EP0946509A1 - Neue heterocyclisch substituierte benzamide und deren anwendung bei der bekämpfung von krankheiten - Google Patents

Neue heterocyclisch substituierte benzamide und deren anwendung bei der bekämpfung von krankheiten

Info

Publication number
EP0946509A1
EP0946509A1 EP97952007A EP97952007A EP0946509A1 EP 0946509 A1 EP0946509 A1 EP 0946509A1 EP 97952007 A EP97952007 A EP 97952007A EP 97952007 A EP97952007 A EP 97952007A EP 0946509 A1 EP0946509 A1 EP 0946509A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
phenyl
formula
hydrogen
substituted benzamides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97952007A
Other languages
English (en)
French (fr)
Inventor
Wilfried Lubisch
Achim Möller
Hans-Jörg Treiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott GmbH and Co KG
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0946509A1 publication Critical patent/EP0946509A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/62Naphtho [c] pyrroles; Hydrogenated naphtho [c] pyrroles
    • C07D209/66Naphtho [c] pyrroles; Hydrogenated naphtho [c] pyrroles with oxygen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/95Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
    • C07D239/96Two oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/02Heterocyclic compounds containing pteridine ring systems with an oxygen atom directly attached in position 4

Definitions

  • the present invention relates to novel heterocyclically substituted benzamides and their use in combating diseases.
  • Calpains are intracellular, proteolytic enzymes from the group of so-called cysteine proteases and are found in many cells. Calpains are activated by increased calcium concentration, with a distinction being made between calpain I or ⁇ -calpain, which is activated by ⁇ -molar concentrations of calcium ions, and calpain II or m-calpain, which is activated by m-molar concentrations of calcium ions , distinguishes (P.Johnson, Int. J.Bioche. 1990, 22 (8), 811-22). Today, further calpain isoenzymes are postulated (K.Suzuki et al., Biol.Chem. Hoppe- Seyler, 1995, 376 (9), 523-9).
  • calpains play an important role in various physiological processes. These include cleavages of regulatory proteins such as protein kinase C, cytoskeleton proteins such as MAP 2 and spectrin, muscle proteins, protein breakdown in rheumatoid arthritis, proteins when platelets are activated, neuropeptide metabolism, proteins in mitosis and others, the in. MJBarrett et al. , Life Be. 1991, 48, 1659-69 and K.K. Wang et al. , Trends in Pharmacol. Be . , 1994, 15, 412-9.
  • Increased calpain levels were measured in various pathophysiological processes, for example: ischemia of the heart (e.g. heart attack), the kidney or the central nervous system (e.g. "stroke"), inflammation, muscular dystrophies, eye cataracts, injuries to the central nervous system (e.g. trauma), Alzheimer's disease, etc. (see KK Wang, above). It is suspected that these diseases are associated with increased and persistent intracellular calcium levels. As a result, calcium-dependent processes are overactivated and are no longer subject to physiological regulation. Accordingly, overactivation of calpains can also trigger pathophysiological processes.
  • Irreversible inhibitors are generally alkylating substances and have the disadvantage that they react unselectively in the organism or are unstable. So show
  • the irreversible inhibitors include, for example, the epoxides E 64 (E.B. McGowan et al., Biochem. Biophys. Res. Commun. 1989, 158, 432-5), ⁇ -haloketones (H. Angliker et al.,
  • peptide aldehydes in particular dipeptide and tripepidic aldehydes such as, for example, Z-Val-Phe-H (MDL 28170) (S.Mehdi, Tends in Biol. Sci. 1991, 16, 150-3) and the compounds from EP 520336.
  • Peptide ketone derivatives have also been found as inhibitors of 5 cysteine proteases, especially calpain.
  • ⁇ -leaving groups cause irreversible inhibition on the one hand and since a carboxylic acid derivative activates the keto group, effective inhibitors are found (see MRAngelastro et al., J.Med.Chem. 1990,33, 11-13; WO 92/11850; WO 92,12140; WO 94 / 00095 and WO 95/00535).
  • peptide derivatives of these ketoamides and keto esters have so far been described as effective (Zhao Zhao Li et al., J.Med.Chem. 1993, 36, 3472-80; SLHarbenson et al., J.Med.Chem. 1994, 37, 2918-29 and see above MRAngelastro et al.).
  • Ketobenzamides are already known in the literature.
  • the ketoester PhCO-Abu-COOCH 2 CH 3 has been described in WO 91/09801, WO 94/00095 and 92/11850.
  • the analog phenyl derivative Ph-CONH-CH (CH 2 Ph) -CO-COCOOCH 3 was described in MRAngelastro et al., J.Med.Chem. 1990, 33, 11-13 found as a weak calpain inhibitor. This derivative is also described in JP Burkhardt, Tetrahedron Lett., 1988, 3433-36.
  • the importance of substituted benzamides has never been investigated.
  • JP 8183759, JP 8183769, JP 8183771 and EP 520336 have described aldehydes derived from dipeptides, with saturated carbocyclic rings, for example cyclohexanes, or saturated heterocyclic rings, for example piperidines, being incorporated into these peptide inhibitors instead of an amino acid, which gave novel aldehydes as calpain inhibitors.
  • the invention relates to heterocyclically substituted benzamides of the formula I.
  • R 2 is hydrogen, -CC 6 alkyl, 0 -CC 6 alkyl,, OH, Cl, F, Br, J, CF 3 , NO 2 , NH 2 , CN, COOH, COO -CC 4 -Alkyl, -NHCO-C ⁇ -C 4 alkyl, -NHCO-phenyl, -CONHR 8 , NHS0 2 -C 1 -C 4 alkyl, -NHS0 2 -phenyl, -S0 2 -C ⁇ -C 4 alkyl or -S0 2 -phenyl or
  • R 3 hydrogen, chlorine, bromine, fluorine, Ci - C 6 - alkyl, phenyl, NHCO-C ! -C 4 alkyl, N0 2 , or NH 2 ,
  • R 4 Ci-C ⁇ -alkyl, which can also carry a phenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexylcycloheptyl, indolyl, pyridyl or naphthyl ring, which in turn contains one or two radicals R 7 is substituted, wherein R 7 is hydrogen, -CC 4 alkyl, -0-C !
  • -C 4 -alkyl OH, Cl, F, Br, J, CF 3 , N0 2 , NH 2 , CN, COOH, COO-C ⁇ -C 4 -alkyl, -CONHR 8 , -NHCO-C ⁇ -C 4 - Alkyl, -NHCO-phenyl, -NHS0 2 -C ⁇ -C 4 alkyl, -NHS0 2 -phenyl, -S0 2 -C ⁇ -C 4 alkyl or -S0 2 -phenyl,
  • R 6 is hydrogen, -CC 6 alkyl, -0 -CC 6 alkyl, OH, Cl, F, Br, J, CF 3 , N0 2 , NH 2 , CN, COOH, COO-C 1 -C 4 alkyl,
  • R 8 is hydrogen or -CC 6 alkyl
  • R 9 is hydrogen, C 1 -C 6 -alkyl, which still has a phenyl ring which can also carry a radical R 11 , and with
  • R 12 is hydrogen or a co-alkyl chain which can be substituted by a phenyl ring which itself can also carry one or two R 11 radicals,
  • n is the number 0, 1 or 2 and
  • n is the number 0, 1, and 2.
  • heterocyclically substituted benzamides of the formula I according to Claim 1 in which R 5 is hydrogen and R 1, R, R 3, R 4, X, m and n have the meaning given above.
  • the compounds of formula I can be used as racemates or as enantiomerically pure compounds or as diastereomers. If enantiomerically pure compounds are desired, these can be obtained, for example, by carrying out a classic resolution with the compounds of the formula I or their intermediates using a suitable optically active base or acid. On the other hand, the enantiomers Compounds can also be prepared by using commercially available compounds, for example optically active amino acids such as phenylalanine, tryptophan and tyrosine.
  • the invention also relates to the compounds mesomeric and tautomeric to the compounds of the formula I, for example those in which the keto group of the formula I is present as an enol tautomer.
  • the new compounds I can contain a basic or acidic group.
  • the compounds I can be in the form of their physiologically tolerable salts, which can be obtained by reacting the compounds I with a suitable acid or base.
  • Suitable acids for salt formation with compounds I according to the invention which contain a basic group can be, for example, hydrochloric acid, citric acid, tartaric acid, lactic acid, phosphoric acid, methanesulfonic acid, acetic acid, formic acid, maleic acid, fumaric acid, malic acid, succinic acid, malonic acid and sulfuric acid.
  • Suitable bases are, for example, potassium hydroxide, sodium hydroxide, lithium hydroxide, triethylamine, ⁇ , ⁇ , ⁇ -tris (hydroxymethyl) methylamine and also other amines.
  • ketobenzamides I according to the invention can be prepared in various ways, which were outlined in synthesis schemes 1, 2 and 3.
  • the carboxylic acid esters II are converted into acids III with acids or bases such as lithium hydroxide, sodium hydroxide or potassium hydroxide in an aqueous medium or in mixtures of water and organic solvents such as alcohols or tetrahydrofuran at room temperature or elevated temperatures, such as 25-100 ° C.
  • acids or bases such as lithium hydroxide, sodium hydroxide or potassium hydroxide in an aqueous medium or in mixtures of water and organic solvents such as alcohols or tetrahydrofuran at room temperature or elevated temperatures, such as 25-100 ° C.
  • the acids III are linked to an ⁇ -amino acid derivative, using customary conditions which are described, for example, in Houben-Weyl, Methods of Organic Chemistry, 4th edition, E5, chap. V, and C.R. Lrock, Comprehensive Organic Transformations, VCH Publisher, 1989, Ch.9.
  • the carboxylic acids III are converted into "activated” acid derivatives R '-COOL, L representing a leaving group such as Cl, imidazole and N-hydroxybenzotriazole, and then by reaction with an amino acid derivative H 2 N-CH (R4) -COOR converted into the derivative IV.
  • This reaction takes place in anhydrous, inert solvents such as methylene chloride, tetrahydrofuran and dirnethylformamide at temperatures from -20 to + 25 ° C.
  • the derivatives IV which are generally esters, are converted into the ketocarboxylic acids V analogously to the hydrolysis described above.
  • the keto esters I ' are prepared, using a method by Zhao Zhao Li et al. J.Med.Chem., 1993, 36, 3472-80.
  • a carboxylic acid such as V is reacted with oxalic acid monoester chloride at elevated temperature (50-100 ° C) in solvents such as tetrahydrofuran and then the product thus obtained with bases such as sodium ethanolate in ethanol at temperatures of 25-80 ° C to the ketoester according to the invention I 'implemented.
  • the keto esters I ' can be hydrolyzed to the ketocarboxylic acids according to the invention.
  • the conversion to the ketobenzamides I ' is also carried out analogously to the method by Zhao Zhao Li et al. (see above).
  • the keto group in I ' is protected at room temperature by adding 1, 2-ethanedithiol with Lewis acid catalysis, for example with boron trifluoride etherate, in inert solvents, such as methylene chloride, a dithiane being obtained.
  • Lewis acid catalysis for example with boron trifluoride etherate
  • inert solvents such as methylene chloride
  • dithiane a dithiane
  • Other esters or amides X are prepared by reaction with alcohols or amines under the coupling conditions already described.
  • the alcohol derivative IX can also be oxidized to the ketocarboxylic acid derivatives I according to the invention.
  • Benzoic acid derivatives III are combined with suitable amino alcohols X to give the corresponding benzamides XI.
  • Common peptide coupling methods are used, which are described either in CRLarock, Comprehensive Organic Transformations, VCH Publisher, 1989, page 972f. or in Houben-Weyl, Methods of Organic Chemistry, 4th edition, E5, Kap.V. It is preferred to work with "activated” acid derivatives of III, the acid group COOH being converted into a group COL.
  • L represents a leaving group such as Cl, imidazole and N-hydroxybenzotriazole.
  • This activated acid is then reacted with amines to form the iden XI.
  • the reaction takes place in anhydrous, inert solvents such as methylene chloride, tetrahydrofuran and dirnethylformamide at temperatures from -20 to + 25 ° C.
  • the alcohol derivatives XI can be oxidized to the aldehyde derivatives I according to the invention.
  • Various customary oxidation reactions can be used for this (see CRLarock, Comrenhensive Organic Transformations, VCH Publisher, 1989, page 604 f.), Such as Swern- and Swern-analogous oxidations (TTTidwell, Synthesis 1990, 857-70), sodium hypochlorite / TEMPO (SLHarbenson et al., See above) or Dess-Martin (J.Org.Chem. 1983, 48, 4155).
  • inert aprotic solvents such as dimethylformamide, tetrahydrofuran or methylene chloride with oxidizing agents such as DMSO / pyridine x SO 3 or DMSO / oxalyl chloride at temperatures from -50 to + 25 ° C.
  • oxidizing agents such as DMSO / pyridine x SO 3 or DMSO / oxalyl chloride
  • the same reaction procedure is used as for the representation of XI.
  • the hydroxam derivatives XIII can also be obtained from the protected amino acids XII by conversion with hydroxylamine.
  • the amide production processes already described are also used here.
  • the protecting group Y 2 for example Boc, is cleaved off in a customary manner, for example using trifluoroacetic acid in methylene chloride.
  • the benzamide-hydroxamic acids XIV 10 thus obtained can be converted into the aldehydes I according to the invention by reduction.
  • lithium aluminum hydride is used as a reducing agent at temperatures from -60 to 0 ° C. in inert solvents such as tetrahydrofuran or ether.
  • carboxylic acid esters II or carboxylic acids III have in some cases already been described or can be prepared in accordance with conventional chemical methods.
  • precursors II of pyrimidiones I can be obtained from the corresponding isatoic anhydrides (see CK Reddy et al., Ind. J. Chem., 1987, 26B, 882) or directly from the 2-aminobenzoates. acid derivatives in sales of phenyl isocyanates (see: CM.
  • ketobenzamides I according to the invention are inhibitors of cysteine proteases, in particular of cysteine proteases such as calpaine I and II and cathepsine B and L.
  • Cathepsin B inhibition was determined analogously to a method by S.Hasnain et al., J.Biol.Chem. 1993, 268, 235-40.
  • the inhibitory properties of calpain inhibitors are tested in buffer with 50 mM Tris-HCl, pH 7.5; 0.1 M NaCl;
  • the cleavage of the substrate is linear for 60 min and the autocatalytic activity of calpain is low if the experiments are carried out at temperatures of 12 ° C. (see Chatterjee et al. 1996, Bioorg. & Med. Chem. Lett., Vol 6, 1619-1622).
  • the inhibitors and the calpain substrate are added to the test batch as DMSO solutions, the final concentration of DMSO not exceeding 2%.
  • Calpain is an intracellular cysteine protease. Calpain inhibitors must pass through the cell membrane to prevent the breakdown of intracellular proteins by calpain. Some known calpain inhibitors, such as E 64 and leupeptin, only poorly cross the cell membranes and accordingly, although they are good calpain inhibitors, show only poor activity on cells. The aim is to find connections with better membrane passage. We use human platelets as evidence of the membrane passage of calpain inhibitors.
  • the platelet-rich plasma was pooled and diluted 1: 1 with platelet buffer (platelet buffer: 68 mM NaCl, 2.7 mM KC1, 0.5 mM MgCl 2 ⁇ 6 H 2 O, 0.24 mM NaH 2 PO 4 ⁇ H 2 0, 12 mM NaHC0 3 , 5.6 mM glucose, 1 mM EDTA, pH 7.4). After a centrifugation and washing step with platelet buffer, the platelets were adjusted to 10 7 cells / ml. The human platelets were isolated at RT. In the test mixture, isolated platelets (2 ⁇ 10 6 ) with different concentrations of inhibitors (dissolved in DMSO) were preincubated for 5 min at 37 ° C.
  • platelet buffer platelet buffer: 68 mM NaCl, 2.7 mM KC1, 0.5 mM MgCl 2 ⁇ 6 H 2 O, 0.24 mM NaH 2 PO 4 ⁇ H 2 0, 12 mM NaHC0 3 ,
  • the platelets were then activated with 1 ⁇ M Ionophore A23187 and 5 mM CaCl 2 . After 5 min incubation, the platelets were briefly centrifuged at 13000 rpm and the pellet was taken up in SDS sample buffer (SDS sample buffer: 20 mM Tris-HCl, 5 mM EDTA, 5 mM EGTA, 1 mM DTT, 0.5 mM PMSF, 5 ⁇ g / ml leupeptin, 10 ⁇ m pepstatin, 10% glycerin and 1% SDS). The proteins were separated in a 12% gel and pp60src and its 52-kDa and 47-kDa cleavage products were identified by Western blotting.
  • the rabbit anti-Cys-src (pp60 c " src ) polyclonal antibody used had been purchased from Biomol Feinchemischen (Hamburg). This primary antibody was detected with an HRP-coupled second goat antibody (Boehringer Mannheim, FRG) Western blotting was carried out according to known methods.
  • pp60src The cleavage of pp60src was quantified densitometrically, using controls which were not activated (control 1: no cleavage) and plates treated with ionophore and calcium (control 2: corresponds to 100% cleavage).
  • the ED 50 value corresponds to the concentration of inhibitor at which the intensity of the color reaction of the 60 kDa band corresponds to the value intensity of control 1 plus control 2 divided by 2.
  • calpain also plays a role in apoptotic cell death (M.K.T. Squier et al. J. Cell. Physiol. 1994, 159, 229-237; T. Patel et al. Faseb Journal 1996, 590, 587-597). Therefore, in another model, cell death was triggered with calcium in the presence of a calcium ionophore in a human cell line. Calpain inhibitors must enter the cell and inhibit calpain there to prevent cell death.
  • cell death can be triggered by calcium in the presence of the ionophore A 23187.
  • 10 5 cells / well are plated in microtiter plates 20 h before the experiment. After this period, the cells are incubated with various concentrations of inhibitors in the presence of 2.5 ⁇ M ionophore and 5 mM calcium. After 5 h, 0.05 ml of XTT (Cell Proliferation Kit II, Boehringer Mannnheim) are added to the reaction mixture. The optical density is determined approximately 17 hours later, in accordance with the manufacturer's instructions, in the EASY READER EAR 400 from SLT. The optical density at which half of the cells have died is calculated from the two measured values without Inhibitors incubated in the absence and presence of ionophore.
  • a number of neurological diseases or mental disorders result in increased glutamate activity, which leads to states of overexcitation or toxic effects in the central nervous system (CNS).
  • CNS central nervous system
  • Glutamate antagonists including in particular NMDA antagonists or their modulators and the AMPA antagonists, are suitable for therapeutic use as agents against neurodegenerative diseases (Huntington's and Parkinson's diseases), neurotoxic disorders after hypoxia, anoxia or Ischemia, as it occurs after "Stroke”, or also as anti-epileptics, antidepressants and anxiolytics (cf. Medicinal Research 1990, 40, 511 - 514; TIPS, 1990, 11, 334 - 338 and Drugs of the Future 1989, 14 (11), 1059-1071).
  • EAA Excitatory Amino Acids
  • calpain inhibitors in cell cultures also have a protective action against cell death caused by EAA (H. Cauer et al., Brain Research 1993, 607, 354-356; Yu Cheg and AY Sun, Neurochem. Res 1994, 19, 1557-1564).
  • EAA eg NMDA or AMPA
  • the cortex halves are prepared from 15-day-old mouse embryos and the individual cells are obtained enzymatically (trypsin). These cells (glia and cortical neurons) are sown in 24 well plates. After three days (laminin coated plates) or seven days (ornithine coated plates) the mitosis treatment is carried out with FDU (5-fluoro-2-deoxyuridine). 15 days after cell preparation, cell death is triggered by adding glutamate (15 min). After the glutamate removal, the calpain inhibitors are added. 24 hours later, cell damage is determined by determining lactate dehydrogenase (LDH) in the cell culture supernatant.
  • LDH lactate dehydrogenase
  • the benzamides of the formula I are inhibitors of cysteine proteases such as in particular calpain I or II and cathepsin B or L and can thus be used to combat diseases which are associated with increased enzyme activity of the calpain enzymes or cathepsin enzymes , serve.
  • neurodegenerative diseases which occur after ischemia, trauma, subarachnoidal bleeding and stroke and which include, in particular, stroke and head trauma, and of neurodegenerative diseases such as multiple infarct dementia, Alzheimer's disease and Huntington's disease and also for treatment damage to the heart after cardiac ischemia, damage to the kidneys after renal ischemia, skeletal muscle damage, muscular dystrophies, damage caused by proliferation of smooth muscle cells, coronary vasospasm, cerebral vasospasm, cataracts of the eyes, restenosis of the bloodstream after angioplasty.
  • the benzamides of formula I can be useful in chemotherapy of tumors and their metastases and for the treatment of diseases in which an increased level of interleukin-1 occurs, such as inflammation and rheumatic diseases.
  • the pharmaceutical preparations according to the invention contain a therapeutically effective amount of the compounds I.
  • the active compounds can be present in the usual concentrations.
  • the active ingredients are in an amount of 0.001 to 1% by weight, preferably 0.01 to 0.1
  • the preparations are administered in single doses. 0.1 to 100 mg per kg body weight are given in a single dose.
  • the preparations can be administered daily in one or more doses depending on the type and severity of the diseases.
  • the pharmaceutical preparations according to the invention contain, in addition to the active ingredient, the customary carriers and diluents.
  • pharmaceutical-technical auxiliaries such as ethanol, isopropanol, ethoxylated castor oil, ethoxylated hydrogenated castor oil, polyacrylic acid, polyethylene glycol, polyethylene glycol stearate, ethoxylated fatty alcohols, paraffin oil, petroleum jelly and wool fat, can be used.
  • Milk sugar, propylene glycol, ethanol, starch, talc and polyvinylpyrrolidone are suitable for internal use.
  • Antioxidants such as tocopherol and butylated hydroxyanisole and butylated hydroxytoluene, taste-improving additives, stabilizers, emulsifiers and lubricants can also be present.
  • the substances contained in the preparation in addition to the active substance and the substances used in the manufacture of the pharmaceutical preparations are toxicologically harmless and compatible with the respective active substance.
  • the pharmaceutical preparations are produced in a customary manner, for example by mixing the active ingredient with other customary excipients and diluents.
  • the pharmaceutical preparations can be administered in various modes of administration, for example orally, parenterally or intravenously by infusion, subcutaneously, intraperitoneally and topically.
  • forms of preparation such as tablets, emulsions, infusion and injection solutions, pastes, ointments, gels, creams, lotions, powders and sprays are possible.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Psychiatry (AREA)
  • Vascular Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Indole Compounds (AREA)

Abstract

Es werden heterocyclisch substituierte Benzamide der Formel (I) beschrieben, worin R<1>, R<2>, R<3>, R<4>, R<5>, X, m und n die in der Beschreibung angegebene Bedeutung haben. Die neuen Verbindungen eignen sich zur Bekämpfung von Krankheiten.

Description

NEUE HETEROCYCLISCH SUBSTITUIERTE BENZAMIDE UND DEREN ANWENDUNG BEI DER BEKÄMPFUNG VON KRANKHEITEN
Beschreibung
Die vorliegende Erfindung betrifft neuartige heterocyclisch substituierte Benzamide und deren Verwendung bei der Bekämpfung von Krankheiten.
Calpaine stellen intracelluläre, proteolytische Enzyme aus der Gruppe der sogenannten Cystein-Proteasen dar und werden in vielen Zellen gefunden. Calpaine werden durch erhöhte Kalziumkonzentration aktiviert, wobei man zwischen Calpain I oder μ-Calpain, das durch μ-molare Konzentrationen von Calzium-Ionen akiviert wird, und Calpain II oder m-Calpain, das durch m-molare Konzentrationen von Kalzium-Ionen aktiviert wird, unterscheidet (P.Johnson, Int. J.Bioche . 1990, 22(8), 811-22). Heute werden noch weitere Calpain-Isoenzyme postuliert (K.Suzuki et al., Biol.Chem. Hoppe- Seyler, 1995, 376(9), 523-9).
Man vermutet, daß Calpaine in verschiedenen physiologischen Prozessen eine wichtige Rolle spielen. Dazu gehören Spaltungen von regulatorischen Proteinen wie Protein-Kinase C, Cytoskelett-Pro- teine wie MAP 2 und Spektrin, Muskelproteine, Proteinabbau in rheumatoider Arthritis, Proteine bei der Aktivierung von Platt- chen, Neuropeptid-Metabolismus, Proteine in der Mitose und weitere, die in. M.J.Barrett et al . , Life Sei. 1991, 48, 1659-69 und K.K.Wang et al . , Trends in Pharmacol . Sei . , 1994, 15, 412-9 aufgeführt sind.
Bei verschiedenen pathophysiologischen Prozessen wurden erhöhte Calpain-Spiegel gemessen, zum Beispiel: Ischämien des Herzens (z.B. Herzinfarkt) , der Niere oder des Zentralnervensystems (z.B. "Stroke"), Entzündungen, Muskeldystrophien, Katarakten der Augen, Verletzungen des Zentralnervensystems (z.B.Trauma) , Alzheimer Krankheit usw. (siehe K.K. Wang, oben) . Man vermutet einen Zusammenhang dieser Krankheiten mit erhöhten und anhaltenden intrazellulären Kalziumspiegeln. Dadurch werden Kalzium-abhängige Prozesse überaktiviert und unterliegen nicht mehr der physiologi- sehen Regelung. Dementsprechend kann eine Überaktivierung von Calpainen auch pathophysiologische Prozesse auslösen.
Daher wurde postuliert, daß Inhibitoren der Calpain-Enzyme für die Behandlung dieser Krankheiten nützlich sein können. Verschie- dene Untersuchungen bestätigen dies. So haben Seung-Chyul Hong et al., Stroke 1994, 25(3), 663-9 und R.T.Bartus et al., Neurologi- cal Res. 1995, 17, 249-58 eine neuroprotektive Wirkung von Cal - pain-Inhibitoren in akuten neurodegenerativen Störungen oder Ischämien, wie sie nach Hirnschlag auftreten, gezeigt. Nach experimentellen Gehirntraumata verbesserten Calpain-Inhibitoren die Erholung der auftretenden Gedächtnisleistungsdefizite und neuro- 5 motrischen Störungen (K.E.Saatman et al . Proc.Natl.Acad. Sei . USA, 1996, 93,3428-3433). C.L.Edelstein et al . , Proc.Natl .Acad. Sei. USA, 1995, 92, 7662-6, fanden eine protektive Wirkung von Cal- pain-Inhibitoren auf durch Hypoxie geschädigte Nieren. Yoshida, Ken Ischi et al., Jap.Circ.J. 1995, 59(1), 40-8, konnten günstige
10 Effekte von Calpain-Inhibitoren nach cardialen Schädigungen aufzeigen, die durch Ischämie oder Reperfusion erzeugt wurden. Da Calpain-Inhibitoren die Freisetzung des ß-AP4-Proteins hemmen, wurde eine potentielle Anwendung als Therapeutikum der Alzheimer Krankheit vorgeschlagen (J.Higaki et al . , Neuron, 1995, 14,
15 651-59) . Die Freisetzung von Interleukin-lα wurde ebenfalls durch Calpain-Inhibitoren gehemmt (N.Watanabe et al . , Cytokine 1994, 6(6), 597-601). Weiterhin wurde gefunden, daß Calpain-Inhibitoren cytotoxische Effekte an Tumorzellen zeigen (E.Shiba et al . 20th Meeting Int.Ass .Breast Cancer Res., Sendai Jp, 1994,
20 25. -28. Sept. , Int.J.Oncol. 5(Suppl.), 1994, 381).
Weitere mögliche Anwendungen von Calpain-Inhibitoren sind in K.K.Wang, Trends in Pharmacol . Sei . , 1994, 15, 412-8, aufgeführt.
25 Calpain-Inhibitoren sind in der Literatur bereits beschrieben worden. Überwiegend sind dies jedoch entweder irreversible oder peptidische Inhibitoren. Irreversible Inhibitoren sind in der Regel alkylierende Substanzen und haben den Nachteil, daß sie im Organismus unselektiv reagieren oder instabil sind. So zeigen
30 diese Inhibitoren oft unerwünschte Nebeneffekte, wie Toxizität, und sind dadurch in der Anwendung eingeschränkt oder nicht brauchbar. Zu den irreveriblen Inhibitoren zählen zum Beispiel die Epoxide E 64 (E.B.McGowan et al . , Biochem.Biophys .Res . Commun. 1989, 158, 432-5), α-Halogenketone (H.Angliker et al . ,
35 J.Med.Chem. 1992, 35, 216-20) und Disulfide (R.Matsueda et al., Chem.Lett. 1990, 191-194).
Viele bekannte reversible Inhibitoren von Cystein-Proteasen wie Calpain stellen peptidische Aldehyde dar, insbesondere 0 dipeptidische und tripepidische Aldehyde wie zum Beispiel Z-Val- Phe-H (MDL 28170) (S.Mehdi, Tends in Biol.Sci. 1991, 16, 150-3) und die Verbindungen aus EP 520336.
Es sind ebenfalls peptidische Keton-Derivate als Inhibitoren von 5 Cystein-Proteasen, insbesondere das Calpain, gefunden worden. Allerdings sind nur solche Ketone, bei denen einerseits α-ständige Abgangsgruppen eine irreversible Hemmung verursachen und anderer- seits ein Carbonsäure-Derivat die Keto-Gruppe aktiviert, als wirksame Inhibitoren -gefunden werden (siehe M.R.Angelastro et al., J.Med.Chem. 1990,33, 11-13 ; WO 92/11850; WO 92,12140; WO 94/00095 und WO 95/00535) . Jedoch sind von diesen Ketoamiden und Ketoestern bisher nur peptidische Derivate als wirksam beschrieben worden (Zhao Zhao Li et al . , J.Med.Chem. 1993, 36, 3472-80; S.L.Harbenson et al., J.Med.Chem. 1994, 37, 2918-29 und siehe oben M.R.Angelastro et al.).
Ketobenzamide sind bereits in der Literatur bekannt. So wurde der Ketoester PhCO-Abu-COOCH2CH3 in WO 91/09801, WO 94/00095 und 92/11850 beschrieben. Das analoge Phenyl-Derivat Ph- CONH-CH(CH2Ph)-CO-COCOOCH3 wurde in M.R.Angelastro et al., J.Med.Chem. 1990,33, 11-13 als jedoch nur schwacher Calpain- Inhibitor gefunden. Dieses Derivat ist auch in J. P.Burkhardt, Tetrahedron Lett., 1988, 3433-36 beschrieben. Die Bedeutung der substituierten Benzamide ist jedoch bisher nie untersucht worden.
In JP 8183759, JP 8183769, JP 8183771 und EP 520336 sind von Di- peptiden abgeleitete Aldehyde beschrieben worden, wobei gesättigte carbocyclische Ringe, zum Beispiel Cyclohexane, oder gesättigte heterocyclische Ringe, zum Beispiel Piperidine, anstelle einer Aminosäure in diese peptidischen Inhibitoren eingebaut wurden, wodurch man neuartige Aldehyde als Calpain-Inhibitoren er- hielt.
Es wurden nun substituierte nicht-peptidische heterocyclisch substituierte Benzamide-Derivate mit einer verbesserten Wirkung gefunden.
Gegenstand der Erfindung sind heterocyclisch substituierte Benzamide der Formel I
(R3)n
und deren tautomere und isomere Formen sowie gegebenenfalls phy- siologisch verträgliche Salze, worin die Variablen folgende Bedeutung haben: Ri Wasserstoff, Cι-C6-Alkyl, 0-Cι-C6-Alkyl, , OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-Cι-C4-Alkyl, -NHCO-Cι-C4-Alkyl, -NHCO-Phenyl, -CONHR8, NHS02-Cι-C4-Alkyl, -NHS02-Phenyl, -S02-Cι-C4-Alkyl oder -S02-Phenyl,
R2 Wasserstoff, Cι-C6-Alkyl, 0-Cι-C6-Alkyl, , OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-Cι-C4-Alkyl, -NHCO-Cι-C4-Alkyl, -NHCO-Phenyl, -CONHR8, NHS02-C1-C4-Alkyl, -NHS02-Phenyl, -S02-Cι-C4-Alkyl oder -S02-Phenyl oder
R1 und R2 zusammen eine Kette -CH=CH-CH=CH-, die noch ein oder zwei Substituenten R6 tragen kann,
R3 Wasserstoff, Chlor, Brom, Fluor, Ci - C6 - Alkyl, Phenyl, NHCO-C! -C4-Alkyl, N02, oder NH2,
R4 Ci-Cβ-Alkyl, das noch einen Phenyl-, Cyclopropyl- , Cyclo- butyl - , Cyclopentyl - , Cyclohexyl -cycloheptyl - , Indolyl - , Pyridyl- oder Naphthyl-Ring tragen kann, der seinerseits mit ein oder zwei Resten R7 substituiert ist, wobei R7 Wasserstoff, Cι-C4-Alkyl, -0-C!-C4-Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN, COOH , COO-Cι-C4-Alkyl , -CONHR8, -NHCO-Cι-C4-Alkyl, -NHCO-Phenyl, -NHS02-Cι-C4-Alkyl, -NHS02-Phenyl, -S02-Cι-C4-Alkyl oder -S02-Phenyl,
R5 Wasserstof f , -CO-OR8 , -CO-NR9R10,
oder
__CO_NRIO_ VN-R12 ^^
R6 Wasserstoff, Cι-C6-Alkyl, -0-Cι-C6-Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-C1-C4-Alkyl,
R8 Wasserstoff oder Cι-C6-Alkyl,
R9 Wasserstoff, Cι-C6-Alkyl, das noch durch einen Phenylring, der noch einen Rest R11 tragen kann, und mit
-N O -o ,12
substituiert sein kann,
Rio Wasserstoff oder Cι-C6-Alkyl,
Rii Wasserstoff, Cι-C6-Alkyl, -0-Cι-C6-Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-Cι-C4-Alkyl ,
R12 Wasserstoff oder eine Co--Alkylkette, die mit einem Phenyl ring substituiert sein kann, der selbst noch ein oder zwei Resten R11 tragen kann,
X -NH-CO- , -N=CH- , -CH2-CH2- , -CH=CH- , -S02- , -CH2- , -CO- und -CH2-C0- ,
n die Zahl 0, 1 oder 2 und
m die Zahl 0, 1, und 2.
Bevorzugt sind heterocyclisch substituierte Benzamide der Formel I gemäß Anspruch 1, worin R5 Wasserstoff bedeutet und Rl, R , R3 , R4, X , m und n die oben angegebene Bedeutung haben.
Weiter bevorzugt sind heterocyclisch substituierte Benzamide der Formel I gemäß Anspruch 1, worin R5 -CO-NR9R10 bedeutet und Rl, R2, R3, R4, X , m und n die oben angegebene Bedeutung haben.
Schließlich sind auch bevorzugt heterocyclisch substituierte Benzamide der Formel I gemäß Anspruch 1, worin R5 -CO-OR8 bedeutet und Rl, R2, R3, R4 , X , m und n die oben angegebene Bedeutung haben.
Die Verbindungen der Formel I können als Racemate oder als enantiomerenreine Verbindungen oder als Diastereomere eingesetzt werden. Werden enantiomerereine Verbindungen gewünscht, kann man diese beispielweise dadurch erhalten, daß man mit einer geeigne- ten optisch aktiven Base oder Säure eine klassische Racemat- spaltung mit den Verbindungen der Formel I oder ihren Zwischenprodukten durchführt. Andererseits können die enantiomeren Verbindungen ebenfalls durch Einsatz von kommerziell erhältlichen Verbindungen, zum Beipspiel optisch aktiven Aminosäuren wie Phenylalanin, Tryptophan und Tyrosin, hergestellt werden.
Gegenstand der Erfindung sind auch die zu den Verbindungen der Formel I mesomeren und tautomere Verbindungen, beispielsweise solche, bei denen die Ketogruppe der Formel I als Enol-Tautomeres vorliegt.
Ein Teil der neuen Verbindungen I kann eine basische oder saure Gruppe enthalten. In diesen Fällen können die Verbindungen I in Form ihrer physiologisch verträglichen Salze vorliegen, die sich durch Umsatz der Verbindungen I mit einer geeigneten Säure oder Base erhalten lassen.
Geeignete Säuren zur Salzbildung mit erfindungsgemäßen Verbindungen I, die eine basische Gruppe enthalten, können zum Beispiel Salzsäure, Citronensäure, Weinsäure, Milchsäure, Phosphorsäure, Methansulfonsäure, Essigsäure, Ameisensäure, Ma- leinsäure, Fumarsaure, Äpfelsäure, Bernsteinsäure, Malonsaure und Schwefelsäure sein. Geeignete Basen sind zum Beispiel Kaliumhydroxid, Natriumhydroxid, Lithiumhydroxid, Triethylamin, α,α,α-Tris- (hydroxymethyl) methylamin und auch andere Amine.
Die Herstellung der erfindungsgemäßen Ketobenzamide I kann auf verschiedenen Wegen erfolgen, die in den Syntheseschemata 1, 2 und 3 skizziert wurden.
Die Karbonsäureester II werden mit Säuren oder Basen wie Lithium- hydroxid, Natriumhydroxid oder Kaliumhydroxid in wäßrigen Medium oder in Gemischen aus Wasser und organischen Lösungsmitteln wie Alkoholen oder Tetrahydrofuran bei Raumtemperatur oder erhöhten Temperaturen, wie 25-100°C, in die Säuren III überführt. Die Säuren III werden mit einem α-Aminosäure-Derivat verknüpft, wobei man übliche Bedingungen benutzt, die zum Beispiel im Houben-Weyl, Methoden der organischen Chemie, 4.Aufl., E5, Kap. V, und C.R.La- rock, Comprehensive Organic Transformations, VCH Publisher, 1989, Ch.9 aufgelistet sind.
Die Carbonsäuren III werden in "aktivierte" Säure-Derivate R' -COOL überführt, wobei L eine Abgangsgruppe wie Cl, Imidazol und N-Hy- droxybenzotriazol darstellt, und anschließend durch Umsatz mit einem Aminosäure-Derivat H2N-CH (R4) -COOR in das Derivat IV überführt. Diese Reaktion erfolgt in wasserfreien, inerten Lösungs- mittein wie Methylenchlorid, Tetrahydrofuran und Dirnethylformamid bei Temperaturen von -20 bis +25°C. Schema 1
Die Derivate IV, die in der Regel Ester darstellen, werden analog der oben beschriebenen Hydrolyse in die Ketokarbonsäuren V überführt. In einer der Dakin-West Reaktion analogen Umsetzung werden die Ketoester I' hergestellt, wobei nach einer Methode von Zhao Zhao Li et al.. J.Med.Chem., 1993, 36, 3472-80 gearbeitet wird. Dabei wird eine Karbonsäure wie V bei erhöhter Temperatur (50-100°C) in Lösungsmitteln, wie zum Beispiel Tetrahydrofuran, mit Oxalsäuremonoesterchlorid umgesetzt und anschließend das so erhaltene Produkt mit Basen wie Natriumethanolat in Ethanol bei Temperaturen von 25-80°C zum erfindungsgemäßen Ketoester I' umgesetzt. Die Ketoester I' können, wie oben beschrieben, zu den erfindungsgemäßen Ketocarbonsäuren hydrolysiert werden.
Die Umsetzung zu den Ketobenzamiden I' erfolgt ebenfalls analog der Methode von Zhao Zhao Li et al . (s.oben) . Die Ketogruppe in I' wird durch Zugabe von 1, 2-Ethandithiol unter Lewissäure-Kata- lyse, zum Beispiel mit Bortrifluoridetherat, in inerten Lösungsmitteln, wie Methylenchlorid, bei Raumtemperatur geschützt, wobei ein Dithian anfällt. Diese Derivate werden mit Aminen R3-H in polaren Lösungsmitteln, wie Alkoholen, bei Temperaturen von 0-80°C umgesetzt, wobei die Ketoamide I (R4 = NR7R8) anfallen. Schema 2
IX
25
Eine alternative Methode ist in Schema 2 dargestellt. Die Ketokarbonsäuren III werden mit A inohydroxykarbonsäure-Derivaten VI (Herstellung von VI siehe S.L.Harbenson et al . , J.Med.Chem. 1994, 37,2918-29) unter üblichen Peptid-Kupplungs-Methoden (siehe oben,
30 Houben-Weyl) umgesetzt, wobei die Amide VII anfallen. Diese Alkohol-Derivate VII können zu den erfindungsgemäßen Ketokarbonsäure- Derivaten I oxidiert werden. Dafür kann man verschiedene übliche Oxidationsreaktionen (siehe C.R.Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, Seite 604 f.) wie
35 zum Beispiel Swern- und Swern-analoge Oxidationen verwenden.
Bevorzugt wird mit Dimethylsulfoxid/ Pyridin-Schwefeltrioxid-Komplex in Lösungsmitteln wie Methylenchorid oder Tetrahydrofuran, gegebenenfalls unter Zusatz von Dimethylsulfoxid, bei Raumtemperatur oder Temperaturen von -50 bis 25°C, (T.T.Tidwell, Synthesis
40 1990, 857-70) oder Natriumhypochlorid/TEMPO (S.L.Harbenson et al., siehe oben) .gearbeitet.
Die α-Hydroxyester VII (X = O-Alkyl) können zu Karbonsäuren VIII hydrolysiert werden, wobei analog zu den obigen Methoden gearbei- 45 tet wird, bevorzugt aber mit Lithiumhydroxid in Wasser/Tetrahy- drofuran-Gemischen bei Raumtemperatur. Die Herstellung von anderen Estern oder Amiden X erfolgt durch Umsetzung mit Alkoholen oder Aminen unter den bereits beschriebenen Kupplungsbedingungen. Das Alkohol-Derivat IX kann ebenfalls zum erfindungsgemäßen Keto- karbonsäure-Derivaten I oxidiert werden.
Die erfindungsgemäßen Aldehyde der Formel I (R5 = Wasserstoff) können analog SyntheseSchema 3 hergestellt werden. Benzoesäure- Derivate III werden mit geeigneten Aminoalkoholen X zu den entsprechenden Benzamiden XI verknüpft. Dabei benutzt man übliche Peptid-Kupplungs-Methoden, die entweder in C.R.Larock, Compren- hensive Organic Transformations, VCH Publisher, 1989, Seite 972f . oder im Houben-Weyl, Methoden der organischen Chemie, 4.Aufl., E5, Kap.V aufgeführt sind. Bevorzugt arbeitet man mit "aktivierten" Säurederivaten von III, wobei die Säuregruppe COOH in eine Gruppe COL überführt wird. L stellt eine Abgangsgruppe wie zum Beispiel Cl, Imidazol und N-Hydroxybenzotriazol dar. Diese aktivierte Säure wird anschließend mit Aminen zu den A iden XI umgesetzt. Die Reaktion erfolgt in wasserfreien, inerten Lösungsmitteln wie Methylenchlorid, Tetrahydrofuran und Dirnethylformamid bei Temperaturen von -20 bis +25°C.
Syntheseschema 3
XI
Reduktion
uktion
XV XVI Die Alkohol-Derivate XI können zu den erfindungsgemäßen Aldehyd- Derivaten I oxidiert werden. Dafür kann man verschiedene übliche Oxidationsreaktionen (siehe C.R.Larock, Comrenhensive Organic Transformations, VCH Publisher, 1989, Seite 604 f.) wie zum Beispiel Swern- und Swern-analoge Oxidationen (T.T.Tidwell, Synthe- sis 1990, 857-70), Natriumhypochlorid/TEMPO (S.L.Harbenson et al., siehe oben) oder Dess-Martin (J.Org.Chem. 1983, 48, 4155) benutzen. Bevorzugt arbeitet man hierbei in inerten aprotischen Lösungsmitteln wie Dimethylformamid, Tetrahydrofuran oder Methy- lenchorid mit Oxidationsmitteln wie DMSO/ Pyridin x S03 oder DMSO/ Oxalylchorid bei Temperaturen von -50 bis +25°C. Alternativ kann man die Benzoesäure III mit Aminohydroxamsäure- Derivaten XΪII zu Benzamiden XIII umsetzen. Dabei bedient man sich der gleichen Reaktionsführung wie bei der Darstellung von XI. Die Hydroxam-Derivate XIII sind auch aus den geschützten Ami - 5 nosäuren XII durch Umsatz mit Hydroxylamin erhältlich. Dabei benutzt auch hier die bereits beschriebenen Amidherstellungsverfah- ren. Die Abspaltung der Schutzgruppe Y2, zum Beispiel Boc, erfolgt in üblicher Weise, zum Beispiel mit Trifluoressigsäure in Methylenchlorid. Die so erhaltenen Benzamid-hydroxamsäuren XIV 10 können durch Reduktion in die erfindungsgemäßen Aldehyde I umgewandelt werden. Dazu benutzt man zum Beispiel Lithiumaluminium- hydrid als Reduktionsmittel bei Temperaturen von -60 bis 0°C in inerten Lösungsmitteln wie Tetrahydrofuran oder Ether.
15 Analog zum letzten Verfahren kann man auch Benzamid-Karbonsäuren oder Säure-Derivate, wie Ester oder Amide XV, herstellen, die ebenfalls durch Reduktion in die erfindungsgemäßen Aldehyde I überführt werden können. Diese Verfahren sind in R.C.Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, Seite
20 619-26 aufgelistet.
Die Synthese der Karbonsäureester II bzw. der Karbonsäuren III sind teilweise bereits beschrieben worden oder entsprechend üblichen chemischen Methoden herstellbar.
25
So können die Vorstufen II der Pyrimidione I (X= -NH-CO-) aus den entsprechenden Isatosäureanhydriden (siehe C.K. Reddy et al., Ind.J.Chem., 1987, 26B, 882) oder direkt aus den 2-Aminobenzoe- säure-Derivaten beim Umsatz mit Phenylisocyanaten (siehe: CM.
30 Gupta et al., Ind. J.Chem. 1968, 6B, 621; Czech. 128, 433 (CA 70, 115176)) hergestellt werden.
Durch Kondensation von ortho-Aminobenzamiden mit Formaldehyd- Äquivalenten sind die analogen Pyrimidone (vgl. I bzw. II, X= 35 -NH=CH-) zugänglich (siehe B.Denis et al., J.Med.Chem. 1985, 24, 531; H.Suesse et al . , J. Prakt.Che . 1984, 326, 1027).
Imide (X= -C0-, bzw. -CH2-CO-) können aus den entsprechenden Anhydriden der Dicarbonsäuren synthetisiert werden (siehe:
40 J.M.Chapman et al . , J.Med.Chem. 1983, 26, 237; K.Pinney et al., J.Org.Chem., 1991, 56, 3125; IY.Imai et al., Nippon Kagaku Kaishi 1975, 2954 (CA 84, 105522)). Die Phthalazinone (X= -CH=N-) können aus Phenylhydrazinen und ortho-substituierten Benzoesäure-Deri- vaten hergestellt werden (siehe: J.E.Francis et al., Can.J.Chem.
45 1982, 60, 1214) . Lactame (X= -CH2-; -CH2-CH2-) sind zum Beispiel aus den Imiden durch Reduktion zugänglich (siehe: J.Brewster et al., J.Org.Chem. 1963, 28, 501; GB 2204579; R.Sato et al . , Bull. Chem. Soc. Jpn , 1988, 61, 2238).
Die erfindungsgemäßen Ketobenzamide I stellen Inhibitoren von Cy- 5 stein-Proteasen dar, insbesondere von Cystein-Proteasen wie der Calpaine I und II und der Cathepsine B bzw. L.
Die inhibitorische Wirkung der Ketobenzamide I wurde mit in der Literatur üblichen Enzymtests ermittelt, wobei als Wirkmaßstab 10 eine Konzentration des Inhibitors ermittelt wurde, bei der 50% der Enzymaktivität gehemmt wird (= IC50) . Zum Teil wurde auch ein Ki-Wert ermittelt. Die Ketobenzamide I wurden in dieser Weise auf ihre Hemmwirkung von Calpain I, Calpain II und Cathepsin B gemessen.
15
Cathepsin B-Test
Die Cathepsin B-Hemmung wurde analog einer Methode von S.Hasnain et al., J.Biol.Chem. 1993, 268, 235-40 bestimmt.
20
Zu 88μL Cathepsin B (Cathepsin B aus menschlicher Leber (Calbio- chem) , verdünnt auf 5 Units in 500uM Puffer) werden 2μL einer Inhibitor-Lösung, hergestellt aus Inhibitor und DMSO (Endkonzentrationen: lOOμM bis 0,01μM) gegeben. Dieser Ansatz wird 60 min 25 bei Raumtemperatur (25°C) vorinkubiert und anschließend die Reaktion durch Zugabe von lOμL lOmM Z-Arg-Arg-pNA (in Puffer mit 10% DMSO) gestartet. Die Reaktion wird 30 min bei 405nm im Mikroti- terplattenreader verfolgt. Aus den maximalen Steigungen werden anschließend die ICso's bestimmt.
30
Calpain I und II Test
Die Testung der inhibitorischen Eigenschaften von Calpain-Inhibitoren erfolgt in Puffer mit 50 mM Tris-HCl, pH 7,5; 0,1 M NaCl;
35 1 mM Dithiotreithol: 0,11 mM CaCl2, wobei das fluorogene Calpain- substrat Suc-Leu-Tyr-AMC (25 mM gelöst in DMSO, Bachern/Schweiz) verwendet wird (Sasaki et al. J. Biol. Chem. 1984, Vol. 259, 12489-12494). Humanes μ-Calpain wird aus Erythrozyten in Anlehnung an die Methoden von Croall und DeMartino (BBA 1984, Vol. 788,
40 348-355) und Graybill et al. (Bioorg. & Med. Lett. 1995, Vol. 5, 387-392) isoliert. Nach mehreren chromatographischen Schritten (DEAE-Sepharose, Phenyl -Sepharose, Superdex 200 und Blue-Sepha- rose) erhält man das Enzym mit einer Reinheit < 95 %, beurteilt nach SDS-PAGE, Western Blot Analyse und N- terminaler Sequen-
45 zierung. Die Fluoreszenz des Spaltproduktes 7 -Amino- -methyleou- marin (AMC) wird in einem Spex-Fluorolog Fluorimeter bei λPv = 380 nm und λem = 460 nm verfolgt. In einem Meßbereich von 60 min ist die Spaltung des Substrats linear und die autokataly- tische Aktivität von Calpain gering, wenn die Versuche bei Temperaturen von 12°C durchgeführt werden (siehe Chatterjee et al. 1996, Bioorg. & Med. Chem. Lett., Vol 6, 1619-1622). Die Inhibitoren und das Calpainsubstrat werden in den Versuchsansatz als DMSO-Lösungen gegeben, wobei DMSO in der Endkonzentration 2 % nicht überschreiten soll.
In einem typischen Versuchsansatz werden 10 μl Substrat (250 μm final) und anschließend 10 μl an μ-Calpain (2 μg/ml final, d.h. 18 nM) in eine 1 ml Küvette gegeben, die Puffer enthält. Die Calpain-vermittelte Spaltung des Substrats wird für 15 bis 20 min gemessen. Anschließend erfolgt die Zugabe von 10 μl Inhibitor (50 oder 100 μM Lösung DMSO) und die Messung der Inhibition der Spal - tung für weitere 40 min. Ki-Werte werden nach der üblichen Gleichung für reversible Hemmung bestimmt, d.h. K: = l(v0/v)-l; wobei I = Inhibitorkonzentration, v0 = Anfangsgeschwindigkeit vor Zugabe des Inhibitors; Vi = Reaktionsgeschwindigkeit im Gleichgewicht bedeutet.
Calpain ist eine intrazelluläre Cysteinprotease. Calpain- Inhibitoren müssen die Zellmembran passieren, um den Abbau von intrazellulären Proteinen durch Calpain zu verhindern. Einige bekannte Calpain-Inhibitoren, wie zum Beispiel E 64 und Leupeptin, überwinden die Zellmembranen nur schlecht und zeigen dementsprechend, obwohl sie gute Calpain-Inhibitoren darstellen, nur schlechte Wirkung an Zellen. Ziel ist es, Verbindungen mit besserer Membrangängigkeit zu finden. Als Nachweis der Membrangängig- keit von Calpain-Inhibitoren benutzen wir humane Plättchen.
Calpain-vermittelter Abbau der Tyrosinkinase pp60src in Plättchen
Nach der Aktivierung von Plättchen wurde die Tyrosinkinase pp60src durch Calpain gespalten. Dies wurde von Oda et al. in J. Biol. Chem., 1993, Vol 268, 12603-12608 eingehend untersucht. Hierbei wurde gezeigt, daß die Spaltung von pp60src durch Calpep- tin, einen Inhibitor für Calpain, verhindert werden kann. In Anlehnung an diese Publikation wurde die zellulare Effektivität der neuen Substanzen getestet. Frisches humanes, mit Zitrat versetz - tes Blut wurde 15 min bei 200 g zentrifugiert. Das Plättchen-reiche Plasma wurde gepoolt und mit Plättchenpuffer 1:1 verdünnt (Plättchenpuffer: 68 mM NaCl, 2,7 mM KC1, 0,5 mM MgCl2 x 6 H20, 0,24 mM NaH2P04 x H20, 12 mM NaHC03, 5,6 mM Glukose, 1 mM EDTA, pH 7,4). Nach einem Zentrifugations - und Waschschritt mit Plätt- chenpuffer wurden die Plättchen auf 107 Zellen/ml eingestellt. Die Isolierung der humanen Plättchen erfolgte bei RT. Im Testansatz wurden isolierte Plättchen (2 x 106) mit unterschiedlichen Konzentrationen an Inhibitoren (gelöst in DMSO) 5 min bei 37°C vorinkubiert. Anschließend erfolgte die Aktivierung der Plättchen mit 1 μM Ionophor A23187 und 5 mM CaCl2. Nach 5 min Inkubation wurden die Plättchen kurz bei 13000 rpm zentrifugiert und das Pellet in SDS-Probenpuffer aufgenommen (SDS-Probenpuffer: 20 mM Tris-HCl, 5 mM EDTA, 5 mM EGTA, 1 mM DTT, 0,5 mM PMSF, 5 μg/ml Leupeptin, 10 μm Pepstatin, 10 % Glycerin und 1 % SDS) . Die Proteine wurden in einem 12 %igen Gel aufgetrennt und pp60src und dessen 52-kDa und 47-kDa Spaltprodukte durch Western-Blotting identifiziert. Der verwendete polyklonale Kaninche -Antikörper Anti-Cys-src (pp60c"src) war von der Firma Biomol Feinchemikalien (Hamburg) erworben worden. Dieser primäre Antikörper wurde mit einem HRP-gekoppelten zweiten Antikörper aus der Ziege (Boehringer Mannheim, FRG) nachgewiesen. Die Durchführung des Western-Blotting erfolgte nach bekannten Methoden.
Die Quantifizierung der Spaltung von pp60src erfolgte densito- metrisch, wobei als Kontrollen nicht-aktivierte (Kontrolle 1: keine Spaltung) und mit Ionophor- und Kalzium-behandelte Plättchen (Kontrolle 2: entspricht 100 % Spaltung) verwendet wurden. Der EDso-Wert entspricht der Konzentration an Inhibitor bei der die Intensität der Farbreaktion der 60-kDa Bande dem Wert Intensität der Kontrolle 1 plus Kontrolle 2 geteilt durch 2 ent- spricht.
Man postuliert, daß Calpain auch eine Rolle im apoptotischen Zelltod spielt (M.K.T. Squier et al. J.Cell . Physiol. 1994, 159, 229-237; T.Patel et al . Faseb Journal 1996, 590, 587-597 ). Des- halb wurde in einem weiteren Modell in einer humanen Zellinie der Zelltod mit Kalzium in Gegenwart eines Kalziumionophors ausgelöst. Calpain-Inhibitoren müssen in die Zelle gelangen und dort Calpain hemmen, um den ausgelösten Zelltod zu verhindern.
Kalzium-vermittelter Zelltod in NT2 Zellen
In der humanen Zellinie NT2 läßt sich durch Kalzium in Gegenwart des Ionophors A 23187 der Zelltod auslösen. 105 Zellen/well werden in Mikrotiterplatten 20 h vor dem Versuch ausplattiert. Nach die- sem Zeitraum werden die Zellen mit verschiedenen Konzentrationen an Inhibitoren in Gegenwart von 2,5 μM Ionophor und 5 mM Kalzium inkubiert. Dem Reaktionsansatz werden nach 5 h 0,05 ml XTT (Cell Proliferation Kit II, Boehringer Mannnheim ) hinzugegeben. Die optische Dichte wird ungefähr 17 h später, entsprechend den Anga- ben des Herstellers, in dem EASY READER EAR 400 der Firma SLT bestimmt. Die optische Dichte, bei der die Hälfte der Zellen abgestorben sind, errechnet sich aus den beiden Meßwerten ohne Inhibitoren, die in Abwesenheit und Gegenwart von Ionophor inkubiert wurden.
Bei einer Reihe von neurologischen Krankheiten oder psychischen Störungen tritt erhöhte Glutamat-Aktivitat auf, die zu Zuständen von Übererregungen oder toxischen Effekten im zentralen Nervensystem (ZNS) führt.
Substanzen, die die durch Glutamat vermittelten Effekte hemmen, können somit zur Behandlung dieser Krankheiten eingesetzt werden. Glutamat-Antagonisten, dazu gehören insbesondere auch NMDA-Anta- gonisten bzw. deren Modulatoren und die AMPA-Antagonisten, eignen sich zur therapeutischen Anwendung als Mittel gegen neuro- degenerative Krankheiten (Chorea Huntington und Parkinsonsche Krankheiten) , neurotoxische Störungen nach Hypoxie, Anoxie oder Ischämie, wie sie nach "Stroke" auftreten, oder auch als Anti- epileptika, Antidepressiva und Anxiolytika (vgl. Arzneim. Forschung 1990, 40, 511 - 514; TIPS, 1990, 11, 334 - 338 und Drugs of the Future 1989, 14 (11), 1059 - 1071).
Durch intrazerebrale Applikation von exzitatorischen Aminosäuren (= EAA = Excitatory Amino Acids) wird eine so massive Über- erregung induziert, daß diese in kurzer Zeit zu Krämpfen und zum Tod der Tiere führt. Durch systemische - z.B. intraperitoneale - Gabe von zentral -wirksamen EAA-Antagonisten lassen sich diese Symptome hemmen. Da die exzessive Aktivierung von EAA-Rezeptoren des Zentralnervensystems in der Pathogenese verschiedener neurologischer Erkrankungen eine bedeutende Rolle spielt, kann aus dem nachgewiesenen EAA-Antagonismus in vivo auf die therapeutische Verwendbarkeit der Substanzen gegen derartige ZNS-Erkrankungen geschlossen werden. Hierzu zählen u.a. fokale und globale Ischämien, Trauma, Epilepsien sowie verschiedene neurodegenerative Erkrankungen, wie Chorea Huntington, Parkinson Krankheit u.a.
Es wurde bereits gezeigt, daß auch Calpain-Inhibitoren in Zell- kulturen protektive Wirkung gegen den durch EAA ausgelösten Zelltod zeigen (H. Cauer et al., Brain Research 1993, 607, 354-356; Yu Cheg und A.Y. Sun, Neurochem. Res. 1994, 19, 1557-1564). Die in dieser Anmeldung enthaltenen Calpain- Inhibitoren sind überraschenderweise sogar gegen die durch EAA (z.B. NMDA oder AMPA) ausgelösten Krämpfe wirksam und zeigen damit auf eine therapeutische Verwendung in den oben genannten ZNS- Erkrankungen hin. Glutamat induzierter Zelltod an corticalen Neuronen
Der Test wurde, wie bei Choi D. W. , Maulucci-Gedde M. A. and Kriegstein A. R., "Glutamate neurotoxicity in cortical cell cul- ture" . J. Neurosci. 1989,7, 357-368, durchgeführt.
Aus 15 Tage alten Mäuseembryos werden die Cortexhälften präpariert und die Einzelzellen enzymatisch (Trypsin) gewonnen. Diese Zellen (Glia und corticale Neuronen) werden in 24 Well-Platten ausgesät. Nach drei Tagen (Laminin beschichteten Platten) oder sieben Tagen (Ornithin beschichteten Platten) wird mit FDU (5-Fluor-2-desoxyuridine) die Mitosebehandlung durchgeführt. 15 Tage nach der Zellpräparation wird durch Zugabe von Glutamat (15min) der Zelltod ausgelöst. Nach der Glutamatentfernung werden die Calpaininhibitoren zugegeben. 24 h später wird durch die Bestimmung der Lactatdehydrogenase (LDH) im Zellkulturüberstand die Zellschädigung ermittelt.
Die Benzamide der Formel I stellen Inhibitoren von Cystein-Pro- teasen wie insbesondere Calpain I bzw. II und Cathepsin B bzw. L dar und können somit zur Bekämpfung von Krankheiten, die mit einer erhöhten Enzymaktivität der Calpain-Enzyme oder Cathepsin- Enzyme verbunden sind, dienen. Sie eignen sich daher zur Behandlung von neurodegenerativen Krankheiten, die nach Ischämie, Trauma, Subarachnoidal-Blutungen und Stroke auftreten und zu denen insbesondere Hirnschlag und Schädeltrauma zählen, und von neurodegenerativen Krankheiten wie multipler Infarkt-Dementia, Alzheimer Krankheit und Huntington Krankheit und weiterhin zur Behandlung von Schädigungen des Herzens nach cardialen Ischämien, Schädigungen der Nieren nach renalen Ischämien, Skelettmuskel- Schädigungen, Muskeldystrophien, Schädigungen, die durch Proliferation der glatten Muskelzellen entstehen, coronaren Vasospasmen, cerebralen Vasospasmen, Katarakten der Augen, Restenosis der Blutbahnen nach Angioplastie dienen. Zudem können die Benzamaide der Formel I bei der Chemotherapie von Tumoren und deren Metastasen nützlich sein und zur Behandlung von Krankheiten, bei denen ein erhöhter Interleukin-1-Spiegel auftritt, wie bei Entzündungen und rheumatischen Erkrankungen, dienen.
Die erfindungsgemäßen Arzneimittelzubereitungen enthalten neben den üblichen ArneimittelhilfStoffen eine therapeutisch wirksame Menge der Verbindungen I .
Für die lokale äußere Anwendung, zum Beispiel in Puder, Salben oder Sprays, können die Wirkstoffe in den üblichen Konzentrationen enthalten sein. In der Regel sind die Wirkstoffe in einer Menge von 0,001 bis 1 Gew.-%, vorzugsweise 0,01 bis 0,1
Gew.-% enthalten.
Bei der inneren Anwendung werden die Präperationen in Einzeldosen verabreicht. In einer Einzeldosis werden pro kg Körpergewicht 0,1 bis 100 mg gegeben. Die Zubereitungen können täglich in einer oder mehreren Dosierungen je nach Art und Schwere der Erkrankungen verabreicht werden.
Entsprechend der gewünschten Applikationsart enthalten die erfindungsgemäßen Arzneimittelzubereitungen neben dem Wirkstoff die üblichen Trägerstoffe und Verdünnungsmittel. Für die lokale äußere Anwendung können pharmazeutisch-technische Hilfsstoffe, wie Ethanol, Isopropanol, oxethyliertes Ricinusöl, oxethyliertes hydriertes Ricinusöl, Polyacrylsäure, Polyethylenglykol, Poly- ethylenglykostearat, ethoxylierte Fettalkohole, Paraffinöl, Vaseline und Wollfett, verwendet werden. Für die innere Anwendung eignen sich zum Beispiel Milchzucker, Propylenglykol, Ethanol, Stärke, Talk und Polyvinylpyrrolidon.
Ferner können Antioxidationsmittel wie Tocopherol und butyliertes Hydroxyanisol sowie butyliertes Hydroxytoluol, geschmacks- verbessernde Zusatzstoffe, Stabilisierungs-, Emulgier- und Gleitmittel enthalten sein.
Die neben dem Wirkstoff in der Zubereitung enthaltenen Stoffe sowie die bei der Herstellung der pharmazeutischen Zubereitungen verwendeten Stoffe sind toxikologisch unbedenklich und mit dem jeweiligen Wirkstoff verträglich. Die Herstellung der Arznei - mittelZubereitungen erfolgt in üblicher Weise, zum Beispiel durch Vermischung des Wirkstoffes mit anderen üblichen Trägerstoffen und Verdünnungsmitteln.
Die Arzeinimittelzubereitungen können in verschiedenen Applikati- onsweisen verbreicht werden, zum Beispiel peroral, parenteral wie intravenös durch Infusion, subkutan, intraperitoneal und topisch. So sind Zubereitungsformen wie Tabletten, Emulsionen, Infusionsund Injektionslösungen, Pasten, Salben, Gele, Cremes, Lotionen, Puder und Sprays möglich.
Beispiele
Beispiel 1
2- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl) -benzo- [g]phthalimid a) 2- (4-Ethoxycarbonylphenyl) -benzo [g] phthalimid
10g (50mMol) Napthalin-2, 3-dicarbonsäureanhydrid und 8.3g (50mMol) 3-Amino-benzoesäureethylester wurden in 50ml n-Buta- nol 16h auf 90°C erwärmt. Man ließ abkühlen und saugte anschließend den ausgefallenen Niederschlag ab. Ausbeute: 8.4g (48%) .
b) 2- (4-Carboxyphenyl) -benzo [glphthalimid
7.6g (22mMol) der Zwischenverbindung la wurden in 100ml Ethanol gelöst und nach Zugabe von 50ml 2M Natronlauge 16h bei Raumtemperatur gerührt. Das organische Lösungsmittel wurde im Vakuum entfernt und der wäßrige Rückstand mit IM Salzsäure angesäuert. Der dabei ausgefallene Niederschlag wurde abgesaugt. Ausbeute:..7.2g (100%)_.
c) 2- (4- (N- (S) -3-Phenyl-propan-l-ol-2-yl) carbamoylphenyl) - benzo [g]phthalimid
Zu 2.4g (7.5mMol) der Zwischenverbindung lb und 1.1g (7.5mMol) (S) -3-Phenylalaninol in 50ml wasserfreiem Methylenchlorid wurden nacheinander 1.9g (18.8mMol) Triethyla in, 25ml Dimethylsulfoxid und 0.34g (2.5mMol) 1-Hydroxybenzotriazol (HOBT) zugegeben. Anschließend wurden bei 0°C 1.4g (7.5mMol) 3- (3-Dimethylaminopropyl) -1-ethyl-carbo-diimidhydrochlorid (EDC) zugefügt. Alles wurde lh bei 0°C und danach 16h bei Raumtemperatur gerührt. Anschließend wurde das organische Lösungsmittel im Vakuum entfernt und der Rückstand mit 500ml Wasser verdünnt. Der Niederschlag wurde abgesaugt und chromatographisch (Fließmittel: Methylenchlorid/Methanol/ Triethylamin= 3/1/1) gereinigt, wobei 1.0g (30%) des Produktes anfielen.
d) 2- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl) - benzo [g]phthalimid
Zu 0.8g (1.8mMol) der Zwischenverbindung lc und 0.73g (7.2mMol) Triethylamin in 20ml wasserfreiem Dimethylsulfoxid wurden bei Raumtemperatur 1.15g (7.2mMol) Pyrididn-Schwefel- trioxid-Komplex, gelöst in 20ml Dimethylsulfoxid, zugegeben. Alles wurde 16h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde auf 500ml Wasser gegossen und der angefallene Niederschlag abgesaugt. Ausbeute: 0.7g (89%).
1H-NMR (D6-DMSO) : δ = 3.0(lH), 3.3{1H), 4.5(1H), 7.1-8.4 (13H) , 8.6(2H), 9.0(1H) und 9.6(lH)ppm
Beispiel 2
6,7-Dimethoxy-3- (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoylphenyl) -benzopyrimidion
a) 6, 7-Dimethoxy-3 (4-ethoxycarbonylphenyl) benzopyrimidion
Zu 17g (80.5mMol) 2-Amino-4 , 5-dimethoxy-benzoesäuremethyle- ster und einer Spatelspitze 4-Dimethylaminopyridin in 250ml wasserfreiem Dimethylformamid gab man bei Raumtemperatur
15.4g (80.5mMol) 4-Ethoxycarbonylphenylisocyanat portionsweise zu. Anschließend wurde alles lh bei 100°C gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand auf 180°C erhitzt. Das Reaktionsgemisch kristallisierte nach ei- niger Zeit durch. Danach wurde der Festkörper mit Aceton behandelt und abgesaugt. Der Festkörper wurde noch aus Dimethylformamid umkristallisiert, wobei 21.5g (73%) des Produktes anfielen.
b) 3- (4-Carboxyphenyl) -6, 7-dimethoxy-benzopyrimidion
21.5g (58mMol) der Zwischenverbindung 2a wurden in 100ml Tetrahydrofuran suspendiert und mit 5.6g (0.32Mol) Lithiumhydroxid, gelöst in 300 ml Wasser, versetzt. Alles wurde 2h bei Raumtemperatur gerührt. Danach wurde die Reaktionslösung mit 15ml Eisessig angesäuert und das organische Lösungsmittel im Vakuum entfernt. Der dabei anfallende Niederschlag wurde abgesaugt, wobei man 20.3g (100%) des Produktes erhielt.
c) 6,7-Dimethoxy-3- (4-(N- (S) -3-phenyl-propan-l-ol-2-.yl) carba- moyl-phenyl)benzopyrimidion 2g (5.8mMol) der Zwischenverbindung 2b wurden analog Beispiel lc in einem Lösungsmittelgemisch aus Dimethylfor amid und Dimethylsulfoxid umgesetzt. Ausbeute: 2.3g (83%).
d) 6,7-Dimethoxy-3- (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carba- moyl-phenyl) benzopyrimidion
2.1g (4.4mMol) der Zwischenverbindung wurden analog Beispiel ld oxidiert. Ausbeute: 0.65g (35%).
MS : M/e = 473 (M+) .
Beispiel 3
2- (4-Methyl-3 (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoyl-phenyl) -benzo [g] phthalimid
a) 2-Methyl-5-nitro-N(- (S) -3-phenyl-propan-2-yl-3-ol) -benzamid
Zu 5g (27.6mMol) 2-Methyl-5-nitrobenzoesäure und 4.2ml (30.4mMol) Triethylamin in 70ml wasserfreiem Tetrahydrofuran wurden bei 0°C 2.6ml (27.6mMol) Chlorameisensäureethylester, gelöst in 30ml Tetrahydrofuran, zugetropft. Alles wurde 1h bei Raumtemperatur gerührt. Danach gab man 4.2g (27.6mMol) (S) -3-Phenylalaninol zu und rührte alles 16h bei Raumtemperatur. Anschließend wurde filtriert und das Filtrat im Vakuum eingeengt. Der Rückstand wurde zwischen Essigester und Wasser verteilt. Die organische Phase wurde noch mit wäßriger Natri- umhydrogencarbonat-Lösung, Wasser, verdünnter Salzsäure und erneut mit Wasser gewaschen, getrocknet und im Vakuum eingeengt. Der Rückstand wurde noch mit Ether behandelt und abge- saugt. Man erhielt 7.5g (87%) des Zwischenverbindung.
b) 5-Amino-2-methyl-N- ( (S) -3-phenyl-propan-2-yl-3-ol) -benzamid
6.3g (20mMol) der Zwischenverbindung 3a wurden in 200ml Etha- nol/Tetrahydrofuran (3/1) gelöst und nach Zugabe von 0.5g.
Palladium/Kohle (10%ig) hydriert. Danach wurde filtriert und das Filtrat im Vakuum eingeengt. Der Rückstand wurde noch mit Ether behandelt und abgesaugt. Ausbeute: 4.9g (86%).
c) 2- (4-Methyl-3 (N- (S) -3-phenyl-propan-l-ol-2-yl) carbamoyl-phe- nyl) -benzo [g] phthalimid
0.76g (4mMol) der Zwischenverbindung 3b wurden analog Beispiel la mit Napthalin-2, 3-dicarbonsäureanhydrid umgesetzt, wobei 0.59g (48%) des Produktes anfielen.
d) 2- ( -Methyl-3 (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoyl-phe- nyl) -benzo [g] phthalimid
0.42g (0.9mMol) der Zwischenverbindung 3c wurden analog Bei- spiel ld oxidiert. Ausbeute: 0.34g (81%).
1H-NMR (D6-DMSO) : δ = 2.2(3H), 2.8(1H), 3.4 (1H), 4.7 (1H), 7.1-7.6(8H), 7.8(2H), 8.3(2H), 8.6(2H), 8.8(1H) und 9.7 (lH)ppm.
Beispiel 4
2- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl)methyl- benzo [g] phthalimid
a) 2 (4-Ethoxycarbonylphenyl)methyl-benzo [g] phthalimid
1.7g (lOmMol) 4-Aminomethylbenzoesäureethylesterhydrochlorid und 2.0g (20mMol) Triethylamin in 25 ml PEG400 wurden 15 min bei Raumtempeartur gerührt. Danach gab man 2g (lOmMol) 2, 3-Naphthalindicarbonsäureanhydrid zu und erwärmte alles 2h auf 100°C. Anschließend wurde das Reaktionsgemisch auf Wasser gegeben und der Niederschlag abgesaugt. Man erhielt 2.3g (68%) der Zwischenverbindung.
b) 2 (4-Carboxyphenyl)methyl-benzo[g] phthalimid 2g (5.8Mol) der Zwischenverbindung 4a wurden analog Beispiel lb verseift. Ausbeute: 1.9g (98%) .
c) 2- (4- (N- (S) -3-Phenyl-propan-l-ol-2-yl) carbamoylphenyl)methyl- benzo [g] phthalimid
1.3g (4mMol) der Zwischenverbindung 4b wurden analog Beispiel lc umgesetzt. Ausbeute: 0.65g (35%).
d) 2- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl)methyl- benzo [g] phthalimid
0.33g (0.7mMol) der Zwischenverbindung 4c wurden analog Beispiel ld oxidiert. Ausbeute: 0.3g (97%).
MS (ESI) : m/e = 462 (M+)
Beispiel 5
3- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl) -naph- r[ Γc> 1]
a) 3- (4-Ethoxycarbonylphenyl)naphtho [c] pyrimidion
1.4g (7mMol) 3-Aminonaphthoesäureethylester, 1.34g (7mMol) 4-Ethoxyphenylisocyanat und eine Spatelspitze 4-Dimethyl- aminopyridin wurden in 30ml Tetrahydrofuran 4h unter Rückfluß gekocht. Anschließend wurde alles im Vakuum eingeengt, der Rückstand mit Ethanol ausgekocht und abgesaugt. Ausbeute: 1.7g (67%) .
b) 3- (4-Carboxyphenyl)naphtho [c] pyrimidion
1.6g (4.4mMol) der Zwischenverbindung 5a wurden in 30ml Tetrahydrofuran gegeben, mit 0,8g (28.9mMol) Lithiumhydroxid, gelöst in 30ml Wasser, 12ml 2ml 2M Natronlauge und 30ml - Ethanol versetzt und bei Raumtemperatur lh gerührt. Das organische Lösungsmittel wurde im Vakuum eingeengt, die zurückbleibende wäßrige Phase verdünnt und mit verdünnter Salz- säure auf pH ca. 2-3 sauer gestellt. Der Niederschlag wurde abgesaugt, wobei 1.4g (96%) -des Produktes anfielen.
c) 3- (4- (N- (S)-3-Phenyl-propan-l-ol-2-yl) carbamoylphenyl)naph- tho [c] pyrimidion
1.3g (4mMol) der Zwischenverbindung 5b wurden analog Beispiel lc umgesetzt. Ausbeute: 1.1g.
d) 3- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl) naph- tho [c] pyrimidion
0.9g (2mMol) der Zwischenverbindung 5c wurden analog Beispiel ld oxidiert, wobei 0.65g (72%) des Produktes anfielen.
1H-NMR (D6-DMSO) : 5 = 2.95 (1H) , 3.2(1H), 4.5(1H), 7.1-8.K1H), 8.7(1H), 9.0(1H), 9.6(1H) und 11.7 (lH)ppm.
Beispiel 6
3- (4- (N- ( (S) -l-Carbamoyl-l-oxo-3-phenyl-propan-2-yl) carbamoylphenyl) -naphtho [c] pyrimidion
a) 3- (4- (N- (2 (S) -l-Carbamoyl-l-hydroxy-3-phenyl-propan-2-yl) carbamoylphenyl) -naphtho [c] pyrimidion
1.2g (3.6mMol) der Zwischenverbindung 5b wurden analog Beispiel lc mit 1.1g (3.6mMol) 0-(tert.-Bu- tyl) -2 (S) -N (l-carboxy-2- hydroxy-3-phenyl-propan-l-ol-2-yl) -carbamat (S.L.Harbeson et al., J.Med.Chem. 1994, 37, 2918-29) umgesetzt. Ausbeute: 1.2g (66%) .
b) 3- (4- (N- ( (S) -l-Carbamoyl-l-oxo-3-phenyl-propan-2-yl) carbamoylphenyl) -naphtho [c] pyrimidion
1.1g (2.2mMol) der Zwischenverbindung 6b wurden analog Beispiel ld oxidiert. Ausbeute: 0.93g (90%). MS: m/e = 506 (M+) .
Beispiel 7
8-Methyl-3- (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoylphenyl) benzopyrimidion
a) 3- (4-Ethoxycarbonylphenyl) -8-methyl-benzopyrimidion
20g (0.12Mol) 2-Amino-5-methylbenzoesäuremethylester wurden analog Beispiel 2a mit 4-Ethoxycarbonylphenylisocyanat umge- setzt. Ausbeute: 30.1g (77%).
b) 3- (4-Carboxyphenyl) -8-methyl-benzopyrimidion
29g (89.4mMol) der Zwischenverbindung 7a wurden analog Bei- spiel 2b hydrolysiert, wobei 21.3g (81%) des Produktes anfielen.
c) 8-Methyl-3- (4- (N- (S) -3-phenyl-propan-l-ol-2-yl) carbamoylphenyl) -benzopyrimidion
2g (6.8mMol) der Zwischenverbindung 7b wurden analog Beispiel lc umgesetzt. Ausbeute: 1.5g (52%).
d) 8-Methyl-3- (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoylphe- nyl) -benzopyrimidion
1.3g (3.0mMol) der Zwischenverbindung 7c wurden analog Beispiel 2d umgesetzt. Ausbeute: 1.2g (93%).
1H-NMR (D6-DMSO) : δ = 2.4(3H), 3.0(1H), 3.4(1H), 4.5(1H), 7.0-8.0(12H), 9.0(1H), 9.6(1H) und 11.9 (lH)ppm.
Beispiel 8
3- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl) benzopyrimidion
a) 3- (4-Ethoxycarbonylphenyl) -benzopyrimidion
19g (O.lMol) 2-Aminobenzoesäurepropylester wurden analog Beispiel 2a mit 4-Ethoxycarbonylphenylisocyanat umgesetzt, wobei 12.2g (32%) des Produktes anfielen.
b) 3- (4-Carboxyphenyl) -benzopyrimidion
30g (92.5mMol) der Zwischenverbindung 8a wurden analog Beispiel 2b hydrolysier . Ausbeute: 25.1g (92%).
c) 3- (4- (N- (S) -3-Phenyl-propan-l-ol-2-yl) carbamoylphenyl) -benzopyrimidion
2g (7.1mMol) der Zwischenverbindung 8b wurden analog Beispiel lc umgesetzt. Ausbeute: 2.6g (88%).
d) 3- (4- (N- (S) -3-Phenyl-propan-l-al-2-yl) carbamoylphenyl) -benzopyrimidion
2.3g (55.4mMol) der Zwischenverbindung 8c wurden analog Bei - spiel ld umgesetzt. Ausbeute: 1.7g (74%).
IH-NMR (D6-DMSO) : δ = 3.0(lH), 3.3(1H), 4.5(1H), 7.0-8.0 (13H) , 9.0(1H), 9.7 (1H) und 11.6 (1H) ppm.
Beispiel 9
6-Methyl-3 (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoylphenyl) benzopyrimidion
a) 3- (4-Ethoxycarbonylphenyl) -6-methyl-benzopyrimidion
20g (0.12Mol) 2-Amino-5-methylbenzoesäuremethylester wurden analog Beispiel 2a mit 4-Ethoxycarbonylphenylisocyanat umge- setzt, wobei 30.1g (77%) des Produktes anfielen.
b) 3- (4-Carboxyphenyl) -6-methyl-benzopyrimidion
30g (92.5mMol) der Zwischenverbindung 9a wurden analog Bei- spiel 2b hydrolysiert . Ausbeute: 25.1g (92%).
c) 6-Methyl-3 (4- (N- (S) -3-phenyl-propan-l-ol-2-yl) carbamoylphenyl) benzopyrimidion
2g (6.8mMol) der Zwischenverbindung 9b wurden analog Beispiel lc umgesetzt. Ausbeute: 1.2g (42%).
d) 6-Methyl-3 (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoylphenyl) benzopyrimidion
1.0g (2.3mMol) der Zwischenverbindung 9c wurden analog Bei' spiel ld umgesetzt. Ausbeute: O.73g (73%) .
IH-NMR (D6-DMSO) : δ = 2.4 (3H), 3.0(1H), 3.3 (1H), 4.5 (1H), 7.0-8.0(12H) , 9.0(1H), 9.7(1H) und 11.5 (breit)ppm.
Beispiel 10
7-Chlor-3 (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoylphe- nyl) -benzopyrimidion
a) 7-Chlor-3 (4-ethoxycarbonylphenyl) -benzopyrimidion
16g (86.2mMol) 2-Amino-4-chlorbenzoesäuremethylester wurden analog Beispiel 2a mit 4-Ethoxycarbonylphenylisocyanat umgesetzt, wobei 12.1g (41%) des Produktes anfielen.
b) 3- (4-Carboxyphenyl) -7-chlor-benzopyrimidion 12g (34.8mMol) der Zwischenverbindung 10a wurden analog Beispiel 2b hydrolysiert. Ausbeute: 10.1g (91%).
c) 7-Chlor-3 (4- (N-(S) -3-phenyl-propan-l-ol-2-yl) carbamoylphe- nyl) -benzopyrimidion
2g (6.3mMol) der Zwischenverbindung 10b wurden analog Beispiel lc umgesetzt. Ausbeute: 1.7g (60%).
d) 7-Chlor-3 (4- (N- (S) -3-phenyl-propan-l-al-2-yl) carbamoylphenyl) -benzopyrimidion
1.3g (28.9mMol) der Zwischenverbindung 10c wurden analog Beispiel ld umgesetzt. Ausbeute: 1.1g (86%).
IH-NMR (D6-DMS0) : δ = 3.0(1H), 3.3QH), 4.5(1H), 7.0-8.0 (12H), 9.0(1H), 9.7 (IH) und 11.7 (lH)ppm.
Analog den Beispielen 1-10 wurden hergestellt:
Beispiel 11
3- (4- (N- (S) -Pent-1-al-2 -yl) carbamoylphenyl) naphtho [c] yrimidion
H
!H-NMR (D6-DMSO): δ = 0.9 (3H) , 1.45 (2H) , 1.7 (IH) , 1.9 (IH) , 4,3 (IH), 7.4-7.8 (5H), 7.9-8.2 (4H) , 8.7 (IH) , 9.0 (IH) , 9.6 (IH) , 11.7 (IH) . Beispiel 12
3- (4- (N- (S) -Cyclohexylprop-1-al -2- yl) carbamoylphenyl) naphtho [c] pyrimidion
H
iH- MR (D6-DMSO): δ = 0.8-2.0 (13H) , 4.4 (IH) , 7.4-7.7 (5H) , 7.8-8.2 (4H) , 8.7 (IH) , 9.6 (IH) , 11.7 (IH) .
Beispiel 13
3- (4- (N- (S) -Ethylcarbamoyl-l-oxo-3-phenylpropan-2-yl) carbamoylphenyl) -naphtho [c] pyrimidion
MS m/e = 534 (M+) Beispiel 14
3- (4- (N- (S) - (1- (2 -Pyridyl) ethylcarbamoyl - 1-oxo- 3 -phenyl- propan-2yl) carbamoylphenyl) -naphtho [c] pyrimidion
MS m/e = 611 (M+)
Beispiel 15
3- (4- (N- (S) -3 - Phenylprop- 1-al-2 -yl) carbamoylphenyl) -pyra- zino [b] pyrimidion
H !H-NMR (D6-DMSO): δ = 2.8-3.0 (2H) , 4.5 (IH) , 7.2-7.7 (5H) , 7.6-7.9 (4H) , 8.15 (1H9; 8.2) (IH) , 8.8 (IH) , 9.6 (IH) . Beispiel 16
3- (4- (N- (S) - 3 -Phenylprop- 1-al- 2 -yl) carbamoylphenyl) -dichlorpyra- zino [b] pyrimidion
iH-NMR (De-DMSO): δ = 2.9 (IH) , 3.2 (IH) , 4.4 (IH) , 7.1 (5H) , 7.5 (2H) , 7.7 (2H) , 8.8 (IH) , 9.05 (IH) , 9.6 (IH) .
Beispiel 17
5,7-Dimethyl-3- (4- (N- (S) -3 - Phenylprop- 1-al -2 -yl) carbamoylphenyl) -pyidino [b] pyrimidion
iH-NMR (D6-DMSO): δ = 2.45 (3H) , 2.6 (3H) , 3.0 (IH) , 3.3 (IH) , 3.3 (IH, 4.5 (IH), 7.01 (IH) , 7.2-7.5 (7H) , 7.9 (2H) , 9.0 (IH) , 9.6 (IH) , ca. 12 (IH) . Beispiel 18
3 - (4- (N- (S) -3 - ( 2 -pyridyl )prop- 1-al- 2 -yl) carbamoylphenyl) naphtho [c] pyrimidion
H
IH-NMR (De-DMSO) : δ = 2.8-3.3 (2H) , 4.6 (IH), 7.2-8.2 (11H), 8.5 (IH), 8.7 (2H) , 9.1 (IH) , 9.6 (IH) , 11.8 (breit, IH) .
Beispiel 19
3- (4- (N- (S) -3 -Phenylprop- l-al-2-yl) carbamoylphenyl) pyidino[c] pyrimidion
H
MS m/e = 414 (M+)
Analog lassen sich herstellen:
Wenn für X1 nur eine Zahl angegeben ist, bedeutet diese die Stellung des heterocyclischen Ringsystems am Phenylring.

Claims

Patentansprüche
1. Heterocyclisch substituierte Benzamide der Formel I
und deren tautomere und isomere Formen sowie gegebenenfalls physiologisch verträgliche Salze, worin die Variablen folgende Bedeutung haben:
R1 Wasserstoff, Cι-C6-Alkyl, 0-Cι-C6-Alkyl, , OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-Cι-C4-Alkyl , -NHCO-C1-C4-Alkyl, -NHCO-Phenyl, -CONHR8, NHS02-Cι-C4-Alkyl, -NHS02-Phenyl, -S02-Cι-C4-Alkyl oder - S02-Phenyl,
R2 Wasserstoff, Cι-C6-Alkyl, 0-Cι-C6-Alkyl, , OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-Cι-C4-Alkyl, -NHCO-Cι-C4-Alkyl, -NHCO-Phenyl, -CONHR8, NHS02-Cι-C4-Alkyl, -NHS02-Phenyl, -S02-Cι-C4-Alkyl oder - S02-Phenyl oder
R1 und R2 zusammen eine Kette -CH=CH-CH=CH- , die noch ein oder zwei Substituenten R6 tragen kann,
R3 Wasserstoff, Chlor, Brom, Fluor, Ci-Cε-Alkyl, Phenyl, NHCO-Ci -C-Alkyl, N02, oder NH2(
R4 Ci-Cβ-Alkyl, das noch einen Phenyl-, Cyclopropyl, Cyclo- butyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Indolyl, Pyridyl- oder Naphthyl-Ring tragen kann, der seinerseits mit ein oder zwei Resten R7 substituiert ist, wobei R7 Wasserstoff, Cι~C-Alkyl, -0-Cι-C4-Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN, COOH , COO-Cι-C4-Alkyl , -CONHR8, -NHCO-Cι-C-Alkyl, -NHCO-Phenyl, -NHS02-Cx-C4-Alkyl, -NHS02-Phenyl, -S02-Cι-C4-Alkyl oder -S02-Phenyl, R5 Wasserstoff , -CO-OR8 , -CO-NR^Rio ,
oder
— CO-NR 0— ( N-R12
R6 Wasserstoff, Cι-C6-Alkyl, -0-Cι-C5-Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-C!-C4-, Alkyl,
R8 Wasserstoff oder Ci-Cβ-Alkyl,
R9 Wasserstoff, Ci-Cε-Alkyl, das noch durch einen Phenylring, der noch einen Rest R11 tragen kann, und mit
^Λ - >12
—N O
substituiert sein kann,
R10 Wasserstoff oder Cι-C6- lkyl,
R11 Wasserstoff, Cι-C6-Alkyl, -0-Cι-C6-Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN , COOH , COO-Cι-C4-Alkyl,
R12 Wasserstoff oder eine -Co-4-Alkylkette, die mit einem Phenylring substituiert sein kann, der selbst noch ein oder zwei Resten R11 tragen kann,
X -NH-CO- , -N=CH- , -CH2-CH2- , -CH=CH- , -S0- , -CH2- , -CO- und -CH2-CO- ,
n die Zahl 0, 1 oder 2 und
m die Zahl 0, 1, und 2,
2. Heterocyclisch substituierte Benzamide der Formel I gemäß Anspruch 1, worin
R5 Wasserstoff bedeutet und
R1, R2, R3, R4, X , m und n die in Anspruch 1 angegebene Bedeutung haben.
3. Heterocyclisch substituierte Benzamide der Formel I gemäß An- spruch 1, worin
R5 -CO-NR9R10 bedeutet und
R1, R2, R3, R4, X , m und n die in Anspruch 1 angegebene Be- deutung haben.
4. Heterocyclisch substituierte Benzamide der Formel I gemäß dem Anspruch 1 , wobei
R5 -CO-OR8 bedeutet und
R1, R2, R3, R4, X , m und n die in Anspruch 1 angegebene Bedeutung haben.
5. Heterocyclisch substituierte Benzamide der Formel I gemäß Anspruch 1 zur Verwendung bei der Bekämpfung von Krankheiten.
6. Verwendung von heterocyclisch substituierten Benzamiden der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln, die als Inhibitoren von Cysteinproteasen verwendet werden.
7. Verwendung von heterocyclisch substituierten Benzamiden der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen erhöhte Calpain-Ak- tivitäten auftreten.
8. Verwendung der heterocyclisch substituierte Benzamide der Formel I gemäß dem Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von neurodegenerativen Krankheiten und neuronalen Schädigungen.
9. Verwendung der heterocyclisch substituierten Benzamide der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten und neuronalen Schädigungen, die durch Ischämie, Trauma oder Massenblutungen ausgelöst werden.
10. Verwendung der heterocyclisch substituierten Benzamide der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Hirnschlag und Schädel -Hirn-Trauma.
5 11. Verwendung der heterocyclisch substituierten Benzamide der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Alzheimer Krankheit und der Huntington- Krankheit.
10 12. Verwendung der heterocyclisch substituierten Benzamide der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Epilepsien.
13. Verwendung der heterocyclisch substituierte Benzamide der 15 Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Schädigungen des Herzens nach cardialen Ischämien, Schädigungen der Nieren nach renalen Ischämien, Sklelettmuskelschädigungen, Muskeldystrophien, Schädigungen, die durch Proliferation der glatten Muskelzellen entstehen, 20 coronarer Vasospasmus, cerebraler Vasospasmus, Katarakten der Augen und Restenosis der Blutbahnen nach Angioplastie.
14. Verwendung der heterocyclisch substituierte Benzamide der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln
25 zur Behandlung von Tumoren und deren Metastasierung.
15. Verwendung der heterocyclisch substituierte Benzamide Ket- obenzamidoaldehyde der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei
30 denen erhöhte Interleukin-1-Spiegel auftreten.
16. Verwendung der heterocyclisch substituierten Benzamide der Formel I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von immunologischen Krankheiten wie Entzündun-
35 gen und rheumatischen Erkrankungen.
17. Arzneimittelzubereitung, enthaltend ein heterocyclisch substituiertes Benzamid der Formel I gemäß Anspruch 1.
40
45
EP97952007A 1996-12-09 1997-11-28 Neue heterocyclisch substituierte benzamide und deren anwendung bei der bekämpfung von krankheiten Withdrawn EP0946509A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19650975A DE19650975A1 (de) 1996-12-09 1996-12-09 Neue heterocyclisch substituierte Benzamide und deren Anwendung
DE19650975 1996-12-09
PCT/EP1997/006653 WO1998025899A1 (de) 1996-12-09 1997-11-28 Neue heterocyclisch substituierte benzamide und deren anwendung bei der bekämpfung von krankheiten

Publications (1)

Publication Number Publication Date
EP0946509A1 true EP0946509A1 (de) 1999-10-06

Family

ID=7814035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97952007A Withdrawn EP0946509A1 (de) 1996-12-09 1997-11-28 Neue heterocyclisch substituierte benzamide und deren anwendung bei der bekämpfung von krankheiten

Country Status (24)

Country Link
US (2) US6172072B1 (de)
EP (1) EP0946509A1 (de)
JP (1) JP2001505889A (de)
KR (1) KR20000057445A (de)
CN (1) CN1239949A (de)
AR (1) AR010339A1 (de)
AU (1) AU742732B2 (de)
BG (1) BG63388B1 (de)
BR (1) BR9713884A (de)
CA (1) CA2273988A1 (de)
CO (1) CO4910161A1 (de)
CZ (1) CZ292391B6 (de)
DE (1) DE19650975A1 (de)
HR (1) HRP970671A2 (de)
HU (1) HUP0000496A3 (de)
ID (1) ID22490A (de)
IL (1) IL129358A0 (de)
NO (1) NO992770L (de)
NZ (1) NZ335066A (de)
SK (1) SK56699A3 (de)
TR (1) TR199901282T2 (de)
TW (1) TW420666B (de)
WO (1) WO1998025899A1 (de)
ZA (1) ZA9710979B (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3818799A (en) * 1998-04-20 1999-11-08 Basf Aktiengesellschaft Novel heterocyclically substituted amides with cysteine protease-inhibiting effect
ATE318809T1 (de) 1999-11-05 2006-03-15 Sod Conseils Rech Applic Heterocyclische verbindungen und ihre verwendung als medikamente
FR2800737B1 (fr) * 1999-11-05 2006-06-30 Sod Conseils Rech Applic Nouveaux composes heterocycliques et leur application a titre de medicaments
GB0031302D0 (en) 2000-12-21 2001-01-31 Glaxo Group Ltd Napthalene derivatives
KR100962972B1 (ko) 2002-07-26 2010-06-09 주식회사유한양행 1-페닐피페리딘-3-온 유도체 및 그의 제조방법
WO2004043916A1 (en) 2002-11-12 2004-05-27 Merck & Co., Inc. Phenylcarboxamide beta-secretase inhibitors for the treatment of alzheimer's disease
CA2536313A1 (en) * 2003-08-22 2005-03-03 Takeda Pharmaceutical Company Limited Fused pyrimidine derivative and use thereof
US7320992B2 (en) * 2003-08-25 2008-01-22 Amgen Inc. Substituted 2,3-dihydro-1h-isoindol-1-one derivatives and methods of use
FR2863268B1 (fr) * 2003-12-09 2006-02-24 Sod Conseils Rech Applic Nouveaux derives du 2-hydroxytetrahydrofuranne et leur application a titre de medicaments
KR101194176B1 (ko) * 2003-12-22 2012-10-24 아지노모토 가부시키가이샤 신규한 페닐알라닌 유도체
GB0416730D0 (en) 2004-07-27 2004-09-01 Novartis Ag Organic compounds
US20070010537A1 (en) * 2004-08-20 2007-01-11 Kazumasa Hamamura Fused pyramidine derivative and use thereof
GB0507298D0 (en) 2005-04-11 2005-05-18 Novartis Ag Organic compounds
US7834023B2 (en) * 2006-09-20 2010-11-16 Portola Pharmaceuticals, Inc. Substituted dihydroquinazolines as platelet ADP receptor inhibitors
CA2673580C (en) 2006-12-29 2015-11-24 Abbott Gmbh & Co. Kg Carboxamide compounds and their use as calpain inhibitors
DK2124562T3 (en) 2007-03-09 2016-08-01 Second Genome Inc BICYCLOHETEROARYLFORBINDELSER AS P2X7 modulators and uses thereof
TWI453019B (zh) 2007-12-28 2014-09-21 Abbvie Deutschland 甲醯胺化合物
TWI519530B (zh) 2009-02-20 2016-02-01 艾伯維德國有限及兩合公司 羰醯胺化合物及其作為鈣蛋白酶(calpain)抑制劑之用途
US8236798B2 (en) 2009-05-07 2012-08-07 Abbott Gmbh & Co. Kg Carboxamide compounds and their use as calpain inhibitors
US9051304B2 (en) 2009-12-22 2015-06-09 AbbVie Deutschland GmbH & Co. KG Carboxamide compounds and their use as calpain inhibitors V
US8598211B2 (en) 2009-12-22 2013-12-03 Abbvie Inc. Carboxamide compounds and their use as calpain inhibitors IV
GB2505572B (en) 2010-04-30 2014-08-06 Abbott Cardiovascular Systems Catheter system providing step reduction for postconditioning
US9062027B2 (en) 2010-12-09 2015-06-23 AbbVie Deutschland GmbH & Co. KG Carboxamide compounds and their use as calpain inhibitors V
RU2014144285A (ru) 2012-04-03 2016-05-27 Эббви Дойчланд Гмбх Унд Ко. Кг Карбоксамидные соединения и их применение в качестве ингибиторов кальпаина v
US10590084B2 (en) 2016-03-09 2020-03-17 Blade Therapeutics, Inc. Cyclic keto-amide compounds as calpain modulators and methods of production and use thereof
WO2018009417A1 (en) 2016-07-05 2018-01-11 Blade Therapeutics, Inc. Calpain modulators and therapeutic uses thereof
KR20190063473A (ko) 2016-09-28 2019-06-07 블레이드 테라퓨틱스, 인크. 칼페인 조정자 및 그 치료학적 용도
WO2020113094A1 (en) 2018-11-30 2020-06-04 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8524663D0 (en) * 1985-10-07 1985-11-13 Fujisawa Pharmaceutical Co Quinazoline derivatives
DE3717828A1 (de) * 1987-05-27 1988-12-15 Hoechst Ag Siliziumhaltige benzoesaeurederivate, verfahren zu ihrer herstellung sowie ihre verwendung im pflanzenschutz
DE4000204A1 (de) 1990-01-05 1991-07-11 Steag Ag Vorrichtung zum dosierten austragen von schuettfaehigem feststoff
EP0473551A1 (de) * 1990-08-31 1992-03-04 Ciba-Geigy Ag 3-Aryluracil-Derivate, Verfahren zu ihrer Herstellung und diese enthaltende Unkrautbekämpfungsmittel
US5319085A (en) 1990-12-28 1994-06-07 Kyowa Hakko Kogyo Co., Ltd. Quinoline derivative having serotonin-3 receptor antagonizing activity
CA2098609A1 (en) 1990-12-28 1992-06-29 Raymond T. Bartus Use of calpain inhibitors in the inhibition and treatment of neurodegeneration
CA2071621C (en) * 1991-06-19 1996-08-06 Ahihiko Hosoda Aldehyde derivatives
AU4544993A (en) 1992-06-24 1994-01-24 Cortex Pharmaceuticals, Inc. Use of calpain inhibitors in the inhibition and treatment of medical conditions associated with increased calpain activity
US5541290A (en) 1993-06-24 1996-07-30 Harbeson; Scott L. Optically pure calpain inhibitor compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9825899A1 *

Also Published As

Publication number Publication date
KR20000057445A (ko) 2000-09-15
JP2001505889A (ja) 2001-05-08
ID22490A (id) 1999-10-21
HUP0000496A3 (en) 2002-11-28
AU742732B2 (en) 2002-01-10
AU5558098A (en) 1998-07-03
ZA9710979B (en) 1999-06-18
CZ174399A3 (cs) 1999-08-11
TW420666B (en) 2001-02-01
HRP970671A2 (en) 1998-10-31
NO992770D0 (no) 1999-06-08
CN1239949A (zh) 1999-12-29
BG63388B1 (bg) 2001-12-29
BR9713884A (pt) 2000-02-29
IL129358A0 (en) 2000-02-17
US6172072B1 (en) 2001-01-09
BG103399A (en) 2000-01-31
US6436949B1 (en) 2002-08-20
WO1998025899A1 (de) 1998-06-18
AR010339A1 (es) 2000-06-07
SK56699A3 (en) 1999-10-08
NO992770L (no) 1999-06-08
CA2273988A1 (en) 1998-06-18
DE19650975A1 (de) 1998-06-10
TR199901282T2 (xx) 1999-10-21
CO4910161A1 (es) 2000-04-24
HUP0000496A2 (hu) 2000-09-28
CZ292391B6 (cs) 2003-09-17
NZ335066A (en) 2000-03-27

Similar Documents

Publication Publication Date Title
EP0944582B1 (de) Ketobenzamide als calpain-inhibitoren
EP0946509A1 (de) Neue heterocyclisch substituierte benzamide und deren anwendung bei der bekämpfung von krankheiten
EP1082308B1 (de) Heterocyclisch substituierte amide als calpainhemmer
EP1073638B1 (de) Heterozyklische substituierte amide, deren herstellung und anwendung
EP1073641B1 (de) Neue substituierte amide, deren herstellung und anwendung
EP1073631A1 (de) Neue substituierte amide, deren herstellung und anwendung
DE19817461A1 (de) Neue substituierte Benzamide, deren Herstellung und Anwendung
EP1080074B1 (de) Heterocyclische substituierte Amide, deren Herstellung und Verwendung
EP0944584A1 (de) Benzamidoaldehyde und deren anwendung als inhibitoren von cystein-proteasen
EP0934273A1 (de) Neue piperidin-ketocarbonsäure-derivate, deren herstellung und anwendung
EP1080083A1 (de) Neue heterocyclisch substituierte amide mit cystein-protease hemmender wirkung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 19990331;SI PAYMENT 19990331

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020624

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABBOTT GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030609