EP0956433B1 - Verfahren zur ermittlung von motorölwartungszeitpunkten für einen kraftfahrzeugmotor - Google Patents

Verfahren zur ermittlung von motorölwartungszeitpunkten für einen kraftfahrzeugmotor Download PDF

Info

Publication number
EP0956433B1
EP0956433B1 EP97954404A EP97954404A EP0956433B1 EP 0956433 B1 EP0956433 B1 EP 0956433B1 EP 97954404 A EP97954404 A EP 97954404A EP 97954404 A EP97954404 A EP 97954404A EP 0956433 B1 EP0956433 B1 EP 0956433B1
Authority
EP
European Patent Office
Prior art keywords
engine
oil
distance
determined
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97954404A
Other languages
English (en)
French (fr)
Other versions
EP0956433A1 (de
Inventor
Thomas Guertler
Markus Harfmann
Klaus Land
Rudolf Thom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0956433A1 publication Critical patent/EP0956433A1/de
Application granted granted Critical
Publication of EP0956433B1 publication Critical patent/EP0956433B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M2011/14Indicating devices; Other safety devices for indicating the necessity to change the oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M2011/14Indicating devices; Other safety devices for indicating the necessity to change the oil
    • F01M2011/1426Indicating devices; Other safety devices for indicating the necessity to change the oil by considering distance

Definitions

  • the invention relates to a method for determining Engine oil maintenance times for a motor vehicle engine depending of detected engine operating parameters according to the preamble of claim 1.
  • EP 0 191 458 A1 discloses a method for determining of engine oil maintenance times for an automotive engine in response to detected engine operating parameters.
  • the engine revolutions and at least a motor oil aging relevant engine operating parameter for example the engine load or the oil temperature, detected continuously.
  • a motor oil aging relevant engine operating parameter for example the engine load or the oil temperature
  • the invention is the provision as a technical problem an improved method of the type mentioned, which is the time at which a motor oil maintenance and thus a motor oil change for a motor vehicle engine appropriate is comparatively reliable can be determined.
  • the invention solves this problem by providing a Method with the features of claim 1.
  • this Procedures are constantly engine oil temperature and engine load, and optionally the fuel consumption as motor oil aging relevant Engine operating parameters sensory detected.
  • the engine revolutions are detected. Under the Term engine revolutions are generally intended here to revolutions a crankshaft of the engine are understood, for example can be determined from the measured engine speed.
  • the detected engine revolutions are multiplied by the evaluation factors converted into a fictitious route.
  • the weighting factor characteristics may be e.g. on the basis of empirical Experience and / or familiar to the expert, fundamental Considerations regarding the influences of the different ones Engine operating parameters determined on the aging of the engine oil become.
  • the Bactweguxnpotential variable depending on the direct after a previous oil change present amount of oil and / or oil replenished during refilling operations pretend. This can be taken into account that the total distance potential on the one hand for a lower oil change quantity is smaller and secondly in the case of oil refilling operations in Depending on their times and the respective share of freshly added amount of oil can be increased.
  • an original route potential S u is specified, for example in the form of a route length of 15000 km.
  • an initial path potential S a is determined by multiplying the primary path potential S u by one or preferably a plurality of quality factors Q i .
  • quality factors Q i can relate, for example, to the quality of the engine oil used, to the type of engine used, to the fuel used, to the country of use, to existing official regulations and to a reserve factor.
  • a corrected initial path potential S ak is determined by multiplying the former by an oil change factor F W indicating which amount of oil has actually been filled in a previous oil change (step 3).
  • the oil change amount in question can be determined very reliably, for example, following an oil change process by the method described in the above-cited German Patent Application No. 196 02 599.0.
  • the oil change factor F W can be formed, for example, by the ratio of the filled oil change quantity to a standardized standard filling quantity.
  • a total line potential S G from the corrected initial line potential S ak taking into account any interim ⁇ lzul spallvorticiann in which used oil has been wholly or partially replaced by fresh engine oil.
  • the corrected initial path potential S ak is multiplied by a ⁇ lnach spall composition F N , which has the value one, as long as no oil refilling has occurred, and increases with each refilling operation in a predetermined manner.
  • the increments that increase this factor F N are selected so that they increase with increasing oil refilling quantity and decrease with increasing duration or traveled distance since the last oil change with the same amount of refilling.
  • fictitious route lengths dS i are now continuously subtracted, which are determined as follows.
  • three weighting factors are obtained, namely, an oil temperature weighting factor B T , an engine speed weighting factor B n, and an engine load weighting factor B L.
  • the relevant engine operating variables are detected directly or indirectly by sensors continuously and from this the three weighting factors B T , B n , B L are obtained on the basis of associated characteristic curves.
  • fuel consumption can be taken into account as a further motor oil aging-relevant engine operating parameter, with this information usually already being available anyway in modern engine electronics systems.
  • An additional fuel consumption rating factor is then determined on the basis of a corresponding characteristic curve.
  • the number of engine revolutions U M ie crankshaft revolutions
  • an evaluation of the engine revolutions U M is carried out by summing up the engine revolutions detected within a given, actually traveled distance interval, eg of one kilometer, for example, and multiplying them by the current values of the weighting factors.
  • the thus obtained, evaluated engine revolution number U b per distance traveled distance is then converted in a subsequent step 7 by means of a suitable conversion factor F u in a fictitious distance dS i , which is a measure of the load of the engine oil during the respectively associated, actually driven Wegscrew interval.
  • the fictitious distance is, for example, between 0.5 times and 3 times the predetermined distance actually traveled. If necessary, it is also possible to provide a limitation of these fictitious distance intervals dS i to such a predetermined value range. In addition, a separate determination of the fictitious Wegumbleninkremente dS i for vehicle speeds below a predetermined low speed threshold for consideration of idle states may be provided in which, for example, the respective fictitious distance increment is limited to the length of the predetermined, actually traveled distance interval, if the other determination method to a higher value.
  • the associated fictitious Wegumbleninkrement dS i is subtracted from the total distance potential S G for determining the remaining remaining distance S R (Ste 8).
  • the residual distance S R specifies the path length that can be covered by the vehicle before a next engine oil change should be carried out.
  • the driver can be informed in any desired manner of the respective value of the residual distance S R via a suitable display.
  • a suitable display for example, an automatic visual display of the remaining distance can be provided if it falls below a warning threshold, which may be predetermined depending on the average daily mileage of the vehicle.
  • a warning threshold which may be predetermined depending on the average daily mileage of the vehicle.
  • it can be provided to carry out no evaluation of the engine revolutions and thus no determination of fictitious route sections more if the residual distance has fallen below a predetermined threshold of eg 500km, but then subtract the actual distance traveled from the remaining distance remaining.
  • a predetermined threshold eg 500km
  • a permissible range of values for the remaining one Remaining run depending on the actually driven Distance are given, with each determined Remaining run distance if a range limit is exceeded is kept limited to selbige. For example, a lower range end value as the difference between initial Track potential and actually traveled distance since the last oil change and an upper range end value as product a predetermined minimum fictitious distance increment per actually traveled distance interval with the difference of the double of the initial range potential and since the last oil change actual driven distance given become.
  • Parallel to the residual run determination described above includes the method example shown a remaining term determination, with the remaining time until a next engine oil change time regardless of the residual run determination explained above is determined.
  • the associated process part is illustrated in FIG. 2.
  • a start-up time t S is set in a step 9. This can be done depending on the type of driving, eg in the case of a gentle driving style twice the starting time as in the case of a highly stressful driving style.
  • the maximum predetermined starting time may be limited depending on regulatory requirements, for example, two years, to ensure engine oil change at least at certain prescribed intervals.
  • fictitious time increments t B are subsequently subtracted (step 10) to determine the still remaining time t R that is still present in each case, which are determined as follows.
  • the actual time t G is detected since the last oil change, for example, by counting up a day counter by the value of one per day.
  • This time period t G since the last oil change process is then multiplied in a subsequent step 12 with a time evaluation factor F Z to obtain the respective notional time increment t B.
  • the time evaluation factor F Z is defined in an associated method step 13 as the ratio of the sum of calculated fictitious distance increments dS i to the actually traveled distance S t during the remaining distance determination, which corresponds to an average value of the fictitious distance increments dS i determined per actual distance traveled.
  • a limitation of the time evaluation factor F Z may be provided to a predetermined range of values, for example, to the interval between 1 and 2, on the one hand to avoid unreasonably frequent oil changes and on the other hand too long oil change intervals. Within these possibly defined range limits, this part of the procedure realizes flexible time maintenance with regard to engine oil changes, eg between one year and two years, depending on the driving style.
  • the respectively determined residual maturity t R can be displayed to the driver in any desired manner.
  • the remaining runtime display can be combined with the remaining runway display, for example, so that primarily when reaching the relevant conditions mentioned above, an optical residual running indication. If the determined residual maturity t R has fallen below a predetermined warning threshold, an audible and / or optical time warning is triggered. From this point on, only the actual, unweighted time duration is subtracted from the remaining time remaining to provide the driver in turn with calculable information about the time of the engine oil change to be carried out soon.
  • the associated conversion factor can be on the order of 40.
  • the method described above represents the driver by means of a combined determination of the residual distance and the remaining time a comparatively reliable information about the time at which the next engine oil change taking into account the driving situations or driving styles since the last oil change is appropriate.
  • Example values are limited.
  • the expert also each for the determination of remaining distance or remaining time relevant motor operating variables suitable be selected or fixed. If necessary, the inventive Process also limited without remaining maturity determination be realized on the remaining distance determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Ermittlung von Motorölwartungszeitpunkten für einen Kraftfahrzeugmotor in Abhängigkeit von erfaßten Motorbetriebsparametern. Erfindungsgemäß wird laufend wenigstens ein motorölalterungsrelevanter Motorbetriebsparameter und die Anzahl von Motorumdrehungen erfaßt und basierend darauf eine fiktive Wegstrecke durch bewertendes Verknüpfen der erfaßten Motorumdrehungen mit von dem bzw. den erfaßten, motorölalterungsrelevanten Motorbetriebsparametern abhängigen Bewertungsfaktoren nach einer vorgebbaren Verknüpfungsbeziehung ermittelt. Daraus wird dann eine Restlaufstrecke bis zu einem nächsten Motorölwartungszeitpunkt berechnet, indem die ermittelte fiktive Wegstrecke von einem vorgegebenen Gesamtstreckenpotential substrahiert wird.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Ermittlung von Motorölwartungszeitpunkten für einen Kraftfahrzeugmotor in Abhängigkeit von erfaßten Motorbetriebsparametern nach dem Oberbegriff des Anspruchs 1.
In der Patentschrift DE 40 38 972 C1 ist ein Verfahren zur Ermittlung von Motorölwartungszeitpunkten für einen Kraftfahrzeugmotor in Abhängigkeit von erfaßten Motorbetriebsparametern beschrieben, bei dem der Wartungszeitpunkt anhand verschiedener erfaßter Betriebswerte, wie Startanzahl, Kurbelwellenumdrehungen, Fahr- und Standzeiten, Motortemperatur, Motoröldruck, Ladeluftdruck, Ölverbrauch und Kraftstoffverbrauch nach einem dort nicht näher angegebenen Algorithmus ermittelt und zur Anzeige gebracht wird, z.B. über eine Leuchtdiodenkette oder eine Digitalanzeige. Bei dem dortigen Verfahren werden Motoröl-Nachfüllvorgänge bei der Berechnung des Wartungszeitpunktes dadurch berücksichtigt, daß der Zeitpunkt einmalig um einen definierten Zeitraum bzw. eine definierte Kilometerleistung hinausgeschoben wird, wobei die Ölnachfüllmenge quantitativ erfaßt werden kann. Verfahren zur selbsttätigen Motorölmengenbestimmung, wie sie in der Offenlegungsschrift DE 44 29 234 A1 und der deutschen Patentanmeldung Nr. 196 02 599.0 offenbart sind, erlauben eine sehr zuverlässige Bestimmung der momentan vorhandenen Motorölmenge selbst im laufenden Fahrbetrieb, so daß damit der Ölverbrauch und die während Ölwechseln oder Ölnachfüllvorgängen eingefüllten Ölmengen zuverlässig erfaßt werden können.
In der Offenlegungsschrift EP 0 231 055 A2 ist ein Verfahren der eingangs genannten Art beschrieben, bei dem die Motoröltemperatur als einziger motorölalterungsrelevanter Motorbetriebsparameter laufend erfaßt und zur Bewertung der erfaßten Motorumdrehungen herangezogen wird, was dort durch einen "Straffaktor" erfolgt. Dieser Straffaktor hat in einem günstigen Motoröltemperaturbereich den Wert eins und steigt von dort aus sowohl für tiefere als auch für höhere Motoröltemperaturen auf größere Werte an, mit der Folge, daß das tatsächliche Gesamtstreckenpotential bis zu einer nächsten Motorölwechselempfehlung höchstens gleich groß und in aller Regel deutlich kleiner ist als das jeweils anfänglich vorgegebene Gesamtstreckenpotential.
Schließlich ist aus der EP 0 191 458 A1 ein Verfahren zur Ermittlung von Motorölwartungszeitpunkten für ein Kraftfahrzeugmotor in Abhängigkeit von erfaßten Motorbetriebsparametern bekannt. Hierbei werden laufend die Motorumdrehungen und zumindest ein motorölalterungsrelevanter Motorbetriebsparameter, zum Beispiel die Motorlast oder die Öltemperatur, laufend erfaßt. Durch bewertendes Verknüpfen der erfaßten Motorumdrehungen mit von dem wenigstens einen motorölalterungsrelevanten Motorbetriebsparameter abhängigen Bewertungsfaktoren wird daraus eine fiktive Wegstrecke ermittelt. Anschließend wird durch Subtrahieren dieser fiktiven Wegstrecke von einem vorgegebenen Gesamtstreckenpotential eine Restlaufstrecke bis zu einem nächsten Motorölwartungszeitpunkt berechnet und ein entsprechendes Signal ausgegeben.
Der Erfindung liegt als technisches Problem die Bereitstellung eines verbesserten Verfahrens der eingangs genannten Art zugrunde, mit dem sich der Zeitpunkt, zu dem eine Motorölwartung und damit ein Motorölwechsel für einen Kraftfahrzeugmotor zweckmäßig ist, vergleichsweise zuverlässig ermitteln läßt.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Verfahrens mit den Merkmalen des Anspruchs 1. Bei diesem Verfahren werden laufend die Motoröltemperatur und die Motorlast, sowie optional der Kraftstoffverbrauch als motorölalterungsrelevante Motorbetriebsparameter sensorisch erfaßt. Des weiteren werden die erfolgten Motorumdrehungen erfaßt. Unter dem Begriff Motorumdrehungen sollen hier allgemein die Umdrehungen einer Kurbelwelle des Motors verstanden werden, die sich beispielsweise aus der gemessenen Motordrehzahl bestimmen lassen. Anhand abgelegter Kennlinien für Bewertungsfaktoren, die von den motorölalterungsrelevanten Motorbetriebsparametern abhängen, werden die erfaßten Motorumdrehungen durch Multiplikation mit den Bewertungsfaktoren in eine fiktive Wegstrecke umgerechnet. Die Bewertungsfaktor-Kennlinien können z.B. anhand empirischer Erfahrungswerte und/ oder der dem Fachmann geläufigen, grundsätzlichen Überlegungen hinsichtlich der Einflüsse der verschiedenen Motorbetriebsparameter auf die Alterung des Motoröls bestimmt werden.
Durch Subtraktion dieser fiktiven Wegstrecke von einem vorgegebenen Gesamtstreckenpotential wird dann die Restlaufstrecke bis zu einem nächsten Motorölwartungszeitpunkt berechnet. Es zeigt sich, daß diese Art der Ermittlung des Motorölwartungszeitpunktes mittels Bewertung der Umdrehungen des Kraftfahrzeugmotors in Abhängigkeit vom jeweiligen Motorbetriebszustand eine sehr zuverlässige Vorausschätzung der angemessenen Motorölgebrauchsdauer darstellt.
Beim Verfahren nach Anspruch 2 ist speziell vorgesehen, das Gesamtwegstreckenpotential variabel in Abhängigkeit von der direkt nach einem vorangegangenen Ölwechsel vorliegenden Ölmenge und/oder von während Ölnachfüllvorgängen nachgefüllten Ölmengen vorzugeben. Damit läßt sich berücksichtigen, daß das Gesamtwegstreckenpotential zum einen für eine geringere Ölwechselmenge kleiner ist und zum anderen im Fall von Ölnachfüllvorgängen in Abhängigkeit von deren Zeitpunkten und dem jeweiligen Anteil der frisch zugegebenen Ölmenge erhöht werden kann.
Beim Verfahren nach Anspruch 3 erfolgt zusätzlich zur Restlaufstreckenberechnung eine davon unabhängige Berechnung einer Restlaufzeit bis zu einem nächsten Motorölwartungszeitpunkt durch Subtraktion einer ermittelten fiktiven Ölgebrauchsdauer von einer vorgegebenen Startlaufzeit. Dabei wird die fiktive Ölgebrauchsdauer durch Verknüpfen der tatsächlichen Gebrauchsdauer seit einem vorangegangenen Ölwechsel mit einem Zeitbewertungsfaktor bestimmt, der vom Verhältnis der ermittelten fiktiven Wegstrecke zur tatsächlich zurückgelegten Wegstrecke abhängt. Damit kann eine flexible Zeitwartung hinsichtlich Motorölwechseln in Abhängigkeit von der Fahrweise realisiert werden. Diese Vorgehensweise trägt zudem der Tatsache Rechnung, daß das Motoröl auch bei geringen Fahrleistungen in gewissem Umfang altert, was fahrleistungsunabhängige Motorölwechselvorgänge spätestens nach bestimmten Maximalgebrauchsdauern zweckmäßig macht.
Eine vorteilhafte Ausführungsform der Erfindung ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben. Hierbei zeigen:
Fig. 1
ein schematisches Flußdiagramm eines Verfahrens zur Ermittlung von Motorölwartungszeitpunkten für einen Kraftfahrzeugmotor mit Restlaufstreckenberechnung und
Fig. 2
ein schematisches Flußdiagramm eines für das Verfahren gemäß Fig. 1 zusätzlich vorsehbaren Verfahrensteils zur Restlaufzeitberechnung.
Das in den beiden Figuren in seinem Ablauf schematisch veranschaulichte Verfahren ermöglicht eine vergleichsweise zuverlässige Vorausschätzung eines jeweils nächsten, günstigen Motorölwechselzeitpunktes für einen Kraftfahrzeugmotor. In einem ersten Schritt 1 wird zunächst ein Ur-Streckenpotential Su vorgegeben, z.B. in Form einer Fahrstreckenlänge von 15000km. In einem nächsten Schritt 2 wird ein Anfangsstreckenpotential Sa durch Multiplikation des Ur-Streckenpotentials Su mit einem oder vorzugsweise mehreren Qualitätsfaktoren Qi bestimmt. Derartige Qualitätsfaktoren Qi können sich z.B. auf die Qualität des verwendeten Motoröls, auf den verwendeten Motortyp, auf den verwendeten Kraftstoff, auf das Einsatzland, auf bestehende behördliche Vorschriften und auf einen Reservefaktor beziehen. Anschließend wird aus diesem Anfangsstreckenpotential Sa ein korrigiertes Anfangsstreckenpotential Sak dadurch bestimmt, daß ersteres mit einem Ölwechselfaktor FW multipliziert wird, der angibt, welche Ölmenge bei einem vorangegangenen Ölwechsel tatsächlich eingefüllt wurde (Schritt 3). Die betreffende Ölwechselmenge läßt sich beispielsweise im Anschluß an einen Ölwechselvorgang durch das in der oben zitierten deutschen Patentanmeldung Nr. 196 02 599.0 beschriebene Verfahren sehr zuverlässig ermitteln. Der Ölwechselfaktor FW kann beispielsweise durch das Verhältnis der eingefüllten Ölwechselmenge zu einer standardisierten Normfüllmenge gebildet sein.
In einem nächsten Schritt 4 erfolgt die Ermittlung eines Gesamtstreckenpotentials SG aus dem korrigierten Anfangsstreckenpotential Sak unter Berücksichtigung von eventuellen zwischenzeitlichen Ölnachfüllvorgängen, bei denen verbrauchtes Öl ganz oder teilweise durch frisches Motoröl ersetzt wurde. Dazu wird das korrigierte Anfangsstreckenpotential Sak mit einem Ölnachfüllfaktor FN multipliziert, der den Wert eins besitzt, solange keine Ölnachfüllung erfolgt ist, und der sich mit jedem Nachfüllvorgang in einer vorgebbaren Weise erhöht. Die diesen Faktor FN erhöhenden Inkremente sind so gewählt, daß sie mit größer werdender Ölnachfüllmenge ansteigen und mit zunehmender Zeitdauer bzw. zurückgelegter Wegstrecke seit dem letzten Ölwechsel bei gleicher Nachfüllmenge abnehmen. Dies berücksichtigt die Tatsache, daß eine wachsende Menge an frisch nachgefülltem Öl den Alterszustand des insgesamt vorliegenden Öls zunehmend herabsetzt und daß eine jeweilige Ölnachfüllmenge, die einer bereits stärker gealterten Restölmenge zugegeben wird, einen geringeren Ölauffrischungseffekt bewirkt als bei Zugabe zu einer noch nicht so stark gealterten Restölmenge. Auch diese Ölnachfüllmengen können durch das in der oben genannten deutschen Patentanmeldung beschriebene Verfahren sehr zuverlässig ermittelt werden, und zwar auch im laufenden Fahrbetrieb.
Vom solchermaßen bestimmten Gesamtstreckenpotential SG werden nun laufend fiktive Wegstreckenlängen dSi subtrahiert, die wie folgt ermittelt werden. In einem Schritt 5 werden drei Bewertungsfaktoren gewonnen, und zwar ein Öltemperatur-Bewertungsfaktor BT, ein Motordrehzahl-Bewertungsfaktor Bn und ein Motorlast-Bewertungsfaktor BL. Dazu werden die betreffenden Motorbetriebsgrößen direkt oder indirekt sensorisch laufend erfaßt und daraus die drei Bewertungsfaktoren BT, Bn, BL anhand zugehöriger Kennlinien gewonnen. Bei Bedarf kann als weiterer motorölalterungsrelevanter Motorbetriebsparameter der Kraftstoffverbrauch berücksichtigt werden, wobei diese Information in modernen Motorelektroniksystemen meist ohnehin bereits zur Verfügung steht. Es wird dann ein zusätzlicher Kraftstoffverbrauchs-Bewertungsfaktor anhand einer entsprechenden Kennlinie ermittelt. Außerdem wird laufend die Anzahl von erfolgten Motorumdrehungen UM, d.h. Kurbelwellenumdrehungen, erfaßt. In einem nächsten Schritt 6 erfolgt dann eine Bewertung der Motorumdrehungen UM dadurch, daß die innerhalb eines vorgegebenen, tatsächlich zurückgelegten Wegstreckenintervalls von z.B. jeweils einem Kilometer erfaßten Motorumdrehungen aufsummiert und mit den aktuellen Werten der Bewertungsfaktoren multipliziert werden. Die so gewonnene, bewertete Motorumdrehungsanzahl Ub pro zurückgelegtem Wegstreckenintervall wird dann in einem anschließenden Schritt 7 mittels eines geeigneten Umrechnungsfaktors Fu in eine fiktive Wegstrecke dSi umgerechnet, die ein Maß für die Belastung des Motoröls während des jeweils zugehörigen, tatsächlich gefahrenen Wegstrekkenintervalls ist.
Je nach Fahrsituation liegt die fiktive Wegstrecke z.B. etwa zwischen dem 0,5-fachen und dem 3-fachen des vorgegebenen, tatsächlich befahrenen Wegstreckenintervalls. Bei Bedarf kann auch eine Begrenzung dieser fiktiven Wegstreckenintervalle dSi auf einen derartigen vorgegebenen Wertebereich vorgesehen sein. Außerdem kann eine separate Ermittlung der fiktiven Wegstreckeninkremente dSi für Fahrzeuggeschwindigkeiten unterhalb einer vorgegebenen, niedrigen Geschwindigkeitsschwelle zur Berücksichtigung von Leerlaufzuständen vorgesehen sein, bei denen z.B. das jeweilige fiktive Wegstreckeninkrement auf die Länge des vorgegebenen, tatsächlich gefahrenen Wegstreckenintervalls begrenzt wird, wenn die anderweitige Ermittlungsmethode zu einem höheren Wert führen würde.
Nachdem das Fahrzeug jeweils die Weglänge eines vorgegebenen Wegstreckenintervalls von z.B. 1km zurückgelegt hat, was durch eine entsprechende, ohnehin im Fahrzeug vorhandene Fahrstreckenmeßeinrichtung erfaßt wird, wird das zugehörige fiktive Wegstreckeninkrement dSi vom Gesamtstreckenpotential SG zur Ermittlung der jeweils noch verbleibenden Restlaufstrecke SR subtrahiert (Schritt 8). Die Restlaufstrecke SR gibt dann die Weglänge an, die mit dem Fahrzeug noch zurückgelegt werden kann, bevor ein nächster Motorölwechsel durchgeführt werden sollte.
Der Fahrzeugführer kann in einer beliebigen, gewünschten Weise vom jeweiligen Wert der Restlaufstrecke SR über eine geeignete Anzeige informiert werden. Dabei kann z.B. eine automatische optische Anzeige der Restlaufstrecke vorgesehen sein, wenn diese einen Warnschwellwert unterschreitet, der abhängig von der durchschnittlichen täglichen Laufleistung des Fahrzeugs vorgegeben sein kann. Des weiteren kann vorgesehen sein, keine Bewertung der Motorumdrehungen und damit keine Ermittlung fiktiver Wegstreckenabschnitte mehr vorzunehmen, wenn die Restlaufstrecke einen diesbezüglich vorgebbaren Schwellwert von z.B. 500km unterschritten hat, sondern ab dann die tatsächlich gefahrene Wegstrecke von der verbliebenen Restlaufstrecke abzuziehen. Dadurch wird dem Fahrzeugführer kurz vor erforderlichen Ölwechseln eine kalkulierbare Restlaufstrecke ohne Bewertungseinflüsse angezeigt.
Bei Bedarf kann ein zulässiger Wertebereich für die jeweils verbliebene Restlaufstrecke in Abhängigkeit von der tatsächlich gefahrenen Wegstrecke vorgegeben werden, wobei die jeweils ermittelte Restlaufstrecke bei Überschreitung einer Bereichsgrenze auf selbige begrenzt gehalten wird. Beispielsweise können ein unterer Bereichsendwert als Differenz zwischen anfänglichem Streckenpotential und der tatsächlich gefahrenen Wegstrecke seit dem letzten Ölwechsel und ein oberer Bereichsendwert als Produkt eines vorgegebenen minimalen fiktiven Wegstreckeninkrementes pro tatsächlich gefahrenem Wegstreckenintervall mit der Differenz des Doppelten des anfänglichen Streckenpotentials und der seit dem letzten Ölwechsel tatsächlichen gefahrenen Wegstrecke vorgegeben werden.
Parallel zur oben beschriebenen Restlaufstreckenermittlung beinhaltet das gezeigte Verfahrensbeispiel eine Restlaufzeitbestimmung, mit der die Restlaufzeit bis zu einem nächsten Motorölwechselzeitpunkt unabhängig von der oben erläuterten Restlaufstreckenbestimmung ermittelt wird. Der zugehörige Verfahrensteil ist in Fig. 2 veranschaulicht.
Zunächst wird in einem Schritt 9 eine Startlaufzeit tS festgelegt. Dies kann fahrweisenabhängig erfolgen, z.B. im Fall einer schonenden Fahrweise eine doppelt so hohe Startlaufzeit wie im Fall einer stark belastenden Fahrweise. Die maximal vorgegebene Startlaufzeit kann abhängig von behördlichen Vorschriften begrenzt sein, z.B. auf zwei Jahre, um Motorölwechsel wenigstens in bestimmten, vorgeschriebenen Zeitabständen sicherzustellen.
Von der solchermaßen festgelegten Startlaufzeit ts werden anschließend (Schritt 10) zur Ermittlung der jeweils noch vorhandenen Restlaufzeit tR laufend fiktive Zeitinkremente tB subtrahiert, die wie folgt ermittelt werden. Zunächst wird in einem diesbezüglichen Verfahrensschritt 11 die tatsächliche Zeitdauer tG seit dem letzten Ölwechsel erfaßt, beispielsweise durch Hochzählen eines Tageszählers um den Wert eins pro Tag. Diese Zeitdauer tG seit dem letzten Ölwechselvorgang wird dann in einem anschließenden Schritt 12 mit einem Zeitbewertungsfaktor FZ zur Gewinnung des jeweiligen fiktiven Zeitinkrementes tB multipliziert. Der Zeitbewertungsfaktor FZ wird in einem zugehörigen Verfahrensschritt 13 als das Verhältnis der Summe während der Restlaufstreckenbestimmung berechneten fiktiven Wegstreckeninkremente dSi zur tatsächlich zurückgelegten Wegstrecke St festgelegt, was einem Mittelwert der pro tatsächlich gefahrenem Wegstreckenintervall ermittelten fiktiven Wegstreckeninkremente dSi entspricht. Dabei kann eine Begrenzung des Zeitbewertungsfaktors FZ auf einen vorgegebenen Wertebereich vorgesehen sein, z.B. auf das Intervall zwischen 1 und 2, um einerseits unangemessen häufige Ölwechsel und andererseits zu lange Ölwechselintervalle zu vermeiden. Innerhalb dieser ggf. festgelegten Bereichsgrenzen realisiert dieser Verfahrensteil eine flexible Zeitwartung hinsichtlich Motorölwechseln, z.B. zwischen jeweils einem Jahr und zwei Jahren, in Abhängigkeit von der Fahrweise.
Die jeweils ermittelte Restlaufzeit tR kann dem Fahrzeugführer in einer beliebigen, gewünschten Weise angezeigt werden. Die Restlaufzeitanzeige kann dabei mit der Restlaufstreckenanzeige beispielsweise so kombiniert sein, daß primär bei Erreichen der diesbezüglichen, oben genannten Bedingungen eine optische Restlaufstreckenanzeige erfolgt. Wenn die ermittelte Restlaufzeit tR eine vorgegebene Warnschwelle unterschritten hat, wird eine akustische und/oder optische Zeitwarnung ausgelöst. Ab diesem Zeitpunkt wird nur noch die tatsächliche, unbewertete Zeitdauer von der verbliebenen Restlaufzeit subtrahiert, um dem Fahrer wiederum eine kalkulierbare Information über den Zeitpunkt des demnächst durchzuführenden Motorölwechsels an die Hand zu geben. Wenn zusätzlich die ermittelte Restlaufzeit multipliziert mit einem vorgebbaren Umrechnungsfaktor kleiner ist als die ermittelte Restlaufstrecke, ist es zweckmäßig, von der optischen Restlaufstreckenanzeige zu einer optischen Restlaufzeitanzeige überzugehen, da dann die Restlaufzeit und nicht die Restlaufstrecke der bestimmende Parameter für den günstigsten nächsten Motorölwechselzeitpunkt ist. Bei einer in Tagen gemessenen Restlaufzeit und einer in Kilometer gemessenen Restlaufstrecke kann der zugehörige Umrechnungsfaktor beispielsweise in der Größenordnung von 40 liegen.
Das vorstehend beschriebene Verfahren stellt dem Fahrzeugführer mittels einer kombinierten Ermittlung der Restlaufstrecke und der Restlaufzeit eine vergleichsweise zuverlässige Information über den Zeitpunkt zur Verfügung, zu dem der nächste Motorölwechsel unter Berücksichtigung der Fahrsituationen bzw. Fahrweisen seit dem letzten Ölwechsel zweckmäßig ist. Es versteht sich, daß die verschiedenen, oben erwähnten Parameter des erfindungsgemäßen Verfahrens je nach Anwendungsfall vom Fachmann geeignet festgelegt werden können, ohne daß sie auf die oben explizit angegebenen Beispielswerte beschränkt sind. Entsprechend können vom Fachmann auch die jeweils für die Bestimmung von Restlaufstrecke bzw. Restlaufzeit relevanten Motorbetriebsgrößen geeignet ausgewählt bzw. festgelegt werden. Bei Bedarf kann das erfindungsgemäße Verfahren auch ohne Restlaufzeitbestimmung beschränkt auf die Restlaufstreckenermittlung realisiert sein.

Claims (3)

  1. Verfahren zur Ermittlung von Motorölwartungszeitpunkten für einen Kraftfahrzeugmotor in Abhängigkeit von erfaßten Motorbetriebsparametern, bei dem
    als motorölalterungsrelevanter Motorbetriebsparameter die Motoröltemperatur und die Motorlast, sowie optional der Kraftstoffverbrauch, und die Motorumdrehungen laufend erfaßt werden,
    eine fiktive Wegstrecke (dSi) durch bewertendes Verknüpfen der erfaßten Motorumdrehungen mit von den motorölalterungsrelevanten Motorbetriebsparametern abhängigen Bewertungsfaktoren (BT, Bn, BL) anhand abgelegter Kennlinien multiplikativ ermittelt wird und
    eine Restlaufstrecke (SR) bis zu einem nächsten Motorölwartungszeitpunkt durch Subtrahieren der ermittelten fiktiven Wegstrecke von einem vorgegebenen Gesamtstreckenpotential (SG) berechnet wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Gesamtwegstreckenpotential (SG) als Produkt eines fest vorgebbaren Ur-Streckenpotentials (Su) mit einem oder mehreren Qualitätsfaktoren (Qi) und/oder mit Ölwechselund/oder Ölnachfüllfaktoren (FW, FN) vorgegeben wird, wobei die Ölwechsel- bzw. Ölnachfüllfaktoren in Abhängigkeit von der jeweiligen Ölwechselmenge bzw. Ölnachfüllmenge festgelegt werden.
  3. Verfahren nach Anspruch 1 oder 2,
    gekennzeichnet durch
    eine Restlaufzeitermittlung mit folgenden Schritten:
    Ermitteln einer fiktiven Ölgebrauchsdauer (tB) durch bewertendes Verknüpfen der tatsächlichen Ölgebrauchsdauer (tG) mit einem vom Verhältnis der ermittelten fiktiven Wegstrecke (dSi) zur tatsächlich zurückgelegten Wegstrecke (St) abhängigen Zeitbewertungsfaktor (FZ) und
    Berechnen einer Restlaufzeit (tR) bis zu einem nächsten Motorölwartungszeitpunkt durch Subtraktion der ermittelten fiktiven Ölgebrauchsdauer (tB) von einer vorgegebenen Startlaufzeit (tS).
EP97954404A 1996-12-27 1997-12-15 Verfahren zur ermittlung von motorölwartungszeitpunkten für einen kraftfahrzeugmotor Expired - Lifetime EP0956433B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19654450A DE19654450A1 (de) 1996-12-27 1996-12-27 Verfahren zur Ermittlung von Motorölwartungszeitpunkten für einen Kraftfahrzeugmotor
DE19654450 1996-12-27
PCT/EP1997/007040 WO1998029642A1 (de) 1996-12-27 1997-12-15 Verfahren zur ermittlung von motorölwartungszeitpunkten für einen kraftfahrzeugmotor

Publications (2)

Publication Number Publication Date
EP0956433A1 EP0956433A1 (de) 1999-11-17
EP0956433B1 true EP0956433B1 (de) 2003-05-14

Family

ID=7816274

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97954404A Expired - Lifetime EP0956433B1 (de) 1996-12-27 1997-12-15 Verfahren zur ermittlung von motorölwartungszeitpunkten für einen kraftfahrzeugmotor

Country Status (5)

Country Link
US (1) US6266587B1 (de)
EP (1) EP0956433B1 (de)
JP (1) JP3493583B2 (de)
DE (2) DE19654450A1 (de)
WO (1) WO1998029642A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523336C2 (sv) * 1999-04-19 2004-04-13 Volvo Personvagnar Ab Förfarande och arrangemang för begränsning av styrbara driftsparametrar vid en motor
US6327900B1 (en) * 1999-12-20 2001-12-11 General Motors Corporation Oil life monitor for diesel engines
JP3910006B2 (ja) * 2000-07-12 2007-04-25 本田技研工業株式会社 車輌におけるオイル交換時期表示装置
JP2002213271A (ja) * 2001-01-19 2002-07-31 Mitsubishi Heavy Ind Ltd ガスヒートポンプ式空気調和機
US7636623B2 (en) * 2003-06-03 2009-12-22 The Cobalt Group, Inc. Method and system of managing service reminders and scheduling service appointments using mileage estimates and recommended recall bulletins
JP4409927B2 (ja) * 2003-12-09 2010-02-03 本田技研工業株式会社 自動変速機の作動油交換表示装置
US20070046149A1 (en) * 2005-08-23 2007-03-01 Zipparo Michael J Ultrasound probe transducer assembly and production method
DE102006038968A1 (de) * 2006-08-21 2008-02-28 Siemens Ag Verfahren zur Überwachung des Zustands eines Motorenöls in einem Verbrennungsmotor
US8050814B2 (en) * 2007-03-15 2011-11-01 GM Global Technology Operations LLC Apparatus and method for determining remaining transmission oil life
US7808157B2 (en) * 2007-03-30 2010-10-05 Gore Enterprise Holdings, Inc. Ultrasonic attenuation materials
FR2935431B1 (fr) * 2008-08-29 2010-09-17 Peugeot Citroen Automobiles Sa Stategie de controle de la qualite du lubrifiant d'un moteur diesel.
KR20110011442A (ko) 2009-07-28 2011-02-08 콘티넨탈 오토모티브 시스템 주식회사 자동변속기오일 교체 시기 판단 시스템 및 자동변속기오일 교체 시기 판단 방법
US8392054B2 (en) 2010-08-17 2013-03-05 GM Global Technology Operations LLC Automatic engine oil life determination adjusted for volume of oil exposed to a combustion event
US8482420B2 (en) * 2010-08-17 2013-07-09 GM Global Technology Operations LLC Method of monitoring oil in a vehicle
US8710973B2 (en) * 2010-08-18 2014-04-29 GM Global Technology Operations LLC Automatic engine oil life determination with a factor for oil quality
US9280856B2 (en) * 2011-11-22 2016-03-08 Ford Global Technologies, Llc Method and apparatus for estimating replacement of vehicle engine oil
FR2989726B1 (fr) * 2012-04-20 2014-05-02 Peugeot Citroen Automobiles Sa Procede de controle d'une qualite d'un lubrifiant d'un moteur a combustion interne
FR2996192B1 (fr) * 2012-10-02 2015-05-01 Eurodrive Services And Distrib N V Procede de determination de l'etat d'usure d'une piece et d'information d'un client
JP6101217B2 (ja) * 2014-01-14 2017-03-22 本田技研工業株式会社 車両の作動油劣化推定装置
US20150254719A1 (en) * 2014-03-05 2015-09-10 Hti, Ip, L.L.C. Prediction of Vehicle Transactions and Targeted Advertising Using Vehicle Telematics
FR3021352A1 (fr) * 2014-05-20 2015-11-27 Peugeot Citroen Automobiles Sa Procede de maintenance d'une huile d'un moteur a combustion interne.
WO2017013845A1 (ja) * 2015-07-17 2017-01-26 パナソニックIpマネジメント株式会社 オイル寿命検出装置及びオイル寿命検出方法
US9988954B2 (en) 2016-06-30 2018-06-05 Ford Global Technologies, Llc System and method for reducing engine oil dilution
CN106224054B (zh) * 2016-08-29 2018-12-14 潍柴动力股份有限公司 一种机油液位测量方法及电子控制单元
CN107524493B (zh) * 2017-09-07 2019-10-29 台州滨海吉利发动机有限公司 一种控制机油乳化及燃油稀释的方法及装置
US11339693B2 (en) * 2018-07-11 2022-05-24 Wärtsilä Finland Oy Apparatus, device and computer implemented method for determining remaining life of engine oil in engine
JP2021032188A (ja) * 2019-08-28 2021-03-01 三菱自動車工業株式会社 エンジンオイルの劣化判定装置及び劣化判定方法
KR20210150814A (ko) * 2020-06-04 2021-12-13 현대자동차주식회사 엔진 오일 열화 감지 방법 및 시스템
CN113954688B (zh) * 2020-07-01 2024-01-23 广汽埃安新能源汽车有限公司 一种电动汽车续驶里程估算方法及系统
JP7367633B2 (ja) * 2020-08-04 2023-10-24 トヨタ自動車株式会社 内燃機関のオイル劣化判定装置
CN115263587B (zh) * 2021-04-29 2023-10-20 三一汽车制造有限公司 作业机械的发动机维保提示方法、装置和电子设备
CN113468241A (zh) * 2021-06-29 2021-10-01 三一汽车起重机械有限公司 机油保养提醒方法、装置、电子设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706193A (en) * 1985-02-12 1987-11-10 Nissan Motor Company, Limited Oil degradation warning system
US4742476A (en) * 1986-01-27 1988-05-03 General Motors Corporation Automatic engine oil change indicator system
FR2625769B1 (fr) * 1988-01-08 1990-07-06 Jaeger Dispositif de surveillance d'usure d'huile
US4862393A (en) 1988-01-12 1989-08-29 Cummins Engine Company, Inc. Oil change interval monitor
DE4038972C1 (de) 1990-12-06 1991-11-07 Man Nutzfahrzeuge Ag, 8000 Muenchen, De
US5382942A (en) * 1993-07-06 1995-01-17 Ford Motor Company Engine oil monitoring system having an in-vehicle display of the current status of the oil
DE4429234C2 (de) * 1994-02-21 1997-04-24 Daimler Benz Ag Verfahren zur Ermittlung des Ölverbrauchs eines Motors
DE19548260A1 (de) * 1995-12-22 1997-07-03 Audi Ag Verfahren zur Bestimmung des Ölwechselintervalls einer Brennkraftmaschine sowie Vorrichtung zur Durchführung des Verfahrens
DE19633189C2 (de) * 1996-08-17 1998-12-24 Daimler Benz Ag Verfahren zur Erkennung von Ölnachfüllmengen

Also Published As

Publication number Publication date
DE59710099D1 (de) 2003-06-18
JP2000508404A (ja) 2000-07-04
EP0956433A1 (de) 1999-11-17
WO1998029642A1 (de) 1998-07-09
JP3493583B2 (ja) 2004-02-03
US6266587B1 (en) 2001-07-24
DE19654450A1 (de) 1998-07-02

Similar Documents

Publication Publication Date Title
EP0956433B1 (de) Verfahren zur ermittlung von motorölwartungszeitpunkten für einen kraftfahrzeugmotor
DE19602599C2 (de) Verfahren zur Bestimmung einer Flüssigkeitsmenge, insbesondere der Motorölmenge, in einem Kraftfahrzeug
DE3540806C2 (de)
DE3110774C2 (de)
DE10063250B4 (de) Überwachung der Lebensdauer von Öl für Dieselmotoren
DE19612062B4 (de) Anzeigeeinheit für vom Energieverbrauch eines Fahrzeuges abhängige Daten
EP0023283B1 (de) Anordnung zur Gewinnung einer Aussage bezüglich eines wirtschaftlichen und/oder unwirtschaftlichen Betriebes eines Kraftfahrzeuges
EP2148182B1 (de) Verfahren zur Beurteilung der Fahrbarkeit von Fahrzeugen
EP2731822B1 (de) Verfahren zur ermittlung der restreichweite eines kraftfahrzeugs
EP1397274B1 (de) Verfahren zur festlegung von zeitpunkt und umfang von wartungsvorgängen
DE19810033A1 (de) Anordnung zur Überwachung des Verschleißzustandes einer Reibungskupplung
EP0916959A2 (de) Verfahren zur Bestimmung der Startfähigkeit der Starterbatterie eines Kraftfahrzeugs
DE3142579A1 (de) Festbereichs-anzeigesystem zur verwendung in einer fahrtrouten-anzeigevorrichtung fuer fahrzeuge
DE3237407C2 (de) Anzeigevorrichtung für Kraftfahrzeuge
EP2625082A1 (de) Verfahren und informationssystem zur information eines fahrzeugführers über bedingungen eines geplanten überholvorganges
WO1997011345A1 (de) Verfahren zur verbrennungsaussetzererkennung durch auswertung von drehzahlschwankungen
DE2411549A1 (de) Vorrichtung zur kontrolle von sich laengs einer vorbestimmten bahn bewegenden fahrzeugen
EP0653730B1 (de) Verfahren und Vorrichtung zur Bewertung der Fahrweise mit einem Kraftfahrzeug
EP0628799B1 (de) Verfahren zur Erfassung und Auswertung der Emissionen von Anlagen
DE102012004794B4 (de) Verfahren zum Überwachen der Ölqualität einer Brennkraftmaschine
DE102005043702B4 (de) Verfahren zur Messung und Anzeige eines Motorölfüllstandes in einem Fahrzeug
DE3621842C2 (de)
DE102004040351A1 (de) Verfahren zum Klassifizieren von Streckenabschnitten, zugehöriges Verfahren und Vorrichtung zur Getriebesteuerung für ein Fahrzeug
DE102018005239A1 (de) Verfahren für einen Belastungstest eines Fahrzeugs
EP1262760B1 (de) Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20010306

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710099

Country of ref document: DE

Date of ref document: 20030618

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041206

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041209

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041213

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051215

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051216

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130228

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710099

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710099

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701