EP0961095B1 - Kühler - Google Patents

Kühler Download PDF

Info

Publication number
EP0961095B1
EP0961095B1 EP99109060A EP99109060A EP0961095B1 EP 0961095 B1 EP0961095 B1 EP 0961095B1 EP 99109060 A EP99109060 A EP 99109060A EP 99109060 A EP99109060 A EP 99109060A EP 0961095 B1 EP0961095 B1 EP 0961095B1
Authority
EP
European Patent Office
Prior art keywords
radiator
accordance
flat tubes
flat
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99109060A
Other languages
English (en)
French (fr)
Other versions
EP0961095A3 (de
EP0961095A2 (de
Inventor
Günter Erb
Alexander Dipl.-Ing. Prokopp
Friedrich Kaupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Mahle Behr Industry GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Behr Industrieanlagen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG, Behr Industrieanlagen GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP0961095A2 publication Critical patent/EP0961095A2/de
Publication of EP0961095A3 publication Critical patent/EP0961095A3/de
Application granted granted Critical
Publication of EP0961095B1 publication Critical patent/EP0961095B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05358Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0366Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements
    • F28D1/0375Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements

Definitions

  • the invention relates to a cooler with modular composable Radiator components, consisting of coolant tubes, Slats and discs.
  • the invention also relates to a Method for producing such a cooler.
  • Coolers are generally used to cool fluids, e.g. Cooling water, engine or transmission oils, air, e.g. Charge air, Refrigerants, etc. and as stationary or mobile units used. Such coolers usually have two each other opposite water boxes on, in the tube sheets Openings are provided, in which the ends of the Coolant tubes are inserted. Between Coolant tubes are the cooling fins, e.g. Corrugated ribs, through which the heat to the passing air is delivered. Such coolers are usually made several materials, e.g. Aluminum for the coolant pipes and the slats and plastic for the water boxes. Under Circumstances, the cooler still have nonferrous metal connections or other elements. In any case, owns such Cooler a given structure by e.g. the openings in the Tube bottom usually regular and given Positions are provided. Such coolers are for certain applications in their performance optimized or on coordinated specific installation conditions.
  • Modular coolers are e.g. from DE-A-196 05 340 known. These coolers have a number of advantages, but must be provided with connections. From the FR-A-2 625 301 is a cooler with an orthogonal Connection channel known in which the connection channel over a variety of discs extends. The medium to be cooled is guided in sandwiched elements, the one Ceiling, have a bottom and a peripheral edge. To Formation of the connection channel and sandwiched Elements are needed so many different slices and many additional components.
  • the invention is based on the object, a radiator to provide, on the one hand of a small number different components is constructed, on the other hand relative fast both at a changed performance profile and at can be adapted to another space.
  • a task of The invention is also the provision of a method for Production of such a cooler.
  • the cooler according to the invention has a small number different components, namely only flat tubes, on the flat tubes sitting discs and between the discs arranged, also sitting on the flat tubes Lamellae.
  • the discs and the slats in one Level the same height, and in the next level can the Height of the slices or slats should be larger or smaller.
  • the height the cooler of the number of stacked Flat tubes, slats and discs depends, and the width as well as depth of the radiator from the dimensions of the components depends.
  • the number and packing density of the flat tubes hangs So no longer from the positions of the receiving openings in a tube bottom of the channel box, but can be customized to get voted.
  • the size of the invention Radiator the given requirements without further notice Selection of the corresponding components to be adjusted.
  • a disc as a connection piece formed and has a breakthrough orthogonal Connection channel on. About the breakthrough become the individual Flat tubes supplied with the medium to be cooled, the Medium via the connection channel in the connection piece initiated or discharged from this.
  • the cooler according to the invention can be used both as a coolant cooler, as intercooler, as oil cooler, in monobloc design, as Combi cooler and simply designed in side-by-side variants become.
  • In a single cooler can also different air lamellae are used. For different benefits are different block depths, e.g. 75 mm, 120 mm or 150 mm possible.
  • the use of Repeat parts allows the cost-effective construction and the Reduction of storage costs.
  • With a single Air louvers may be combination coolers, e.g. Air / charge air, Air / coolant cooler with a continuous air blade getting produced. Such coolers have essential Advantages of pollution. There is also the Possibility of air and water tanks due to separate different thermal expansions.
  • the items are prefabricated can.
  • the finished brazed cooler requires no Rework.
  • the length of the flat tubes corresponds to the sum the total length of two discs and the one in between arranged slats.
  • the discs are set by an extruded section separated part.
  • the production an extruded profile is relatively simple and inexpensive.
  • the corresponding discs are from this Sawn extruded in the desired thickness, the Thickness usually corresponds to the height of the lamella.
  • the flat tubes are connected to at least one closed at the front end.
  • the flat tubes have in the At least one end of a breakthrough by the Flat side up.
  • the discs can be directly on the Flat tubes are placed and it requires none Connecting means or sealing elements between the discs and the flat tubes.
  • Another possibility is that the Ends of the flat tubes in corresponding slots of the discs be inserted. The flat tubes are then axial incident flow.
  • An embodiment provides that the flat tubes Have turbulence inserts.
  • the flat tubes are on their inside and / or outside plated with solder. To this Way, both the turbulence inserts and the adjacent discs and air blades material fit with the Flat tubes are connected.
  • the flat tubes as Multi-chamber tubes or are designed as Sickle tubes. On This way it is avoided that the flat tubes at a deform high internal pressure.
  • the disc has at least the height, the total height of two slats with one in between arranged flat tube or flat material corresponds.
  • Such discs are e.g. required even if the Connection channel has a relatively large diameter and therefore not in a normal disc is accommodate.
  • Larger height slices are usually two slices summarized, with the flat tube not on the flat side the disc rests but in a breakthrough orthogonal slot is inserted. The flat tube is open at the front and the slot is with the opening connected. The flat tube becomes fluid-tight in this slot soldered and thereby connected to the supply channel.
  • the disc has two or more, adjacent breakthroughs and two or more flat tubes side by side on this Disc are arranged. This will be the opportunity created that in a single cooler multiple media be cooled simultaneously, the flat tubes only are connected to each other via the discs. This exists the possibility that each flat tube has its own slats or that the flat tubes over a common lamella additionally connected to each other.
  • Coolers for two or more media to be cooled can do so be designed that liquids and / or gases are coolable at the same time.
  • the width and / or the depth of the radiator on the Height vary.
  • the shape of the cooler can be this way optimally adapted to the local conditions.
  • the invention also relates to the process for the preparation a cooler, the flat tube, discs, fins and If necessary, cassettes are first cassetted in a cassette and then in a brazing furnace, the components be soldered together to the finished radiator. After the soldering process, there is no need for any rework on the radiator which, on the one hand, has the advantage of increasing the production effort a minimum is reduced, and that eventual, at a Reworking resulting contamination can be avoided.
  • FIG. 1 shows a first embodiment of a total with 1 designated cooler for stationary and mobile Systems.
  • This radiator 1 is in the direction of the arrows 2 of Air flows through.
  • the bottom and top ends form one Sheet 3, on which a blade 4, or a corrugated fin fifth and at the lateral ends of a disc 6 and a Fitting 7 abut.
  • This is followed by a flat tube 8 as well another corrugated fin 5 with disc 6.
  • This construction sets Now continue until the other flat material 3.
  • FIG. 2 shows a disk 6 which is part of a Extruded profile is.
  • the disc 6 is in the desired Thickness sawn from the extruded profile.
  • the disk 6 has a central Breakthrough 11, which in the illustrated embodiment has an elongated shape.
  • the disc 6 instead of a single breakthrough 11 the disc 6 with several breakthroughs that are next to each other, is provided.
  • FIG. 3 shows the end of the flat tube 8, which is also provided with a breakthrough 12, the shape of the opening 11.
  • a Turbulence insert 13 inserted, which is partially visible.
  • the front side is the flat tube 8 via an insert 14, the inserted at the front, closed.
  • FIG. 4 shows the connecting piece 7 or 9, which is in the Cross section of the disc 6 corresponds.
  • the connection piece 7 or 9 also has the opening 11, but has a greater height. The height corresponds to the sum of the height two corrugated fins 5 and the height of a flat tube 8, as is clearly shown in Figure 1.
  • Orthogonal to the breakthrough 11 extends the connection channel 10, which with the breakthrough 11 is fluidly connected.
  • the connection piece 7 or 9 a lateral slot 15, which in Figure 5 is recognizable.
  • this side slot 15 is an end a flat tube 8 'inserted.
  • This end of the flat tube 8 ' has an embodiment of the flat tube 8 of Figure 3 alternative training and is open at the front. This flat tube 8 'is thus flowed directly to the front.
  • FIG. 6 shows a cross section VI-VI through the flat tube 8 in the figure 3, wherein clearly the opening 12, the Turbulence insert 13 and the insert 14 can be seen.
  • Both the insert 14 and the turbulence insert 13 become by a soldering in the flat tube 8 and the turbulence insert 13 in the flat tube 8 'attached. This is the inside of the Flat tube 8 or 8 'plated with solder.
  • the attachment of the Flat tube 8 'in the connection piece 7 or 9 also takes place by a soldering, what the flat tube 8 'at his Outside is plated with solder.
  • FIG. 7 shows the section VII - VII through the flat tube 8 according to FIG. 3, and likewise clearly the insert 14 and the turbulence insert 13 recognizable. About the use 14 the turbulence insert 13 is centered in the flat tube 8 and until detained for soldering.
  • FIG. 8 shows an embodiment of a corrugated fin 5, which has a trapezoidal wave. It is, however conceivable that the shaft is made with rounded ends.
  • the height of the corrugated fin 5 corresponds to the height of the disc. 6
  • the attachment of the corrugated fins 5 and the discs 6 and Connecting pieces 7 and 9 on the flat tubes 8 also takes place via a soldering, for which the flat tube 8 on the outside with solder is plated.
  • FIG. 9 shows a second exemplary embodiment of the invention Cooler 1 according to the invention, with the e.g. Cooling water and Transmission oil can be cooled.
  • the radiator 1 For cooling the cooling water the radiator 1 has a first region 16 and for cooling the Transmission oil on a second area 17.
  • the cooling water enters e.g. via a connecting piece 18 in the connecting piece. 7 and thus in the radiator 1 a. There, the cooling water is over the apertures 11 distributed in the individual flat tubes 8.
  • the Cooling water flows through the flat tubes and is at the other end collected over the individual discs 6 and occurs on Connecting piece 9, or via a further connection piece 19 out again.
  • Connecting pieces 7 and 9 a corrugated fin 5 is arranged, the height of the connecting pieces 7 and 9 has. It is So no flat tube 8 'between these two Fittings 7 and 9.
  • the oil to be cooled enters the connection channel 10 in the Connecting piece 7 of the second region 17 and is like that to be cooled water, through the openings 11 in the individual Flat tubes 8 of the second region 17 distributed. After this Flow through the flat tubes 8, the cooled oil is collected and occurs at the connection channel 10 of the connection piece 9 again out.
  • the flat tubes 8 of the second Area 17 are provided with corrugated fins 5 ', which are not only via the flat tubes 8 of the second area but also extend over the flat tubes 8 of the first region and thus the adjacent flat tubes 8 of the two areas Join 16 and 17 together. This also applies to the Slices 6 'too. These discs 6 'are each with two Breakthroughs 11 provided, with a breakthrough for the Flat tubes 8 of the first region 16 and an opening for the Flat tubes 8 of the second region 17 are determined.
  • corrugated fins 5 'on the flat tubes 8 both Areas 16 and 17 extend. It can also corrugated ribs are used, which are only about the assigned Flat tubes 8 extend.
  • FIG. 10 shows a further exemplary embodiment of the invention Cooler 1 according to the invention, in which a first, upper Area 20 and a second, lower area 21 is provided are.
  • the first, upper area 20 serves to cool water and has a larger width than the lower, second area 21.
  • the supply of the upper portion 20 via a Connecting piece 7, which two connection channels 10 and 10 ' having. With the connection channel 10, the openings 11 the discs 6 of the first portion 20 connected via which the water is distributed in the flat tubes 8.
  • the cooled Water is the connection piece 9, in particular its Connection channel 10 removed.
  • connection channel 10 'in the Connector 7 a Orthogonal to the connection channel 10 'has the connector 7 on a breakthrough, with the Breakthroughs of the discs 6 of the second region 21 are aligned. In this way, the oil to be cooled in the flat tubes. 8 of the second area 21 distributed. The cooled oil is over taken the connection channel 10 'the connector 9 again.
  • the shape the radiator 1 easily adapted to predetermined installation dimensions can be by using longer or shorter flat tubes 8 and Corrugated ribs 5 and possibly modified connectors 7 be used.
  • FIG. 11 shows a further exemplary embodiment of the invention inventive cooler, with the three media, namely Water, air and oil can be cooled.
  • the entrance of the Water is via a breakthrough 22 in the upper Sheet 3, wherein this breakthrough 22 with the breakthrough 11 of the underlying discs 6 is aligned. In this way be in the area 23 located flat tubes 8 with the supplied to cooling water.
  • the removal of the cooled Water is through a breakthrough 24, which is also in the Sheet 3 is provided.
  • the second medium namely air
  • the exit of the cooled air takes place via the connection channel 10 'on the connection piece 9.
  • This Separating element can in the form of a disc 6 ', which in the area 25 has no breakthrough, or in the form of a sheet, which closes the breakthrough of a disk 6, be realized.
  • the third medium e.g. to be cooled oil occurs over one Connection channel 10 in the connector 7 in the area 26 a and leaves this area 26 via the connection channel 10 'of the Connecting piece 9. Between the two connecting pieces 7 and 9 is a flat material.
  • FIG. 12 shows a further exemplary embodiment of the invention Radiator 1 in side view, where clearly Fixing holes 28 can be seen, which in some Slices 6 are provided. There is also a closure lid 29 can be seen on a filler neck 30 which is coaxial with the openings 11 is located.
  • the connector 7 is connected to the Connecting piece 18 and the connector 9 with the Connection piece 19 provided.
  • a disc 6 ' Directly below the Connecting piece 7 is a disc 6 ', which no Breakthrough has.
  • Such a disk 6 ' is located also below the connector 9 and on the same level on the opposite side of the radiator 1.
  • the radiator 1 is in an upper area for cooling of water and in a lower area for cooling of Transmission oil divided.
  • the hot gear oil flows over the Connection channel 10 in the connector 7 and over the Connection channel 10 'from the connector 9 from. A seperation takes place here also via a disc 6 'without breakthrough.
  • FIG. 13 shows a plan view of the cooler 1 according to FIG Figure 12, wherein clearly the closure lid 29 and the Connecting piece 18 and the breakthrough 11 can be seen.
  • the connecting piece 18 go from a circular cross-section 31 in an oval cross-section 32 via.
  • FIG. 14 shows the radiator 1 of FIG. 12 in FIG Side view, where clearly the discs 6 'without breakthrough are recognizable.
  • the flat tubes 8 ' open, as initially described, centrally in a slot of the connecting pieces. 7 and 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen Kühler mit modular zusammensetzbaren Kühlerbauteilen, bestehend aus Kühlmittelrohren, Lamellen und Scheiben. Die Erfindung betrifft auch ein Verfahren zur Herstellung eines derartigen Kühlers.
Kühler werden im allgemeinen zum Kühlen von Fluiden, z.B. Kühlwasser, Motoren- oder Getriebeölen, Luft, z.B. Ladeluft, Kältemitteln usw. und als stationäre oder mobile Einheiten verwendet. Derartige Kühler weisen in der Regel zwei einander gegenüberliegende Wasserkästen auf, in deren Rohrböden Öffnungen vorgesehen sind, in welche die Enden der Kühlmittelrohre eingeschoben sind. Zwischen den Kühlmittelrohren befinden sich die Kühllamellen, z.B. Wellrippen, über welche die Wärme an die durchtretende Luft abgegeben wird. Derartige Kühler bestehen in der Regel aus mehreren Materialien, z.B. Aluminium für die Kühlmittelrohre und die Lamellen und Kunststoff für die Wasserkästen. Unter Umständen weisen die Kühler noch Buntmetallanschlüsse oder andere Elemente auf. Auf jeden Fall besitzt ein derartiger Kühler einen vorgegebenen Aufbau, indem z.B. die Öffnungen im Rohrboden in der Regel regelmäßig und an vorgegebenen Positionen vorgesehen sind. Derartige Kühler sind für bestimmte Anwendungsfälle in ihrer Leistung optimiert bzw. auf bestimmte Einbauverhältnisse abgestimmt.
Modular aufgebaute Kühler sind z.B. aus der DE-A-196 05 340 bekannt. Diese Kühler weisen eine Vielzahl von Vorteilen auf, müssen aber mit Anschlüssen versehen werden. Aus der FR-A-2 625 301 ist ein Kühler mit einem orthogonalen Anschlusskanal bekannt, bei dem der Anschlusskanal sich über eine Vielzahl von Scheiben erstreckt. Das zu kühlende Medium wird in sandwichartig aufgebauten Elementen geführt, die eine Decke, einen Boden und einen umlaufenden Rand aufweisen. Zur Bildung des Anschlusskanals und der sandwichartig aufgebauten Elemente bedarf es also vieler unterschiedlicher Scheiben und vieler zusätzlicher Bauteile.
Weitere Kühler sind bekannt aus der EP-A-0 826 941, der US-A-4,484,622, der DE-A-44 14 979 und der US-A-4,673,032. Diese Kühler sind ebenfalls mit zusätzlichen Anschlüssen versehen und zu deren Aufbau sind ebenfalls viele unterschiedliche Bauteile erforderlich.
Der Erfindung liegt die Aufgabe zugrunde, einen Kühler bereitzustellen, der zum einen aus einer geringen Anzahl verschiedener Bauteile aufgebaut ist, zum anderen relativ schnell sowohl an ein geändertes Leistungsprofil als auch an einen anderen Bauraum angepasst werden kann. Eine Aufgabe der Erfindung ist auch die Bereitstellung eines Verfahrens zur Herstellung eines derartigen Kühlers.
Diese Aufgabe wird erfindungsgemäß mit einem Kühler gelöst, der die Merkmale des Anspruchs 1 aufweist. Diese Aufgabe wird aber auch mit einem Verfahren gemäß Anspruch 15 gelöst.
Der erfindungsgemäße Kühler besitzt eine geringe Anzahl unterschiedlicher Bauteile, nämlich lediglich Flachrohre, auf den Flachrohren aufsitzende Scheiben und zwischen den Scheiben angeordnete, ebenfalls auf den Flachrohren aufsitzende Lamellen. Dabei weisen die Scheiben und die Lamellen in einer Ebene die gleiche Höhe auf, und in der nächsten Ebene kann die Höhe der Scheiben bzw. Lamellen größer oder kleiner sein. Auf diese Weise kann nach Art eines Baukastens der Kühler gemäß den Leistungsanforderungen aufgebaut werden, wobei die Höhe des Kühlers von der Anzahl der übereinander angeordneten Flachrohren, Lamellen und Scheiben abhängt, und die Breite sowie Tiefe des Kühlers von den Abmessungen der Bauteile abhängt. Die Anzahl und Packungsdichte der Flachrohre hängt also nicht mehr von den Positionen der Aufnahmeöffnungen in einem Rohrboden des Wasserkastens ab, sondern kann individuell gewählt werden. Außerdem kann die Größe des erfindungsgemäßen Kühlers den gegebenen Anforderungen ohne weiteres durch Auswahl der entsprechenden Bauteile angepasst werden.
Erfindungsgemäß ist eine Scheibe als Anschlussstück ausgebildet und weist einen zum Durchbruch orthogonalen Anschlusskanal auf. Über den Durchbruch werden die einzelnen Flachrohre mit dem zu kühlenden Medium versorgt, wobei das Medium über den Anschlusskanal in das Anschlussstück eingeleitet bzw. aus diesem ausgeleitet wird.
Der erfindungsgemäße Kühler kann sowohl als Kühlmittelkühler, als Ladeluftkühler, als Ölkühler, in Monoblockausführung, als Kombikühler und in Side-by-Side Varianten einfach ausgeführt werden. Außerdem sind Aussparungen und Durchbrüche im Kühler ohne weiteres möglich. Es können alle Arten von Aluminium-Luftlamellen Einsatz finden, wobei freie Wahl in der Lamellenhöhe besteht, sofern die Scheiben die gleiche Höhe besitzen. In einem einzigen Kühler können außerdem unterschiedliche Luftlamellen eingesetzt werden. Für unterschiedliche Leistungen sind verschiedene Blocktiefen, z.B. 75 mm, 120 mm oder 150 mm möglich. Der Einsatz von Wiederholteilen erlaubt den kostengünstigen Aufbau und die Reduzierung von Lagerhaltungskosten. Mit einer einzigen Luftlamelle können Kombinationskühler, z.B. Luft/Ladeluft-, Luft/Kühlmittel-Kühler mit einer durchgehenden Luftlamelle hergestellt werden. Derartige Kühler haben wesentliche Vorteile bei der Verschmutzung. Außerdem besteht die Möglichkeit, Luft- und Wasserkästen aufgrund der unterschiedlichen Wärmeausdehnungen zu trennen.
Neben der Minimierung der Anzahl der Basisbauteile besteht ein Vorteil darin, dass die Einzelteile vorgefertigt werden können. Außerdem erfordert der fertig gelötete Kühler keine Nachbearbeitungen.
Erfindungsgemäß entspricht die Länge der Flachrohre der Summe der Gesamtlänge zweier Scheiben und der dazwischen angeordneten Lamellen. Dabei stellen die Scheiben ein von einem Strangpressprofil abgetrenntes Teil dar. Die Herstellung eines Strangpressprofils ist relativ einfach und preiswert. Die entsprechende Scheiben werden von diesem Strangpressprofil in der gewünschten Dicke abgesägt, wobei die Dicke in der Regel der Höhe der Lamelle entspricht.
Erfindungsgemäß sind die Flachrohre an wenigstens einem stirnseitigen Ende verschlossen. Die Flachrohre weisen im Bereich wenigstens eines Endes einen Durchbruch durch die Flachseite auf. Somit können die Scheiben direkt auf die Flachrohre aufgesetzt werden und es bedarf keiner Verbindungsmittel bzw. Dichtelemente zwischen den Scheiben und den Flachrohren. Eine andere Möglichkeit sieht vor, dass die Enden der Flachrohre in entsprechende Schlitze der Scheiben eingeschoben werden. Die Flachrohre werden dann axial angeströmt.
Eine Ausführungsform sieht vor, dass die Flachrohre Turbulenzeinlagen aufweisen. Dabei sind die Flachrohre an ihrer Innen- und/oder Außenseite mit Lot plattiert. Auf diese Weise können sowohl die Turbulenzeinlagen als auch die anliegenden Scheiben und Luftlamellen stoffschlüssig mit den Flachrohren verbunden werden.
Eine Weiterbildung sieht vor, dass die Flachrohre als Mehrkammerrohre oder als Sickenrohre ausgebildet sind. Auf diese Weise wird vermieden, dass sich die Flachrohre bei einem hohen Innendruck verformen.
In bevorzugter Weise besitzt die Scheibe wenigstens die Höhe, die der Gesamthöhe zweier Lamellen mit einem dazwischen angeordneten Flachrohr oder Flachmaterial entspricht. Derartige Scheiben sind z.B. auch dann erforderlich, wenn der Anschlusskanal einen relativ großen Durchmesser aufweist und daher nicht in einer normalen Scheibe unterzubringen ist. Bei Scheiben mit größerer Höhe werden in der Regel zwei Scheiben zusammengefasst, wobei das Flachrohr nicht an der Flachseite der Scheibe anliegt sondern in einen zum Durchbruch orthogonalen Schlitz eingeschoben ist. Das Flachrohr ist stirnseitig offen und der Schlitz ist mit dem Durchbruch verbunden. Das Flachrohr wird in diesem Schlitz fluiddicht eingelötet und dadurch an den Versorgungskanal angeschlossen.
Bei einer anderen Variante ist vorgesehen, dass die Scheibe zwei oder mehrere, nebeneinander liegende Durchbrüche aufweist und zwei oder mehrere Flachrohre nebeneinander auf dieser Scheibe angeordnet sind. Hierdurch wird die Möglichkeit geschaffen, dass in einem einzigen Kühler mehrere Medien gleichzeitig gekühlt werden, wobei die Flachrohre lediglich über die Scheiben miteinander verbunden sind. Dadurch besteht die Möglichkeit, dass jedes Flachrohr eigene Lamellen aufweist oder dass die Flachrohre über eine gemeinsame Lamelle zusätzlich miteinander verbunden sind.
Wie bereits erwähnt, können übereinander liegende Flachrohre mit unterschiedlich hohen Lamellen bzw. mit unterschiedlich dichten Lamellenpackungen miteinander verbunden sein. Auf diese Weise wird die Leistung des Kühlers an die Anforderungen angepasst. Außerdem kann der Kühler ein partiell sich änderndes Leistungsprofil aufweisen. Dabei sind den unterschiedlich hohen Lamellen unterschiedlich hohe Scheiben zugeordnet.
Kühler für zwei oder mehrere zu kühlende Medien können so ausgestaltet sein, dass Flüssigkeiten und/oder Gase gleichzeitig kühlbar sind.
Ferner kann bei einem Ausführungsbeispiel vorgesehen sein, dass die Breite und/oder die Tiefe des Kühlers über dessen Höhe variieren. Die Form des kühlers kann auf diese Weise optimal an die örtlichen Gegebenheiten angepasst werden.
Die Erfindung betrifft auch das Verfahren zur Herstellung eines Kühlers, wobei die Flachröhre, Scheiben, Lamellen und ggf. Anschlussstücke zuerst in einer Kassette kassettiert werden und anschließend in einem Lötofen die Bauteile miteinander zum fertigen Kühler miteinander verlötet werden. Nach dem Lötvorgang bedarf es keinerlei Nacharbeit am Kühler was zum einen den Vorteil hat, dass der Fertigungsaufwand auf ein Minimum reduziert ist, und dass eventuelle, bei einer Nacharbeit anfallende Verschmutzungen vermieden werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung mehrere Ausführungsbeispiele im Einzelnen beschrieben sind. Dabei können die in der Zeichnung dargestellten und in den Ansprüchen sowie in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein. In der Zeichnung zeigen:
Figur 1
eine schematische perspektivische Darstellung eines ersten Ausführungsbeispiels des erfindungsgemäßen Kühlers, teilweise aufgeschnitten;
Figur 2
ein Ausführungsbeispiel einer Scheibe;
Figur 3
ein Ausführungsbeispiel eines Flachrohres teilweise aufgebrochen und abgebrochen;
Figur 4
eine perspektivische Ansicht eines Ausführungsbeispiels eines Anschlussstückes;
Figur 5
einen Schnitt V-V gemäß Figur 4;
Figur 6
einen Schnitt VI-VI gemäß Figur 3;
Figur 7
einen Schnitt VII-VII gemäß Figur 3 durch das Flachrohr;
Figur 8
eine Seitenansicht eines Ausführungsbeispiels einer Wellrippe;
Figur 9
eine perspektivische Ansicht eines zweiten Ausführungsbeispiels des erfindungsgemäßen Kühlers;
Figur 10
eine perspektivische Ansicht eines dritten Ausführungsbeispiels des erfindungsgemäßen Kühlers;
Figur 11
eine perspektivische Ansicht eines vierten Ausführungsbeispiels des erfindungsgemäßen Kühlers;
Figur 12
eine Seitenansicht eines fünften Ausführungsbeispiels des erfindungsgemäßen Kühlers;
Figur 13
eine Draufsicht in Richtung des Pfeils XIII gemäß Figur 12 auf den Kühler gemäß dem fünften Ausführungsbeispiel; und
Figur 14
eine Seitenansicht in Richtung des Pfeils IV auf den Kühler gemäß Figur 12.
Die Figur 1 zeigt ein erstes Ausführungsbeispiel eines insgesamt mit 1 bezeichneten Kühlers für stationäre und mobile Anlagen. Dieser Kühler 1 wird in Richtung der Pfeile 2 von Luft durchströmt. Der Einfachheit halber sind lediglich im unteren und im oberen Bereich die Bauelemente des Kühlers 1 dargestellt, die sich jedoch über die gesamte Höhe des Kühlers 1 erstrecken. Den unteren und oberen Abschluss bilden ein Flachmaterial 3, an dem eine Lamelle 4, bzw. eine Wellrippe 5 sowie an den seitlichen Enden eine Scheibe 6 sowie ein Anschlussstück 7 anliegen. Es folgen ein Flachrohr 8 sowie eine weitere Wellrippe 5 mit Scheibe 6. Dieser Aufbau setzt sich nun fort bis zum anderen Flachmaterial 3. Am unteren Ende befindet sich ein weiteres Anschlussstück 9, bei dem ein Anschlusskanal 10' sichtbar ist.
Die Figur 2 zeigt eine Scheibe 6, die ein Teil eines Strangpressprofils ist. Die Scheibe 6 wird in der gewünschten Dicke vom Strangpressprofil abgesägt. Zur Führung des zu kühlenden Mediums weist die Scheibe 6 einen zentralen Durchbruch 11 auf, der beim dargestellten Ausführungsbeispiel eine längliche Form besitzt. Es ist jedoch auch denkbar, dass anstelle eines einzigen Durchbruchs 11 die Scheibe 6 mit mehreren Durchbrüchen, die nebeneinander liegen, versehen ist.
Die Figur 3 zeigt das Ende des Flachrohres 8, welches ebenfalls mit einem Durchbruch 12 versehen ist, der die Form des Durchbruchs 11 aufweist. In das Flachrohr 8 ist eine Turbulenzeinlage 13 eingeschoben, die teilweise sichtbar ist. Stirnseitig ist das Flachrohr 8 über einen Einsatz 14, der stirnseitig eingeschoben ist, verschlossen.
Die Figur 4 zeigt das Anschlussstück 7 bzw. 9, welches im Querschnitt der Scheibe 6 entspricht. Das Anschlussstück 7 bzw. 9 weist ebenfalls den Durchbruch 11 auf, besitzt jedoch eine größere Höhe. Die Höhe entspricht der Summe der Höhe zweier Wellrippen 5 und der Höhe eines Flachrohres 8, wie sich deutlich aus Figur 1 ergibt. Orthogonal zum Durchbruch 11 erstreckt sich der Anschlusskanal 10, der mit dem Durchbruch 11 fluidverbunden ist. Außerdem weist das Anschlussstück 7 bzw. 9 einen seitlichen Schlitz 15 auf, was in Figur 5 erkennbar ist. In diesen seitlichen Schlitz 15 ist ein Ende eines Flachrohres 8' eingeschoben. Dieses Ende des Flachrohres 8' besitzt eine zum Ausführungsbeispiel des Flachrohres 8 der Figur 3 alternative Ausbildung und ist stirnseitig offen. Dieses Flachrohr 8' wird also direkt stirnseitig angeströmt.
Die Figur 6 zeigt einen Querschnitt VI-VI durch das Flachrohr 8 in der Figur 3, wobei deutlich der Durchbruch 12, die Turbulenzeinlage 13 sowie der Einsatz 14 erkennbar sind. Sowohl der Einsatz 14 als auch die Turbulenzeinlage 13 werden durch eine Verlötung im Flachrohr 8 bzw. die Turbulenzeinlage 13 im Flachrohr 8' befestigt. Hierfür ist die Innenseite des Flachrohres 8 bzw. 8' mit Lot plattiert. Die Befestigung des Flachrohres 8' im Anschlussstück 7 bzw. 9 erfolgt ebenfalls durch eine Verlötung, wofür das Flachrohr 8' an seiner Außenseite mit Lot plattiert ist.
Die Figur 7 zeigt den Schnitt VII-VII durch das Flachrohr 8 gemäß Figur 3 und es sind ebenfalls deutlich der Einsatz 14 und die Turbulenzeinlage 13 erkennbar. Über den Einsatz 14 wird die Turbulenzeinlage 13 im Flachrohr 8 zentriert und bis zur Verlötung festgehalten.
Die Figur 8 zeigt ein Ausführungsbeispiel einer Wellrippe 5, die eine trapezförmige Welle besitzt. Es ist jedoch auch denkbar, dass die Welle mit gerundeten Enden hergestellt wird. Die Höhe der Wellrippe 5 entspricht der Höhe der Scheibe 6. Die Befestigung der Wellrippen 5 und der Scheiben 6 bzw. Anschlussstücke 7 und 9 an den Flachrohren 8 erfolgt ebenfalls über eine Verlötung, wofür das Flachrohr 8 außenseitig mit Lot plattiert ist.
Die Figur 9 zeigt ein zweites Ausführungsbeispiel des erfindungsgemäßen Kühlers 1, mit dem z.B. Kühlwasser und Getriebeöl gekühlt werden können. Zur Kühlung des Kühlwassers weist der Kühler 1 einen ersten Bereich 16 und zur Kühlung des Getriebeöls einen zweiten Bereich 17 auf. Das Kühlwasser tritt z.B. über einen Anschlussstutzen 18 in das Anschlussstück 7 und somit in den Kühler 1 ein. Dort wird das Kühlwasser über die Durchbrüche 11 in die einzelnen Flachrohre 8 verteilt. Das Kühlwasser durchströmt die Flachrohre und wird am anderen Ende über die einzelnen Scheiben 6 gesammelt und tritt am Anschlussstück 9, bzw. über einen weiteren Anschlussstutzen 19 wieder aus. Es sei noch angemerkt, dass zwischen den beiden Anschlussstücken 7 und 9 eine Wellrippe 5 angeordnet ist, die die Höhe der Anschlussstücke 7 und 9 aufweist. Es befindet sich also kein Flachrohr 8' zwischen diesen beiden Anschlussstücken 7 und 9.
Das zu kühlende Öl tritt über den Anschlusskanal 10 in das Anschlussstück 7 des zweiten Bereichs 17 ein und wird, wie das zu kühlende Wasser, über die Durchbrüche 11 in die einzelnen Flachrohre 8 des zweiten Bereichs 17 verteilt. Nach dem Durchströmen der Flachrohre 8 wird das gekühlte Öl gesammelt und tritt am Anschlusskanal 10 des Anschlussstücks 9 wieder aus.
Es wird darauf hingewiesen, dass die Flachrohre 8 des zweiten Bereichs 17 mit Wellrippen 5' versehen sind, die sich nicht nur über die Flachrohre 8 des zweiten Bereichs sondern auch über die Flachrohre 8 des ersten Bereichs erstrecken und somit die nebeneinander liegenden Flachrohre 8 der beiden Bereiche 16 und 17 miteinander verbinden. Dies trifft auch für die Scheiben 6' zu. Diese Scheiben 6' sind mit jeweils zwei Durchbrüchen 11 versehen, wobei ein Durchbruch für die Flachrohre 8 des ersten Bereichs 16 und ein Durchbruch für die Flachrohre 8 des zweiten Bereichs 17 bestimmt sind.
Es sei noch angemerkt, dass es nicht unbedingt erforderlich ist, dass die Wellrippen 5' sich über die Flachrohre 8 beider Bereiche 16 und 17 erstrecken. Es können auch Wellrippen verwendet werden, die sich lediglich über die zugeordneten Flachrohre 8 erstrecken.
Der obere und untere Abschluss des Kühlers 1 erfolgt über Flachmaterial 3, wobei das untere Flachmaterial 3 die Tiefe des gesamten Kühlers 1 besitzt.
Die Figur 10 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kühlers 1, bei dem ein erster, oberer Bereich 20 und ein zweiter, unterer Bereich 21 vorgesehen sind. Der erste, obere Bereich 20 dient zur Kühlung von Wasser und besitzt eine größere Breite als der untere, zweite Bereich 21. Die Versorgung des oberen Bereichs 20 erfolgt über ein Anschlussstück 7, welches zwei Anschlusskanäle 10 und 10' aufweist. Mit dem Anschlusskanal 10 sind die Durchbrüche 11 der Scheiben 6 des ersten Bereichs 20 verbunden, über welche das Wasser in die Flachrohre 8 verteilt wird. Das gekühlte Wasser wird dem Anschlussstück 9, insbesondere dessen Anschlusskanal 10 entnommen.
Das zu kühlende Öl tritt über den Anschlusskanal 10' in das Anschlussstück 7 ein. Orthogonal zum Anschlusskanal 10' weist das Anschlussstück 7 einen Durchbruch auf, der mit den Durchbrüchen der Scheiben 6 des zweiten Bereichs 21 fluchtet. Auf diese Weise wird das zu kühlende Öl in die Flachrohre 8 des zweiten Bereichs 21 verteilt. Das gekühlte Öl wird über den Anschlusskanal 10' dem Anschlussstück 9 wieder entnommen.
Aus den Figuren 9 und 10 ist deutlich erkennbar, dass die Form des Kühlers 1 problemlos an vorgegebene Einbaumaße angepasst werden kann, indem längere oder kürzere Flachrohre 8 und Wellrippen 5 und evtl. modifizierte Anschlussstücke 7 verwendet werden.
Es sei noch darauf hingewiesen, dass anstelle des in der Figur 10 dargestellten Anschlussstücks 7 bzw. 9, welches mit zwei Anschlusskanälen 10 bzw. 10' und zwei Durchbrüchen 11 versehen ist, auch zwei herkömmliche Anschlussstücke 7 bzw. 9, die nebeneinander gesetzt werden, verwendet werden können.
Die Figur 11 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kühlers, mit dem drei Medien, nämlich Wasser, Luft und Öl gekühlt werden können. Der Eintritt des Wassers erfolgt über einen Durchbruch 22 im oberen Flachmaterial 3, wobei dieser Durchbruch 22 mit dem Durchbruch 11 der darunterliegenden Scheiben 6 fluchtet. Auf diese Weise werden die im Bereich 23 sich befindenden Flachrohre 8 mit dem zu kühlenden Wasser versorgt. Die Entnahme des gekühlten Wassers erfolgt über einen Durchbruch 24, der ebenfalls im Flachmaterial 3 vorgesehen ist.
Das zweite Medium, nämlich Luft, tritt am Anschlusskanal 10 des Anschlussstücks 7 ein. Der Austritt der gekühlten Luft erfolgt über den Anschlusskanal 10' am Anschlussstück 9. Zwischen dem Anschlussstück 7 und dem Anschlussstück 9 befindet sich ein Trennelement, so dass die zu kühlende Luft nicht direkt über die einzelnen Durchbrüche 11 und 12 vom Anschlussstück 7 in das Anschlussstück 9 überströmen kann, sondern die jeweiligen Flachrohre 8 durchströmen muss. Dieses Trennelement kann in Form einer Scheibe 6', die im Bereich 25 keinen Durchbruch aufweist, oder in Form eines Flachmaterials, welches den Durchbruch einer Scheibe 6 verschließt, verwirklicht sein.
Das dritte Medium, wie z.B. zu kühlendes Öl, tritt über einen Anschlusskanal 10 in das Anschlussstück 7 im Bereich 26 ein und verlässt diesen Bereich 26 über den Anschlusskanal 10' des Anschlussstücks 9. Zwischen den beiden Anschlussstücken 7 und 9 befindet sich ein Flachmaterial.
Die Figur 12 zeigt ein weiteres Ausführungsbeispiel des Kühlers 1 in Seitenansicht, wobei deutlich Befestigungsbohrungen 28 erkennbar sind, die in einigen Scheiben 6 vorgesehen sind. Außerdem ist ein Verschlussdeckel 29 an einem Einfüllstutzen 30 erkennbar, welcher koaxial zu den Durchbrüchen 11 liegt. Das Anschlussstück 7 ist mit dem Anschlussstutzen 18 und das Anschlussstück 9 mit dem Anschlussstutzen 19 versehen. Direkt unterhalb des Anschlussstücks 7 befindet sich eine Scheibe 6', welche keinen Durchbruch aufweist. Eine derartige Scheibe 6' befindet sich auch unterhalb des Anschlussstücks 9 und auf gleicher Ebene auf der gegenüberliegenden Seite des Kühlers 1. Auf diese Weise wird der Kühler 1 in einen oberen Bereich zur Kühlung von Wasser und in einen unteren Bereich zur Kühlung von Getriebeöl unterteilt. Das heiße Getriebeöl strömt über den Anschlusskanal 10 in das Anschlussstück 7 ein und über den Anschlusskanal 10' aus dem Anschlussstück 9 aus. Eine Trennung erfolgt hier ebenfalls über eine Scheibe 6' ohne Durchbruch.
Die Figur 13 zeigt eine Draufsicht auf den Kühler 1 gemäß Figur 12, wobei deutlich der Verschlussdeckel 29 und der Anschlussstutzen 18 sowie der Durchbruch 11 erkennbar sind. Der Anschlussstutzen 18 gehen von einem kreisrunden Querschnitt 31 in einen ovalen Querschnitt 32 über.
Die Figur 14 zeigt den Kühler 1 der Figur 12 in der Seitenansicht, wobei deutlich die Scheiben 6' ohne Durchbruch erkennbar sind. Die Flachrohre 8' münden, wie eingangs beschrieben, zentral in einen Schlitz der Anschlussstücke 7 und 9.

Claims (15)

  1. Kühler (1) mit modular zusammensetzbaren Kühlerbauteilen, bestehend aus Kühlmittelrohren, Lamellen (4) und Scheiben (6, 6'), wobei die Kühlmittelrohre als Flachrohre (8, 8') ausgebildet sind, die stirnseitig über einen Einsatz (14), der stirnseitig eingesetzt ist, verschlossen sind, wobei die Lamellen (4) zwischen den Flachrohren (8, 8') angeordnet sind, wobei die Scheiben (6, 6') endseitig auf den Flachrohren (8, 8') aufsitzen, wenigstens die Höhe einer Lamelle (4) aufweisen, die Flachrohre (8, 8') miteinander verbindenden und einen Durchbruch (11) aufweisen, mit dem sie mit dem Innenraum der Flachrohre (8, 8') verbunden sind, und wobei wenigstens eine Scheibe (6, 6') als Anschlussstück (7, 9) ausgebildet ist und einen zum Durchbruch (11) orthogonalen Anschlusskanal (10, 10') aufweist, und die Länge der Flachrohre (8, 8') der Summe der Gesamtlänge zweier Scheiben (6, 6') und der dazwischen angeordneten Lamellen (4) ist.
  2. Kühler nach Anspruch 1, dadurch gekennzeichnet, dass die Flachrohre (8, 8') im Bereich wenigstens eines Endes mit einem Durchbruch (12) durch die Flachseite versehen sind.
  3. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Flachrohre (8, 8') Turbulenzeinlagen (13) aufweisen.
  4. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Flachrohre (8, 8') an ihrer Innen- und/oder Außenseite mit Lot plattiert sind.
  5. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Flachrohre (8, 8') als Mehrkammerrohre oder als Sickenrohre ausgebildet sind.
  6. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Scheiben (6, 6') ein von einem Strangpressprofil abgetrenntes Teil darstellen.
  7. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Scheibe (6, 6') wenigstens die Gesamthöhe zweier Lamellen (4) mit dazwischen angeordnetem Flachrohr (8, 8') oder einem Flachmaterial (3) aufweist.
  8. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Scheibe (6, 6') einen zum Durchbruch (11) orthogonalen Aufnahmeschlitz (15) für das Flachrohr (8, 8') oder ein Flachmaterial (3) aufweist.
  9. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf eine Scheibe (6, 6') zwei oder mehrere Flachrohre (8, 8') nebeneinander angeordnet sind und die Scheibe (6, 6') zwei oder mehrere Durchbrüche (11) aufweist.
  10. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei oder mehrere nebeneinander angeordnete Flachrohre (8, 8') über eine Lamelle (4) miteinander verbunden sind.
  11. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei Lamellen (4) unterschiedliche Höhen aufweisen.
  12. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei oder mehr unterschiedliche Fluide kühlbar sind.
  13. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Flüssigkeiten und/oder Gase kühlbar sind.
  14. Kühler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Breite und/oder die Höhe des Kühlers (1) über dessen Höhe variiert.
  15. Verfahren zur Herstellung eines Kühlers nach einem der vorhergehenden Ansprüche, wobei die Flachrohre (8, 8'), Scheiben (6, 6'), Lamellen (4) und gegebenenfalls Anschlussstücke (7, 9) in einer Kassette kassettiert werden und anschließend in einem Lötofen die Bauteile miteinander zum fertigen Kühler (1) miteinander verlötet werden, dadurch gekennzeichnet, dass die Scheiben (6, 6') so angeordnet werden, dass die Außenkontur des Kühlers bereichsweise von der Außenkontur der Scheiben (6, 6') gebildet wird und die Scheiben (6, 6') die Lamellen (4) seitlich abschließen und wenigstens eine Scheibe (6, 6') mit einem zum Durchbruch (11) orthogonalen Anschlusskanal (10, 10') versehen und als Anschlussstück (7, 9) ausgebildet wird.
EP99109060A 1998-05-29 1999-05-07 Kühler Expired - Lifetime EP0961095B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19824026A DE19824026A1 (de) 1998-05-29 1998-05-29 Kühler
DE19824026 1998-05-29

Publications (3)

Publication Number Publication Date
EP0961095A2 EP0961095A2 (de) 1999-12-01
EP0961095A3 EP0961095A3 (de) 2000-11-08
EP0961095B1 true EP0961095B1 (de) 2004-10-13

Family

ID=7869278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99109060A Expired - Lifetime EP0961095B1 (de) 1998-05-29 1999-05-07 Kühler

Country Status (2)

Country Link
EP (1) EP0961095B1 (de)
DE (2) DE19824026A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180282A2 (de) 2008-10-27 2010-04-28 Behr Industry GmbH & Co. KG Wärmetauscher
WO2011006771A2 (de) 2009-07-14 2011-01-20 Behr Industry Gmbh & Co. Kg Wärmetauscher

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150213A1 (de) * 2001-10-12 2003-05-08 Erbsloeh Aluminium Gmbh Stranggepreßtes Profil, insbesondere für Wärmetauscher
DE10328746A1 (de) * 2003-06-25 2005-01-13 Behr Gmbh & Co. Kg Vorrichtung zum mehrstufigen Wärmeaustausch und Verfahren zur Herstellung einer derartigen Vorrichtung
DE10328458A1 (de) * 2003-06-25 2005-01-27 Daimlerchrysler Ag Niedrigtemperatur-Kühler für ein Kraftfahrzeug zur Kühlung mehrerer Bauteile
FR2859779B1 (fr) * 2003-09-16 2008-08-29 Valeo Climatisation Echangeur de chaleur a tubes plats alternes
WO2005045342A1 (de) * 2003-11-05 2005-05-19 Thomas Euler-Rolle Plattenkühler für fluide medien
GB2422002A (en) 2005-01-06 2006-07-12 Nelson Modular heat exchanger
EP1712864A1 (de) * 2005-04-14 2006-10-18 Delphi Technologies, Inc. Verfahren zur Herstellung eines Wärmetauschers und Abstandshalters
DE102005017252A1 (de) * 2005-04-14 2006-10-19 Modine Manufacturing Co., Racine Anordnung von Wärmetauschern im Kraftfahrzeug
DE102006018217A1 (de) * 2006-04-19 2007-10-25 Modine Manufacturing Co., Racine Wärmetauscher für Kraftfahrzeuge
KR20120042713A (ko) 2009-02-04 2012-05-03 퍼듀 리서치 파운데이션 금속 수소화물 저장 시스템용 코일형 마이크로채널 열교환기
WO2010091171A1 (en) 2009-02-04 2010-08-12 Purdue Research Foundation Finned heat exchangers for metal hydride storage systems
DE102011107281A1 (de) * 2011-07-15 2013-01-17 Volkswagen Ag Chiller
DE102016203951A1 (de) 2016-03-10 2017-09-14 Mahle International Gmbh Wärmeübertrager
WO2021254657A1 (de) * 2020-06-15 2021-12-23 Sew-Eurodrive Gmbh & Co. Kg Getriebe mit einer kühlanordnung und einem lüfter
DE102022103829A1 (de) 2022-02-17 2023-08-17 Akg Verwaltungsgesellschaft Mbh Wärmeaustauscher

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7115268U (de) * 1971-07-29 Steeb D Wärmetauscher mit parallel zueinander angeordneten Flachrohren
US4002201A (en) * 1974-05-24 1977-01-11 Borg-Warner Corporation Multiple fluid stacked plate heat exchanger
US4484622A (en) * 1982-04-27 1984-11-27 The Garrett Corporation Integral header heat exchanger
US4673032A (en) * 1982-09-22 1987-06-16 Honda Radiator and oil cooling apparatus for motor vehicles
DE3502619A1 (de) * 1985-01-26 1986-07-31 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Waermetauscher, insbesondere kaeltemittel-verdampfer
FR2625301A3 (fr) * 1987-12-23 1989-06-30 Valeo Chausson Thermique Echangeur de chaleur a plaques, notamment pour vehicule automobile, et procede de fabrication permettant d'obtenir un tel echangeur
KR940010978B1 (ko) * 1988-08-12 1994-11-21 갈소니꾸 가부시끼가이샤 멀티플로우형의 열교환기
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
DE4026988C2 (de) * 1990-08-25 1999-10-28 Behr Gmbh & Co Wärmetauscher mit einem Paket aus Flachrohren und Wellrippeneinheiten
JPH06300473A (ja) * 1993-04-19 1994-10-28 Sanden Corp 偏平冷媒管
DE9406559U1 (de) * 1993-04-26 1994-07-14 Erbsloeh Julius & August Hohlkammerprofil aus Metall
DE4414979A1 (de) * 1994-04-29 1995-11-02 Behr Industrietech Gmbh & Co Wärmetauscher
DE19605340C2 (de) * 1996-02-14 2000-11-09 Behr Gmbh & Co Wärmeübertrager und Verfahren zu seiner Herstellung
US5771962A (en) * 1996-04-03 1998-06-30 Ford Motor Company Manufacture of heat exchanger assembly by cab brazing
DE19617169C2 (de) * 1996-04-29 2000-07-06 Valeo Klimatech Gmbh & Co Kg Flachrohrwärmetauscher und Verfahren zu dessen Herstellung
DE29614186U1 (de) * 1996-08-20 1997-12-18 Akg Thermotechnik Gmbh & Co Kg Wärmetauscher, insbesondere Wäschetrocknerkondensator, und zu dessen Herstellung bestimmte Rohranordnung
DE19635457A1 (de) * 1996-08-31 1998-03-05 Behr Gmbh & Co Rohrblock-Wärmeübertrager
JPH10160364A (ja) * 1996-11-28 1998-06-19 Zexel Corp 積層型熱交換器の製造方法
JPH10292995A (ja) * 1997-02-21 1998-11-04 Zexel Corp 積層型熱交換器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180282A2 (de) 2008-10-27 2010-04-28 Behr Industry GmbH & Co. KG Wärmetauscher
DE102008053308A1 (de) 2008-10-27 2010-04-29 Behr Industry Gmbh & Co. Kg Wärmetauscher
EP2180282A3 (de) * 2008-10-27 2013-10-16 Behr Industry GmbH & Co. KG Wärmetauscher
WO2011006771A2 (de) 2009-07-14 2011-01-20 Behr Industry Gmbh & Co. Kg Wärmetauscher
DE102009033217A1 (de) 2009-07-14 2011-01-27 Behr Industry Gmbh & Co. Kg Wärmetauscher

Also Published As

Publication number Publication date
EP0961095A3 (de) 2000-11-08
EP0961095A2 (de) 1999-12-01
DE59910800D1 (de) 2004-11-18
DE19824026A1 (de) 1999-12-02

Similar Documents

Publication Publication Date Title
EP0961095B1 (de) Kühler
EP1544564B1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE19644586C2 (de) Rippenrohrblock für einen Wärmeübertrager
DE102005010493A1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE3029500A1 (de) Waermeaustauschereinheit
DE19603016A1 (de) Wärmetauscher
DE10118625A1 (de) Wellenförmige Lamelle mit teilweisem Versatz für Plattenwärmetauscher
DE4403144C3 (de) Plattenwärmeaustauscher
DE19543234C2 (de) Lamellen-Wärmetauscher
DE2657307A1 (de) Rohrbuendel fuer einen waermetauscher
DE19709601C5 (de) Plattenwärmeübertrager
DE4026988A1 (de) Waermetauscher mit einem paket aus flachrohren und wellrippeneinheiten
EP1564516A2 (de) Wärmeübertrager, insbesondere Ölkühler für Kraftfahrzeuge
DE3440064C2 (de)
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
DE3834822A1 (de) Waermetauscher
EP2187157B1 (de) Wärmeübertrager zur Beheizung eines Kraftfahrzeuges
EP1640684A1 (de) Wärmeübertrager aus Flachrohren und Wellrippen
EP0444595B1 (de) Wärmetauscher, insbesondere Ölkühler für Kraftfahrzeuge
DE3148941C2 (de) Wassergekühlter Ölkühler für Verbrennungskraftmaschinen
DE4327213C2 (de) Rekuperativer Wärmetauscher, insbesondere Kühler für Kraftfahrzeuge
EP0253167B1 (de) Wärmetauscher, insbesondere Kältemittel-Verdampfer
DE19716836A1 (de) Plattenwärmetauscher, insbesondere Verdampfer für Klimatisierungskreislauf
DE10049890B4 (de) Stapelscheiben-Wärmeübertrager
DE19814028A1 (de) Doppel-Wärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001215

AKX Designation fees paid

Free format text: BE DE FR GB IT

17Q First examination report despatched

Effective date: 20020531

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59910800

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BEHR INDUSTRIETECHNIK GMBH & CO.

Owner name: BEHR GMBH & CO. KG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BEHR GMBH & CO. KG

Owner name: BEHR INDUSTRY GMBH & CO. KG.

26N No opposition filed

Effective date: 20050714

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO.

Effective date: 20050531

Owner name: BEHR INDUSTRIETECHNIK G.M.B.H. & CO.

Effective date: 20050531

BERE Be: lapsed

Owner name: *BEHR G.M.B.H. & CO.

Effective date: 20050531

Owner name: *BEHR INDUSTRIETECHNIK G.M.B.H. & CO.

Effective date: 20050531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59910800

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59910800

Country of ref document: DE

Representative=s name: ANDREAS GRAUEL, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140527

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140526

Year of fee payment: 16

Ref country code: FR

Payment date: 20140522

Year of fee payment: 16

Ref country code: DE

Payment date: 20140603

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59910800

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150507

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601