EP1262760B1 - Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine - Google Patents

Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine Download PDF

Info

Publication number
EP1262760B1
EP1262760B1 EP02010021A EP02010021A EP1262760B1 EP 1262760 B1 EP1262760 B1 EP 1262760B1 EP 02010021 A EP02010021 A EP 02010021A EP 02010021 A EP02010021 A EP 02010021A EP 1262760 B1 EP1262760 B1 EP 1262760B1
Authority
EP
European Patent Office
Prior art keywords
signal
viscosity
filling level
values
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02010021A
Other languages
English (en)
French (fr)
Other versions
EP1262760A1 (de
Inventor
Stefan Hubrich
Michael Pulvermüller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
Conti Temic Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic GmbH filed Critical Conti Temic Microelectronic GmbH
Publication of EP1262760A1 publication Critical patent/EP1262760A1/de
Application granted granted Critical
Publication of EP1262760B1 publication Critical patent/EP1262760B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/06Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by timing the outflow of a known quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M2011/14Indicating devices; Other safety devices for indicating the necessity to change the oil
    • F01M2011/148Indicating devices; Other safety devices for indicating the necessity to change the oil by considering viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2200/00Condition of lubricant
    • F16N2200/12Viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties

Definitions

  • the invention relates to a method for determining the viscosity of a working fluid of an internal combustion engine according to the preamble of claim 1.
  • Such a method is known from DE 195 18 776 A1.
  • a method is described to determine the viscosity of a working fluid from the time course of changes in the filling level of the operating fluid.
  • the viscosity of the engine oil is determined after switching off an internal combustion engine by measuring the time course of the level height of the engine oil. The return of the engine oil into the reservoir volume occurs with a time delay after stopping the engine as a function of the viscosity.
  • the viscosity of the engine oil is generally dependent on its temperature.
  • the measurement of the viscosity according to the known method is also influenced by other variables.
  • a high dynamic load of the internal combustion engine in a period immediately before stopping can lead to a foaming of the engine oil.
  • the resulting slower change in the level after shutdown then falsified the actual measurement.
  • an objective measured variable for the dynamic load of the internal combustion engine can not be determined in a simple manner.
  • a further disadvantage is the fact that the electronic modules required for the measurement still have to be actively operated for the required time after switching off the internal combustion engine.
  • the object of the invention is to provide a method for determining the viscosity of an operating fluid of an internal combustion engine by means of the measurement of the level height, which provides an accurate result with a few measured variables and which takes place during operation of the internal combustion engine.
  • a first signal that corresponds to the time course of the level and a second signal that corresponds to the time profile of a state of the vehicle the influence on the measured level height of Operating fluid has.
  • the first and the second signal are then fed to a filtering, which allows an evaluation of the signals in terms of their dynamics.
  • a third and a fourth signal are generated, the third signal being the result of filtering the first and the fourth signal being the result of filtering the second.
  • the fourth signal is compared with a threshold value and, depending on the result of the comparison, a ratio of the fourth signal to the third signal is formed. The average over a plurality of values of the ratio of the fourth signal to the third signal corresponds to the viscosity of the working fluid.
  • the advantage of the invention is to combine already available sensor signals from in-series, proven sensor arrangements with each other and to determine therefrom as an additional characteristic viscosity.
  • the necessary computing power is taken over by standard control units.
  • the lateral acceleration of the vehicle is detected as a second signal.
  • the continuous measuring signal of the oil level sensor is linked to the continuous signal of the lateral acceleration sensor.
  • the detection of the measured values of the first and second signal preferably takes place at a rate of approximately 1 to 1.5 / s. This measurement rate is sufficiently large to make reliable statements about the viscosity and sufficiently small to not generate too large amounts of data.
  • a sliding standard deviation is preferably formed over a first number of values.
  • the third and fourth signal form the output of the filtering.
  • the sliding standard deviation provides a good statement about the dynamics of the signals with relatively simple statistical methods.
  • the number of values for determining the sliding standard deviation is in the range of 5 to 100. A value of 15 has proven to be particularly advantageous in a series of measurements.
  • the formation of the mean value of the ratio of the fourth signal to the third signal advantageously takes place over approximately 50 to 300 values.
  • a particularly advantageous embodiment of the method relates to the determination of the viscosity of an engine of a motor vehicle.
  • the QLT oil level sensor from Temic which is already in production today, provides a continuous level signal.
  • the information of the present lateral acceleration is provided by a lateral acceleration sensor of the ESP or chassis control system.
  • the level signal changes depending on the driving condition, especially at transverse accelerations causes the centrifugal force a different instantaneous level on both sides of the oil pan.
  • These dynamic level differences are more pronounced with decreasing viscosity (less viscous), i. Tough oil shows less pronounced level differences when cornering like thin oil.
  • If one carries both sensor information together e.g. in the engine control unit, it is possible to make a defined evaluation of the level change as a function of the lateral acceleration, which allows a statement about the viscosity of the oil viscosity.
  • Figure 1 shows a diagram with the time course of oil temperature, lateral acceleration and level height of a test drive. At the beginning of the measurement, it can be seen that at low temperatures, the viscosity of the engine oil is still so high that even large lateral accelerations only exert a barely perceptible influence on the measured fill level. This influence increases with increasing temperature of the engine oil and is then finally pronounced at normal operating temperature.
  • Filtering in this context is to be understood in general as any signal conditioning that allows an evaluation in terms of dynamics.
  • the filtered signals are set in relation to each other as soon as the value for the signal whose size is causally responsible for the change in the fill level - here the lateral acceleration - is above a predetermined threshold K.
  • the average over a plurality of these ratio values substantially corresponds to the viscosity of the engine oil.
  • FIG. 3 shows a flow chart of the method.
  • the measurement of the oil level H and the lateral acceleration Q It has been found to be sufficient if the sampling of the signals, or the detection of the measured values at a rate of about 1 to 1.5 / s.
  • the standard sliding normal distribution SNV is calculated for both signals SNV (Q), SNV (H) over a predetermined number of n values.
  • the number n 15 has proved to be advantageous. In practice, depending on the application, n can be selected from a wide range of about 5 to 100.
  • the standard sliding normal distribution of the lateral acceleration SNV (Q) is compared with a threshold K.
  • the calculation of the viscosity can also take place directly in the oil level sensor by means of a corresponding arrangement, if the data of the acceleration sensor can also be accessed there. Normally, the data is recorded and evaluated in a central control unit. The calculated viscosity is finally sent via an interface to a diagnostic device or evaluated by an onboard diagnostic device in the motor vehicle.
  • the longitudinal acceleration or the engine speed instead of the lateral acceleration can also be used as output variable. Both sizes also cause a change in the level of the engine oil level, its influence on the change in turn depends on the viscosity.
  • the signal for the longitudinal acceleration the measured filling level height is influenced analogously to the lateral acceleration by movement of the oil in the oil pan.
  • the signal for the speed as an output variable, it is possible to use the fact that the oil quantity in the oil circuit changes as a function of the speed. Only the signal acquisition and the measurement and filter parameters have to be adjusted accordingly in order to be able to determine the viscosity of the oil in an analogous manner from these variables as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1.
  • Ein derartiges Verfahren ist aus der DE 195 18 776 A1 bekannt. Dort wird ein Verfahren beschrieben, um die Viskosität einer Betriebsflüssigkeit aus dem zeitlichen Verlauf von Änderungen der Füllstandshöhe der Betriebsflüssigkeit zu ermitteln. Bei diesem bekannten Verfahren wird die Viskosität des Motorenöls nach dem Abschalten einer Brennkraftmaschine durch Messung des zeitlichen Verlaufs der Füllstandshöhe des Motorenöls bestimmt. Die Rückkehr des Motorenöls in das Vorratsvolumen erfolgt mit einer Zeitverzögerung nach dem Abstellen des Motors in Abhängigkeit von der Viskosität. Neben dem zeitlichen Verlauf der Füllstandshöhe findet auch die Temperatur des Motorenöls Eingang in das bekannte Verfahren, da die Viskosität des Motorenöls im allgemeinen von seiner Temperatur abhängig ist.
  • Neben diesen auf einfache Weise zu messenden Größen wird die Messung der Viskosität nach dem bekannten Verfahren jedoch auch von weiteren Größen beeinflusst. So kann eine hohe dynamische Beanspruchung der Brennkraftmaschine in einem Zeitraum unmittelbar vor dem Abstellen zu einer Verschäumung des Motorenöls führen. Die daraus resultierende langsamere Änderung der Füllstandhöhe nach dem Abschalten verfälscht dann die eigentliche Messung. Eine objektive Messgröße für die dynamische Beanspruchung der Brennkraftmaschine ist aber nicht auf einfache Weise zu bestimmen.
  • Ein Abstellen der Brennkraftmaschine bei Schräglage des Fahrzeugs beeinträchtigt ebenfalls das Zurückfließen des Motorenöls in das Vorratsvolumen.
  • Ein weiterer Nachteil ist darin zu sehen, dass die für die Messung erforderlichen Elektronikmodule noch die erforderliche Zeit nach dem Abstellen der Brennkraftmaschine aktiv betrieben werden müssen.
  • Aufgabe der Erfindung ist es, ein Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine mit Hilfe der Messung der Füllstandshöhe anzugeben, das mit wenigen Messgrößen ein genaues Ergebnis liefert und das während des Betriebs der Brennkraftmaschine abläuft.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Die Ausgestaltung der Erfindung erfolgt gemäß den Merkmalen der abhängigen Ansprüche.
  • Bei dem Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine eines Fahrzeugs wird zunächst ein erstes Signal, das dem zeitlichen Verlauf der Füllstandshöhe entspricht, und ein zweites Signal erfasst, das dem zeitlichen Verlauf eines Zustands des Fahrzeugs entspricht, das Einfluss auf die gemessene Füllstandshöhe der Betriebsflüssigkeit hat. Das erste und das zweite Signal werden anschließend einer Filterung zugeführt, die eine Bewertung der Signale hinsichtlich ihrer Dynamik erlaubt. Als Ergebnis werden ein drittes und ein viertes Signal erzeugt, wobei das dritte Signal Ergebnis der Filterung des ersten und das vierte Signal Ergebnis der Filterung des zweiten ist. Anschließend wird das vierte Signal mit einem Schwellwert verglichen und in Abhängigkeit vom Ergebnis des Vergleichs ein Verhältnis des vierten Signals zum dritten Signal gebildet. Der Mittelwert über eine Vielzahl von Werten des Verhältnisses des vierten Signals zum dritten Signal entspricht der Viskosität der Betriebsflüssigkeit.
  • Der Vorteil der Erfindung besteht darin, bereits verfügbare Sensorsignale von in der Serie befindlichen, erprobten Sensoranordnungen miteinander zu kombinieren und daraus als zusätzliche Kenngröße die Viskosität zu ermitteln. Die hierfür notwendige Rechenleistung wird von Standardsteuergeräten übernommen.
  • In einer vorteilhaften Ausführungsform des Verfahrens wird als zweites Signal die Querbeschleunigung des Fahrzeugs erfasst wird. Das kontinuierliche Messsignal des Ölstandssensors wird mit dem kontinuierlichen Signal des Querbeschleunigungssensors verknüpft. Das Ergebnis führt zu einer Aussage über die Viskosität des Öles. Querbeschleunigungen werden für andere Systeme wie z.B. ESP regelmäßig erfasst.
  • Die Erfassung der Messwerte des ersten und zweiten Signals erfolgt vorzugsweise mit einer Rate von ca. 1 bis 1,5/s. Diese Messrate ist ausreichend groß um verlässliche Aussagen zur Viskosität zu machen und ausreichend klein um nicht zu große Datenmengen zu erzeugen.
  • Zur Filterung des ersten bzw. zweiten Signals wird vorzugsweise eine gleitende Standardabweichung über eine erste Anzahl von Werten gebildet. Das dritte bzw. vierte Signal bilden den Ausgang der Filterung. Die gleitende Standardabweichung liefert mit relativ einfachen statistischen Methoden eine gute Aussage über die Dynamik der Signale.
  • Dabei liegt die Anzahl der Werte zur Ermittlung der gleitenden Standardabweichung im Bereich von 5 bis 100. Ein Wert von 15 hat sich bei einer Reihe Messungen als besonders vorteilhaft herausgestellt.
  • Die Bildung des Mittelwerts des Verhältnisses des vierten Signals zum dritten Signal erfolgt Vorteilhafterweise über ca. 50 bis 300 Werte.
  • Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen und Figuren näher erläutert werden. Kurze Beschreibung der Figuren:
  • Figur 1
    zeigt ein Diagramm mit dem zeitlichen Verlauf von Öltemperatur, Querbeschleunigung und Füllstandshöhe einer Testfahrt.
    Figur 2
    zeigt ein Diagramm mit dem zeitlichen Verlauf von Öltemperatur, SNV(Q), SNV(H) und ermittelter Viskosität X der Testfahrt.
    Figur 3
    zeigt ein Ablaufdiagramm des Verfahrens.
  • Eine besonders vorteilhafte Ausführung des Verfahrens betrifft die Bestimmung der Viskosität eines Motors eines Kraftfahrzeugs.
  • Der bereits heute in Serie laufende QLT-Ölstandssensor der Firma Temic liefert ein kontinuierliches Füllstandssignal.
  • Die Information der vorliegenden Querbeschleunigung liefert ein Querbeschleunigungssensor des ESP- oder Fahrwerksregelungssystems.
  • Aufgrund der Dynamik des Öles in der Ölwanne ändert sich das Füllstandssignal in Abhängigkeit des Fahrzustandes, insbesondere bei Querbeschleunigungen bewirkt die Zentrifugalkraft einen unterschiedlichen momentanen Füllstand auf beiden Seiten der Ölwanne. Diese dynamischen Füllstandsunterschiede sind mit abnehmender Viskosität (dünnflüssiger) stärker ausgeprägt, d.h. zähes Öl zeigt weniger ausgeprägte Füllstandsunterschiede bei Kurvenfahrt wie dünnflüssiges Öl. Führt man beide Sensorinformationen zusammen z.B. im Motorsteuergerät, so lässt sich eine definierte Auswertung der Füllstandsänderung in Abhängigkeit der Querbeschleunigung machen, was eine Aussage über die Zähigkeit des Öles =Viskosität ermöglicht. Durch Nutzung der im Fahrzeug bereitgestellten Sensorsignale des Querbeschleunigungssensors und des QLT-Ölstandssensor lässt sich eine bisher nicht erfassbare zusätzliche Qualitätskenngröße (= Viskosität) ermitteln.
  • Figur 1 zeigt ein Diagramm mit dem zeitlichen Verlauf von Öltemperatur, Querbeschleunigung und Füllstandshöhe einer Testfahrt. Zu Beginn der Messung erkennt man, dass bei niederen Temperaturen die Viskosität des Motorenöls noch so hoch ist, dass auch große Querbeschleunigungen nur einen kaum wahrnehmbaren Einfluss auf die gemessene Füllstandshöhe ausüben. Dieser Einfluss wird mit steigender Temperatur des Motorenöls immer größer und ist dann schließlich bei normaler Betriebstemperatur deutlich ausgeprägt.
  • Um nun die beiden Signale in Relation zueinander zu setzen, werden sie zunächst einer Filterung zugeführt, die als Ergebnis ein Maß für die Dynamik der beiden Signale liefert. Unter Filterung ist in diesem Zusammenhang ganz allgemein jede Signalaufbereitung zu verstehen, die eine Bewertung hinsichtlich der Dynamik erlaubt.
  • Als vorteilhaft hat sich dafür die gleitende Standardnormalverteilung SNV über eine feste Anzahl von Messwerten erwiesen. In der Figur 2 sind die Verläufe der entsprechend gefilterten Signale der Querbeschleunigung SNV(Q) und der gemessenen Füllstandshöhe SNV(H) analog zur Figur 1 aufgetragen.
  • Anschließend werden die gefilterten Signale zueinander ins Verhältnis gesetzt, sobald der Wert für das Signal, dessen Größe für die Änderung der Füllstandshöhe ursächlich verantwortlich ist - hier die Querbeschleunigung -, über einem vorgegebenen Schwellwert K liegt. Der Mittelwert über eine Vielzahl dieser Verhältniswerte entspricht im wesentlichen der Viskosität des Motorenöls.
  • Die Figur 3 zeigt ein Ablaufdiagramm des Verfahrens. Zu Beginn erfolgt die Messung des Ölstands H und der Querbeschleunigung Q. Hierbei hat es sich als ausreichend erwiesen, wenn die Abtastung der Signale, bzw. die Erfassung der Messwerte mit einer Rate von ca. 1 bis 1,5/s erfolgt. Anschließend wird die gleitende Standardnormalverteilung SNV für beide Signale SNV(Q), SNV(H) über eine vorgegebene Anzahl von n Werten berechnet. Die Anzahl n = 15 hat sich hierbei als vorteilhaft erwiesen. In der Praxis kann n je nach Anwendung aus einem weiten Bereich von ca. 5 bis 100 ausgewählt werden. Dann wird die gleitende Standardnormalverteilung der Querbeschleunigung SNV(Q) mit einem Schwellwert K verglichen. Wird der Schwellwert K nicht überschritten erfolgt ein Sprung zurück zum Anfang des Verfahrens; wird der Schwellwert K überschritten, wird der Quotient X = SNV(Q)/SNV(H) berechnet. Wurden bereits zuvor Werte für X ermittelt, wird abschließend der Mittelwert errechnet. Sobald der Mittelwert über eine genügend hohe Anzahl von Einzelwerten gebildet wurde kann er als Kenngröße für die Viskosität verwendet werden. Im Ablaufdiagramm der Figur 3 ist dies am Beispiel einer Zählvariablen dargestellt, die den Wert 100 erreichen muss, bevor der Mittelwert als Kenngröße für Viskosität des Motorenöls abgespeichert wird.
  • Die Berechnung der Viskosität kann durch eine entsprechende Anordnung auch direkt im Ölstandsensor erfolgen, wenn dort auch auf die Daten des Beschleunigungssensors zugegriffen werden kann. Im Normalfall werden die Daten in einem zentralen Steuergerät erfasst und ausgewertet. Die berechnete Viskosität wird schließlich über eine Schnittstelle an ein Diagnosegerät gesendet oder von einer Onboard-Diagnose-Einrichtung im Kraftfahrzeug ausgewertet.
  • Neben der Querbeschleunigung können zur Ermittlung der Viskosität noch eine Reihe alternativer Größen berücksichtigt werden, solange sie nur eine Auswirkung auf die gemessene Füllstandshöhe der Betriebflüssigkeit haben. So kann beispielsweise auch die Längsbeschleunigung oder die Motorendrehzahl anstelle der Querbeschleunigung als Ausgangsgröße verwendet werden. Beide Größe bewirken gleichermaßen eine Änderung der Füllstandshöhe des Motorenöls, wobei ihr Einfluss auf die Änderung wiederum von der Viskosität abhängig ist. Bei der Verwendung des Signals für die Längsbeschleunigung wird analog zur Querbeschleunigung durch Bewegung des Öls in der Ölwanne die gemessene Füllstandshöhe beeinflusst. Bei der Verwendung des Signals für die Drehzahl als Ausgangsgröße kann der Umstand genutzt werden, dass sich die im Ölkreislauf befindliche Ölmenge in Abhängigkeit von der Drehzahl ändert. Es müssen lediglich die Signalerfassung und die Mess- und Filterparameter entsprechend angepasst werden, um auch aus diesen Größen die Viskosität des Öls in analoger Weise bestimmen zu können.

Claims (6)

  1. Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine eines Fahrzeugs durch Ermitteln der Füllstandshöhe der Betriebsflüssigkeit, wobei ein erstes Signal erfasst wird, das dem zeitlichen Verlauf der Füllstandshöhe entspricht,
    dadurch gekennzeichnet,
    dass ein zweites Signal erfasst wird, das dem zeitlichen Verlauf eines Zustands des Fahrzeugs entspricht, das Einfluss auf die gemessene Füllstandshöhe der Betriebsflüssigkeit hat,
    dass das erste und das zweite Signal einer Filterung zugeführt werden, die eine Bewertung der Signale hinsichtlich ihrer Dynamik erlaubt und als Ergebnis ein drittes und ein viertes Signal liefert,
    dass das vierte Signal mit einem Schwellwert verglichen und in Abhängigkeit vom Ergebnis des Vergleichs ein Verhältnis des vierten Signals zum dritten Signal gebildet wird und
    dass der Mittelwert über eine Vielzahl von Werten der Viskosität der Betriebsflüssigkeit entspricht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als zweites Signal die Querbeschleunigung des Fahrzeugs erfasst wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Erfassung der Messwerte des ersten und zweiten Signals mit einer Rate von ca. 1 bis 1,5/s erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur Filterung eine gleitende Standardabweichung über eine erste Anzahl von Werten des ersten bzw. zweiten Signals gebildet und als drittes bzw. viertes Signal den Ausgang des Filters bilden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Anzahl der Werte zur Ermittlung der gleitenden Standardabweichung im Bereich von 5 bis 100 liegt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Mittelwert des Verhältnisses des vierten Signals zum dritten Signal über ca. 50 bis 300 Werte gebildet wird.
EP02010021A 2001-05-22 2002-05-04 Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine Expired - Fee Related EP1262760B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10124888A DE10124888C2 (de) 2001-05-22 2001-05-22 Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine
DE10124888 2001-05-22

Publications (2)

Publication Number Publication Date
EP1262760A1 EP1262760A1 (de) 2002-12-04
EP1262760B1 true EP1262760B1 (de) 2006-12-13

Family

ID=7685703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02010021A Expired - Fee Related EP1262760B1 (de) 2001-05-22 2002-05-04 Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine

Country Status (4)

Country Link
US (1) US6658359B2 (de)
EP (1) EP1262760B1 (de)
DE (2) DE10124888C2 (de)
ES (1) ES2275770T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015003A1 (de) * 2004-03-26 2005-10-20 Siemens Ag Verfahren zum Ermitteln einer Größe, die charakteristisch ist für die Viskosität eines Öls einer Brennkraftmaschine
US9158855B2 (en) * 2005-06-16 2015-10-13 Buzzmetrics, Ltd Extracting structured data from weblogs
IL213505A0 (en) * 2011-06-13 2011-07-31 Aharon Krishevsky A vehicular engine appliance and method for watching thereover
US10598650B2 (en) * 2012-08-22 2020-03-24 General Electric Company System and method for measuring an operative condition of a machine
US9523320B2 (en) * 2013-10-15 2016-12-20 Ford Global Technologies, Llc Viscosity detection using sump
US10559138B2 (en) 2015-12-18 2020-02-11 Ge Global Sourcing Llc Sensor signal processing system and method
CN107764364B (zh) * 2017-09-30 2019-12-10 惠州华阳通用电子有限公司 一种汽车燃油表指示方法及其验证装置与方法
US10681073B2 (en) 2018-01-02 2020-06-09 International Business Machines Corporation Detecting unauthorized user actions
US10760460B1 (en) * 2019-06-12 2020-09-01 Ford Global Technologies, Llc Method and system for engine oil level sensing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007629A (en) * 1975-11-04 1977-02-15 Hochstein Peter A Method and apparatus for monitoring oil degradation
GB1529051A (en) * 1976-01-15 1978-10-18 Elf Aquitaine Method of measuring and recording rheological characteristics of a petroleum product
US4277971A (en) * 1980-01-10 1981-07-14 The United States Of America As Represented By The Secretary Of The Army Fluidic oil viscometer
US4733556A (en) * 1986-12-22 1988-03-29 Ford Motor Company Method and apparatus for sensing the condition of lubricating oil in an internal combustion engine
DE4011448A1 (de) * 1990-04-09 1991-10-10 Siemens Ag Anordnung zur viskositaetsmessung von fluessigkeiten
DE4119437A1 (de) * 1991-06-13 1992-12-17 Gistl Egmont Einrichtung zur pegelmessung bei fluessigkeiten, insbesondere fuer oelstaende in kfz-motoren
DE4131969C2 (de) * 1991-09-25 1995-08-17 Fraunhofer Ges Forschung Schmierölüberwachungseinrichtung
US5369396A (en) 1992-05-14 1994-11-29 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting a level of liquid
US5377531A (en) * 1993-09-30 1995-01-03 Gomm; Nelson R. Portable oil change analyzer
DE19518776A1 (de) * 1995-05-22 1996-11-28 Bayerische Motoren Werke Ag Verfahren zum Ermitteln der Viskosität einer Betriebsflüssigkeit eines Kraftfahrzeug-Antriebsaggregats
JP3438035B2 (ja) * 1997-03-19 2003-08-18 光洋精工株式会社 流体粘度測定方法ならびに流体粘度測定装置
US6463796B1 (en) * 2000-10-12 2002-10-15 The Lubrizol Corporation Continuous on-board diagnostic lubricant monitoring system and method

Also Published As

Publication number Publication date
DE50208926D1 (de) 2007-01-25
DE10124888C2 (de) 2003-04-17
ES2275770T3 (es) 2007-06-16
US6658359B2 (en) 2003-12-02
US20020174712A1 (en) 2002-11-28
DE10124888A1 (de) 2002-12-12
EP1262760A1 (de) 2002-12-04

Similar Documents

Publication Publication Date Title
DE3326719C2 (de)
EP1258708A2 (de) Verfahren und Vorrichtung für die Bestimmung von Offsetwerten durch ein Histogrammverfahren
EP1262760B1 (de) Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine
DE60218829T2 (de) Fahrbarkeit-einstufungsmethode und system
DE102017122934A1 (de) Verfahren zur Kontrolle eines Abgasverhaltens einer Verbrennungskraftmaschine
DE19651154C2 (de) Verfahren und Vorrichtung zur Steuerung einer Bremsanlage
DE4215938C2 (de) Aussetzererkennungssystem bei einem Verbrennungsmotor
EP1063498A2 (de) Verfahren und Vorrichtung zur Bestimmung der Flüssigkeitsmenge in einem bewegten Behalter
DE102005008658A1 (de) Kraftfahrzeugsteuervorrichtung
DE102014201769A1 (de) Verfahren zur Bestimmung einer Fahrbahnsteigung
DE3911830A1 (de) Verfahren und schaltung zur auswertung von kontinuierlich auftretenden zeitmarken
DE4115647B4 (de) Steuersystem in einem Fahrzeug
EP1817745B1 (de) Verfahren zum ermitteln einer information über eine einer temperatur ausgesetzten vorrichtung
DE69008192T2 (de) Verfahren und vorrichtung zur speicherung intermittierender funktioneller fehler eines physikalischen systems und von kontextvariablen dieser fehler.
EP0925484B1 (de) Verfahren und vorrichtung zur überwachung von sensoren in einem fahrzeug
DE10124890C2 (de) Verfahren zum Bestimmen der Viskosität einer Betriebsflüssigkeit einer Brennkraftmaschine
DE102015215465A1 (de) Vorrichtung und Verfahren zum Erfassen einer Öltemperatur eines Getriebes
DE102008037083B4 (de) Verfahren zur Massenbestimmung eines Fahrzeuges und Bremssystem mit integrierter Massenbestimmung
DE19515157A1 (de) Getriebesteuereinheit für ein automatisches Fahrzeuggetriebe
DE102013217879A1 (de) Verfahren zum Überwachen einer Übertragungsstrecke
EP3071459A1 (de) Überprüfung der verbauungsposition von achsmodulatoren anhand von störungen in geschwindigkeitssignalen
DE102014216546A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Fahrtrichtung eines Kraftfahrzeugs
DE10120235B4 (de) Verfahren zur informationsverlustarmen Anbindung eines Sensors für die Übermittlung statistischer Daten an ein übergeordnetes Auswertesystem
DE102017009031A1 (de) Verfahren zur objektiven Bewertung eines Querregelverhaltens eines aktiven Spurhaltesystems eines Fahrzeugs
DE10250205B4 (de) Vorrichtung zur Viskositätsermittlung und zugehöriges Verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021030

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50208926

Country of ref document: DE

Date of ref document: 20070125

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070124

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2275770

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080522

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080513

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080522

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140531

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150521

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208926

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531