EP0948666B1 - Procede de traitement de surfaces metalliques - Google Patents

Procede de traitement de surfaces metalliques Download PDF

Info

Publication number
EP0948666B1
EP0948666B1 EP97954820A EP97954820A EP0948666B1 EP 0948666 B1 EP0948666 B1 EP 0948666B1 EP 97954820 A EP97954820 A EP 97954820A EP 97954820 A EP97954820 A EP 97954820A EP 0948666 B1 EP0948666 B1 EP 0948666B1
Authority
EP
European Patent Office
Prior art keywords
group
acid
process according
aqueous solution
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97954820A
Other languages
German (de)
English (en)
Other versions
EP0948666A1 (fr
EP0948666B2 (fr
Inventor
Hans-Jürgen P. ADLER
Christian Bram
Ralf Feser
Evelin JÄHNE
Christian Jung
Iris MÄGE
Jürgen Rudolph
Lars Sebralla
Martin Stratmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemetall GmbH
Original Assignee
Chemetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7816377&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0948666(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chemetall GmbH filed Critical Chemetall GmbH
Publication of EP0948666A1 publication Critical patent/EP0948666A1/fr
Application granted granted Critical
Publication of EP0948666B1 publication Critical patent/EP0948666B1/fr
Publication of EP0948666B2 publication Critical patent/EP0948666B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/58Treatment of other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the invention relates to a method for Treatment of metallic surfaces made of zinc, Magnesium or aluminum or from the alloys Zinc, magnesium or aluminum are made up and on the paints, plastic layers after the treatment, Coatings, sealants or adhesives applied become.
  • the conversion treatment of aluminum surfaces is still carried out today by yellow chromating, using an acid chromate solution with a pH of 1 to 2, which forms a protective layer on the aluminum.
  • the protective layer consists of an insoluble one Aluminum-chromium (III) mixed oxide and causes the high passivity of the surface against corrosion.
  • the residual content of unused chromate ions deposited in the oxide layer additionally causes a self-healing effect in the case of a damaged paint or plastic coating.
  • the yellow chromating of aluminum surfaces has the disadvantage that it has only insufficient adhesion-promoting properties compared to a lacquer and plastic layer.
  • chromate ions are washed out of exposed weather layers in a disadvantageous manner.
  • a process has been developed as an alternative to chromating developed that with zirconium salts, fluorides, phosphates and organic polymers (e.g. polyacrylates and Polyvinyl alcohols) works. With this procedure layers formed on aluminum surfaces to match the Some corrosion protection and a right good adhesion for paint and Give plastic coatings. However, the achieved corrosion protection is not always satisfactory.
  • DE-A 31 37 525 describes a method for Corrosion inhibition known in an aqueous system which the aqueous system has at least one water-soluble inorganic nitrite and at least one organic Diphosphonic acid or at least one salt of Contains diphosphonic acid.
  • the diphosphonic acid is in the aqueous system with a concentration of 0.1 to 20 ppm before.
  • those are particularly Hydroxyethylidenediphosphonic acid and its inorganic Salts preferred.
  • Benzimidazolyl-2-alkane-phosphonic acids and their salts have a pronounced corrosion-inhibiting effect and can be used as corrosion inhibitors.
  • they can be used individually, combined with each other or together with others known corrosion inhibitors are used.
  • the Compounds are used to inhibit corrosion in the general aqueous, aqueous-alcoholic, alcoholic and / or oil-containing media added.
  • they can be used as corrosion inhibitors in Heat transfer media from cooling or heating circuits, Cooling lubricants, mineral oils or savings be used.
  • By adding the connections and / or their salts to the media mentioned or Circulatory fluids becomes the corrosion of metals, especially of copper and its alloys, prevented.
  • the benzimidazolyl-2-alkane-phosphonic acids contain a phosphonic acid group, a straight chain or branched, saturated or unsaturated, bivalent, optionally substituted hydrocarbon radical with 1 to 15 carbon atoms and a substituted one Benzimidazolerest, the straight-chain or branched Hydrocarbon residue and the benzimidazole residue on the Position 2 of the benzimidazole residue linked together are.
  • aqueous solution for the treatment of zinc, zinc alloys or cadmium which contains nitric acid, an oxidizing agent (H 2 O 2 , nitrate, nitrite, chlorate) and a diphosphonic acid, the two phosphonic acid groups via one Carbon atom are connected to each other, which also has an OH group and an alkyl radical having 1 to 4 carbon atoms.
  • DE-AS 1 013 814 teaches one-component reaction primer solutions (one-component "wash primer") for improving the printability of aluminum foils, which in addition to hydroxyl-containing acetalized synthetic resin as a binder or two oxygen-containing inorganic acids in hydroxyl-containing solvents and 0.1 to 5% of an addition of organic hydroxyl-containing Acids or esters such as of oxybutyric acid or tartaric acid.
  • wash primer one-component reaction primer solutions for improving the printability of aluminum foils, which in addition to hydroxyl-containing acetalized synthetic resin as a binder or two oxygen-containing inorganic acids in hydroxyl-containing solvents and 0.1 to 5% of an addition of organic hydroxyl-containing Acids or esters such as of oxybutyric acid or tartaric acid.
  • a solution is used to create the second layer used in which the phosphinic and phosphonic acids in a concentration of 0.001 mol / l up to Saturation concentration are present and as Solvent water, an alcohol or an organic Contains solvent.
  • the phosphinic and phosphonic acids contain as organic groups for example aliphatic hydrocarbons, aromatic Hydrocarbons, organic acids, aldehydes, ketones, Amines, amides, thioamides, imides, lactams, anilines, Piperidines, pyridines, carbohydrates, esters, lactones, Ethers, alkenes, alcohols, nitriles, oximes, silicones, Ureas, thioureas, perfluorinated organic Groups, silanes and combinations of these groups.
  • the second layer is said to be in particular on the substrate good adhesion promoter for paint and Plastic coatings as well as for paints work.
  • the invention has for its object a method to create, according to the metallic surfaces that from Zinc, magnesium or aluminum or from the alloys zinc, magnesium or aluminum, be treated to the metallic surfaces especially good adhesion for paints, Plastic layers, paints, sealants and Giving adhesives and the metallic surfaces protect against corrosion.
  • the object on which the invention is based is achieved in that the metallic surfaces are treated at 10 to 100 ° C. by dipping, spraying or rolling with an aqueous solution which has a pH of 2 to 13 and 10 -5 to 1 mol / l of one or more connections.
  • Y is an organic group which contains 2 to 50 C atoms and has a straight-chain structure
  • X is a COOH, HSO 3 , HSO 4 , (OH) 2 PO, (OH) 2 PO 2 -, (OH) (OR ') PO or (OH) (OR') PO 2 - group
  • the effect of the method according to the invention is based on the ability of compounds XYZ to spontaneously organize and very on metallic surfaces to form thin, closed films, whereby in particular an orientation of the acidic groups in Direction of the metallic surface occurs and between those on the metallic surface located hydroxyl groups and the acidic groups the compound XYZ forms a chemical bond.
  • the structure of the compounds XYZ was according to the invention chosen that both a reactive connection of the thin film on the metal surface as well as on the Matrix of varnishes, plastic coatings, paints, Sealing compounds and adhesives results.
  • the straight chain organic group Y acts as a "spacer" between the groups X and Z; it gives the compound XYZ quasi the properties of a surfactant, because the organic Group Y has hydrophobic properties.
  • the group Z gives the coated surface a good one Wettability and reactivity to paints, Plastic coatings, paints, sealants and adhesives. If varnishes on the thin films, Plastic coatings, paints, sealants and Adhesives are applied, remain the most beneficial Properties of the thin films also under the influence Corrosive media obtained, so that the metallic Surfaces are protected against corrosion.
  • the reactive Group Z should pay particular attention to the individual paints be coordinated.
  • the aqueous solution one or more compounds of Type XYZ contains in a concentration that is in the range the critical micelle concentration.
  • the critical micelle concentration cmc is one for the respective surfactant characteristic concentration, in which the aggregation of the surfactant molecules into micelles starts. The aggregation is reversible. Below the cmc, d. H. when the solutions are diluted, they disintegrate Micelles back into monomeric surfactant molecules.
  • the numerical value of the cmc depends on its for each surfactant Constitution as well as external parameters, such as Ionic strength, temperature and concentration of additives, from. Suitable methods for determining the cmc u. a. Surface tension measurements.
  • the aqueous solution is a defoamer and / or Solubilizers in each case in an amount of 0.05 to 5 Contains% by weight.
  • the defoamer makes it easier Handling the solution according to the invention based on the surfactant properties of the compounds XYZ for Foaming tends.
  • the mediator limits in advantageously the use of organic Solvent and favors the use of pure Water.
  • Both as a defoamer and as Solubilizers can, for example, amino alcohols be used.
  • the XYZ connections in the aqueous solution as salts are in usually more soluble than the compounds themselves, and besides, the dissolved salts are very stable, so that the handling of the solution according to the invention by the Use of the salts of the compounds XYZ improved becomes.
  • the sodium and Potassium salts used are used.
  • Y is an unbranched, straight-chain alkyl group having 10 to 12 carbon atoms or a p-CH 2 -C 4 H 6 -CH 2 group or a p, p'- C 6 H 4 - C 6 H 4 group.
  • These groups Y give the compounds XYZ according to the invention very good adhesion-promoting properties for lacquers and other organic coatings.
  • Compounds of the type XYZ, which are equipped with the aforementioned groups X and Z, also have good adhesion-promoting properties for paints and plastic coatings and also form a firm chemical bond with the metallic surfaces.
  • Aqueous solutions the following XYZ type compounds have very good adhesion-promoting and corrosion-inhibiting properties: 1-phosphonic acid-12-mercaptododecan, 1-phosphonic acid-12- (N-ethylamino) dodecane, 1-phosphonic acid-12-dodecene, p-xylylenediphosphonic acid, 1,10-decanediphosphonic acid, 1,12-dodecanediphosphonic acid, 1-phosphoric acid-12-Hydroxvdodecan, 1-phosphoric acid-12 (N-ethylamino) dodecane, 1-phosphoric acid-12-mercaptododecan, 1,10-decanediphosphoric acid, 1,12-dodecanediphosphoric acid, p, p'-biphenyldiphosphoric acid, 1-phosphoric acid-12-Acryloyldodecan.
  • aqueous solution by what is known per se Dip, spray or roll at 10 to 100 ° C on the metallic surfaces is applied, the Diving time 5 seconds to 20 minutes, the spraying time 5 Seconds to 15 minutes and the rolling time 2 to 120 Seconds. It has been shown that on the metallic surfaces a thin film arises when the aqueous solution by dipping, spraying or rolling is applied, with a rinse of the treated metallic surfaces not absolutely necessary is, but can be beneficial.
  • the metallic Surfaces before applying the aqueous solution alkaline and / or acid pickled and then with water be rinsed.
  • the water used can be desalinated or not be desalinated.
  • the zinc, magnesium, aluminum and their alloys existing metallic Surfaces are always covered by oxide layers and additionally by the superficial adsorption of Carbon dioxide, water and / or hydrocarbons contaminated. These are contaminated cover layers unable to paint, plastic coatings, Coatings, sealants and adhesives permanently bind and long-term corrosion protection guarantee. Therefore, the metallic surfaces in the manner according to the invention before treatment with cleaned the aqueous solution.
  • Sheets are used as the substrate, which from the Alloy AlMg1 exist.
  • the metal sheets are immersed in an alkaline pickling solution containing 32 g / l NaOH and 8 g / l Na 2 CO 3 at room temperature for 3 minutes. Then it is rinsed with deionized water.
  • the alkaline pickled sheets are then immersed for 3 minutes at 40 ° C. in an acid pickling solution which contains 10 g / l H 2 SO 4 and 33 g / l H 2 O 2 . Then it is rinsed with deionized water.
  • the pickled sheets are immersed at 40 ° C. for 3 minutes in the aqueous solution according to the invention which contains the compound XYZ according to the invention in a concentration of approximately 10 -3 mol / l. This is followed by rinsing with demineralized water and drying at room temperature in a stream of nitrogen.
  • the sheets are first sprayed at 65 ° C for 10 seconds with an alkaline pickling solution containing 10 g / l Bonder V338M®. The sheets are then rinsed by spraying with water. Then the alkaline pickled sheets are sprayed at 50 ° C for 30 seconds with an acid pickling solution containing 16 g / l Bonder V450M®. The pickled sheets are then rinsed by spraying them with deionized water. Finally, the sheets are sprayed with the aqueous solution according to the invention at 40 ° C. for 30 seconds. This is followed by rinsing with demineralized water and drying in an air stream at room temperature.
  • the compound XYZ according to the invention is present in the aqueous solution in a concentration of approximately 10 -3 mol / l. (® registered trademark of Metallgesellschaft AG, Frankfurt / Main, DE)
  • the sheets are alkali and acid pickled and rinsed according to the spray process.
  • the aqueous solution according to the invention is then rolled onto the metal sheets for two seconds at room temperature, the roll being driven at 25 rpm.
  • the compound XYZ is present in the aqueous solution according to the invention in a concentration of approximately 10 -3 mol / l.
  • the sheets are dried in a forced air oven at 105 ° C.
  • Treated sheets were made using various methods painted. It became both a cathodic Electrocoat as well as a powder paint as well Polyester paint used. The electrocoat was used for a voltage of approx. 250 volts on the sheets electrodeposited and then during 22 Dried minutes at 180 ° C. The powder coating was on the sheets are applied by electrostatic spraying and then at 200 ° C for 10 minutes dried.
  • the polyester paint system consisted of one Primer and a top coat. Both components were on the sheets are applied by squeegees. The primer had a layer thickness of 5 microns, while the topcoat Has layer thickness of 25 microns. The baking temperatures were 216 ° C for the primer and for the topcoat 241 ° C.
  • the following table contains the test results that were measured when using different substances according to the invention.
  • the substances were present in the solutions according to the invention in a concentration of approx. 10 -3 mol / l.
  • the salt spray test ESS reinforced with acetic acid shows that the thin films produced according to the invention ensure very good protection against infiltration compared to the comparative sheets; of the comparison sheets, only the chromated sheet is adequately protected against corrosion.
  • the T-bend test which was carried out under the T 0 condition, and the cross-cut with Erichsen indentation show that the paint adhesion on the sheets treated according to the invention is better than on the comparison sheets. Overall, the results achieved with the invention are surprisingly good, since they are equivalent to the results achieved with chromating in terms of corrosion resistance and clearly superior in terms of paint adhesion.
  • the orientation of the molecules of the compounds of the type XYZ was determined by angle-dependent X-ray photoelectron spectroscopy (ARXPS). Due to the very limited penetration depth of the characteristic photoelectrons, the angle-resolved X-ray photoelectrospectroscopy enables a different information depth of the spectral data depending on the angle ⁇ . For example, the depth of information is at small angles in the range of approximately 1 nm and at larger angles in the range up to approximately 10 nm. This makes it possible to determine the orientation of the molecules. This method is described, for example, in the publication by Briggs, Practical Surface Analysis, 1990, Wiley & Sons, Chichester. FIG.
  • XPS X-ray photoelectron spectrum of the 1-phosphoric acid-12- (N-ethylamino) dodecane on the AlMg1 alloy, in which the XPS intensity ratio N / P is shown as a function of the angle ⁇ , where N is the intensity of the Nls peak Amino group and P is the P2s peak of the phosphoric acid group and the abbreviation XPS stands for the term X-ray photoelectron spectroscopy.
  • the spectrum shows that the phosphoric acid group binds to the metal surface and the amino group faces away from the metal surface.
  • connection T-bend test (TO) chipped area according to LPV 75 [%] ESS test according to DIN 50021 ESS infiltration Cross-cut with Erichsen indentation according to ISO 1520 Filiform test according to DIN 65472 [mm]

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • ing And Chemical Polishing (AREA)
  • Paints Or Removers (AREA)

Claims (13)

  1. Procédé de traitement de surfaces métalliques en zinc, magnésium où aluminium, ou en un alliage de zinc, de magnésium ou d'aluminium, et sur lesquelles on appliquera, après le traitement, des laques, des revêtements plastiques, des peintures, des mastics ou des adhésifs, caractérisé par le fait que l'on traite les surfaces métalliques à une température comprise dans l'intervalle allant de 10 à 100 °C par immersion, pulvérisation ou laminage avec une solution aqueuse ayant un pH allant de 2 à 13 et contenant de 10-5 à 1 mole/litre d'un ou de plusieurs composés de type XYZ, où Y représente un groupe organique à chaíne linéaire contenant de 2 à 50 atomes de carbone, X représente un groupe COOH-, HSO3-, HSO4-, (OH)2PO-, (OH)2PO2-, (OH)(OR')PO- ou (OH)(OR')PO2-, et où Z représente un groupe OH-, SH-, NH2-, NHR', CN-, CH3-CH2-, OCN-, époxy-, CH2=CR"-COO-, acrylamido-, COOH-, (OH)2PO-, (OH)2PO2-, (OH)(OR')PO- ou (OH)(OR')PO2-, où R' représente un groupe alkyle en C1-4, R" représente un atome d'hydrogène ou un groupe alkyle en C1-4, et les groupes X et Z sont liés au groupe Y par leurs extrémités.
  2. Procédé selon la revendication 1, caractérisé par le fait que, dans la solution aqueuse, de 0,1 à 50 % de l'eau sont remplacés par un alcool en C1-4, de l'acétone, du dioxane ou du tétrahydrofurane.
  3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que la solution aqueuse contient un ou plusieurs composés de type XYZ en une concentration comprise dans l'intervalle de la concentration micellaire critique.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé par le fait que la solution aqueuse contient un agent anti-mousse et/ou un agent solubilisant, chacun en une concentration comprise entre 0,05 et 5 % en poids.
  5. Procédé selon les revendications 1 à 4, caractérisé par le fait que les composés de type XYZ sont sous forme de sels dans la solution aqueuse.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé par le fait que Y représente un groupe alkyle en C2-20, linéaire, non-ramifié, ou un groupe linéaire, non-ramifié de 1 à 4 noyaux aromatiques en C6H4, liés les uns aux autres en position para, ou encore un groupe formé de 1 ou 2 chaínes alkyle en C1-12 et de 1 à 4 noyaux aromatiques en C6H4, liés en position para.
  7. Procédé selon la revendication 6, caractérisé par le fait que Y représente un groupe alkyle en C10-12, linéaire, non ramifié, ou un groupe p-CH2-C6H4-CH2- ou un groupe p,p'-C6H4-C6H4.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé pa le fait que X représente un groupe (OH)2PO2- ou un groupe (OH)(OR')PO3.
  9. Procédé selon les revendications 1 à 8, caractérisé par le fait que Z représente un groupe (OH)2PO2-, (OH)(OR')PO2-, OH-, SH-, NHR'-, CH2=CH- ou CH2=CR"-COO-.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé par le fait que la solution aqueuse contient, en tant que composé de type XYZ, l'acide 12-mercaptododécane-1-phosphonique, l'acide 12-(N-éthylamino)-dodécane-1-phosphonique, l'acide 12-dodécène-1-phosphonique, l'acide p-xylylène-diphosphonique, l'acide 1,10-décanediphosphonique, l'acide 1,12-dodécanediphosphonique, l'acide 12-hydroxydodécane-1-phosphorique, l'acide 12-(N-éthylamino)dodécane-1-phosphorique, l'acide 12-dodécène-1-phosphorique, l'acide 12-mercaptododécane-1-phosphorique, l'acide 1,10-décanediphosphorique, l'acide 1,12-dodécandiphosphorique, l'acide p,p'-biphényldiphosphorique et l'acide 12-aryldodécane-1-phosphorique.
  11. Procédé selon les revendications 1 à 10, caractérisé par le fait que le temps d'immersion est compris entre 5 secondes et 2 minutes, le temps de pulvérisation entre 5 secondes et 15 minutes et le temps de laminage entre 2 et 120 secondes.
  12. Procédé selon les revendications 1 à 11, caractérisé par le fait que les surfaces métalliques sont soumises, avant application de la solution aqueuse, à une attaque alcaline et/ou acide et sont ensuite rincées avec de l'eau.
  13. Procédé selon les revendications 1 à 12, caractérisé par le fait que les surfaces métalliques sur lesquelles on applique la solution aqueuse par immersion ou pulvérisation, est ensuite rincée avec de l'eau et éventuellement séchée dans un courant d'azote ou d'air, la température du courant d'azote ou d'air étant comprise entre 15 et 150 °C.
EP97954820A 1996-12-28 1997-12-18 Procede de traitement de surfaces metalliques Expired - Lifetime EP0948666B2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19654642A DE19654642C2 (de) 1996-12-28 1996-12-28 Verfahren zur Behandlung metallischer Oberflächen mit einer wässerigen Lösung
DE19654642 1996-12-28
PCT/EP1997/007100 WO1998029580A1 (fr) 1996-12-28 1997-12-18 Procede de traitement de surfaces metalliques

Publications (3)

Publication Number Publication Date
EP0948666A1 EP0948666A1 (fr) 1999-10-13
EP0948666B1 true EP0948666B1 (fr) 2003-03-19
EP0948666B2 EP0948666B2 (fr) 2007-09-26

Family

ID=7816377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97954820A Expired - Lifetime EP0948666B2 (fr) 1996-12-28 1997-12-18 Procede de traitement de surfaces metalliques

Country Status (14)

Country Link
US (1) US6436475B1 (fr)
EP (1) EP0948666B2 (fr)
JP (1) JP3986092B2 (fr)
KR (1) KR100487855B1 (fr)
AT (1) ATE234948T1 (fr)
AU (1) AU735281B2 (fr)
BR (1) BR9713638A (fr)
CA (1) CA2275729C (fr)
DE (2) DE19654642C2 (fr)
DK (1) DK0948666T4 (fr)
ES (1) ES2195202T5 (fr)
NO (1) NO326333B1 (fr)
TR (1) TR199901466T2 (fr)
WO (1) WO1998029580A1 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569285B2 (en) * 1996-10-17 2009-08-04 The Trustees Of Princeton University Enhanced bonding layers on titanium materials
US7815963B2 (en) 1996-10-17 2010-10-19 The Trustees Of Princeton University Enhanced bonding layers on titanium materials
US7396594B2 (en) * 2002-06-24 2008-07-08 The Trustees Of Princeton University Carrier applied coating layers
US6299983B1 (en) 1997-06-27 2001-10-09 E. I. Du Pont De Nemours And Company Derivatized metallic surfaces, composites of functionalized polymers with such metallic surfaces and processes for formation thereof
EP1115285A1 (fr) * 1998-09-23 2001-07-18 Phycogen, Inc. Composes surs et efficaces inhibiteurs de films biologiques, et utilisations dans des domaines relies a la sante
DE69830008T2 (de) * 1998-11-16 2006-03-09 E.I. Du Pont De Nemours And Co., Wilmington Derivatisierte metallische oberflächen, komposite funktionalisierter polymere mit solchen metallischen oberflächen und verfahren zu deren herstellung
DE19911843C2 (de) * 1999-03-17 2001-05-10 Metallgesellschaft Ag Verfahren für den Korrosionsschutz von Aluminium und Aluminiumlegierungen sowie Verwendung des Verfahrens
DE19923084A1 (de) * 1999-05-20 2000-11-23 Henkel Kgaa Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren
US20060194008A1 (en) * 1999-09-22 2006-08-31 Princeton University Devices with multiple surface functionality
US7931943B2 (en) * 1999-09-22 2011-04-26 The Trustees Of Princeton University Enhanced bonding layers on native oxide surfaces
WO2001092445A2 (fr) * 2000-05-31 2001-12-06 Chemetall Gmbh Procede de traitement ou de pretraitement de contenants
EP1315968B1 (fr) * 2000-09-05 2008-02-13 Bayer Technology Services GmbH Procede de precipitation de couches simples ou multiples d'acides organophosphoriques et organophosphoniques et de leurs sels, et utilisation de ces composes
US6488990B1 (en) * 2000-10-06 2002-12-03 Chemetall Gmbh Process for providing coatings on a metallic surface
DE10051485A1 (de) * 2000-10-17 2002-04-25 Henkel Kgaa Alkoxysilanhaltige Haftvermittler für Lacke und Klebstoffe auf Metallen
DE10114980A1 (de) * 2001-03-27 2002-10-17 Henkel Kgaa Haftvermittler für Lacke und Klebstoffe auf Metallen
KR20030038039A (ko) * 2001-11-08 2003-05-16 주식회사 한웅크레비즈 자외선 차단제용 바인더 제조방법
EP1386952A3 (fr) 2002-08-02 2006-05-24 Clariant Produkte (Deutschland) GmbH Agent antigel
BR0317287A (pt) * 2002-12-23 2005-11-08 Basf Ag Composto, uso do mesmo, preparação e processo para tratamento de superfìcies metálicas, e, compósito
US20060113509A1 (en) * 2002-12-23 2006-06-01 Basf Aktiengesellschaft Hydrophobic-hydrophilic compounds for treating metallic surfaces
US20040191555A1 (en) * 2003-02-06 2004-09-30 Metal Coatings International Inc. Coating systems having an anti-corrosion layer and a powder coating layer
US20040237997A1 (en) * 2003-05-27 2004-12-02 Applied Materials, Inc. ; Method for removal of residue from a substrate
US8101025B2 (en) * 2003-05-27 2012-01-24 Applied Materials, Inc. Method for controlling corrosion of a substrate
US7524535B2 (en) * 2004-02-25 2009-04-28 Posco Method of protecting metals from corrosion using thiol compounds
US20060102197A1 (en) * 2004-11-16 2006-05-18 Kang-Lie Chiang Post-etch treatment to remove residues
US7455881B2 (en) 2005-04-25 2008-11-25 Honeywell International Inc. Methods for coating a magnesium component
CN101218267B (zh) * 2005-07-08 2011-07-13 西巴特殊化学品控股有限公司 (甲基)丙烯酰胺含磷单体组合物
DE202006019880U1 (de) * 2006-02-24 2007-09-27 Gerhard Heiche Gmbh Korrosionsbeständiges Substrat
US20080131709A1 (en) * 2006-09-28 2008-06-05 Aculon Inc. Composite structure with organophosphonate adherent layer and method of preparing
US9365931B2 (en) * 2006-12-01 2016-06-14 Kobe Steel, Ltd. Aluminum alloy with high seawater corrosion resistance and plate-fin heat exchanger
KR20110079706A (ko) * 2008-10-31 2011-07-07 바스프 에스이 코팅, 필름 또는 접착제용의 포스폰산 에스테르 함유 접착 촉진제
US8432036B2 (en) * 2009-01-22 2013-04-30 Aculon, Inc. Lead frames with improved adhesion to plastic encapsulant
DE102009001372B4 (de) 2009-03-06 2011-01-27 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen in einem mehrstufigen Verfahren und Verwendung der nach dem Verfahren beschichteten Produkte
EP2926951B1 (fr) 2014-04-01 2016-10-05 Technische Universität Kaiserslautern Procédé de nettoyage et d'activation simultanés de surfaces de composants par une combinaison de pulvérisation de neige carbonique et d'application de substances adhésives
CN106167897A (zh) * 2016-08-28 2016-11-30 青岛费米新材料科技有限公司 一种可水解的聚合物的金属表面成膜方法
US12018380B2 (en) 2019-03-01 2024-06-25 Howmet Aerospace Inc. Metallic substrate treatment methods and articles comprising a phosphonate functionalized layer
KR102334190B1 (ko) 2019-11-29 2021-12-03 주식회사케이베츠 원형부재 보강용 클램프 장치, 그 시공방법, 원형부재 연결용 클램프 장치 및 그 시공방법
KR102373470B1 (ko) 2020-01-21 2022-03-14 주식회사케이베츠 원형부재 보강용 힌지 적용 클램프 장치, 그 시공방법, 원형부재 연결용 힌지 적용 클램프 장치 및 그 시공방법
US11584900B2 (en) 2020-05-14 2023-02-21 Corrosion Innovations, Llc Method for removing one or more of: coating, corrosion, salt from a surface

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1013814B (de) * 1954-11-15 1957-08-14 Aluminium Walzwerke Singen Einkomponenten-Reaktionsgrundierloesung fuer Aluminiumfolien
US3634146A (en) 1969-09-04 1972-01-11 American Cyanamid Co Chemical treatment of metal
US3770514A (en) * 1972-06-08 1973-11-06 American Cyanamid Co Chemical treatment of metal
US4209487A (en) * 1975-06-02 1980-06-24 Monsanto Company Method for corrosion inhibition
DE2614234C2 (de) * 1976-04-02 1982-05-27 Metallgesellschaft Ag, 6000 Frankfurt Behandlungsflüssigkeit zum Korrosionsschutz von Metalloberflächen und Konzentrat zu deren Herstellung
DE2855659A1 (de) * 1978-12-22 1980-07-03 Bayer Ag Benzimidazolyl-2-alkan-phosphonsaeuren
GB2084128B (en) * 1980-09-25 1983-11-16 Dearborn Chemicals Ltd Inhibiting corrosion in aqueous systems
US4351675A (en) * 1981-03-02 1982-09-28 Rohco, Inc. Conversion coatings for zinc and cadmium surfaces
JPS6041149B2 (ja) * 1982-07-27 1985-09-14 日本ペイント株式会社 リン酸亜鉛皮膜化成処理液の改良
US5059258A (en) * 1989-08-23 1991-10-22 Aluminum Company Of America Phosphonic/phosphinic acid bonded to aluminum hydroxide layer
DE4133102A1 (de) * 1991-10-05 1993-04-08 Metallgesellschaft Ag Verfahren zum behandeln von phosphatierten metalloberflaechen vor der elektrotauchlackierung
US5306526A (en) * 1992-04-02 1994-04-26 Ppg Industries, Inc. Method of treating nonferrous metal surfaces by means of an acid activating agent and an organophosphate or organophosphonate and substrates treated by such method
JP3319831B2 (ja) * 1993-09-22 2002-09-03 日本パーカライジング株式会社 金属材料の自己析出型表面処理剤及び表面処理方法
US5463804A (en) * 1994-08-31 1995-11-07 Aluminum Company Of America Coating aluminum alloy sheet to promote adhesive bonding for vehicle assemblies
DE4441710A1 (de) * 1994-11-23 1996-05-30 Henkel Kgaa Korrosionsschutz und Reibungsverminderung von Metalloberflächen
JPH08337884A (ja) * 1995-06-09 1996-12-24 Nippon Steel Corp 耐食性及び耐熱性に優れた白色クロメート処理鋼板

Also Published As

Publication number Publication date
ES2195202T3 (es) 2003-12-01
JP2001508499A (ja) 2001-06-26
WO1998029580A1 (fr) 1998-07-09
ATE234948T1 (de) 2003-04-15
EP0948666A1 (fr) 1999-10-13
DE59709588D1 (de) 2003-04-24
AU735281B2 (en) 2001-07-05
AU6205898A (en) 1998-07-31
KR20000062344A (ko) 2000-10-25
CA2275729A1 (fr) 1998-07-09
BR9713638A (pt) 2000-04-11
DK0948666T3 (da) 2003-07-07
JP3986092B2 (ja) 2007-10-03
US6436475B1 (en) 2002-08-20
ES2195202T5 (es) 2008-04-01
DE19654642C2 (de) 2003-01-16
CA2275729C (fr) 2007-09-25
NO993118D0 (no) 1999-06-23
DE19654642A1 (de) 1998-09-17
TR199901466T2 (xx) 1999-10-21
NO993118L (no) 1999-06-23
EP0948666B2 (fr) 2007-09-26
KR100487855B1 (ko) 2005-05-09
NO326333B1 (no) 2008-11-10
DK0948666T4 (da) 2008-01-07

Similar Documents

Publication Publication Date Title
EP0948666B1 (fr) Procede de traitement de surfaces metalliques
EP1883679B1 (fr) Agent anticorrosion formant une couche de vernis et procede pour son application sans courant
DE3146265C2 (fr)
DE3408573A1 (de) Verfahren zum behandeln von metalloberflaechen
DE60127921T2 (de) Verfahren zur Beschichtung von Metalloberflächen
DE4317217A1 (de) Chromfreie Konversionsbehandlung von Aluminium
WO2008135478A2 (fr) Prétraitement de métallisation de surfaces de zinc
EP0091166A1 (fr) Procédé pour traiter de surfaces métalliques
DE10310972A1 (de) Stickstoffhaltige Polymere für die Metalloberflächenbehandlung
DE69106385T2 (de) Verfahren zur chromatierung von mit zink beschichtetem stahl.
DE69612216T2 (de) Metallblech mit rostpreventiver organischer beschichtung, verfahren zu dessen herstellung und behandlungsflüssigkeit dafür
EP1402083B1 (fr) Procédé de protection contre la corrosion pour surfaces métalliques
EP3448938A1 (fr) Procédé de traitement anticorrosion d'une surface métallique à enlèvement réduit de matière décapée
DE2315180C2 (de) Phosphatierungslösung
EP2094793A1 (fr) Agent anticorrosion formant une couche de vernis à fissuration réduite, et procédé pour son application sans courant
DE102005023729A1 (de) Korrosionsschutzmittel und Verfahren zu dessen stromfreier Applikation
DE4041091A1 (de) Verfahren zur nachspuelung von konversionsschichten
DE3924984A1 (de) Verfahren zur passivierenden nachspuelung von phosphatschichten
DE10258291A1 (de) Verfahren zur Beschichtung von Metallsubstraten mit einem radikalisch polymerisierbaren Überzugsmittel und beschichtete Substrate
EP0219779A2 (fr) Procédé de phosphatation de pièces métalliques zinguées électrolytiquement
DE69614606T2 (de) Organisch beschichtetes Verbundstahlblech
WO2016193004A1 (fr) Conditionnement avant un traitement par conversion de surfaces métalliques
EP2900771B1 (fr) Utilisation d'un inhibiteur de corrosion polymère pour traiter des surfaces métalliques anodisées
DE3637254A1 (de) Verfahren zum aufbringen von organischen ueberzuegen auf metalloberflaechen
DE4030523A1 (de) Waessriges, zinkhaltiges korrosionsschutzmittel und verfahren zur herstellung von korrosionsschutzschichten auf metalloberflaechen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990728

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI LU NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEBRALLA, LARS

Inventor name: RUDOLPH, JUERGEN

Inventor name: MAEGE, IRIS

Inventor name: JUNG, CHRISTIAN

Inventor name: JAEHNE, EVELIN

Inventor name: FESER, RALF

Inventor name: BRAM, CHRISTIAN

Inventor name: ADLER, HANS-JUERGEN, P.

17Q First examination report despatched

Effective date: 19991112

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEBRALLA, LARS

Inventor name: RUDOLPH, JUERGEN

Inventor name: MAEGE, IRIS

Inventor name: JUNG, CHRISTIAN

Inventor name: JAEHNE, EVELIN

Inventor name: FESER, RALF

Inventor name: BRAM, CHRISTIAN

Inventor name: ADLER, HANS-JUERGEN, P.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CHEMETALL GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030319

REF Corresponds to:

Ref document number: 59709588

Country of ref document: DE

Date of ref document: 20030424

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

Effective date: 20031212

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20070926

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition

Effective date: 20070926

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 20080109

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20071221

Kind code of ref document: T5

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: BE

Effective date: 20160610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161228

Year of fee payment: 20

Ref country code: DK

Payment date: 20161227

Year of fee payment: 20

Ref country code: FI

Payment date: 20161229

Year of fee payment: 20

Ref country code: NL

Payment date: 20161226

Year of fee payment: 20

Ref country code: CH

Payment date: 20161227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161227

Year of fee payment: 20

Ref country code: AT

Payment date: 20161202

Year of fee payment: 20

Ref country code: ES

Payment date: 20161227

Year of fee payment: 20

Ref country code: SE

Payment date: 20161129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20161227

Year of fee payment: 20

Ref country code: BE

Payment date: 20161227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161222

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709588

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20171217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20171218

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20171217

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 234948

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171218

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20171218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171219