebsstellungen arbeiten und die sehr empfindlichen Reflektoren sind nur auf einer Seite dem Kühlluftstrom ausgesetzt.
Es ist daher eine Aufgabe der Erfindung, eine Vorrichtung der eingangs genannten Art zu schaffen, bei der die UV-Lampe ohne die Gefahr einer Verunreinigung mittels Kühlgas gekühlt werden kann. Die Kühlung soll auch bei beweglichem Gehäuse möglich sein und zwar derart, dass nicht nur die UV-Lampe selbst, sondern auch der Reflektor ausreichend gekühlt wird. Diese Aufgabe wird erfindungsgemäss mit einer Vorrichtung gelöst, welche die Merkmale im Anspruch 1 aufweist.
Das Verschliessen der Austrittsseite mit einer UV-strahlungsdurchlässigen Glasplatte insbesondere mit einer Quarzglasplatte ermöglicht es, innerhalb des Lampengehäuses einen geschlossenen Kühlluftkreislauf zu führen. Zu diesem Zweck ist das Gehäuse mit wenigstens je einem Kühlgaseinlass und mit wenigstens je einem Kühlgasauslass versehen, und zwar derart, dass die UV-Lampe mit dem Gasstrom zwischen Einlass und Auslass beaufschlagbar ist. Eine Kühlung mit voller Leistung ist somit in jeder Betriebsstellung möglich, ohne dass die Umgebung durch eine Strömung beeinträchtigt wird. An der Lampe kann ausserdem kein Ozon mehr austreten. Damit besteht auch nicht mehr die Gefahr, dass die Oberfläche des Substrats direkt mit ozonhaltiger Luft beaufschlagt wird, was in bestimmten Fällen die mit den UV-Strahlen angestrebte Trocknung verzögern kann.
Zur Kompensation der Relativbewegung des Gehäuses zwischen der Arbeitsstellung und der Stand-by Stellung sind die Zufuhrleitung und die Abfuhrleitung wenigstens abschnittweise als flexible Leitungen oder als Teleskoprohre ausgebildet. Das Gehäuse bildet auf diese Weise ein autonomes Modul, das unabhängig von seiner Betriebsstellung in einem geschlossenen System mit einem Kühlgasstrom beaufschlagt werden kann. Das Gehäuse ist dabei zwischen der Arbeitsstellung und der Stand-by Stellung linear verschiebbar gelagert.
Der Reflektor ist dabei derart frei im Gehäuse gelagert, dass er in jeder Betriebsstellung allseits von Kühlgas umströmt ist.
Ein besonders hoher Wirkungsgrad kann erzielt werden, wenn der Kühlgaseinlass mit einem Druckventilator und wenn der Kühlgasauslass mit einem Saugventilator verbunden ist. Auf diese Weise können grosse Kühlgasmengen mit einer gezielten Strömung durch das Lampengehäuse geführt werden. Schädliches Ozon wird abgesaugt. Alternativ ist es natürlich auch denkbar, dass lediglich der Kühlgaseinlass mit einem Druckventilator oder dass lediglich der Kühlgasauslass mit einem Saugventilator verbunden ist.
Eine besonders effiziente Kühlung kann dadurch bewirkt werden, dass in dem Gehäuse ein Temperatursensor angeordnet ist und dass am Druckventilator und/oder am Saugventilator Steuerungsmittel zum Steuern der das Gehäuse durchströmenden Luftmenge angeordnet sind, welche mit dem Temperatursensor in Wirkverbindung stehen. Über den Temperatursensor kann damit die Kühlgasmenge gesteuert werden. Dies lässt sich beispielsweise damit erreichen, dass die Steuerungsmittel eine motorisch gesteuerte Klappe zum Verändern des Strömungsquerschnitts aufweisen. Der Antriebsmotor des Ventilators arbeitet dadurch immer mit voller Leistung, so dass ohne Verzögerung mit maximaler Kühlleistung gearbeitet werden kann. Alternativ können die Steuerungsmittel aber auch eine Frequenzsteuerung für den Antriebsmotor des Druckventilators und/oder des Saugventilators aufweisen.
Besonders vorteilhaft ist es, wenn der Kühlgasauslass oder eine mit diesem verbundene Auslassleitung mit einem Ozonfilter versehen ist. Damit wird die Kontamination der Umgebung mit künstlich erzeugtem Ozon verhindert. Die derart gereinigte Luft kann an einer geeigneten Stelle zu Heizzwecken in den Raum abgegeben werden, da sie Temperaturen von bis zu 80° Celsius aufweisen kann. Denkbar ist auch die Einspeisung der aufgeheizten Abluft in einen Wärmetauscher für die Rückgewinnung der abgegebenen Wärme.
In bestimmten Fällen ist es auch zweckmässig, wenn der Kühlgaseinlass oder eine mit diesem verbundene Einlassleitung mit einem Luftfilter versehen ist. Das in das Gehäuse eintretende Kühlgas wird so von Staub gereinigt und eine Verschmutzung der UV-Lampe wird verhindert.
Vorzugsweise ist die UV-Lampe im Gehäuse von einem Reflektor umgeben, der mit wenigstens einer Öffnung zum Durchleiten des Luftstroms versehen ist. Dabei kann es sich vorteilhaft um einen auf der Symmetrie-Ebene des Reflektors liegenden und parallel zur UV-Lampe verlaufenden Längsschlitz handeln. Dadurch kann wenigstens ein Teil der Kühlgasmenge direkt auf die UV-Lampe gerichtet werden.
Ein Reflektor mit oder ohne Öffnung kann ausserdem wärmestrahlungsdurchlässig ausgebildet sein. Der Reflektor reflektiert dadurch lediglich die UV-Strahlen, während ein grosser Teil der wärmeintensiven IR-Strahlung den Reflektor durchdringt. Eine derartige Ausbildung des Reflektors kann bei der Führung des Kühlgases innerhalb des Gehäuses speziell berücksichtigt werden. Besonders vorteilhaft besteht der Reflektor dabei aus einer mit einer Spiegelschicht versehenen Glaskeramik (z.B. ROBAX® eingetragene Marke). Glaskeramische Werkstoffe haben eine sehr hohe Durchlässigkeit für Wärmestrahlen und werden zu diesem Zweck auch bei elektrischen Herdplatten eingesetzt. Durch an sich bekannte Beschichtungstechniken kann eine Spiegelschicht aufgetragen werden, so dass UV-Strahlen trotzdem reflektiert werden.
Neben dem Gehäuse ist vorteilhaft ein Absorber zum Absorbieren der Wärme- und UV-Strahlen in der Stand-by Stellung angeordnet. Der Absorber kann dabei für zusätzliche Kühlung mit einer Absaugeinrichtung verbunden sein.
Bei einem vorübergehenden Stillstand des Substratdurchlaufs wird das Gehäuse dabei automatisch in die Stand-by Stellung gefahren, so dass das Substrat nicht einer übermässig langen Strahlungseinwirkung ausgesetzt ist, welche im Extremfall zu einer Selbstentzündung führen könnte. Die UV-Strahlen werden vom Absorber absorbiert, so dass das Bedienungspersonal nicht gefährdet ist.
Die maximal mögliche Ausfahrposition des Gehäuses zum Erreichen der Arbeitsstellung kann derart einstellbar sein, dass die UV-Lampe nur mit einem Abschnitt das Substrat bestrahlt, während der verbleibende Abschnitt auf den Absorber gerichtet ist und diesen bestrahlt. Die verstellbare Ausfahrposition hat den Vorteil, dass der Bestrahlungsabschnitt der Grösse des durchlaufenden Werkstückes angepasst werden kann. Auf diese Weise müssen nicht unnötigerweise Transportmittel oder dergleichen bestrahlt werden, welche sich dabei erwärmen würden. Besonders vorteilhaft lässt sich das Gehäuse linear bewegen, wenn es an wenigstens einer Führungsschiene aufgehängt ist und wenn es mit einem Pneumatikzylinder zwischen der Arbeitsstellung und der Stand-by Stellung verschiebbar ist. Andere Antriebsmittel, wie z.B. Linearmotoren usw. wären natürlich ebenfalls denkbar.
Das Gehäuse ist vorteilhaft unterteilt in eine erste Strömungskammer, in der die UV-Lampe angeordnet ist und in einer zweite Strömungskammer, wobei der Kühlgaseinlass an der ersten Strömungskammer und der Kühlgasauslass an der zweiten Strömungskammer angeordnet ist. Die beiden Strömungskammern sind über einen parallel zur UV-Lampe verlaufenden Schlitz oder über eine Reihe von Öffnungen miteinander verbunden.
Die Quarzglasplatte hat einen anderen Wärmeausdehnungskoeffizienten als das Gehäuse aus Stahl. Sie ist daher vorteilhaft in einem Dilatationslager am Gehäuse gelagert.
Die Erfindung betrifft auch ein Verfahren zum Betrieb der eingangs genannten Vorrichtung. Dieses Verfahren ist durch die Merkmale in den Ansprüchen 13, 14 und 15 gekennzeichnet. Das Einspeisen des Kühlgases mit einem Druck von wenigstens 1 Kilopascal bewirkt eine intensive Bestreichung sämtlicher Teile innerhalb des Gehäuses mit Kühlgas. Am Druckventilator kann der Arbeitsdruck 2 bis 3 Kilopascal betragen. Die Druckdifferenz gegenüber dem Gehäuse ergibt sich durch die Übertragungsleitungen. Je nach Gehäusegrösse kann der Kühlgasdurchsatz bis zu ca. 400 m3/Stunde betragen. Die Temperatur des eingespeisten Kühlgases kann der Umgebungstemperatur entsprechen, sollte aber ca. 25 bis 30° Celsius nicht überschreiten. In bestimmten Fällen wäre es denkbar, die Temperatur des eingespeisten Kühlgases mit einem Kühlaggregat zu reduzieren. Die Temperatur der Abluft kann am Ausgang 45 bis 80° Celsius betragen, so dass in bestimmten Fällen eine Wärmerückgewinnung sinnvoll ist.
Unter bestimmten Umständen kann es vorteilhaft sein, im Gehäuse stets einen unter dem Atmosphärendruck liegenden Druck aufrechtzuerhalten. Auf diese Weise ist gewährleistet, dass keine ozonhaltige Luft aus dem Gehäuse austreten kann.
Das Problem der Ozonbildung durch Zusammenwirken der UV-Strahlen und des Luftsauerstoffs könnte aber auch dadurch völlig beseitigt werden, dass als Kühlgas Stickstoff verwendet wird. Es hat sich ausserdem überraschend gezeigt, dass der Polymerisationsvorgang in einer Stickstoffatmosphäre besser abläuft und es wäre daher denkbar, das Substrat in einer Stickstoffatmosphäre zu bestrahlen und das Gas gleichzeitig als Kühlgas durch das Gehäuse zu führen.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachstehend genauer beschrieben. Es zeigen:
Figur 1
die Seitenansicht eines linear verschiebbaren Bestrahlungskopfes mit den Merkmalen der Erfindung,
Figur 2
ein Querschnitt durch ein Lampengehäuse mit Reflektor,
Figur 3
die schematische Darstellung einer Kühlluftsteuerung,
Figur 4
ein Querschnitt durch ein Lampengehäuse mit schwenkbarer UV-Lampe,
Figur 5
ein Querschnitt durch ein Lampengehäuse für direkte und indirekte Bestrahlung des Substrats,
Figur 6
eine Seitenansicht eines linear verschiebbaren Bestrahlungskopfes analog zu Figur 1, aber mit weiteren konstruktiven Details,
Figur 7
eine Draufsicht auf den Bestrahlungskopf gemäss Figur 6,
Figur 8
eine Stirnansicht auf dem Bestrahlungskopf gemäss Figur 6 in etwas vergrössertem Massstab, und
Figur 9
ein Dilatationslager für die Quarzglasplatte.
Bei allen nachstehend beschriebenen Ausführungsbeispielen wird als Kühlgas Umgebungsluft verwendet. Der Einfachheit halber wird daher stets der Ausdruck "Luft" anstelle von "Kühlgas" verwendet.
In Figur 1 ist stark schematisiert eine UV-Lampe 2 dargestellt, die in einem Gehäuse 3 angeordnet ist. Durch eine Austrittsseite 4 am Gehäuse treffen die UV-Strahlen auf ein Substrat 1, das beispielsweise auf einem Förderband unter dem Gehäuse hindurchgeführt wird.
Die Austrittsseite 4 am Gehäuse 3 ist mit einer UV-strahlungsdurchlässigen Quarzglasplatte 5 verschlossen. Bis auf einen Lufteinlass 6 und auf einen Luftauslass 7 ist das Gehäuse 3 somit weitgehend hermetisch abgeschlossen. Der Lufteinlass 6 ist mit einem Druckventilator 8 verbunden, der Umgebungsluft ansaugt und mit relativ hohem Druck in das Gehäuse 3 einspeist. Der Luftauslass 7 ist mit einem Saugventilator 9 verbunden, der Luft aus dem Gehäuse absaugt und über einen Ozonfilter 12 wiederum an die Umgebung abgibt. Die zufuhrleitung 10 bzw. die Abfuhrleitung 11 sind vorzugsweise als flexible Leitungen ausgebildet. Lufteinlass 6 und Luftauslass 7 sind derart am Gehäuse angeordnet, dass die UV-Lampe 2 im Hauptströmungsbereich liegt. Selbstverständlich können im Gehäuse zusätzliche Schikanen, Leitbleche und dergleichen angeordnet sein, um die Strömungswirkung zu verbessern. Das Gehäuse 3 ist auf einem hier nicht näher dargestellten Schlitten auf einer linearen Führung 14 befestigt und kann in Pfeilrichtung a verschoben werden. Aus der dargestellten Arbeitsstellung kann damit bei unveränderter Leistung der Ventilatoren 8, 9 das Gehäuse soweit in der Abbildung nach rechts verschoben werden, bis die UV-Lampe 2 über dem Absorber 13 liegt. In dieser Stand-by Stellung kann vorübergehend der Durchsatz der Substrate 1 gestoppt werden. Auf diese Weise kann ein Abschalten der UV-Lampe 2 vermieden werden.
In Figur 2 ist ebenfalls stark schematisiert ein Querschnitt durch das Gehäuse 3 dargestellt, dessen Austrittsseite 4 mit einer Quarzglasplatte 5 verschlossen ist. Die UV-Lampe 2 ist von einem Reflektor 15 umgeben, der über der UV-Lampe 2 einen Spalt 16 aufweist. Durch diesen Spalt kann Kühlluft aus dem Lufteinlass 6 unmittelbar auf die UV-Lampe 2 treffen. Ein Teil der Kühlluft streicht auf der Rückseite des Reflektors 15 entlang und kühlt diesen ebenfalls. Der Luftauslass 7 ist auf der Längsseite angeordnet, könnte aber ebenso wie der Lufteinlass auch auf einer Stirnseite liegen. Selbstverständlich könnten bei jeder Ausführungsform auch mehrere Lufteinlässe bzw. Luftauslässe am Gehäuse angeordnet sein.
Der Reflektor 15 ist mittels einer Oberflächenbeschichtung derart ausgebildet, dass lediglich die UV-Strahlen 21 reflektiert werden, während wärmeintensive IR-Strahlen 22 den Reflektor direkt durchdringen. Diese Massnahme dient ebenfalls dazu, schädliche Wärmestrahlen vom Substrat fernzuhalten.
Figur 3 zeigt schematisch ein Lampengehäuse 3 mit einer darin angeordneten UV-Lampe 2. Im Gehäuse ist auch noch ein Temperatursensor 19 angebracht, mit dessen Hilfe die Innentemperatur ständig überwacht werden kann. Der Temperatursensor 19 steht in Wirkverbindung mit einem Stellantrieb 20, mit dem Klappenventile 18, 18' in der Zufuhrleitung 10 bzw. in der Abfuhrleitung 11 betätigt werden können. Die Antriebsmotoren 17, 17' des Druckventilators 8 bzw. des Saugventilators 9 arbeiten dabei immer mit voller Leistung und die Steuerung der Luftmenge erfolgt lediglich über die Klappenventile. Alternativ könnten die Antriebsmotoren 17, 17' aber auch mit einer Frequenzsteuerung versehen sein, welche Steuerimpulse vom Temperatursensor 19 empfängt.
Figur 4 zeigt ein Lampengehäuse 3, bei dem die darin angeordnete UV-Lampe 2 samt ihrem Reflektor 15 um 90° geschwenkt werden kann. In der dargestellten Arbeitsstellung treten die UV-Strahlen durch die Quarzglasplatte 5 auf der Austrittsseite 4 aus. In der mit 15' dargestellten Stand-by Stellung des Reflektors treffen die Strahlen auf ein Schutzblech 23.
Selbstverständlich wären auch alternative Arbeitsstellungen bzw. Stand-by Stellungen denkbar, bei denen die UV-Strahlen über einen teildurchlässigen Spiegel auf das Substrat bzw. vom Substrat weggelenkt werden. Derartige Ausführungsbeispiele sind z.B. in der CH-A-660 489 beschrieben. Der teildurchlässige Spiegel kann dabei fest oder schwenkbar im Gehäuse angeordnet sein.
Figur 5 zeigt einen UV-Strahler, bei dem zwei verschiedene Betriebsstellungen möglich sind. Im Gehäuse 3 mit der durch eine Quarzglasplatte 5 verschlossenen Austrittsseite 4 sind mehrere Lufteinlässe 6, 6', 6'' und mehrere Luftauslässe 7, 7' angeordnet. Die UV-Lampe 2 ist mit einem Reflektor 15 versehen, der in drei verschiedene Stellungen gedreht werden kann. Neben der UV-Lampe ist ein teildurchlässiger Spiegel 24 angeordnet, über den in einer ersten Betriebsstellung UV-Strahlen 21 auf das Substrat 1 gerichtet werden können, während die wärmeintensiven IR-Strahlen 22 den Spiegel durchdringen und am Absorber 13 absorbiert werden. In einer zweiten Betriebsstellung kann der Reflektor 15 derart um 90° geschwenkt werden, dass die Strahlung direkt durch die Glasplatte 5 auf ein Substrat 1 fällt. Diese direkte Bestrahlung enthält das gesamte Strahlenspektrum, also auch die IR-Strahlen, was jedoch in bestimmten Fällen erwünscht sein kann. In der Stand-by Stellung wird der Reflektor 15 nach oben gedreht, so dass die Strahlen auf das Schutzblech 23 fallen. An einem derart multifunktionalen Strahlenkopf ist die Luftkühlung im geschlossenen Gehäuse besonders vorteilhaft, weil durch die Quarzglasplatte 5 die mechanisch beweglichen Teile und insbesondere auch der empfindliche Spiegel 24 geschützt werden. Die Kühlluft kann innerhalb des Gehäuses gezielt an die Stellen gelenkt werden, wo sie benötigt wird, also z.B. auch auf den Absorber 13.
Selbstverständlich können am Gehäuse noch zusätzliche Kühlmassnahmen vorgesehen sein, ohne dass dabei der Gegenstand der Erfindung verlassen würde. So wäre es z.B. denkbar, dass zusätzlich noch Kühlkanäle für das Durchleiten einer Kühlflüssigkeit vorgesehen sind.
Die Figuren 6 bis 8 zeigen einen Bestrahlungskopf, der ebenfalls in Pfeilrichtung a linear verschiebbar gelagert ist. Die Verschiebung erfolgt dabei an einem Gestell 25, das Bestandteil einer Bestrahlungsvorrichtung sein kann. Zu diesem Zweck sind am Gestell Wälzlager 26 angeordnet, welche in zwei U-förmige Führungsschienen 27 auf der Oberseite des Gehäuses 3 eingreifen. Zwischen den beiden Führungsschienen ist ein Pneumatikzylinder 28 befestigt, dessen Kolbenstange an einer Kolbenbefestigung 37 mit dem Gestell verbunden ist. Die Versorgung des Pneumatikzylinders erfolgt über hier nicht dargestellte Pneumatikleitungen. In Figur 6 ist die vollständig ausgefahrene Position dargestellt, so dass die UV-Lampe 2 über ihre gesamte Länge nach unten auf das Substrat abstrahlt.
Über hier nicht näher dargestellte Begrenzungsmittel, wie z.B. steckbare Anschlagbolzen oder dergleichen, kann die maximal mögliche Ausfahrposition begrenzt werden. Eine derartige Begrenzung bewirkt beispielsweise, dass die Stirnseite des Bestrahlungskopfes nur bis auf die vertikale Ebene 36 ausfährt. In dieser Position gibt die UV-Lampe 2 nur über einen Teil ihrer Länge Strahlung nach unten ab. Der restliche Abschnitt der Lampe überlappt teilweise noch den fest unter dem Gehäuse 3 angeordneten Absorber 13. Dieser besteht aus grillartigen Lamellen und kann sich bei intensiver Bestrahlung bis auf Rotglut erhitzen. In der zurückgezogenen Stand-by Position bestrahlt die UV-Lampe 2 den Absorber über ihre gesamte Länge.
Als Substrat ist im vorliegenden Fall eine zylindrische Flaschenverschlusskappe 35 dargestellt, die auf das Ende eines Dorns 34 aufgesteckt ist. Bei einem vollständigen Ausfahren der UV-Lampe 2 würde ersichtlicherweise auch ein Teil des Dorns 34 bestrahlt und damit erwärmt. Da der Dorn 34 nicht gekühlt ist, könnte dies zu einer Beschädigung der Verschlusskappe 35 führen. Bei einem Ausfahren auf die Ausfahrposition 36 wird dagegen praktisch nur die Verschlusskappe 35 bestrahlt.
Das Gehäuse 3 ist in eine erste Strömungskammer 29 und eine zweite Strömungskammer 30 unterteilt. Als Unterteilung dienen dabei Trennbleche 31, die in der Mitte einen Längsschlitz 32 offenlassen. Dieser Längsschlitz verläuft über dem Längsschlitz 16, den die beiden Reflektorhälften bilden. Die Kühlluft tritt über die Zufuhrleitung 10 stirnseitig in die erste Strömungskammer 29 ein, umströmt die UV-Lampe 2 und ihren Reflektor 15 und gelangt dann in Pfeilrichtung b in die zweite Strömungskammer 30, welche sie ebenfalls stirnseitig über die Abfuhrleitung 11 wieder verlässt. Die Leitungen 10 und 11 sind als flexible Schlauchleitungen ausgebildet. Dies gilt auch für die Absorberabsaugleitung 33, über welche Umgebungsluft durch den Absorbergrill zu Kühlungszwecken abgesaugt wird. Die elektrischen Leitungen, welche zur UV-Lampe 2 bzw. zum Temperatursensor 19 führen, sind ebenfalls in einem flexiblen Schlauch 40 zusammengefasst.
Figur 9 zeigt ein Dilatationslager 38 für die Halterung der Quarzglasplatte 5. Diese ist mittels einer Halterung 39 derart am Gehäuse 3 befestigt, dass sie sich in Pfeilrichtung c ausdehnen kann. Die Halterung 39 darf dabei die Quarzglasplatte nicht festklemmen. Es hat sich vielmehr als vorteilhaft erwiesen, dass die Quarzglasplatte mit ausreichendem Spiel frei in der Halterung 39 aufliegt (strichpunktierte Position). Wird im Gehäuse gegenüber der Atmosphäre ein Unterdruck aufrechterhalten, wird die Quarzglasplatte angesaugt und presst sich dichtend gegen die Gehäuseöffnung (schraffierte Position). Denkbar wäre aber auch der Einsatz hochtemperaturbeständiger Gleitdichtungen.

Claims (15)

  1. Vorrichtung zum Bestrahlen eines Substrats (1) mittels UV-Strahlen, mit einer UV-Lampe (2), welche derart in einem Gehäuse (3) angeordnet ist, dass UV-Strahlen direkt oder indirekt auf einer Austrittsseite (4) aus dem Gehäuse austreten, sowie mit Mitteln zum Kühlen der UV-Lampe durch einen Kühlgasstrom, wobei das Gehäuse (3) wenigstens je einen Kühlgaseinlass (6) und wenigstens je Kühlgasauslass (7) aufweist, so dass Kühlgas durch das Gehäuse durchleitbar ist, wobei das ganze Gehäuse (3) zwischen einer Arbeitsstellung, in welcher die UV-Strahlen auf das Substrat treffen und einer Stand-by Stellung, in welcher die UV-Strahlen vom Substrat weggelenkt sind, beweglich ist, und wobei die UV-Lampe (2) einen Reflektor (15) aufweist, der im Gehäuse (3) in der Arbeitsstellung und in der Stand-by Stellung allseits von Kühlgas umströmt ist, dadurch gekennzeichnet, dass
    die Austrittsseite (4) mit einer UV strahlungsdurchlässgen Glasplatte (5) verschlossen ist,
    dass das Gehäuse (3) zwischen der Arbeitsstellung und der Stand-by Stellung linear verschiebbar gelagert ist,
    und dass der Kühlgaseinlass (6) an eine Zufuhrleitung (10) und der Kühlgasauslass (7) an eine Abfuhrleitung (11) angeschlossen ist,
    wobei eine Zufuhrleitung und eine Abfuhrleitung an den Kühlgaseinlass beziehungsweise an den Kühlgasauslass angeschlossen sind, die zur Kompensation der Relativlage zwischen der Arbeitsstellung und der Stand-by Stellung wenigstens abschnittsweise als flexible Leitungen oder als Teleskoprohre ausgebildet sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Zufuhrleitung (10) mit einem Druckventilator (8) und/oder dass die Abfuhrleitung (11) mit einem Saugventilator (9) verbunden ist, dass im Gehäuse (3) ein Temperatursensor (19) angeordnet ist und dass am Druckventilator (8) und/oder am Saugventilator (9) Steuerungsmittel zum Steuern der das Gehäuse durchströmenden Luftmenge angeordnet sind, welche mit dem Temperatursensor in Wirkverbindung stehen.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Steuerungsmittel eine motorisch gesteuerte Klappe (18, 18') zum Verändern des Strömungsquerschnitts aufweisen.
  4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Steuerungsmittel eine Frequenzsteuerung für den Antriebsmotor (17, 17') des Druckventilators und/oder des Saugventilators aufweisen.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Reflektor (15) einen auf seiner Symmetrie-Ebene liegenden und parallel zur UV-Lampe verlaufenden Längsschlitz (16) zum Durchleiten des Kühlgasstroms aufweist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Reflektor (15) wärmestrahlungsdurchlässig ausgebildet ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Reflektor (15) aus einer mit einer Spiegelschicht versehenen Glaskeramik besteht.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass neben dem Gehäuse ein Absorber (13) zum Absorbieren der Wärme- und UV-Strahlen in der Stand-by Stellung angeordnet ist, und dass am Absorber für zusätzliche Kühlung eine Absaugeinrichtung angeordnet ist.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die maximal mögliche Ausfahrposition des Gehäuses (3) zum Erreichen der Arbeitsstellung derart einstellbar ist, dass die UV-Lampe (2) nur mit einem Abschnitt das Substrat bestrahlt, während der verbleibende Abschnitt den Absorber bestrahlt.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Gehäuse (3) an wenigstens einer Führungsschiene (27) aufgehängt ist und mit einem Pneumatikzylinder (28) zwischen der Arbeitsstellung und der Stand-by Stellung verschiebbar ist.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Gehäuse (3) in eine erste Strömungskammer (29), in der die UV-Lampe (2) angeordnet ist, und in eine zweite Strömungskammer (30) unterteilt ist, und dass der Kühlgaseinlass (6) an der ersten Strömungskammer (29) und der Kühlgasauslass (7) an der zweiten Strömungskammer (30) angeordnet ist, wobei die beiden Strömungskammern über einen parallel zur UV-Lampe (2) verlaufenden Schlitz (32) bzw. über eine Reihe von Öffnungen miteinander verbunden sind.
  12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Quarzglasplatte (5) derart in einem Dilatationslager (38) am Gehäuse gelagert ist, dass temperaturbedingte Ausdehnungen in Ihrer Ebene kompensierbar sind.
  13. Verfahren zum Betrieb der Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass Kühlgas mit einem Druck von wenigstens ein Kilopascal über den Kühlgaseinlass (6) in das Gehäuse (3) eingespeist wird.
  14. Verfahren zum Betrieb der Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass im Gehäuse ein unter dem Atmosphärendruck liegender Druck aufrechterhalten wird.
  15. Verfahren zum Betrieb der Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass als Kühlgas Stickstoff verwendet wird.
EP98916778A 1997-05-26 1998-05-07 Vorrichtung zum bestrahlen eines substrats mittels uv-strahlen und verfahren zum betrieb der vorrichtung Expired - Lifetime EP0985121B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH122597 1997-05-26
CH122597 1997-05-26
PCT/CH1998/000186 WO1998054525A1 (de) 1997-05-26 1998-05-07 Vorrichtung zum bestrahlen eines substrats mittels uv-strahlen und verfahren zum betrieb der vorrichtung

Publications (2)

Publication Number Publication Date
EP0985121A1 EP0985121A1 (de) 2000-03-15
EP0985121B1 true EP0985121B1 (de) 2003-09-10

Family

ID=4205421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916778A Expired - Lifetime EP0985121B1 (de) 1997-05-26 1998-05-07 Vorrichtung zum bestrahlen eines substrats mittels uv-strahlen und verfahren zum betrieb der vorrichtung

Country Status (4)

Country Link
EP (1) EP0985121B1 (de)
AT (1) ATE224523T1 (de)
DE (1) DE59805621D1 (de)
WO (1) WO1998054525A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040209A1 (de) * 2007-08-27 2009-03-12 Uviterno Ag Vorrichtung zum Bestrahlen eines Substrats
EP2192366A2 (de) 2008-12-01 2010-06-02 Uviterno AG Vorrichtung zum Bestrahlen eines Substrats
KR20150074074A (ko) * 2012-10-23 2015-07-01 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 트뤼프바흐 클럭 작동을 위한 uv-조사 장치
CN114392708A (zh) * 2022-01-15 2022-04-26 耐呗斯(嘉兴)安全防护用品有限公司 一种硅胶的uv改质机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125770C2 (de) * 2001-05-26 2003-06-26 Arccure Technologies Gmbh Bestrahlungsvorrichtung mit langgestreckter Strahlungsquelle und Verfahren zum Betrieb derselben
DE102006003057A1 (de) 2006-01-20 2007-07-26 Phoenix Contact Gmbh & Co. Kg Drucker mit einem Belichtungskopf
WO2010066297A1 (de) * 2008-12-11 2010-06-17 Osram Gesellschaft mit beschränkter Haftung Uv-leuchte mit reflektor
GB2495901B (en) * 2011-08-08 2014-03-12 Gew Ec Ltd Improved housing for ink curing apparatus
DE102018102928A1 (de) 2018-02-09 2019-08-14 Heraeus Noblelight Gmbh UV-Strahlermodul und dessen Verwendung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127497A (en) * 1961-06-12 1964-03-31 Monsanto Chemicals Apparatus for controlling the application of heat
US3950650A (en) * 1974-03-25 1976-04-13 Thermogenics Of New York, Inc. Ink curing and drying apparatus
GB1489183A (en) * 1974-12-17 1977-10-19 Hanovia Lamps Ltd Reflector systems
US4182047A (en) * 1976-12-23 1980-01-08 Currie Kenneth F Irradiation unit
CH660489A5 (de) 1984-08-31 1987-04-30 Bernhard Glaus Verfahren und vorrichtung zum aushaerten polymerisierbarer beschichtungsmassen auf nicht textilen substraten.
SE459011B (sv) * 1987-12-17 1989-05-29 Infraroedteknik Ab Anordning foer vaermebehandling av ett aemne, i synnerhet infraroedbestraalning av en kontinuerlig pappersbana i en pappersmaskin
US5094010A (en) 1990-07-05 1992-03-10 Amjo Infra-Red And Ultra-Violet Drying Systems, Inc. Vented ultraviolet drying system for drying fiberglass resins in boat hulls and decks
GB9116120D0 (en) * 1991-07-25 1991-09-11 G E W Ec Ltd U.v.dryers
GB2274430B (en) * 1993-01-08 1995-11-01 G E W Air-cooled UV dryers
DE9312809U1 (de) 1993-01-22 1993-12-23 Hagedorn Jochen Dipl Ing UV-Bestrahlungseinrichtung
ES2155600T3 (es) * 1995-03-15 2001-05-16 Nlm Combineering Aps Procedimiento para activar fotoiniciadores en sustratos fotosensibles y aparato para endurecer tales sustratos.
AT404876B (de) * 1995-05-16 1999-03-25 Andritz Patentverwaltung Verfahren zum trocknen von feuchtem gut, insbesonders von holzfasern und anlage zur durchführung dieses verfahrens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040209A1 (de) * 2007-08-27 2009-03-12 Uviterno Ag Vorrichtung zum Bestrahlen eines Substrats
EP2192366A2 (de) 2008-12-01 2010-06-02 Uviterno AG Vorrichtung zum Bestrahlen eines Substrats
KR20150074074A (ko) * 2012-10-23 2015-07-01 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 트뤼프바흐 클럭 작동을 위한 uv-조사 장치
KR102440917B1 (ko) 2012-10-23 2022-09-06 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 시간 제어된 작동을 위한 자외선 조사 장치 및 자외선에 의해 기판들을 조사하는 방법
CN114392708A (zh) * 2022-01-15 2022-04-26 耐呗斯(嘉兴)安全防护用品有限公司 一种硅胶的uv改质机

Also Published As

Publication number Publication date
DE59805621D1 (de) 2003-11-20
ATE224523T1 (de) 2002-10-15
WO1998054525A1 (de) 1998-12-03
EP0985121A1 (de) 2000-03-15

Similar Documents

Publication Publication Date Title
EP0944437B1 (de) Spritzkabine und zirkulationssystem für einen arbeitsraum
EP1169611B1 (de) Bestrahlungsgerät
EP1058805B1 (de) Verfahren und vorrichtung zum trocknen eines schnell geförderten trocknungsgutes, insbesondere zum druckfarbentrocknen
DE3148196C2 (de) Anordnung zur Oberflächenbehandlung eines Gegenstandes mit Infrarotheizkörpern
EP0985121B1 (de) Vorrichtung zum bestrahlen eines substrats mittels uv-strahlen und verfahren zum betrieb der vorrichtung
DE2254848B2 (de) Anordnung zur thermischen nachverbrennung
DE202016009019U1 (de) Behandlungsanlage
DE202008018404U1 (de) Thermoluft-Trocknungseinrichtung zur Bewerkstelligung der Trocknung eines Bedruckstoffes
EP2743087A1 (de) Druckmaschine mit Verkleidung
DE2614663B2 (de) Vorrichtung zur Behandlung eines Werkstückes mit ultraviolettem Licht
EP1998129B1 (de) Vorrichtung zum Trocknen von Gegenständen, insbesondere von lackierten Fahrzeugkarosserien
EP0627308B1 (de) Temperierungsvorrichtung für Rotationskörper in Druckwerken
EP1130331B1 (de) Verfahren und Vorrichtung zur Belüftung und Temperierung eines Raumes
AT403362B (de) Kühleinrichtung für ein schienenfahrzeug
DE3390176C2 (de) Kombination eines Ofens und eines Rauchveraschers und Verfahren f}r deren Betrieb
DE102008058056A1 (de) UV-Bestrahlungsvorrichtung
EP2639536B1 (de) Ofenanlage sowie Verfahren zum Betreiben der Ofenanlage
DE102004059903B4 (de) Verfahren und Anlage zum Beschichten eines Matallbands mit einer lösemittelhaltigen Beschichtung und zum Trocknen und/oder Vernetzen derselben
DE102018206154A1 (de) Trocknungsvorrichtung für eine bedruckstoffverarbeitende Maschine und Verfahren zum Betreiben einer Trocknungsvorrichtung
EP1413416B1 (de) Anlage zum Strahlungshärten
EP1794523B1 (de) Uv-bestrahlungsaggregat
DE102021130826A1 (de) Luftbehandlungsvorrichtung
EP4025856A1 (de) Trennvorrichtung, behandlungsanlage, verfahren zum trennen zweier raumbereiche und verfahren zum behandeln von werkstücken
DE10136501C1 (de) Bestrahlungsvorrichtung mit Abluftdüse
DE102007024791B4 (de) Vorrichtung zum Trocknen von Gegenständen, insbesondere von lackierten Fahrzeugkarosserien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 20001030

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 224523

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59805621

Country of ref document: DE

Date of ref document: 20021024

29A Proceedings stayed after grant

Effective date: 20020911

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020918

PUAC Information related to the publication of a b1 document modified or deleted

Free format text: ORIGINAL CODE: 0009299EPPU

29F Proceedings resumed after grant [after stay of proceedings according to rule 14 epc]

Effective date: 20030702

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DB1 Publication of patent cancelled
REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UVITERNO AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GLAUS, BERNHARD MAX

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4C

Free format text: THE EXPECTED DATE OF GRANT IS NOW THE 20030910 WHICH WILL BE PUBLISHED IN THE EUROPEAN PATENT BULLETIN 2003/37.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL, VON REVY & PARTNER

REF Corresponds to:

Ref document number: 59805621

Country of ref document: DE

Date of ref document: 20031120

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050429

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050610

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030910