EP0976201A1 - Integrierbare schaltung zur frequenzaufbereitung eines im uhf-bereich arbeitenden funk-sende-empfängers, insbesondere eines schnurlostelefons - Google Patents

Integrierbare schaltung zur frequenzaufbereitung eines im uhf-bereich arbeitenden funk-sende-empfängers, insbesondere eines schnurlostelefons

Info

Publication number
EP0976201A1
EP0976201A1 EP99914417A EP99914417A EP0976201A1 EP 0976201 A1 EP0976201 A1 EP 0976201A1 EP 99914417 A EP99914417 A EP 99914417A EP 99914417 A EP99914417 A EP 99914417A EP 0976201 A1 EP0976201 A1 EP 0976201A1
Authority
EP
European Patent Office
Prior art keywords
frequency
mhz
uhf
synthesis device
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99914417A
Other languages
English (en)
French (fr)
Inventor
Stefan Heinen
Stefan Beyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0976201A1 publication Critical patent/EP0976201A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/408Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency the transmitter oscillator frequency being identical to the receiver local oscillator frequency

Definitions

  • the invention relates to an integrable circuit according to the preamble of claim 1.
  • Specified UHF frequency ranges can be used for free radio services in some states if certain, precisely prescribed conditions are observed. For example, in the USA the frequency range between 902 MHz and 928 MHz is available as a so-called ISM (Industrial Scientific and Medical) band.
  • ISM International Scientific and Medical
  • the radio signal is modulated with a high bit rate sequence of digital signals, the so-called PN (pseudonoise) code, in such a way that a broadband transmission signal results from the superimposition.
  • PN pseudonudonoise
  • the second of the system approaches is the implementation of a so-called low power system. There are no restrictive regulations below a transmission power of approx. 0 dBm.
  • the third system approach is a so-called frequency hopping spread spectrum system.
  • These systems may e.g. have a maximum channel spacing of 500 kHz for the ISM band mentioned, 99% of the power having to be emitted within this bandwidth. This means that there are at least 50 channels available that are used on the basis of a pseudo random sequence.
  • FIG. 1 a system is explained which was previously used for the radio services mentioned, e.g. a cordless telephone is used.
  • This is a frequency division duplex (FDD) system with low output power (0 dBm).
  • FDD frequency division duplex
  • the transmission path 1 of the in FIG. 1 shown transceiver consists of a UHF frequency synthesis device 2, which contains a voltage controlled oscillator (VCO; Voltage Controlled Oscillator) 3, an amplifier 4, a phase locked loop (PLL) and a low-pass filter 6, a subsequent transmission band filter 7 and a transmission output stage 8.
  • VCO voltage controlled oscillator
  • PLL phase locked loop
  • the transmission path 1 is connected to the transmission input of a frequency duplexer 9, which is a frequency-separating filter.
  • An antenna 10 is connected to the frequency duplexer 9 and is used both for transmitting and for receiving.
  • An input of a down mixer 12 is connected to the receiver connection of the frequency duplexer 9 in the reception path 11 of the transceiver via a low-noise amplifier 13 and a bandpass filter 14.
  • the other input of the down mixer 12 is 3 is supplied by a UHF frequency synthesis device 15 which, in terms of the type of its components, has the same structure as the UHF frequency synthesis device 2 for the transmission path 1.
  • the output of the down mixer 12 is connected to a demodulator 20 via a first IF filter 16, an IF amplifier 17, a second IF filter 18 and IF amplifier 19.
  • a demodulator 20 via a first IF filter 16, an IF amplifier 17, a second IF filter 18 and IF amplifier 19.
  • the modulation in transmission path 1 takes place directly on the local UHF frequency synthesis device 2.
  • TDD time division duplex
  • Such a system can be used for the radio services mentioned, for example a cordless telephone.
  • the transmission path 21 of the in FIG. 2 has at its beginning a frequency synthesis device 22 operating at 10.7 MHz, which contains a voltage-controlled oscillator 23, an amplifier 24, a PLL phase-locked loop 25 and a low-pass filter 26. Direct modulation takes place in this frequency synthesis device 22.
  • an input is followed by an up-mixer 27, to the other input of which the output signal of an IF frequency synthesis device 28 operated at 100 MHz is fed as a superposition signal, which, in terms of the type of its components, has the same structure as the frequency synthesis device 22.
  • the output signal of the up-mixer 27 is fed in a higher IF level of 110.7 MHz via an IF filter 29 to the first input of a further up-mixer 30, at the second input of which the superposition frequency is the output signal of a UHF frequency synthesis device 31, which is in can vary a frequency range between 790 MHz and 820 MHz and is also constructed in the same way as the frequency synthesis device 22 with regard to the type of its components.
  • the output signal of the up-mixer 27 is fed to a subsequent transmission band filter 32 and a transmission output stage 33.
  • the transmission path 21 is then connected to the transmission input of a time-division duplex switch 34, which is a time-controlled switch and which alternately makes the transmission and reception time slots effective.
  • An antenna 36 is connected to the antenna output of the time-division duplex switch 34 via a band filter 35 for 902 MHz to 928 MHz, which serves both for sending and for receiving.
  • An input of a down mixer 38 is connected to the receiver connection of the time-division duplex switch 34 in the reception path 37 of the illustrated transceiver via a low-noise amplifier 39 and a bandpass filter 40.
  • the other input of the down mixer 38 is supplied by the UHF frequency synthesis device 31, which is also provided for the transmission path 21. 5
  • the output of the down mixer 38 is in the higher IF
  • the down mixer 42 is then connected to a demodulator 47 in a lower IF level via an IF filter 43 for 10.7 MHz, an IF amplifier 44, another IF filter 45 for 10.7 MHz and an amplifier 46.
  • the modulation in the transmission path 21 takes place directly on the first frequency synthesis device 22.
  • the disadvantage of this design option is the high filter complexity in the transmission path 21. Another disadvantage is that three frequency synthesis devices are required. In addition to the high outlay for the filters on the first transmission or reception intermediate frequency, the additional connections reduce the degree of integration that can be achieved.
  • the object of the invention is to specify a frequency processing architecture for a freely available UHF radio band, in particular in the 900 MHz range, with which the highest possible degree of integration for a frequency hopping method can be made possible.
  • a frequency processing architecture for a freely available UHF radio band, in particular in the 900 MHz range, with which the highest possible degree of integration for a frequency hopping method can be made possible.
  • an efficient frequency plan must be specified that avoids unwanted mixed products and at the same time enables an optimal time division multiplex (TDMA; Time Division Multiple Access) frame format.
  • TDMA Time Division Multiple Access
  • the smallest possible channel spacing of 200 kHz to 300 kHz should be realized so that channels can be masked dynamically on which strong interference occurs.
  • a frame duration of 4 ms should be used 6 must not be exceeded so that echo cancellation can be dispensed with.
  • the phase detector reference frequency increases, so that the settling time of the UHF frequency synthesis device can be halved.
  • the upward mixing taking place in the transmission path is expediently carried out by an upward mixer with image frequency suppression, the 90 ° phase shift between the input signals being able to be generated by frequency dividers. 7
  • An embodiment of a circuit according to the invention is described below. Show it:
  • FIG. 1 shows the block diagram of a circuit with a frequency division duplex (FDD) system with low output power which has already been described and which is to be regarded as disadvantageous,
  • FDD frequency division duplex
  • FIG. 2 shows the block diagram of a circuit with time division duplex (TDD) system and frequency hopping technology, which has also already been described and is to be regarded as disadvantageous, and
  • FIG. 3 shows the block diagram of a circuit according to the invention with time division duplex (TDD) system and enabling the frequency hopping technique to be carried out.
  • TDD time division duplex
  • TDD time division duplex
  • Such a system can be used for the radio services mentioned, e.g. a cordless phone, find application.
  • the system operates in an operating frequency range between 902 MHz and 928 MHz with a channel spacing of approx. 200 kHz.
  • the transmission path 48 of the in FIG. 3 has at its beginning a IF frequency synthesis device 49 operating at 99.9 MHz, which contains a voltage-controlled oscillator 50, an amplifier 51, a PLL phase-locked loop 52 and a low-pass filter 53.
  • this IF frequency synthesis device 49 there is direct modulation with a vector modulator, the modulation used being a digital frequency modulation, preferably a 8 ne GMSK (Gaussian Minimum Shift Keying) modulation or
  • GFSK Gausian Frequency Shift Keying
  • a single upmixer 54 is provided, to which the directly modulated output signal of the IF frequency synthesis device 49 with 99.9 MHz as the input frequency and the one divided down via a 1: 2 frequency divider 55 as the UHF beat frequency, before division Output frequency of 1580 MHz to 1660 MHz, which is twice the beat frequency, are fed to a UHF frequency synthesis device 56, which is constructed in the same way with regard to the type of its components as the IF frequency synthesis device 49 already explained.
  • the up-mixer 54 in the transmission path 48 has a device for image frequency suppression.
  • the 90 ° phase shift between the two input signals of the up-mixer 54 in the transmission path 48 is generated by frequency dividers.
  • the output of the up-mixer 54 is connected via a band filter 57 and a transmit power amplifier stage 58 to the transmit access of a time-division duplex switch 59, which is a time-controlled switch and makes the transmit and receive time slots alternately effective.
  • An antenna 61 is connected to the time-division duplex switch 59 via a bandpass filter 60 and is used both for transmitting and for receiving.
  • reception path 62 is the reception access of the time-division duplex switch 59 via a low-noise amplifier 63 and
  • UHF reception filter 64 is connected to the first input of a first down-mixer 65, at the second input of which, as the UHF beat frequency, the output frequency of the UHF frequency synthesis device 56, which is conducted via a corresponding 1: 2 frequency divider 66, is from 1580 MHz to 1660 MHz.
  • the output of the down mixer 65 is connected via an IF band filter 67 of an upper IF level of 110.6 MHz to the one input of a second down mixer 68, at its second input the frequency of 99.9 MHz generated by the IF frequency synthesis device 49 as the beat frequency.
  • the output of the second down mixer 68 of the reception path 62 is to a demodulator 73 via a first IF band filter 69 and a first IF amplifier 70 as well as a second IF band filter 71 and amplifier 72 of a lower IF level of 10.7 MHz connected.
  • the demodulator 73 provided in the reception path 62 is expediently a vector or frequency demodulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Das für Zeitduplex mit Frequenzsprungtechnik vorgesehene Schaltungskonzept weist für Sende- und Empfangspfad (48, 62) insgesamt nur zwei Frequenzsynthesizer (49, 56) und im Sendepfad lediglich einen Aufwärtsmischer (54) auf. Die UHF-Synthesizer-Frequenz wird vor der Einführung als Überlagerungsfrequenz des zugeordneten Mischers im Sende- und Empfangspfad noch frequenzgeteilt, was wegen der kürzeren Einschwingzeiten eine Nutzung der UHF-Frequenzsynthesizer auf verschiedenen Frequenzen für den Sende- bzw. Empfangsschlitz ermöglicht. Eine Anwendung liegt insbesondere bei schnurlosen Telefonen.

Description

Beschreibung
Integrierbare Schaltung zur Frequenzaufbereitung eines im UHF-Bereich arbeitenden Funk-Sende-Empfängers, insbesondere eines Schnurlostelefons
Die Erfindung bezieht sich auf eine integrierbare Schaltung gemäß dem Oberbegriff des Patentanspruchs 1.
Festgelegte UHF-Frequenzbereiche können in manchen Staaten für freie Funkdienste benutzt werden, wenn bestimmte, genau vorgeschriebene Bedingungen eingehalten werden. Beispielsweise steht in den USA der Frequenzbereich zwischen 902 MHz und 928 MHz als sogenanntes ISM (Industrial Scientific and Me- dical)-Band zur Verfügung.
In diesem UHF-Frequenzband dürfen Funkdienste, also z.B. Schnurlostelefone, realisiert werden. Dabei müssen allerdings die von der FCC.Federal Communications Co mission) -Behörde vorgegebenen Randbedingungen bezüglich des KanalabStandes, der 20 dB-Bandbreite, der Ausgangsleistung usw. eingehalten werden.
Für die Realisierung eines Schnurlostelefons gibt es im we- sentlichen drei Systemansätze. Der erste dieser Ansätze besteht in einer Ausführung als sogenanntes Direct Sequence Spread Spectrum System. Dabei wird das Funksignal mit einer hochbitratigen Folge von Digitalsignalen, dem sogenannten PN (Pseudonoise) -Code, so moduliert, daß sich aus der Überla- gerung ein breitbandiges Sendesignal ergibt. Jedes Bit des zu übertragenen Nachrichtensignals wird also in einem Sender mit dem PN-Code codiert, der in einem Empfänger, dem der PN-Code bekannt ist, wieder decodiert werden kann. 2
Der zweite der Systemansätze besteht in der Realisierung eines sogenannten Low Power Systems. Hierbei gibt es unterhalb einer Sendeleistung von ca. 0 dBm keine einschränkenden Vorschriften.
Der dritte Systemansatz besteht in einer Ausführung als sogenanntes Frequenzsprung (Frequency Hopping) -Spread Spectrum System. Diese Systeme dürfen z.B. beim genannten ISM-Band einen maximalen Kanalabstand von 500 kHz besitzen, wobei 99% der Leistung innerhalb dieser Bandbreite ausgestrahlt werden müssen. Somit stehen dort mindestens 50 Kanäle zur Verfügung, die auf der Basis einer Pseudozufallsfolge genutzt werden.
Anhand der FIG. 1 wird ein System erläutert, welches bisher für die genannten Funkdienste, z.B. ein Schnurlostelefon, Anwendung findet. Es handelt sich hierbei um ein Frequenzdu- plex(FDD; Frequency Division Duplex) -System mit geringer Ausgangsleistung (0 dBm) .
Der Sendepfad 1 des in FIG. 1 dargestellten Sende-Empfängers besteht aus einer UHF-Frequenzsyntheseeinrichtung 2, die einen spannungsgesteuerten Oszillator (VCO; Voltage Controlled Oscillator) 3, einen Verstärker 4, einen Phasenregelkreis (PLL; Phase Locked Loop) 5 und ein Tiefpaßfilter 6 enthält, einem nachfolgenden Sendebandfilter 7 und einer Sende-Endstu- fe 8. Der Sendepfad 1 ist an den Sendeeingang eines Frequenz- duplexers 9 angeschlossen, der ein frequenzmäßig scharf trennendes Filter ist.
Mit dem Frequenzduplexer 9 ist eine Antenne 10 verbunden, die sowohl zum Senden als auch zum Empfangen dient. An den Empfängeranschluß des Frequenzduplexers 9 ist im Empfangspfad 11 des Sende-Empfängers ein Eingang eines Abwärtsmischers 12 über einen rauscharmen Verstärker 13 und ein Bandfilter 14 angeschlossen. Der andere Eingang des Abwärtsmischers 12 wird 3 von einer UHF-Frequenzsyntheseeinrichtung 15 versorgt, die hinsichtlich der Art ihrer Komponenten gleichartig aufgebaut ist wie die UHF-Frequenzsyntheseeinrichtung 2 für den Sendepfad 1.
Der Ausgang des Abwärtsmischers 12 ist über ein erstes ZF- Filter 16, einen ZF-Verstärker 17, ein zweites ZF-Filter 18 und ZF-Verstärker 19 mit einem Demodulator 20 verbunden. Die ZF-Ebene liegt im Beispiel nach FIG. 1 bei 10,7 MHz. Die Mo- dulation im Sendepfad 1 erfolgt direkt an der dortigen UHF- Frequenzsyntheseeinrichtung 2.
Die Nachteile dieses Ausführungsansatzes liegen in der hohen Selektivität des benötigten Frequenzduplexers 9 und in der beschränkten Reichweite aufgrund der niedrigen Ausgangsleistung. Eine ohne großen technischen Aufwand ausführbare Modifikation zu einem Frequenzsprungsystem ist aufgrund der niedrigen Bandbreite der PLL-Phasenregelkreise der beiden UHF- Frequenzsyntheseeinrichtungen 2 und 15 nicht möglich.
Die Übertragung des vorstehenden und anhand von FIG. 1 beschriebenen Systemansatzes zu einem Zeitduplex (TDD; Time Division Duplex) -System, wie es für einen Einsatz des Frequenzsprungverfahrens benötigt wird, führt zu einem System, wie es in FIG. 2 dargestellt ist und im folgenden erläutert wird. Ein solches System kann für die genannten Funkdienste, also z.B. ein Schnurlostelefon, Anwendung finden. Der Sendepfad 21 des in FIG. 2 dargestellten Sende-Empfängers weist an seinem Anfang eine bei 10,7 MHz arbeitende Frequenzsyntheseeinrich- tung 22 auf, die einen spannungsgesteuerten Oszillator 23, einen Verstärker 24, einen PLL-Phasenregelkreis 25 und ein Tiefpaßfilter 26 enthält. Bei dieser Frequenzsyntheseeinrichtung 22 erfolgt eine direkte Modulation. 4 Im Sendepfad 21 folgt mit seinem einen Eingang ein Aufwärtsmischer 27, dem an seinem anderen Eingang als Überlagerungssignal das Ausgangssignal einer bei 100 MHz betriebenen ZF- Frequenzsyntheseeinrichtung 28 zugeführt wird, die hinsicht- lieh der Art ihrer Komponenten gleichartig aufgebaut ist wie die Frequenzsyntheseeinrichtung 22.
Das Ausgangssignal des Aufwärtsmischers 27 wird in einer höheren ZF-Ebene von 110,7 MHz über ein ZF-Filter 29 dem ersten Eingang eines weiteren Aufwärtsmischers 30 zugeführt, an dessen zweitem Eingang als Überlagerungsfrequenz das Ausgangssignal einer UHF-Frequenzsyntheseeinrichtung 31 liegt, die sich in einem Frequenzbereich zwischen 790 MHz und 820 MHz variieren läßt und hinsichtlich der Art ihrer Komponenten ebenfalls gleichartig aufgebaut ist wie die Frequenzsyntheseeinrichtung 22.
Das Ausgangssignal des Aufwärtsmischers 27 wird einem nachfolgenden Sendebandfilter 32 und einer Sende-Endstufe 33 zu- geführt. Der Sendepfad 21 ist danach an den Sendeeingang eines Zeitduplex-Schalters 34 angeschlossen, der ein zeitlich gesteuerter Umschalter ist und abwechselnd die Sende- und Empfangszeitschlitze wirksam macht. Mit dem Antennenausgang des Zeitduplex-Schalters 34 ist über ein Bandfilter 35 für 902 MHz bis 928 MHz eine Antenne 36 verbunden, die sowohl zum Senden als auch zum Empfangen dient.
An den Empfängeranschluß des Zeitduplex-Schalters 34 ist im Empfangspfad 37 des dargestellten Sende-Empfängers über einen rauscharmen Verstärker 39 und ein Bandfilter 40 ein Eingang eines Abwärtsmischers 38 angeschlossen. Der andere Eingang des Abwärtsmischers 38 wird von der UHF-Frequenzsyntheseeinrichtung 31 versorgt, die auch für den Sendepfad 21 vorgesehen ist. 5 Der Ausgang des Abwärtsmischers 38 ist in der höheren ZF-
Ebene über ein ZF-Filter 41 für 110,7 MHz mit dem einen Eingang eines Abwärtsmischers 42 verbunden, der an seinem anderen Eingang von der ZF-Frequenzsyntheseeinrichtung 28 ver- sorgt wird, die auch für den Aufwärtsmischer 27 als Erzeuger einer ZF-Überlagerungsfrequenz von 100 MHz im Sendepfad 21 vorgesehen ist.
Der Abwärtsmischer 42 ist dann in einer unteren ZF-Ebene über ein ZF-Filter 43 für 10,7 MHz, einen ZF-Verstärker 44, ein weiteres ZF-Filter 45 für 10,7 MHz und einen Verstärker 46 mit einem Demodulator 47 verbunden. Die Modulation im Sendepfad 21 erfolgt direkt an der ersten Frequenzsyntheseeinrichtung 22.
Der Nachteil dieser Ausführungsmöglichkeit liegt in dem hohen Filteraufwand im Sendepfad 21. Ein weiterer Nachteil besteht darin, daß drei Frequenzsyntheseeinrichtungen benötigt werden. Neben dem hohen Aufwand für die Filter auf der ersten Sende- bzw. Empfangszwischenfrequenz reduzieren die zusätzlichen Anschlüsse den erreichbaren Integrationsgrad.
Aufgabe der Erfindung ist es, für ein frei verfügbares UHF- Funkband, insbesondere im 900 MHz-Bereich, eine Frequenzauf- bereitungsarchitektur anzugeben, mit welcher sich ein möglichst hoher Integrationsgrad für ein Frequenzsprungverfahren ermöglichen läßt. Insbesondere ist ein effizienter Frequenzplan anzugeben, der unerwünschte Mischprodukte vermeidet und gleichzeitig ein optimales Zeitmultiplex (TDMA; Time Division Multiple Access) -Rahmenformat ermöglicht.
Darüber hinaus soll ein möglichst geringer Kanalabstand von 200 kHz bis 300 kHz realisiert werden, damit dynamisch Kanäle ausgeblendet werden können, auf denen starke Störungen auf- treten. Dabei soll gleichzeitig eine Rahmenzeitdauer von 4 ms 6 nicht überschritten werden, damit auf eine Echokompensation verzichtet werden kann.
Diese Aufgabe wird bei einer gattungsgemäßen Schaltung durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst. Bei der Schaltung nach der Erfindung sind lediglich zwei Frequenzsyntheseeinrichtungen erforderlich. Eine dritte Frequenzsyntheseeinrichtung entfällt somit, was einen höheren Integrationsgrad erheblich fördert. Darüber hinaus erlaubt das Konzept der Schaltung nach der Erfindung den Einsatz preiswerter externer Filter.
Durch die Synthese des benötigten UHF-Oszillatorsignals auf mindestens die doppelte Frequenz wie bei der Schaltung nach FIG. 2 erhöht sich die Phasendetektorreferenzfrequenz, so daß die Einschwingzeit der UHF-Frequenzsyntheseeinrichtung halbiert werden kann.
Somit können innerhalb der gleichen Rahmendauer zwei Ein- Schwingvorgänge untergebracht werden. Dieser Sachverhalt ermöglicht die Nutzung der UHF-Frequenzsyntheseeinrichtung auf verschiedenen Frequenzen für den Sende- bzw. Empfangsschlitz, d.h. der Frequenzversatz durch die zweite Zwischenfrequenz wird durch die UHF-Frequenzsyntheseeinrichtung ausgeglichen.
Zweckmäßige Weiterbildungen, Ausführungen und Frequenzangaben sind in den Unteransprüchen angegeben.
In zweckmäßiger Weise erfolgt die im Sendepfad stattfindende Aufwärtsmischung durch einen Aufwärtsmischer mit Spiegelfrequenzunterdrückung, wobei die 90°-Phasenverschiebung zwischen den Eingangssignalen durch Frequenzteiler erzeugt werden kann. 7 Im folgenden wird ein Ausführungsbeispiel einer Schaltung nach der Erfindung beschrieben. Es zeigen:
FIG. 1 das Blockschaltbild einer bereits beschriebenen und als nachteilig anzusehenden Schaltung mit Frequenzdu- plex (FDD) -System mit geringer Ausgangsleistung,
FIG. 2 das Blockschaltbild einer ebenfalls bereits beschriebenen und als nachteilig zu betrachtenden Schaltung mit Zeitduplex (TDD) -System und Frequenzsprungtechnik, und
FIG. 3 das Blockschaltbild einer erfindungsgemäßen Schaltung mit Zeitduplex (TDD) -System und Ermöglichung der Durchführung der Frequenzsprungtechnik.
Eine entsprechend der Erfindung ausgebildete Schaltung für ein Zeitduplex (TDD; Time Division Duplex) -System, wie es für einen Einsatz des Frequenzsprungverfahrens benötigt wird, ist in FIG. 3 dargestellt und wird im folgenden erläutert. Ein solches System kann für die genannten Funkdienste, also z.B. ein Schnurlostelefon, Anwendung finden.
Im dargestellten Beispiel arbeitet das System in einem Be- triebsfrequenzbereich zwischen 902 MHz und 928 MHz bei einem Kanalabstand von ca. 200 kHz. Der Sendepfad 48 des in FIG. 3 dargestellten Sende-Empfängers weist an seinem Anfang eine bei 99,9 MHz arbeitende ZF-Frequenzsyntheseeinrichtung 49 auf, die einen spannungsgesteuerten Oszillator 50, einen Ver- stärker 51, einen PLL-Phasenregelkreis 52 und ein Tiefpaßfilter 53 enthält.
Bei dieser ZF-Frequenzsyntheseeinrichtung 49 erfolgt eine direkte Modulation mit Vektormodulator, wobei die verwendete Modulation eine digitale Frequenzmodulation, vorzugsweise ei- 8 ne GMSK (Gaussian Minimum Shift Keying) -Modulation oder
GFSK (Gaussian Frequency Shift Keying) -Modulation, ist.
Im Sendepfad 48 ist nur ein einziger Aufwärtsmischer 54 vor- gesehen, dem als Eingangsfrequenz das direkt modulierte Ausgangssignal der ZF-Frequenzsyntheseeinrichtung 49 mit 99,9 MHz und als UHF-Überlagerungsfrequenz die über einen 1 : 2-Frequenzteiler 55 heruntergeteilte, vor der Teilung das Zweifache der Überlagerungsfrequenz betragende Ausgangsfre- quenz von 1580 MHz bis 1660 MHz einer UHF-Frequenzsyntheseeinrichtung 56 zugeführt werden, die hinsichtlich der Art ihrer Komponenten genauso aufgebaut ist wie die bereits erläuterte ZF-Frequenzsyntheseeinrichtung 49.
Der Aufwärtsmischer 54 im Sendepfad 48 weist eine Einrichtung zur Spiegelfrequenzunterdrückung auf. Die 90°-Phasenverschie- bung zwischen den beiden Eingangssignalen des Aufwärtsmischers 54 im Sendepfad 48 wird durch Frequenzteiler erzeugt. Der Ausgang des Aufwärtsmischers 54 ist über ein Bandfilter 57 sowie eine Sende-Endverstärkerstufe 58 mit dem Sendezugang eines Zeitduplex-Schalters 59 verbunden, der ein zeitlich gesteuerter Umschalter ist und die Sende- und Empfangszeitschlitze abwechselnd wirksam macht.
Mit dem Zeitduplex-Schalter 59 ist über ein Bandfilter 60 eine Antenne 61 verbunden, die sowohl zum Senden als auch zum Empfangen dient.
Im Empfangspfad 62 ist der EmpfangsZugang des Zeitduplex- Schalters 59 über einen rauscharmen Verstärker 63 und ein
UHF-Empfangsfilter 64 mit dem ersten Eingang eines ersten Abwärtsmischers 65 verbunden, an dessen zweitem Eingang als UHF-Überlagerungsfrequenz die über einen entsprechenden 1:2- Frequenzteiler 66 geführte Ausgangsfrequenz der UHF-Frequenz- syntheseeinrichtung 56 von 1580 MHz bis 1660 MHz liegt. Der Ausgang des Abwärtsmischers 65 ist über ein ZF-Bandfilter 67 einer oberen ZF-Ebene von 110, 6 MHz mit dem einen Eingang eines zweiten Abwärtsmischers 68 verbunden, an dessen zweitem Eingang die von der ZF-Frequenzsyntheseeinrichtung 49 erzeugte Frequenz von 99,9 MHz als Überlagerungsfrequenz liegt. Der Ausgang des zweiten Abwärtsmischers 68 des Empfangspfades 62 ist über ein erstes ZF-Bandfilter 69 und einen ersten ZF- Verstärker 70 sowie ein zweites ZF-Bandfilter 71 und Verstärker 72 einer unteren ZF-Ebene von 10,7 MHz an einen Demodula- tor 73 angeschlossen. Der im Empfangspfad 62 vorgesehene De- modulator 73 ist in zweckmäßiger Weise ein Vektor- oder Fre- quenz-Demodulator .
Im folgenden sind in einer Tabelle der mit dem vorstehend erläuterten Ausführungsbeispiel angegebene Frequenzplan und ein anderer vorteilhafter Frequenzplan aufgelistet, der sich ebenfalls bei einer entsprechend der Erfindung ausgeführten Schaltung in zweckmäßiger Weise einsetzen läßt.
Plan I Plan II
Sende- bzw. Empfangsband 902 - 928 MHz 902 - 928 MHz
Kanalabstand ca. 200 kHz ca. 200 kHz obere ZF 110, 6 MHz 153,4 MHz untere ZF 10,7 MHz 10,7 MHz
UHF-Synthesizer 1580 - 1660 MHz 1495 - 1575 MHz
ZF-Synthesizer 99,9 MHz 142,7 MHz

Claims

10 Patentansprüche
1. Integrierbare Schaltung zur Frequenzaufbereitung eines im UHF-Bereich, insbesondere bei 900 MHz, arbeitenden Funk- Sende-Empfängers, insbesondere eines Schnurlostelefons, für ein abwechselnd Sende- und Empfangszeitschlitze bildendes Zeitduplex-System (TDD; Time Division Duplex) mit einer jedem Zeitschlitz nach einem festgelegten Schema frequenzzuweisenden Frequenzsprungtechnik (FH; Frequency Hopping) , wobei im Sendepfad und im Empfangspfad, die beide über einen gesteuert umschaltbaren Zeitduplex-Schalter an eine gemeinsame Antenne abwechselnd angeschlossen sind, Verstärker, Filter und Mischer vorgesehen sind, denen zur Bildung von Zwischenfrequenzen und der UHF-Sendefrequenz von Frequenzsyntheseeinrichtun- gen, die jeweils einen Phasenregelkreis (PLL; Phase Locked Loop) und einen phasengeregelten HF-Oszillator (VCO; Voltage Controlled Oscillator) enthalten, Überlagerungsfrequenzen zugeführt werden, dadurch gekennzeichnet, daß im Sendepfad (48) nur ein einziger Aufwärtsmischer (54) vorgesehen ist, dem als eine Eingangsfrequenz das direkt modulierte Ausgangssignal einer ZF-Frequenzsyntheseeinrichtung (49) und als UHF-Überlagerungsfrequenz die über einen 1 :n-Frequenzteiler (55) heruntergeteilte, vor der Teilung das n-fache der Überlagerungsfrequenz betragende Ausgangsfrequenz einer UHF-Fre- quenzsyntheseeinrichtung (56) zugeführt werden und dessen
Ausgang über ein Filter (57) sowie eine Sende-Endverstärkerstufe (58) mit dem Sendezugang des Zeitduplex-Schalters (59) verbunden ist, daß im Empfangspfad (62) der EmpfangsZugang des Zeitduplex-Schalters über einen rauscharmen Verstärker (63) und ein UHF-Empfangsfilter (64) mit dem ersten Eingang eines ersten Abwärtsmischers (65) verbunden ist, an dessen zweitem Eingang als UHF-Überlagerungsfrequenz die über einen entsprechenden 1 :n-Frequenzteiler (66) geführte Ausgangsfrequenz der UHF-Frequenzsyntheseeinrichtung (56) liegt und des- sen Ausgang über ein ZF-Bandfilter (67) einer oberen ZF-Ebene 11 mit dem einen Eingang eines zweiten Abwärtsmischers (68) verbunden ist, an dessen zweitem Eingang die von der ZF-Frequenzsyntheseeinrichtung (49) erzeugte Frequenz als Uberlage- rungsfrequenz liegt, und daß der Ausgang des zweiten Abwärts- mischers (68) des Empfangspfades (62) über ZF-Bandfilter (69, 71) und Verstärker (70, 72) einer unteren ZF-Ebene an einen Demodulator (73) angeschlossen ist.
2. Schaltung nach Anspruch 1, dadurch gekennzeich- net, daß der Aufwärtsmischer (54) im Sendepfad (48) eine
Einrichtung zur Spiegelfrequenzunterdrückung aufweist.
3. Schaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die 90°-Phasenverschiebung zwischen den beiden Eingangssignalen des Aufwärtsmischers (54) im Sendepfad (48) durch Frequenzteiler erzeugt wird.
4. Schaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der zur direkten Modula- tion im Sendepfad (48) vorgesehene Modulator ein Vektormodulator und der im Empfangspfad (62) vorgesehene Demodulator (73) ein Vektor- oder Frequenz-Demodulator ist und daß die verwendete Modulation eine digitale Frequenzmodulation ist.
5. Schaltung nach Anspruch 4, dadurch gekennzeichnet, daß die verwendete digitale Frequenzmodulation eine GMSK (Gaussian Minimum Shift Keying) -Modulation ist.
6. Schaltung nach Anspruch 4, dadurch gekennzeich- net, daß die verwendete digitale Frequenzmodulation eine
GFSK (Gaussian Frequency Shift Keying) -Modulation ist.
7. Schaltung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Anwendung in einem Betriebsfre- 12 quenzbereich zwischen 902 MHz und 928 MHz bei einem Kanalabstand von 200 kHz.
8. Schaltung nach Anspruch 7, dadurch gekennzeich- net, daß die UHF-Frequenzsyntheseeinrichtung (56) wechselbare Frequenzen zwischen 1580 MHz und 1660 MHz erzeugt, daß die ZF-Frequenzsyntheseeinrichtung (49) Frequenzen bei 99,9 MHz bildet und daß die untere ZF-Ebene bei einer Frequenz von 10,7 MHz und die obere ZF-Ebene bei einer Frequenz von 110,6 MHz liegen.
9. Schaltung nach Anspruch 7, dadurch gekennzeichnet, daß die UHF-Frequenzsyntheseeinrichtung (56) wechselbare Frequenzen zwischen 1495 MHz und 1575 MHz erzeugt, daß die ZF-Frequenzsyntheseeinrichtung (49) Frequenzen bei
142,7 MHz bildet und daß die untere ZF-Ebene bei einer Frequenz von 10,7 MHz und die obere ZF-Ebene bei einer Frequenz von 153,4 MHz liegen.
EP99914417A 1998-02-13 1999-02-11 Integrierbare schaltung zur frequenzaufbereitung eines im uhf-bereich arbeitenden funk-sende-empfängers, insbesondere eines schnurlostelefons Withdrawn EP0976201A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19805963 1998-02-13
DE19805963A DE19805963C2 (de) 1998-02-13 1998-02-13 Integrierbare Schaltung zur Frequenzaufbereitung eines im UHF-Bereich arbeitenden Funk-Sende-Empfängers, insbesondere eines Schnurlostelefons
PCT/DE1999/000397 WO1999041841A1 (de) 1998-02-13 1999-02-11 Integrierbare schaltung zur frequenzaufbereitung eines im uhf-bereich arbeitenden funk-sende-empfängers, insbesondere eines schnurlostelefons

Publications (1)

Publication Number Publication Date
EP0976201A1 true EP0976201A1 (de) 2000-02-02

Family

ID=7857649

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99914417A Withdrawn EP0976201A1 (de) 1998-02-13 1999-02-11 Integrierbare schaltung zur frequenzaufbereitung eines im uhf-bereich arbeitenden funk-sende-empfängers, insbesondere eines schnurlostelefons

Country Status (6)

Country Link
US (1) US6738602B1 (de)
EP (1) EP0976201A1 (de)
JP (1) JP3754709B2 (de)
CN (1) CN1130841C (de)
DE (1) DE19805963C2 (de)
WO (1) WO1999041841A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215649C (zh) * 2001-01-12 2005-08-17 旋永南 一种高频信号接收和发送的处理方法
DE10138225C2 (de) * 2001-08-03 2003-06-26 Siemens Ag Mobilfunkgerät sowie Verfahren zum Sendebetrieb
DE10152902A1 (de) * 2001-10-26 2003-02-20 Siemens Ag Sende-/Empfangsvorrichtung
US6816021B2 (en) * 2002-08-27 2004-11-09 Koninklijke Philips Electronics N.V. Multiple band local oscillator frequency generation circuit
JP3963824B2 (ja) * 2002-11-22 2007-08-22 富士通メディアデバイス株式会社 フィルタ素子、それを有するフィルタ装置、分波器及び高周波回路
DE10307426B4 (de) * 2003-02-21 2006-06-14 Infineon Technologies Ag Schaltungsanordnung zum Senden und Empfangen von Funksignalen und Verwendung einer solchen, sowie Verfahren zur Frequenzumsetzung in einer Verstärkungseinrichtung
DE10317598A1 (de) * 2003-04-16 2004-11-25 Infineon Technologies Ag Integrierter Transceiverschaltkreis
DE10339218B4 (de) * 2003-08-26 2009-03-26 Nokia Siemens Networks Gmbh & Co.Kg Sende- und Empfangsstation für ein Funkkommunikationssystem
JP4134129B2 (ja) 2004-10-28 2008-08-13 Tdk株式会社 高周波モジュール
US7466962B2 (en) * 2005-06-14 2008-12-16 Motorola, Inc Methods and apparatus of providing a radio frequency local oscillator signal for a transceiver
US7477879B1 (en) * 2005-06-30 2009-01-13 Silicon Laboratories, Inc. Transceiver system with common receiver and transmitter oscillator
US7529533B2 (en) * 2005-11-15 2009-05-05 Triquint Semiconductor, Inc. Configurable homodyne/heterodyne radio receiver and RFID reader employing same
DE102006011682B4 (de) * 2006-03-14 2015-04-09 Intel Mobile Communications GmbH Transceiver-Schaltungsanordnung
TWI341688B (en) * 2006-10-25 2011-05-01 Mstar Semiconductor Inc Television tuner
US7920491B1 (en) 2007-06-13 2011-04-05 L-3 Communications Corp. System and method for split isolation in radio frequency electronics
US7697462B1 (en) 2007-06-13 2010-04-13 L-3 Communications, Corp. System and method for split isolation in radio frequency electronics
CN101471910B (zh) * 2007-12-26 2011-05-11 中国科学院微电子研究所 用于OFDM UWB的5.5至8.2GHz六频带频率综合器
US8836469B2 (en) * 2010-10-15 2014-09-16 The Chamberlain Group, Inc. Method and apparatus to accommodate both a learn mode of operation and a pairing mode of operation during a relationship-establishment mode of operation
US9734645B2 (en) 2010-10-15 2017-08-15 The Chamberlain Group, Inc. Method and apparatus pertaining to message-based functionality
CN102611475A (zh) * 2011-01-20 2012-07-25 中国科学院微电子研究所 用于60GHz无线通信的直接变频收发机
CN102664591A (zh) * 2012-04-28 2012-09-12 成都泰格微波技术股份有限公司 一种小型机载上变频系统变频通道电路
CN104854922A (zh) * 2013-06-17 2015-08-19 华为技术有限公司 时分双工系统射频前端电路和基站
CN108322273B (zh) * 2018-01-10 2020-11-10 北京哨兵科技有限公司 飞航数据链地面测试设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631068A1 (de) * 1986-09-12 1988-03-24 Hagenuk Telecom Gmbh Drahtloses telefonsystem
JP2850160B2 (ja) * 1991-01-25 1999-01-27 松下電器産業株式会社 時分割複信無線送受信装置
US5444865A (en) * 1991-04-01 1995-08-22 Motorola, Inc. Generating transmit injection from receiver first and second injections
KR940007469B1 (ko) * 1991-05-23 1994-08-18 삼성전자 주식회사 이동 무선전화기에 있어서 주파수 소스회로
US5224119A (en) * 1991-10-17 1993-06-29 Novatel Communications Ltd. Vector FM modulator
FI91819C (fi) * 1991-11-05 1994-08-10 Nokia Mobile Phones Ltd Menetelmä kahden eri taajuusalueella toimivan digitaalisen radiopuhelimen taajuuksien muodostamiseksi
JPH06152467A (ja) * 1992-11-06 1994-05-31 Nec Corp 無線通信機
JPH06216802A (ja) * 1993-01-13 1994-08-05 Kyocera Corp 送受信装置
GB2279848B (en) * 1993-06-02 1997-04-23 Vtech Communications Ltd A transmitting and receiving system and transmitter-receiver utilized therein
US5535247A (en) * 1993-09-24 1996-07-09 Motorola, Inc. Frequency modifier for a transmitter
US5598405A (en) * 1994-01-25 1997-01-28 Alps Electric Co., Ltd. Time division multiple access time division duplex type transmitter-receiver
DE69529729D1 (de) * 1994-12-13 2003-04-03 Hughes Electronics Corp Synthetisierer hoher Präzision sowie niedrigen Phasenrauschens, mit Vektormodulator
FI98330C (fi) * 1994-12-15 1997-05-26 Nokia Mobile Phones Ltd UHF-syntesoija
JPH08223071A (ja) * 1995-02-08 1996-08-30 Sony Corp 送信機及び送受信機
JPH0918378A (ja) * 1995-07-03 1997-01-17 Matsushita Electric Ind Co Ltd 無線回路
FI104924B (fi) * 1996-02-29 2000-04-28 Nokia Mobile Phones Ltd Lähetinvastaanotin, jossa on vaihdettava taajuusalue ja kaistanleveys
JPH09270723A (ja) * 1996-03-29 1997-10-14 Alps Electric Co Ltd 携帯電話機の受信回路用ic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9941841A1 *

Also Published As

Publication number Publication date
CN1263651A (zh) 2000-08-16
JP2001523431A (ja) 2001-11-20
JP3754709B2 (ja) 2006-03-15
DE19805963C2 (de) 2001-02-22
CN1130841C (zh) 2003-12-10
DE19805963A1 (de) 1999-09-02
WO1999041841A1 (de) 1999-08-19
US6738602B1 (en) 2004-05-18

Similar Documents

Publication Publication Date Title
EP0976201A1 (de) Integrierbare schaltung zur frequenzaufbereitung eines im uhf-bereich arbeitenden funk-sende-empfängers, insbesondere eines schnurlostelefons
DE69834875T2 (de) Frequenzumsetzungsschaltung
DE69737000T2 (de) Funksender Empfänger für Senden und Empfang von MF Signalen in zwei Bändern
DE69926309T2 (de) Sende-Empfänger für drahtlose Kommunikation
DE69630478T2 (de) Sender und Sendeempfänger
DE69837698T2 (de) Multimodusfunkkommunikationssystem
DE69734338T2 (de) Zweibandsendeempfänger
DE69736793T2 (de) Verfahren zum Erzeugen von Frequenzen in einem Sender-Empfänger mit direkter Umwandlung eines Dualband-Radiokommunikationssystems, ein Sender-Empfänger mit direkter Umwandlung eines Dualband-Radiokommunikationssystems und die Verwendung dieses Verfahrens und dieser Vorrichtung in einer mobilen Station
DE69735335T2 (de) Wegnahme des DC-Offsets und Unterdrückung von verfälschten AM-Signalen in einem Direktumwandlungsempfänger
DE112004002326B4 (de) Mehrmoden und Mehrband RF Transceiver und zugehöriges Kommunikationsverfahren
DE19735798C1 (de) Sendeempfänger
DE69837070T2 (de) Zweibandfunkgerät
DE60116682T2 (de) Hochfrequenzsender und/oder -empfänger
EP1798859A1 (de) PLL-Frequenzgenerator
DE19509260A1 (de) Sender-Empfänger-Signalverarbeitungsvorrichtung für ein digitales schnurloses Kommunikationsgerät
EP1161799B1 (de) Sendeempfänger
DE102008050217A1 (de) Empfänger mit niedriger Zwischenfrequenz
DE60306537T2 (de) Mehrband-empfangsoszillatorfrequenzerzeugungsschaltung
DE102004017527B4 (de) Transceiverschaltung und Verfahren zur Bereitstellung von Lokaloszillatorsignalen in einer Transceiverschaltung
DE69922584T2 (de) Hochfrequenzumsetzer
EP1391090B1 (de) Datenübertragungssystem mit höher datenübertragungsrate
EP1133826B1 (de) Frequenzstabilisierte sende-/empfangsanordnung
EP1516468B1 (de) Empfängeranordnung, insbesondere für den mobilfunk
DE602004012384T2 (de) FSK mit versetzten Frequenzen
DE60017573T2 (de) Wirksame GSM/GCS/UMTS (UTRA/FDD) Sende-Empfänger-Architektur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: CIRCUIT FOR FREQUENCY CONDITIONING IN A RADIO TRANSCEIVER WORKING IN THE UHF RANGE, ESPECIALLY A WIRELESS TELEPHONE

RTI1 Title (correction)

Free format text: CIRCUIT FOR FREQUENCY CONDITIONING IN A RADIO TRANSCEIVER WORKING IN THE UHF RANGE, ESPECIALLY A WIRELESS TELEPHONE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070301