EP0960445A1 - Nouvelles electrodes en dioxyde de manganese, leur procede de fabrication et leur utilisation - Google Patents
Nouvelles electrodes en dioxyde de manganese, leur procede de fabrication et leur utilisationInfo
- Publication number
- EP0960445A1 EP0960445A1 EP98907967A EP98907967A EP0960445A1 EP 0960445 A1 EP0960445 A1 EP 0960445A1 EP 98907967 A EP98907967 A EP 98907967A EP 98907967 A EP98907967 A EP 98907967A EP 0960445 A1 EP0960445 A1 EP 0960445A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- manganese dioxide
- electrodes
- electrode according
- particles
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- New manganese dioxide electrodes process for their production and their use
- the invention relates to new manganese dioxide electrodes containing modified, electrochemically active manganese dioxide, a process for the production of these new manganese dioxide electrodes and their use in rechargeable cells.
- Typical components of an alkaline primary cell are a cathode consisting of manganese dioxide, an anode, preferably made of zinc, an alkaline electrolyte and an electrolyte-permeable separator material.
- the manganese dioxide, electrolyte brown stone with ⁇ structure, which is usually used to produce the cathode, has a very high activity.
- the discharge mechanism of manganese dioxide has so far been studied very intensively. An overview of such investigations is given, for example, by A. Kozowa in: Batteries, Vol.1, Manganese Dioxide, ed .: K. V: Kordesch, Chapter 3, Marcel Dekker 1974.
- the use of manganese dioxide in alkaline zinc-MnC cells from a commercial point of view is illustrated by RF Scarr and JC Hunter in: Handbook of Batteries, ed. D. Linden, Chapter 10, McGraw-Hill 1995.
- carbon, carbon black or graphite particles are usually added to such manganese dioxide electrodes.
- Organic or inorganic additives are used as binders.
- the zinc electrode usually consists of large surface area zinc powder and a gelling agent, e.g. b. Carboxymethyl cellulose, as a stabilizer.
- a gelling agent e.g. b. Carboxymethyl cellulose
- zinc powder electrodes pressed or sintered cold or hot with or without binders are also known.
- mercury-free zinc anodes are increasingly being used.
- the alkaline electrolyte usually consists of an aqueous potassium hydroxide solution. But it can also be solutions of other hydroxides, such as sodium or lithium hydroxide solutions and mixtures thereof.
- the separator material located between the electrodes has the task of electronically isolating the two electrodes.
- the manganese dioxide electrode has been the biggest problem since it does not have sufficient discharge / charge cycle stability.
- proton insertion into the Mn0 2 lattice occurs, whereby ⁇ -Mn0 2 is reduced to the structurally identical ⁇ -MnOOH.
- the stability limit is exceeded, ie the expanded structure collapses and phases with a different crystal structure form (for example Mn (OH) 2 , Mn 3 0 4 ). This is an irreversible breakdown of the MnOr crystal lattice. After this, recharging is no longer possible.
- PCTA ⁇ / 092/14273 A1 describes a process for the preparation of manganese dioxide which can be recharged in aqueous solution, in which conventional ⁇ - or ß-manganese dioxide is soaked or mixed with an aqueous solution of bismuth, lead or copper ions.
- PCT / W093 / 12551A1 discloses barium additives, especially barium oxide, barium hydroxide and barium sulfate, as an additive to cathode materials for alkaline zinc-manganese dioxide cells.
- barium additives especially barium oxide, barium hydroxide and barium sulfate, as an additive to cathode materials for alkaline zinc-manganese dioxide cells.
- the mode of action is described in such a way that the barium ions located in the vicinity of active cathode material make it difficult for zinc ions to access manganese dioxide and thus prevent or slow the formation of electrochemically completely inactive hetaerolite (ZnO x Mn 2 ⁇ 3).
- ZnO x Mn 2 ⁇ 3 electrochemically completely inactive hetaerolite
- a positive influence on the porosity of the brown stone electrode is discussed.
- Corresponding barium additives are also described in US Pat. No.
- the task was also to provide an inexpensive, easy to carry out process for the production of these modified manganese dioxide electrodes.
- manganese dioxide electrodes produced from a conventional manganese dioxide, the properties of which have been modified beforehand by the addition of coated inorganic particles.
- coated inorganic particles can be those whose carrier particles consist of a material selected from the group consisting of mica, Si0 2l Al 2 ⁇ 3, Zr0 2 and ZnO.
- Single or multiple coatings of these particles can be constructed from dielectric and in particular from ferro, piezo or pyroelectric substances.
- Such coatings can consist of titanates, stannates, tungstates, niobates or zirconates;
- silicate coatings are also possible, depending on the type of base particles selected. Particles with coatings made from mixtures of these substances are also suitable.
- Suitable inorganic particles can also have coatings consisting of metal oxides from the group Fe 2 ⁇ 3, NiO, CoO, Zr0 2 , Sn0 2 , Ti0 2 , Sb 2 0 3 , PbO, Pb 3 0 4 or Bi 2 0 3 and mixtures of this.
- the individual coatings which in themselves consist of a substance, can be doped with foreign ions, such as Sn0 2 coatings doped with foreign ions.
- the manganese dioxide used as the base material can be present in a structure containing water of crystallization. The above object is achieved in particular by manganese dioxide electrodes which contain coated inorganic particles in an amount of 0.01 to 20% by weight, based on the amount of manganese dioxide contained in the electrode.
- the invention thus relates to manganese dioxide electrodes modified by the addition of inorganic coated particles and their use in rechargeable cells, in particular rechargeable alkaline batteries, in which zinc electrodes are preferably used as counter electrodes.
- the invention also relates to a method for producing the manganese dioxide electrodes according to the invention.
- the manganese dioxide electrodes are produced by a) homogenizing the manganese dioxide powder with an inorganic powder consisting of single or multiple coated inorganic particles, b) optionally mixing the mixture with an organic or inorganic binder and a conductive additive, preferably carbon black or graphite, and c) the product obtained is made up into an electrode.
- Manganese dioxide electrodes according to the invention can be used for the production of galvanic elements, electrochemical cells, primary batteries, e.g. B. button cell batteries are used, but show particularly good properties in rechargeable cells, in particular rechargeable alkaline batteries.
- Mica, Si0 2 -, Al 2 0 3 -, ZrO ⁇ - or coated ZnO particles is added.
- the amount added in each case depends on the intended use of the manganese dioxide electrodes produced. While the addition of only a small amount of about 0.01% by weight of the above-mentioned particles has a noticeable effect on the discharge times of commercially available batteries, additions of up to 20% by weight to cathode materials of button cell batteries can make sense.
- the primary capacity of the electrochemical cell is increased by 10 to 30% compared to commercially available zinc / manganese oxide batteries, the cathodes of which are not modified.
- the modification of the electrode material enables a significantly improved rechargeability of the electrochemical cell to be achieved.
- An increase in the primary capacity of 30% or an increase in the rechargeability by 200% can be achieved in particular by adding 20% by weight of inorganic coated particles to the manganese dioxide used. Accordingly, it can make sense to vary the amount added depending on the use of the electrodes.
- coated inorganic particles with mica as the carrier material have proven to be particularly suitable for modifying the manganese dioxide used for the production of electrodes.
- Such materials are:
- those inorganic particles coated in the same way in which SiO 2 -, Al 2 O 3 -, ZrO 2 - particles serve as carrier material, are also suitable for modification. Good effects are achieved with the aid of particulate materials, the support materials of which can already be polarized per se, but this is not a prerequisite, since improved capacities are also measured with materials whose support particles do not have these properties.
- the coatings consist of dielectric, in particular of ferro, piezo or pyroelectric substances, such as. B. from titanates, stannates, zirconates, tungstates, niobates or others.
- the manganese dioxide powder is mixed with the desired amount of particulate powder and homogenized in a manner known to those skilled in the art. Homogenization can be done by grinding in ball mills or atomizers. In the tests carried out, milling with ball mills for a period of about eight hours and longer has proven successful.
- the product thus homogenized can then be mixed with other additives, such as. B. with organic or inorganic binders and conductivity additives.
- PTFE, latex and the like can be added as binders known to those skilled in the art for this purpose. Portland cement can serve as the inorganic binder. PTFE is particularly suitable. Suitable conductivity additives are carbon black, graphite, steel wool and other conductive fibers.
- Electrodes produced in this way can be used in a known manner to produce rechargeable cells in the presence of an alkaline electrolyte, in which a zinc electrode can serve as the counter electrode.
- a zinc electrode can serve as the counter electrode.
- Various additives such as gelling agents, silica gel or others, can be used to increase the viscosity of the electrolyte, which is itself aqueous.
- a suitable polymer fabric or fleece can be attached as a separating material between the electrodes and, if necessary, a spacer should be inserted. Materials consisting of polyvinyl acetate, polypropylene or other inert polymers can serve as the polymer fleece.
- Spacers as they are known from commercially available batteries, can have a corrugated shape and, for example, consist of PVC.
- electrodes were produced from the manganese dioxide mixtures according to the invention by adding a conductivity additive and a binder after the grinding. The mixture thus obtained was pressed between two nickel wire nets to form cathodes.
- manganese dioxide electrode To produce a manganese dioxide electrode, 30 mg of manganese dioxide (EMD-TRF), 150 mg of graphite (Lonza KS75) and 10 mg of PTFE powder are homogenized in a mortar. The powder mixture obtained is pressed between two nickel nets with a pressure of 30 kN / cm 2 to form an electrode tablet with a diameter of 16 mm and a thickness of 1.2 mm. Together with a cadmium counter electrode, this manganese dioxide electrode is installed in a button cell size 2032. One layer each of a layer of polypropylene fleece FS 2123WI (from Freudenberg) and Celgard 2500 (from Hoechst) are used. In addition, a PVC corrugated separator is used as a spacer.
- KOH (9 mol / l) serves as the electrolyte.
- the cell is discharged at a specific discharge current density of 100 mA / g Mn0 2 up to a depth of discharge of 50% based on the theoretical 1 e " capacity (154 mAh / g Mn0 2 ).
- a depolarizer mixture is made from: 3.4 mg modified manganese dioxide 150 mg graphite (Lonza KS75) 10 mg PTFE powder
- This mixture is homogenized in a mortar and between two
- Nickel meshes are pressed at an extrusion pressure of 30 kN / cm 2 to form an electrode tablet of 16 mm in diameter and approx. 1.2 mm in thickness.
- the total content of modified mica in the positive electrode is 1.7% based on the mass.
- This electrode is used together with a cadmium electrode as a counter electrode in a button cell of size 2032.
- a layer of polypropylene fleece FS 2123 (from Freudenberg) and Celgard 2500 (from Hoechst) serve as separators.
- a PVC corrugated separator is used as a spacer.
- a KOH solution (9 mol / l) serves as the electrolyte.
- the specific discharge current density is 100 mAg / Mn0 2 and the discharge depth is 50% based on the theoretical 1 e " capacity (154 mAh / g Mn0 2 ).
- a depolarizer mixture is made from:
- modified manganese dioxide 150.0 mg graphite (Lonza KS75) 10.0 mg PTFE powder
- This mixture is homogenized in a mortar and pressed between two nickel nets at a pressure of 30 kN / cm 2 to form an electrode tablet with a diameter of 16 mm and a thickness of approximately 1.2 mm.
- the total content of modified mica in the positive electrode is 1.7% based on the mass.
- This electrode is used together with a cadmium electrode as a counter electrode in a button cell size 2032.
- a layer of polypropylene fleece FS 2123WI (from Freudenberg) and Celgard 2500 (from Hoechst) serve as separators.
- a PVC corrugated separator is used as a spacer.
- a KOH solution (9 mol / l) serves as the electrolyte.
- the specific discharge current density is 100 mA / g Mn0 2 and the discharge depth is 50% based on the theoretical 1 e ' capacity (154 mAh / g Mn0 2 ).
- a depolarizer mixture is made from:
- This mixture is homogenized in a mortar and between two
- Nickel meshes are pressed under a pressure of 30 kN / cm 2 to form an electrode tablet 16 mm in diameter and approx. 1.2 mm thick.
- the total content of modified mica in the positive electrode is 1.7% based on mass.
- the electrode is inserted into a 2032 button cell together with a cadmium electrode.
- a layer of polypropylene vies FS 2123WI (from Freudenberg) and Celgard 2500 (from Hoechst) serve as separators.
- a corrugated separator was used as a spacer.
- KOH (9 mol / l) served as the electrolyte.
- the specific discharge current density was 100 mA / g Mn0 2 and the depth of discharge 50% based on the theoretical le ' capacity (154 mAh / g Mn0 2 ).
- EMD-TRF manganese dioxide
- a mica which is coated several times with rutile titanium dioxide, iron oxide (Fe 2 0 3 ), tin oxide (Sn0 2 ) and zirconium oxide (Zr0 2 ) (Iriodin ® 9612 Silver gray fine satin, Merck KGaA, Darmstadt), for a period of eight hours.
- the modified brew stone thus obtained is tested in a cyclization test.
- a depolarizer mixture is made from:
- the specific discharge current density was 100 mA / g Mn0 2 and the depth of discharge 50% based on the theoretical le ' capacity (154 mAh / g Mn0 2 ).
- a manganese dioxide electrode produced according to Example 1 is inserted together with a zinc electrode in a button cell of size 2032.
- a layer of polypropylene vies FS 2123WI (from Freudenberg) and Celgard 2500 (from Hoechst) serve as separators.
- a PVC corrugated separator is used as a spacer.
- KOH (9 mol / l) serves as the electrolyte.
- the specific discharge current density is 30 mA / g Mn0 2 and the depth of discharge 50% based on the theoretical 1e ' capacity (154 mAh / g Mn0 2 ).
- a depolarizer mixture is made from: 32.8 mg modified manganese dioxide 150.0 mg graphite (Lonza KS75) 10.0 mg PTFE powder
- This mixture is homogenized in a mortar and between two
- Nickel meshes are pressed under a pressure of 30 kN / cm 2 to form an electrode tablet with a diameter of 16 mm and a thickness of approximately 1.2 mm. This electrode is used together with a zinc electrode in a button cell size 2032.
- a layer of polypropylene vies FS 2123WI (from Freudenberg) and Celgard 2500 (from Hoechst) serve as separators.
- a PVC corrugated separator is used as a spacer.
- KOH (9 mol / l) serves as the electrolyte.
- the specific discharge current density is 30 mA / g Mn0 2 and the discharge depth is 50% based on the theoretical 1 e " capacity (154 mAh / g Mn0 2 ).
- a depolarizer mixture is made from:
- This mixture is homogenized in a mortar and between two
- a PVC corrugated separator is used
- KOH (9 mol / l) serves as the electrolyte.
- the specific discharge current density is 30 mA / g Mn0 2 and the discharge depth is 50% based on the theoretical 1 e " capacity (154 mAh / g Mn0 2 ).
- a depolarizer mixture is made from:
- This mixture is homogenized in a mortar and pressed between two nickel nets under a pressure of 30 kN / cm 2 to form an electrode tablet 16 mm in diameter and approx. 1.2 mm thick.
- This electrode is used together with a zinc electrode in a button cell size 2032.
- One layer each of polypropylene vies FS 2123WI (from Freudenberg) and Celgard 2500 (from Hoechst) serve as separators.
- a PVC corrugated separator is used as a spacer.
- KOH (9 mol / l) serves as the electrolyte.
- the specific discharge current density is 30 mA / g Mn0 2 and the discharge depth is 50% based on the theoretical 1 e " capacity (154 mAh / g Mn0 2 ).
- EMD-TRF manganese dioxide
- a mica which is coated several times with rutile titanium dioxide, iron oxide (Fe 2 0 3 ), tin oxide (Sn0 2 ) and zirconium oxide (Zr0 2 ), (Iriodin ® 9612 silver gray fine satin WRII, Merck, Darmstadt), for a period of eight hours.
- the modified brown stone thus obtained is tested in a cyclization test.
- a depolarizer mixture is made from:
- This mixture is homogenized in a mortar and between two
- Nickel meshes are pressed under a pressure of 30 kN / cm 2 to form an electrode tablet with a diameter of 16 mm and a thickness of approximately 1.2 mm. This electrode is used together with a zinc electrode in a button cell size 2032.
- a layer of polypropylene vies FS 2123WI (from Freudenberg) and Celgard 2500 (from Hoechst) serve as separators.
- a PVC corrugated separator is used as a spacer.
- KOH (9 mol / l) serves as the electrolyte.
- the specific discharge current density is 30 mA / g Mn0 2 and the discharge depth is 50% based on the theoretical 1 e " capacity (154 mAh / g Mn0 2 ).
- Table 1 shows the number of cycles which are achieved until the cell voltage falls below 0.9 V for the exemplary embodiments 6 to 10.
- FIG. 1 shows the discharge behavior of a comparison cell according to example 1.
- the numbers on the discharge curves, shown at different times, indicate the respective cycle. The loading curves are not shown.
- the final discharge voltage of 0.1V vs. Cd / Cd (OH) 2 undershot after 39 cycles.
- FIG. 2 shows the discharge behavior of such a button cell with a positive electrode which contains manganese dioxide modified according to the invention.
- the numbers on the unloaded discharge ven denote the respective cycle. The loading curves are not shown.
- the final discharge voltage of 0.1 V vs. Cd / Cd (OH) 2 below 93 cycles. This corresponds to an increase in the number of cycles over the comparison cell according to Example 1 by approximately 140%.
- FIG. 3 shows the discharge behavior of such a button cell with a positive electrode which contains manganese dioxide modified according to the invention.
- the numbers on the unloaded curves show the respective cycle. The loading curves are not shown.
- the final discharge voltage of 0.1 V vs. Cd / Cd (OH) 2 undershot after 118 cycles. This corresponds to an increase in the cyclability of the manganese dioxide electrode by approx. 200%.
- FIG. 5 shows the final discharge voltages of button cells with positive electrodes, which contain manganese dioxide modified according to the invention, according to Examples 4 and 5 compared to a comparison cell according to Example 1. The effect of the additives used is clearly expressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
L'invention concerne de nouvelles électrodes en dioxyde de manganèse qui contiennent du dioxyde de manganèse modifié à activité électrochimique, un procédé de production de ces nouvelles électrodes en dioxyde de manganèse et leur utilisation dans des piles rechargeables. Le dioxyde de manganèse électrochimiquement actif contient des particules inorganiques en un matériau sélectionné dans le groupe constitué par la mica, SiO2, Al2O3, ZrO2 et ZnO et enrobées d'une ou plusieurs couches de revêtement constituées de substances ferroélectriques, piézo-électriques ou pyroélectriques, par exemple de titanates, de stannates, de zirconates, de wolframates, de niobates, de silicates ou de leurs mélanges, de dioxyde de titane (anatase ou rutile), d'oxydes métalliques du groupe constitué par Fe2O3, NiO, CoO, ZrO2, SnO2, TiO2, Sb2O3, PbO, Pb3O4, Bi2O3, WO3, NbO ou de leurs mélanges, ces couches de revêtement pouvant être dopées avec des ions étrangers.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19703480 | 1997-01-31 | ||
DE19703480 | 1997-01-31 | ||
DE19749763A DE19749763A1 (de) | 1997-11-11 | 1997-11-11 | Neue Mangandioxidelektroden, Verfahren zu deren Herstellung und deren Verwendung |
DE19749763 | 1997-11-11 | ||
PCT/EP1998/000309 WO1998034289A1 (fr) | 1997-01-31 | 1998-01-21 | Nouvelles electrodes en dioxyde de manganese, leur procede de fabrication et leur utilisation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0960445A1 true EP0960445A1 (fr) | 1999-12-01 |
Family
ID=26033511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98907967A Withdrawn EP0960445A1 (fr) | 1997-01-31 | 1998-01-21 | Nouvelles electrodes en dioxyde de manganese, leur procede de fabrication et leur utilisation |
Country Status (10)
Country | Link |
---|---|
US (1) | US6337160B1 (fr) |
EP (1) | EP0960445A1 (fr) |
JP (1) | JP2001506400A (fr) |
KR (1) | KR20000070617A (fr) |
CN (1) | CN1246203A (fr) |
AU (1) | AU6615098A (fr) |
CA (1) | CA2279350A1 (fr) |
ID (1) | ID22648A (fr) |
TW (1) | TW424348B (fr) |
WO (1) | WO1998034289A1 (fr) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3625679B2 (ja) * | 1999-03-19 | 2005-03-02 | 三洋電機株式会社 | リチウム二次電池 |
KR100371404B1 (ko) * | 1999-09-28 | 2003-02-07 | 주식회사 엘지화학 | 비수 전해액 2차 전지 |
EP1139460B1 (fr) | 2000-03-31 | 2012-08-01 | Sony Corporation | Séparateur,électrolyte gélifié,électrolyte nonaqueux,électrode et pile à électrolyte nonaqueux les utilisant |
US7238448B1 (en) * | 2000-04-26 | 2007-07-03 | The Gillette Company | Cathode for air assisted battery |
TWI324590B (en) | 2001-08-31 | 2010-05-11 | Sumitomo Chemical Co | Bis ( diphenylvinyl ) arene compound |
ES2209656B2 (es) * | 2002-12-13 | 2005-06-16 | Celaya Emparanza Y Galdos, S.A. (Cegasa) | Un elemento electroquimico o pila y un catodo para el mismo. |
KR100510216B1 (ko) * | 2003-01-18 | 2005-08-25 | 박상식 | 복합산화물 유전체층으로 구성된 전해콘덴서용 알루미늄 박막 및 그 제조방법 |
US7041239B2 (en) * | 2003-04-03 | 2006-05-09 | Valence Technology, Inc. | Electrodes comprising mixed active particles |
US7754382B2 (en) * | 2003-07-30 | 2010-07-13 | Tdk Corporation | Electrochemical capacitor having at least one electrode including composite particles |
US7351499B2 (en) * | 2004-01-28 | 2008-04-01 | The Gillette Company | Cathode material for battery |
CN100343660C (zh) * | 2005-09-28 | 2007-10-17 | 浙江大学 | 微型维生素c传感器及其制作方法 |
CN101670691B (zh) * | 2005-12-29 | 2013-04-17 | 同济大学 | 工作温区可调且热释电系数较大的反铁电薄膜及其制备 |
CN100577782C (zh) * | 2006-06-15 | 2010-01-06 | 中国科学院物理研究所 | 表面改性的电流变液电极板 |
KR101440884B1 (ko) * | 2007-12-18 | 2014-09-18 | 삼성에스디아이 주식회사 | 표면 처리된 음극 활물질을 포함하는 음극 및 이를 채용한리튬 전지 |
US8936775B2 (en) | 2008-10-29 | 2015-01-20 | Zpower, Llc | Cathode active material (higher oxides of silver) |
EP2411563B1 (fr) | 2009-03-27 | 2018-02-07 | ZPower, LLC | Cathode améliorée |
US8512422B2 (en) | 2010-06-23 | 2013-08-20 | Avx Corporation | Solid electrolytic capacitor containing an improved manganese oxide electrolyte |
US8619410B2 (en) | 2010-06-23 | 2013-12-31 | Avx Corporation | Solid electrolytic capacitor for use in high voltage applications |
EP2619830B1 (fr) | 2010-09-24 | 2016-06-08 | ZPower, LLC | Cathode |
WO2012061449A1 (fr) * | 2010-11-03 | 2012-05-10 | Zpower, Llc | Nouvelles électrodes et batteries rechargeables |
CN103107380B (zh) * | 2011-11-10 | 2015-09-30 | 国家纳米科学中心 | 一种电池及其制造方法 |
WO2014052533A1 (fr) | 2012-09-27 | 2014-04-03 | Zpower, Llc | Cathode |
KR102156318B1 (ko) | 2013-09-23 | 2020-09-16 | 삼성전자주식회사 | 양극활물질, 및 이를 포함하는 양극 및 마그네슘이차전지 |
KR102099781B1 (ko) | 2013-10-15 | 2020-04-10 | 삼성전자주식회사 | 색 변화 저감용 광학 필름 및 이를 채용한 유기 발광 표시 장치 |
CN108574129A (zh) * | 2017-03-09 | 2018-09-25 | 天津大学 | 一种耐高温焙烧氧化铁纳米管电极及其制备方法和应用 |
CN107546362A (zh) * | 2017-07-17 | 2018-01-05 | 上海工程技术大学 | 一种具有热释电效应的电极及其制备方法和应用 |
US10615412B2 (en) * | 2018-01-30 | 2020-04-07 | Octopus Technologies Inc. | Manganese oxide composition and method for preparing manganese oxide composition |
DE102018131168A1 (de) * | 2018-12-06 | 2020-06-10 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung | Reversible Mangandioxidelektrode, Verfahren zu deren Herstellung, deren Verwendung sowie diese enthaltende, wieder aufladbare alkalische Mangan-Batterie |
CN110931786B (zh) * | 2019-12-11 | 2022-10-28 | 河南创力新能源科技股份有限公司 | 一种铁镍电池负极硅酸盐晶体材料的制备方法 |
TWI736105B (zh) | 2020-01-16 | 2021-08-11 | 國立清華大學 | 二次電池用負極材料、二次電池用負極及二次電池 |
CN114824248B (zh) * | 2020-01-16 | 2023-08-15 | 游萃蓉 | 二次电池用负极材料、负极及二次电池 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945847A (en) | 1971-12-28 | 1976-03-23 | Union Carbide Corporation | Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them |
US3883368A (en) | 1972-10-26 | 1975-05-13 | Union Carbide Corp | Alkaline aluminum-air/zinc-manganese dioxide hybrid battery |
IT1050048B (it) | 1975-12-10 | 1981-03-10 | Oronzio De Nora Impianti | Elettrodi rivestiti con biossido di manganese |
US4028215A (en) | 1975-12-29 | 1977-06-07 | Diamond Shamrock Corporation | Manganese dioxide electrode |
DE2609549C3 (de) | 1976-03-08 | 1979-04-12 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Verfahren zum anodischen Polieren von Oberflächen aus intermetallischen Niobverbindungen und Nioblegierungen |
GB1557754A (en) | 1978-03-02 | 1979-12-12 | Ever Ready Co | Dry electric cells |
US4243503A (en) | 1978-08-29 | 1981-01-06 | Diamond Shamrock Corporation | Method and electrode with admixed fillers |
US4422917A (en) | 1980-09-10 | 1983-12-27 | Imi Marston Limited | Electrode material, electrode and electrochemical cell |
JPS5790872A (en) * | 1980-11-27 | 1982-06-05 | Hitachi Maxell Ltd | Organic electrolyte battery |
DE3123100A1 (de) | 1981-06-11 | 1983-01-05 | Varta Batterie Ag, 3000 Hannover | Mangandioxidelektrode fuer lithium-batterien |
US4451543A (en) | 1983-09-29 | 1984-05-29 | Ford Motor Company | Rechargeable zinc/manganese dioxide cell |
GB2234233B (en) | 1989-07-28 | 1993-02-17 | Csir | Lithium manganese oxide |
US5156934A (en) * | 1991-02-11 | 1992-10-20 | Rbc Universal Ltd. | Method of making a rechargable modified manganese dioxide material and related compound and electrode material |
HU211445B (en) * | 1991-04-05 | 1995-11-28 | Battery Technologies Inc | Manganese dioxide cathode with improved supercharge characteristics for rechargeable alcaline manganese dioxide cells |
CA2068015A1 (fr) | 1991-06-17 | 1992-12-18 | Michael M. Thackeray | Materiau convenant a la fabrication d'electrodes |
US5342712A (en) | 1993-05-17 | 1994-08-30 | Duracell Inc. | Additives for primary electrochemical cells having manganese dioxide cathodes |
US5393617A (en) * | 1993-10-08 | 1995-02-28 | Electro Energy, Inc. | Bipolar electrochmeical battery of stacked wafer cells |
US5419986A (en) | 1993-10-15 | 1995-05-30 | Rechargeable Battery Corporation | Method of making a rechargeable manganese-oxide compound and related electrode material |
IT1278688B1 (it) * | 1995-05-29 | 1997-11-27 | Volta Ind Srl | Pila a secco con catodo additivato |
US5599644A (en) * | 1995-06-07 | 1997-02-04 | Eveready Battery Company, Inc. | Cathodes for electrochemical cells having additives |
IT1278764B1 (it) * | 1995-10-03 | 1997-11-27 | Volta Ind Srl | Pila a secco con catodo additivato |
US5604057A (en) | 1995-11-27 | 1997-02-18 | General Motors Corporation | Secondary cell having a lithium intercolating manganese oxide |
US5783328A (en) | 1996-07-12 | 1998-07-21 | Duracell, Inc. | Method of treating lithium manganese oxide spinel |
DE19641970A1 (de) * | 1996-10-10 | 1998-04-16 | Merck Patent Gmbh | Modifiziertes Elektrodenmaterial und dessen Verwendung |
-
1998
- 1998-01-21 CN CN98802156A patent/CN1246203A/zh active Pending
- 1998-01-21 KR KR1019997006865A patent/KR20000070617A/ko not_active Application Discontinuation
- 1998-01-21 EP EP98907967A patent/EP0960445A1/fr not_active Withdrawn
- 1998-01-21 ID IDW990637A patent/ID22648A/id unknown
- 1998-01-21 US US09/355,621 patent/US6337160B1/en not_active Expired - Fee Related
- 1998-01-21 AU AU66150/98A patent/AU6615098A/en not_active Abandoned
- 1998-01-21 JP JP53250398A patent/JP2001506400A/ja active Pending
- 1998-01-21 CA CA002279350A patent/CA2279350A1/fr not_active Abandoned
- 1998-01-21 WO PCT/EP1998/000309 patent/WO1998034289A1/fr not_active Application Discontinuation
- 1998-01-26 TW TW087101082A patent/TW424348B/zh active
Non-Patent Citations (1)
Title |
---|
See references of WO9834289A1 * |
Also Published As
Publication number | Publication date |
---|---|
ID22648A (id) | 1999-12-02 |
WO1998034289A1 (fr) | 1998-08-06 |
KR20000070617A (ko) | 2000-11-25 |
US6337160B1 (en) | 2002-01-08 |
AU6615098A (en) | 1998-08-25 |
TW424348B (en) | 2001-03-01 |
CA2279350A1 (fr) | 1998-08-06 |
CN1246203A (zh) | 2000-03-01 |
JP2001506400A (ja) | 2001-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0960445A1 (fr) | Nouvelles electrodes en dioxyde de manganese, leur procede de fabrication et leur utilisation | |
EP0931362B1 (fr) | Materiau d'electrode modifie et son utilisation | |
DE102008050692B4 (de) | Kohlenstoffbeschichteter Lithiumtitan-Spinell | |
DE69719386T2 (de) | Lithium-Ionen leitende Glaskeramiken und damit hergestellte elektrische Zellen und Glassensoren | |
DE2940556C2 (fr) | ||
EP2528862B1 (fr) | Phosphate métallique de lithium-manganèse substitué | |
EP2529443B1 (fr) | Électrode pour une batterie au lithium-ion secondaire | |
DE102008026580A1 (de) | Verfahren zur Herstellung von Lithiumtitan-Spinell und dessen Verwendung | |
EP0735004A1 (fr) | Procédé de préparation de composés d'intercalation au lithium | |
DE69407612T2 (de) | Verfahren zur herstellung von wiederaufladbarem mangandioxid-material und ähnlichem elektrodenmaterial | |
DE102023122790A1 (de) | Positives elektrodenmaterial und herstellungsverfahren dafür, positives polstück und geschichtete natrium-ionen-batterie vom o3-typ | |
DE69103337T2 (de) | Festkörperspannungsspeicherzelle. | |
WO2012076229A1 (fr) | Cellule sodium-chalcogénure | |
DE3319987C2 (fr) | ||
DE69411838T2 (de) | Verfahren zur Herstellung einer aktivem Kathodenmaterial-Formmasse für trockene Zellen. | |
DE19749763A1 (de) | Neue Mangandioxidelektroden, Verfahren zu deren Herstellung und deren Verwendung | |
DE60005015T2 (de) | Leistungsverbessernde zusatzstoffe für elektrochemische zellen | |
DE19641970A1 (de) | Modifiziertes Elektrodenmaterial und dessen Verwendung | |
EP1445810A2 (fr) | Elément ou cellule électrochimique et cathode pour cela | |
DE19641135C1 (de) | Zusatzstoffe enthaltende Mangandioxidelektrode und deren Verwendung | |
DE3882529T2 (de) | Leitfähiger keramischer Träger für das Aktivmaterial eines Bleisäure-Akkumulators. | |
DE19728614A1 (de) | Modifiziertes Elektrodenmaterial und dessen Verwendung | |
DE19617512A1 (de) | Verfahren zur Herstellung von modifiziertem Magandioxid für wiederaufladbare alkalische Batterien sowie ein wiederaufladbares galvanisches Element | |
DE19532073C2 (de) | Verfahren zur Herstellung von modifiziertem Braunstein für Batterie-Elektroden | |
EP3384544B1 (fr) | Particules métalliques appropriées pour la production d'une anode, production d'une anode, anode ainsi produite et cellule électrochimique muni de l'anode ainsi produite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990630 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: LT PAYMENT 19990630;LV PAYMENT 19990630;SI PAYMENT 19990630 |
|
17Q | First examination report despatched |
Effective date: 20011022 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040510 |